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The results of first-principles full-potential linear muffin-tin orbital calculations of the elastic constants and
related structural and electronic properties of BN, AlN, GaN, and InN in both the zinc-blende and wurtzite
structures are presented. The results include all of the equilibrium lattice constants, the bulk moduli, the
TO-phonon frequencies atG, their mode Gru¨neisen parameters, the full set of cubic elastic constants, and
deformation potentials. The elastic constants for the wurtzite crystals are first obtained from those calculated
for zinc blende by Martin’s transformation method. The components related to strains along thec axis (C13 and
C33) are found to be less accurate than the others. An elaboration of Martin’s approach utilizing first-principles
calculation for distortions which maintains hexagonal symmetry but allows for a nonidealc/a ratio is imple-
mented. As a byproduct of the relaxation calculations of the wurtzite internal parameteru we also obtain the
A1 and an estimate of theE1 TO-phonon frequencies in the hexagonal materials. Good agreement is obtained
with recent experimental results for the elastic constants of wurtzite AlN and GaN and zinc-blende BN as well
as for the other properties mentioned above for all materials. Our results provide predictions for the remaining
crystal structure materials combinations for which no direct experimental data are presently available. From
these results and experimental LO-TO splittings, we determine the bond-stretching and bond-bending param-
etersa andb of Keating’s semiempirical valence-force-field model. We use this model to rationalize some of
the observed trends in the behavior with the cation. The shift and splittings of the energy bands due to strains
are used to obtain a complete set of deformation potentials for the zinc-blende crystals at symmetry points for
several of the important eigenvalues. We also define deformation potentials for the valence-band maximum of
the wurtzite structure and relate them to the corresponding@111# strain deformation and optical mode defor-
mation potentials in zinc blende.@S0163-1829~96!00324-4#

I. INTRODUCTION

The group III nitrides are currently being actively inves-
tigated in view of the promising potentialities of AlN, GaN,
and InN for short-wavelength electroluminescent devices
and the extreme hardness and high thermal conductivity of
c-BN. All these materials also have potential for high-
temperature, high-power, and high-frequency electronics.
These properties are closely related to their wide band gaps
and strong~mixed ionic and covalent! bonding. An overview
of the recent interest in wide-band-gap semiconductors and
the particular role of the group III nitrides can be found in
several recent conference proceedings1–4while general infor-
mation on the properties of group III nitrides is available in a
recent compilation.5

In order to model the behavior of the thin film hetero-
structures on which many electroluminescent devices@light-
emitting diodes~LED! and laser diodes# are based, a knowl-
edge of their elastic constants and strain deformation
potentials is indispensable. For example, the elastic constants
allow one to determine by continuum elasticity theory6 the
precise strain state of a pseudomorphic epitaxial thin film
~which is under biaxial stress because it has to adapt to the
substrate on which it is grown!, or of a free standing super-
lattice of alternating thin layers of two of these binary mate-
rials. The pseudomorphic state is only expected to occur be-
low the critical thickness, which is likely to be very small for
any pair of these materials because of their sizable lattice
mismatches, but may be relevant for interfaces between al-
loys among these materials with compositions close to each

other. One can use interpolated elastic constants for the al-
loys to deal with this situation. Above the critical thickness,
misfit dislocations occur at the interface and relax the strain.
Even in that case, the elastic constants may be needed to
calculate the residual strain that may result from thermal ex-
pansion coefficient mismatch. In other words, films may be
free of strain at the growth temperature but have a residual
strain after cooling down. Once the strain state is determined,
the deformation potentials determine the changes in the band
structure resulting from the strain in the materials. Likewise,
for the applications ofc-BN in hard coatings and other ap-
plications related to its hardness, its elastic constants are ob-
viously important.

Nevertheless, these properties are at present poorly known
for all these materials. Although several total energy and
band-structure calculations of the group III nitrides have re-
cently been published~see, e.g., Ref. 7 for an overview!, a
systematic study of their elastic constants and behavior under
hydrostatic and uniaxial stress has been lacking.

Until recently there were only a few fairly old experimen-
tal studies of the wurtzite nitrides~BN, GaN, and InN! ~Ref.
8! which determined the elastic constants from rather indi-
rect x-ray measurements on powders or crystals of rather
poor quality. The values for cubic GaN and InN reported by
Sherwin and Drummond9 were obtained from these values
by an appropriate rotation of the elasticity tensor for the hex-
agonal system. This procedure will be discussed below. Only
recently have accurate values based on sound velocity or
related measurements been reported for AlN,10,11GaN,12 and
c-BN.13 Accurate measurements are still lacking for InN. In
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good part this situation is due to the lack of good quality
bulk single crystals of sufficient size. This situation may not
be remedied very soon because most of the present research
activity focuses on epitaxial films. Also, the nitrides are no-
toriously difficult to grow as single crystals from a melt be-
cause of the high partial pressure of N2 required to prevent
decomposition into N2 and the group III metals.14 This en-
hances the relevance of a theoretical determination of these
important quantities.

