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The influence of the electron-magnon and the electron-phonon interactions on the persistent current in a
one-dimensional mesoscopic ring is studied. We show that, due to the electron-magnon interaction, the am-
plitude of the persistent current is exponentially reduced compared to the free case. Two features occur in the
presence of an electron-phonon interaction. For the normal state of electrons, the persistent current is weakened
by the Debye-Waller factor. Considering the so-called Peierls distortions, we show that the effect of the Peierls
instability on the amplitude of the persistent current~i.e., the oscillation with respect to the flux! is suppressed
significantly and the persistent current will be practically undetectable in the case of a wide-gap Peierls
material.@S0163-1829~96!05224-1#

I. INTRODUCTION

Persistent current is an equilibrium property of an elec-
tronic system with a ring geometry threaded by a magnetic
flux. The prediction of the existence of persistent currents
could be traced back to more than three decades ago.1–3 The
renewal of the interest in this topic is due to Bu¨ttiker, Imry,
and Landauer,4 who suggested the existence of persistent
currents in a one-dimensional ring threaded by a magnetic
flux and predicted that any physical property of the ring is a
periodic function of the magnetic flux with a fundamental
periodF05hc/e. Since then the persistent current in meso-
scopic ring has been the subject of extensive studies both
theoretically5–7 and experimentally.8 The theoretical studies
include the investigation of multichannel rings and disor-
dered rings, the effect of the spin-orbit interaction, the
electron-electron interaction, and the electron-phonon inter-
action on the persistent current.9 Among these theoretical
studies, Losset al.7 considered a specific model in which the
mesoscopic ring was placed in a classical static inhomoge-
neous magnetic field and illustrated the connection between
the persistent current and the Berry phase, as well as the
possibility of its experimental verification. In particular, they
predicted that the system supports the persistent equilibrium
spin and charge currents, even in the absence of conventional
magnetic flux through the ring. The applied magnetic flux
plays the role of only an adiabatic parameter rather than a
trigger of the current.

As pointed out by Losset al., the texture in the system
studied in Ref. 7 could be recognized as an intrinsically fer-
romagnetic material or an inhomogeneous insulating ferro-
magnetic substance. Therefore, there will be an elementary
excitation of spin waves10 ~ESW! in the texture at finite tem-
perature when applying a small perturbation on the texture.
In the study of organic materials, Aokiet al.11 found that the

excitation spectrum turns out to comprise an acoustic mag-
non mode along with an optical magnon mode where the
optical magnon involves spatial spin oscillations within a
unit cell.12 Hence it would be interesting to study the effect
of the interaction between electrons and magnons on the per-
sistent current. By considering the electron-phonon interac-
tion in the mesoscopic system13 it has been shown that per-
sistent currents decrease. Such an interaction has been
further considered by Nathansonet al.14 in the situation that
an energy gap is opened in the electronic spectrum at the
Fermi energy. They discussed14 the Peierls instability in a
mesoscopic ring as well as the flux dependence of the Peierls
transition and showed that the amplitude of the oscillatory
persistent current is suppressed significantly. The Peierls
phase transition has been observed in many of organic
chains. The fluctuations of a purely one-dimensional Peierls
distortion have also been observed below room
temperature.15 Through investigations of the Aharonov-
Bohm ~AB! effect in Peierls insulators with a charge-density
wave~CDW!, it has been shown16 that there is a contribution
of thermally activated solitons, in a ring consisting of a com-
mensurate CDW, oscillating with a periodF5\c/2e. Such
an AB effect occurring in insulators is not related to the
motion of free carriers, but is due to the polarization of elec-
tronic states in the valence band by a magnetic field. The
truly intriguing effect of the magnon of the spin wave in
texture should appear in the low-lying excitations of elec-
trons in the ring. Therefore, investigations of the suppression
on persistent currents by an electron-phonon interaction and
the appearance of the Peierls instability in the system con-
sidered by Losset al. are certainly necessary.

For this purpose, we study the one-dimensional mesos-
copic ring involving both magnons and phonons. In this pa-
per, we first investigate the effect of the quantum fluctuation
of the texture due to the magnon upon the persistent current
in the ring. We then study the electron-phonon interaction in
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the system that has been affected by the magnon and discuss
the Peierls instability on the persistent current. We will
show, in this situation, that the persistent current is sup-
pressed simultaneously due to two nonclassical effects,
namely, the fluctuation of ESW due to the electron-magnon
and the electron-phonon interactions in the mesoscopic sys-
tem. The system we are considering is a simple tight-binding
one-dimensional mesoscopic ring with the circumference
L5Na threaded by a magnetic flux. Herea is the lattice
spacing andN is the number of the lattice sites in the ring. In
studying the one-dimensional tight-binding mesoscopic ring
involving magnons,7,17 the on-site energy of the electron is
assumed to bee05amBB, whereBn̂ is the magnetic field of
the specified texture with an anglex describing the deviation
of the vector n̂ from the symmetric axis of the ring,
mB5ge\/4mc is the Bohr magneton, anda561. In the
present approach, we will adopt the adiabatic approximation,
i.e., the spin aligns along the local magnetic texture.7 At low
temperatures we consider the special situation that the mag-
netic field is so strong that the spins of the electron are frozen
and polarized. Physically, this means that the ring has a fer-
romagnetic spin order. Hence the spin index will be dropped
in the following calculations. Part of the effective spin-orbit
coupling will be included in the geometric phase. For sim-
plicity, we take into account only the electron-magnon and
electron-phonon interactions. The effect of the magnon-
phonon coupling has been neglected, which is believed only
to renormalize the magnon energy.

This paper is organized as follows. In Sec. II we use a
unitary transformation to diagonalize the Hamiltonian for the
one-dimensional tight-binding ring with the electron-magnon
and the electron-phonon interactions. Using an orthonormal
set of many spin-wave states, we derive the energy spectrum
of the system, which can be used to study the persistent
current. Section III is devoted to the discussion of the influ-
ence of the electron-phonon interaction on persistent cur-
rents. The discussion will be divided into two parts, corre-
sponding to with and without a gap in the energy spectrum,
respectively. Summary and discussions are given in Sec. IV.

II. TIGHT-BINDING RING WITH ELECTRON-MAGNON
INTERACTION

We now consider a one-dimensional tight-binding meso-
scopic ring threaded by a magnetic flux in the presence of
electron-magnon interaction. The Hamiltonian is

H5(
l51

N

@~e02m!cl
†cl2J~cl11

† cl1c†cl11!#

1(
q

\vqbq
†bq1(

q,l
Mqe

ilqa~bq1bq
†!cl

†cl , ~1!

wherebq
† (bq) is the creation~annihilation! operator of the

magnon with wave vectorq, cl
† (cl) is the creation~annihi-

lation! operator of the electron on the sitel , J represents the
hopping integral,e05mBB is the on-site energy, andm is the
chemical potential. Equation~1! can be obtained by assum-
ing the validity of the linear spin-wave approximation
around the local ferromagnetic order. The first two terms of
Eq. ~1! are the Hamiltonians of free electrons and magnons,

respectively. The electron-magnon interaction is represented
by the third term, where we assume that the coupling coef-
ficientMq satisfiesM2q5Mq* . The Hamiltonian Eq.~1! can
be rewritten in the following form by separating the hopping
term from the other terms:

H5H01H1 , ~2!

where

H05(
l51

N

~e02m!cl
†cl1(

q
\vqbq

†bq

1(
q,l

Mqe
ilqa~bq1bq

†!cl
†cl ~3!

and

H152J(
l

~cl11
† cl1c†cl11!. ~4!

To facilitate the calculation we introduce a canonical trans-
formationS to diagonalizeH0 , whereS is given by

S5(
q,l

Mq

\vq
eiqlacl

†cl~bq1bq
†!. ~5!

The new HamiltonianH85eSHe2S after the transforma-
tion then takes the form

H85(
l

~e02m2nm!cl
†cl1(

q
\vqbq

†bq

2J(
l

~cl11
† clXl11

† Xl1cl
†cl11Xl

†Xl11!, ~6!

where

Xl5expF(
q

Mq

\vq
eiqla~bq2b2q

† !G
satisfiesXl

†Xl51 andnm52(q(uMqu2/\vq) represents the
energy correction to the on-site energy of electrons due to the
electron-magnon interaction. From Eq.~6! we can see that
the hopping term has the off-diagonal matrix element con-
necting different spin-wave states. This means that the elec-
tron absorbs and emits virtual magnons in its hopping pro-
cess. Equation~6! can be diagonally averaged by using a
vigorously orthonormal set of many spin-wave states,18i.e.,

u . . . ,nq , . . . &5Pq

1

An! ~bq
†!nqu0&, ~7!

whereu0& represents the vacuum state. After averaging over
the magnon part of Hamiltonian Eq.~6! under the orthonor-
mal set of many spin-wave states given by Eq.~7!, the ef-
fective Hamiltonian of electron becomes

Heff5(
l51

@~e02m2nm!cl
†cl2Je2Wm~cl11

† cl1cl
†cl11!#

1(
q

\vq^nq&, ~8!
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where Wm5(qu f qu2(^nq&1 1
2 ), f q5(Mq /\vq)(12eiqa),

and ^nq& is the average number of magnons. The factor
exp(2Wm) in Eq. ~8! comes from the electron-magnon inter-
action. The effective hopping energy isJexp(2Wm), where
Wm is given by

Wm5(
q

H 2 uMqu2

~\vq!
2sin

2
qa

2
cothS \vq

2kBT
D J . ~9!

At T50, Wm5(q@2sin
2(qa/2)#uMqu2/(\vq)

2'(quMqu2/
(\vq)

2[gm . Heregm is the effective coupling strength. In
deriving Eq.~8!, we have made two approximations:~1!, in
which we have eliminated the magnon’s degrees of freedom
using an orthonormal set of many spin-wave states, and~2!,
in which we have used the adiabatic approximation for the
spin.7 In general, we can decouple the spin and orbital de-
grees of freedom in the sense that the spin evolves in the
presence of an external magnetic field, which depends para-
metrically on the path of the orbital motion. The wave func-
tion takes the form asuC&5uc& ^ unW (u)&, where unW (u)&
5exp(ix/2)@acos(x/2)uêz ,a&1exp(i2pl/N)sin(x/2)uêz,2a&]
is the wave function in the intrinsic space of the spin. The
spin-dependent part acquires a geometrical phase during the
evolution of the spin in a varying magnetic field. Such a
geometrical phase ~Berry phase! is given by
G(2p)52Imr^nW ud/dnW unW &dnW which has been shown to be
p(cosx21),7 where the parameterx is an angle measuring
the deviation of the texture from the symmetric axis of the
system. We now use this effective Hamiltonian Eq.~8! to
find the eigenspectrum. The corresponding Schro¨dinger
equation isHeffuc&5Euc&. Let the wave function be

uc&5
1

AN (
l51

cl
†expF2p

N
i S n1

F

F0
D l G u0&, ~10!

subjected to the twisted boundary condition
cl1N5clexp(2piF/F0). HereF5Fe.m.1FgF0 is the spin-
dependent flux that combines the usual electromagnetic con-
tribution Fe.m. and the purely geometrical Berry phase
Fg5(cosx21)/2. After solving the Schro¨dinger equation,
the energy of the system is found to be

En5e02m2nm22Je2WmcosF2p

N S n1
Fe.m.

F0
1FgD G ,

~11!

wheren50,61,62, . . . , F05hc/e is the elementary flux
quantum, andFe.m. is the magnetic flux threading the ring
~measured in units ofF0). From the roleFg played in the
energy spectrum, the geometrical phase can be viewed as a
spin-dependent gauge potential. We see from Eq.~11! that
the oscillation with respect to the flux in the energy spectrum
is exponentially weakened by a factore2Wm compared to the
free case. Since the persistent current is obtained from the
F dependence of the eigenspectrum, we then expect that the
electron-magnon interaction suppresses the persistent cur-
rent.

The persistent current carried by electrons with energy
En is

I n52c
]En

]Fe.m.
52

2eJ

N\
sinF2p

N S n1
Fe.m.

F0
1FgD Ge2Wm.

~12!

At T50 the total current is obtained by summing over all
lowest-lying occupied states up to the Fermi level and is
given by I5(n50I n(T50). At finite temperatures, one can
calculate the persistent current with the help of the free en-
ergyF of the system and obtain

I ~F,T!52c
]F

]Fe.m.
5(

n
I nf ~En!, ~13!

where f (En) is the Fermi distribution function for the elec-
tron of energyEn and I n is given by Eq.~12!.

According to the formula given by Ref. 7 in the low-
temperature limit, the spin current is obtained by taking the
derivative with respect to the geometrical phaseFg,

I s5V2
1

h

]F

]Fg
M , ~14!

with

VW 52 1
2 sin

2xêz ~15!

and

MW 5cosxêz , ~16!

whereVW is a geometrical vector that represents the quantum-
mechanical correlation between the spin and orbital degrees
of freedom andMW is the expectation value of the magneti-
zation. Substituting the expression of free energy into the
above equations, we obtain the spin current

I s52 1
2 sin

2x1(
n

I n
s f ~En!, ~17!

where

I n
s52

2J

\N
e2WmsinF2p

N S n1
Fe.m.

F0
1FgD G . ~18!

Equations~12! and~18! show that when the electron-magnon
interaction is taken into account, the amplitude of persistent
currents~charge currentI n and spin currentI n

s) is decreased
exponentially with increasing coupling strength
gm5(quMqu2/(\vq)

2.

III. FLUCTUATION DUE TO THE LATTICE VIBRATION
AND LATTICE DISTORTION
ON PERSISTENT CURRENTS

Historically, the first microscopic calculation of the effect
of the phonon on electrical conductivity is contained in
Bloch’s pioneering work19 on the theory of metals. It is well
known that the phonon plays an important role in the BCS
theory of superconductivity. Similar to the case of supercon-
ductivity, the phonon may take place in the mesoscopic sys-
tem and affect the persistent current in the mesoscopic ring.
Recently there are many studies considering the electron-
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phonon interaction on the mesoscopic system13 as well as the
effect of the appearance of the Peierls instability on the per-
sistent current.14–16The effect of the Peierls instability on the
mesoscopic system is expected because an average energy
gap does exist and modifies the energy spectrum of the elec-
tron drastically.14 In the following subsection we will treat a
one-dimensional tight-binding mesoscopic ring in the pres-
ence of both electron-magnon and electron-phonon interac-
tions and discuss the suppression of the persistent current.

A. Influence of lattice vibration on the persistent current

Including the electron-phonon interaction, the Hamil-
tonian Eq.~6! can be written as

He-p5Heff1(
p

\vp~dp
†dp1

1
2 !

1(
p,l

M̃ pe
ipla~dp1dp

†!cl
†cl , ~19!

whereHeff is the effective Hamiltonian for the electron given
by Eq. ~8!. Here the corrections for both the on-site energy
nm and the hopping energy due to the electron-magnon in-
teractionJe2Wm have been included. The new terms in Eq.
~19! are the free phonon Hamiltonian and the electron-
phonon interaction term. The coefficientM̃ p for the electron-
phonon interaction satisfies the relationM̃2p5M̃ p* and
dp
† (dp) is the creation~annihilation! operator of the phonon
with wave vectorp. For simplicity of the calculation we
have not considered the interaction between the phonon and
the magnon. We will also neglect the magnon energy
(q\vq^nq& in the following calculations.

Now we will solve the equationHe-puc̄&5Ee-puc̄& by us-
ing the variational method. The variational wave function
can be chosen as18

uc̄&5
1

AN (
l51

cl
†expF2p

N
i S n1

F

f0
D l GSl u . . . ,Np , . . . &,

~20!

whereF is again the total fluxFe.m.1FgF0 and the phonon
states are

u . . . ,Np , . . . &5Pp

1

ANp!
~dp

†!Npu0& ~21!

and

Sl5expF(
p

f pe
ipla~dp2d2p

† !G , ~22!

with variational parameter satisfyingf2p5 f p* . Such a varia-
tional wave function is similar to that of Fro¨hlich’s small
polaron theory, but here we apply it to a mesoscopic ring
satisfying a twisted boundary condition cl1N

5exp(i2pF/F0)cl . Using the relation Sl
†dpSl

5dp2 f pe
2 ipla, we obtain the average energy

Ē5^c̄uHe-puc̄&

5~e02m2nm!22Je2Wm2WphcosF2p

N S n1
Fe.m.

F0
1FgDG

1(
p

\vp~Np1
1
21u f pu2!2(

p
2M̃ pf p* , ~23!

whereWph5(p2u f pu2(Np1
1
2 )@12cos(pa)#, vp is the fre-

quency of the phonon with the wave vectorp, and Np
is the average number of phonons. The Debye-Waller
factor can be calculated by the formula exp(2Wph)
5^ . . . ,Np , . . . uSl11

† Sl u . . . ,Np , . . . &. The parameterf p*
can be determined by (dĒ/d f p* )50. We found that

f p5M̃ pH \vp24Je2Wm2WphcosF2p

N S n1
Fe.m.

F0
1FgD G

3~Np1
1
2 !@12cos~pa!#J 21

. ~24!

For the case of a narrow energy band~small J) and optical
phonons\vp5\v0 , f p can be simplified tof p5M̃ p /\v0 .
So we have

Wph5(
p

uM̃ pu2

~\v0!
2cothS \v0

kBT
D @12cos~pa!#. ~25!

The energy of the system is

Ēn5~e02m2nm2nph!

22Je2Wm2WphcosF2p

N S n1
Fe.m.

F0
1FgD G , ~26!

where n50,61,62, . . . andnph5(puM̃ pu2/\v0 , which
represents the energy correction to the on-site energy of the
electron due to phonons. In Eq.~26! we have neglected the
phonon energy. From this expression we see that the influ-
ence of the phonon is similar to that of the magnon. It gives
a further suppression on the oscillation with respect to the
flux in the energy. Using the formula I (F,T)
52c(]F/]Fe.m.), whereF is the free energy, we obtain the
persistent current of the system

I ~F,T!5(
n

I nf ~Ēn!, ~27!

where the currentI n corresponding to thenth eigenstate is
given by

I n52
2eJ

N\
e2Wm2WphsinF2p

N S n1
Fe.m.

F0
1FgD G . ~28!

For the spin current, we obtain expressions similar to Eqs.
~17! and ~18!. This shows that in comparison to that of the
electron-magnon interaction, the amplitude of persistent cur-
rents~both charge current and spin current! are decreased by
another exponential factor~the Debye-Waller factor! e2Wph

due to the electron-phonon interaction.
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B. Peierls instability

In this subsection we discuss the Peierls instability on the
persistent current in the mesoscopic ring. A theory of the
Peierls instability for a finite one-dimensional ring with a
discrete energy spectrum has been presented by Nathanson
et al.14 For the case of a half-filled band conductor~hence
N is even!, the one-dimensional system is unstable with re-
spect to a static distortion of the lattice. The distortion opens
a gap of magnitude 2D in the electron spectrum at the Fermi
energy whereD can be determined through a self-consistent
mean-field equation. As shown in Ref. 14 for a finite system,
there is always a nontrivial solutionD for the caseN54 j ,
where j is an integer. For the caseN54 j12, however, the
electron-phonon coupling has to be small in order to give a
nontrivial solution. In the following discussion, instead of
working in real space we will work ink space. The effective
Hamiltonian of the electron Eq.~8! that considers the
electron-magnon interaction can be written as

Heff5(
k

H mBB2nm2m22Je2Wm

3cosF S k1
e

\c

Fe.m.

L

2p

L
FgDaG J ck†ck

5(
k

~e02m1ek!ck
†ck , ~29!

wheree05mBB2nm and

ek522Je2WmcosF S k1
e

\c

Fe.m.

L
1
2p

L
FgDaG .

Taking into account the electron-phonon interaction, the
Hamiltonian can be written as

He-p5Heff1Hph1HI , ~30!

where

Hph5(
p

\vp~dp
†dp1

1
2 ! ~31!

and

HI5
1

AN(
k,p

M̃ pck2p
† ck~dp

†1d2p!. ~32!

In the following we will confine ourselves to the case of a
half-filled band for the mesoscopic ring. Thus the chemical
potential coincides withe0 . At low enough temperature, the
electronic system is unstable at the nesting vectorQ, where
Q562kF is the soft phonon mode for the case of a perfect
nesting. The Fermi wave vector takes the valuekF5p/2a.
The ring is now placed in a texture. Therefore, the nesting
condition is given bye(k1Q)1e(k)52mBB. We consider
the so-called Peierls distortion in which the corresponding
displacement of the lattice depends on the magnetic field.
Under the static distortion of the lattice, the condensation of
a phonon mode with wave vectorQ562kF would open a
gap of magnitude 2nQ in the electronic energy spectrum at
the Fermi energy. Following the argument in Ref. 14, for a

small finite system with the circumference of the ring being
much smaller than the wavelength of the variation of the
lattice distortion around the mean-field value, the discussion
can be restricted to a single mode for a lattice distortion. The
corresponding Hamiltonian of the system is then given by

H52N0\vQ1(
k

$ek1Q/2ck1Q/2
† ck1Q/2

1ek2Q/2ck2Q/2
† ck2Q/21nQ~ck2Q/2

† ck1Q/2

1ck1Q/2
† ck2Q/2!%, ~33!

where uku,Q/2, nQ5AN0 /NM̃Q is the energy gap, and
N05^dQ

† dQ& is the condensation phonon number. Using the
Bogoliubov transformation

ak5ukck1Q/22vkck2Q/2 , ak
†5ukck1Q/2

† 2vkck2Q/2
† ,

~34!

bk5vkck1Q/21ukck2Q/2 , bk
†5vkck1Q/2

† 1ukck2Q/2
† ,

~35!

with uk
21vk

251, we can write the Hamiltonian Eq.~33! as

H5(
k

$@ek1Q/2uk
21ek2Q/2vk

222nQukvk#ak
†ak

1@ek1Q/2vk
21ek2Q/2uk

212nQukvk#bk
†bk

1@ek1Q/2ukvk2ek2Q/2ukvk1nQ~uk
22vk

2!#

3~ak
†bk1bk

†ak!%. ~36!

By setting@ek1Q/2ukvk2ek2Q/2ukvk1nQ(uk
22vk

2)#50, we
find

H52N0\vQ1(
k

@E1~k!ak
†ak1E2~k!bk

†bk#, ~37!

whereE6(k)56Aek1Q/2
2 1nQ

2 is the electronic spectrum in
consideration of the Peierls instability. We see that the cor-
responding energy gap modifies the energy spectrum of the
system. The nonmonotonic dependence onnQ will give the
correction to the persistent current in Peierls materials. By a
straightforward calculation we obtain the free energy of the
system

F5
2N\vQ

M̃Q
2 nQ

2 2
1

b(
k

$ ln@11exp~bAek
21nQ

2 !#

1 ln@11exp~2bAek
21nQ

2 !#%. ~38!

The equilibrium value of the gapnQ can be found by mini-
mizing the free energy, i.e.,dF/dn50, from which we ob-
tain the gap equation

N\vQ

M̃Q
2 5(

k

1

Aek
21nQ

2

sinhbAek
21nQ

2

11cosh~bAek
21nQ

2 !
. ~39!

In the limit nQ→0, we obtain the equation that determines
the inverse transition temperaturebc for the Peierls transi-
tion.
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At finite temperatures the total persistent current is given
by

I ~F,T!52c
]F

]Fe.m.
52cS ]F

]ek

]ek
]Fe.m.

1
]F

]n

]n

]Fe.m.
D .
~40!

Therefore we obtain the persistent current of a Peierls insu-
lating mesoscopic ring

I ~F,T!52(
k

2eJ

N\
e2WmsinFka1

2p

N

F

F0
G ek

Aek
21nQ

2

3
sinhbAek

21nQ
2

11cosh~bAek
21nQ

2 !
. ~41!

Our result is consistent with that given by Nathanson
et al.,14i.e., the gap parameternQ strongly affects the persis-
tent current. When the gap is large enough, all of the elec-
trons are condensed into the ground state and the current
vanishes. In fact, for a wide-gap insulator, the amplitude of
the persistent current is so small that it is practically unde-
tectable. In the case of a narrow-gap insulator, there is no
true phase transition. While the Peierls distortion drastically
reduces the amplitude of the persistent current, in our case
the ring is also affected by the texture, which suppresses the
persistent current by magnons. The influence due to magnons
on the persistent current in the Peierls insulating states is
stronger than that of in the normal states. Equation~41! re-
produces the expressions for the persistent currents given by
Eqs. ~13! and ~27! with Wph50 when the electron-phonon
interaction is much weaker. Generally, at low temperatures
the persistent current in a Peierls material is reduced by an
order of magnitude compared to the other materials.

IV. SUMMARY AND DISCUSSIONS

So far, we have discussed the persistent current under the
influence of both electron-magnon and electron-phonon in-
teractions in a one-dimensional tight-binding mesoscopic
ring. In our approach we have used the adiabatic approxima-
tion and neglected the magnon-phonon interaction since it
makes no contribution to the oscillatory part of the energy
with respect toF ~which is the sum of the electromagnetic
flux and the geometrical Berry phase! and hence persistent
currents.

Losset al.7 have discussed the role of quantum fluctuation
in the persistent current and shown that there is an additive
correction to the energy spectrum due to the zero-point en-

ergy. However, this additive correction is irrelevant for the
calculation of the persistent current. Motivated by the work
of Loss et al.,7 we consider the quantum fluctuation that
arises from emitted and absorbed magnons. The result shows
that the persistent current is decreased by an exponential fac-
tor, which depends on the electron-magnon coupling coeffi-
cient. This can be understood as follows. In the mesoscopic
texture, the ferromagnetic spin wave propagates coherently
and makes an effective action on the motion of electrons.
Such an exponential factor decreases the probability for pre-
serving the phase coherence of electrons and in turn reduces
the amplitude of the persistent current. In the low-
temperature limit, the effect of emitting and absorbing virtual
magnons does not vanish. When the temperature is high the
excitations of the texture become the Stoner excitations. This
result is no longer correct.

In summary, we have studied a model considering the
electron-magnon and the electron-phonon interactions and
discussed the persistent current with and without Peierls in-
stability. Two results are obtained for the normal state and
the Peierls distortion state.~a! In the normal state the ampli-
tude of the persistent current is reduced by the Debye-Waller
factor exp(2Wph), which describes the probability of the
elastic and the coherent scattering. Both magnons and
phonons have a similar behavior in suppressing the ampli-
tude of persistent currents. In fact, these quasiparticles are all
bosons and therefore have the same statistics. Their interac-
tions with electrons produce a similar result when the spin of
the electron is not included explicitly.~b! In the Peierls dis-
tortion state, near half-filling, the electron-phonon interaction
leads to a soft phonon mode. As a consequence, the appear-
ance of the Peierls transition can change a metal into an
insulator. However, in our case, there is no true phase tran-
sition. The order parameter is not a real quantity. Therefore,
the persistent current is not caused by the charge density
wave. On the other hand, according to the previous result,16

the increase of the texture magnetic field strength will de-
crease the transition temperature.

ACKNOWLEDGMENTS

We are grateful to Professor H.Z. Li and Professor Y.C.
Zhou for stimulating conversations and also to Dr. L. Hu for
important remarks. S.S.W. and Z.S.M. were supported by the
NNSF-China, the Foundation of Advanced Research Center
of Zhongshan University, CCAST, and ITP-CAS. J.W. was
supported by a RGC research grant from the Hong Kong
government under Grant No. HKU 261/95P.

*Permanent address.
1F. Hund, Ann. Phys.~Leipzig! 32, 102 ~1938!.
2N. Byers and C.N. Yang, Phys. Rev. Lett.46, 7 ~1961!; F. Bloch,
Phys. Rev.137, A787 ~1965!.

3F. London, J. Phys. Radium8, 397 ~1937!; J.A. Pople and K.G.
Untch, J. Am. Chem. Soc.88, 4811~1966!.

4M. Büttiker, Y. Imry, and R. Landauer, Phys. Lett.96A, 365
~1983!.

5H.F. Cheung, Y. Gefen, E.K. Riedel, and W.H. Shih, Phys. Rev.
B 37, 6050 ~1988!; H.F. Cheung, E.K. Riedel, and Y. Gefen,
Phys. Rev. Lett.62, 587 ~1989!.

6V. Ambegaoker and U. Eckern, Phys. Rev. Lett.65, 381 ~1990!;
B.L. Altshuler, Y. Gefen, and Y. Imry,ibid. 66, 88 ~1991!.

7D. Loss, P. Goldbart, and A.V. Balatsky, Phys. Rev. Lett.65,
1455~1990!; D. Loss and P. Goldbart, Phys. Rev. B43, 13 762
~1991!; 45, 13 544~1992!.
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