Virtually no knowledge is available on the deformation
potentials aside from a few calculated values for the change
of band gap under hydrostatic strain. A critical review of
previous band-structure calculations including values for the
hydrostatic band-gap deformation potentials can be found in
Ref. 7.

In this paper we present a systematic study of the elastic
constants and related properties in both the zinc-blende and
wurtzite polytypes. Results for zinc-blende GaN were re-
ported earlier.15 Although the natural polytype of AlN, GaN,
and InN is wurtzite, the zinc-blende phase has been epitaxi-
ally stabilized for GaN and InN and has been observed for
AlN in the form of precipitates resulting from ion implanta-
tion in fcc Al. BN in its tetrahedrally bonded form normally
has the zinc-blende structure~usually calledc-BN!. The
wurtzitic form appears to have been observed only in shock
compression experiments. Besides these two structures, BN
also has a layered hexagonal phase~calledh-BN! which is
similar to graphite. That form will not be considered here.
~See Ref. 5, Chaps. 2 and 4 for further information and origi-
nal references for each material.!

Our approach is to first calculate the elastic constants of
the cubic phase~zinc blende!. This is done by calculating the
total energy as a function of strain for hydrostatic and trace-
less tetragonal and trigonal distortions. These calculations,
respectively, provideB5(C11

c 12C12
c )/3, Cs

c5(C11
c 2C12

c )/
2, andC44

c . To avoid confusion with the hexagonal tensor
components to be discussed later, a superscriptc for cubic
and h for hexagonal is added. The total energies and the
band structures are obtained from the density functional
theory in the local density approximation16 by means of the
full-potential linear muffin-tin-orbital ~FP-LMTO!
method.17,18 For the trigonal distortion, the internal param-
eter~the so-called Kleinmanz parameter19! is relaxed. In the
unstrained state, the related calculation of the energy as a
function of the relative position of the two fcc sublattices of
the zinc-blende structure provides information on the
transverse-optical-phonon frequency atG (vTO

c ). Repeating
this calculation for a few volumes provides information on
the pressure dependence of this important Raman observable
phonon, which, for small volume changes, can be described
by the usual mode Gru¨neisen parameter (gTO

c ). The calcula-
tions provide values for these properties in addition to those
for the elastic constants.

For the wurtzite elastic constants, we use a combination
of first-principles calculations and the tensor transformation
method of Martin.20 As is well known, the two crystal struc-
tures are closely related with the~0001! plane of wurtzite
being similar to the~111! plane of zinc blende and the
@101̄# direction in that plane in zinc blende being equivalent
to the@112̄0# direction in the wurtzite. As a consequence, a

simple rotation of the elastic constant tensor for the cubic
phase to a new coordinate system with thezaxis along@111#
and thex axis along@101̄# already provides a first approxi-
mation to the elastic constant tensor for the hexagonal mate-
rial. The difference between the trigonal and the hexagonal
systems is that in the hexagonal systemC14

h 50 while in the
trigonal system it does not vanish. In addition, Martin took
into account the fact that the tetrahedral building blocks in
wurtzite are twinned with respect to those in the zinc-blende
structure and hence they can undergo an internal distortion
for certain strains. By minimizing the energy with respect to
this internal strain, he obtained a correction term to the ten-
sor components which is small for most components and
exactly zero forC13

h andC33
h . The resultant transformation is

summarized by
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where the C̄i j
h are the values obtained without the se-

cond term ~corresponding to rotation only!,
D5 2

9(C11
c 2C12

c 2C44
c )2, andC66

h 5(C11
h 2C12

h )/2.
Our calculations show that several of the elastic constants

of wurtzite obtained in this manner are in quite good agree-
ment with experiment. However, there are two components,
C33
h andC13

h , for which the discrepancies are appreciable.
Both of these components are closely related to distortions
along thec axis. Since the idealc/a ratio is implied in Mar-
tin’s approach, we surmised that deviations from it would
play a significant role. We thus performed calculations of the
elastic constants of the wurtzite structure involved in the dis-
tortion along thec axis which maintain the hexagonal sym-
metry, after first relaxing the structure with respect to
h[c/a and the internal parameteru.

The traceless~fixed volume! c/a distortion provides the
combination

Ch5C33
h 22C13

h 1~C11
h 1C12

h !/2. ~1!

On the other hand, varyingc with constanta yieldsC33
h by

itself. From these two calculations and the assumption that
C11
h andC12

h are given correctly by the transformation, we
obtain C13

h . The explicit calculation of the wurtzite bulk
modulusBwith the structure relaxed as a function ofc/a and
u at each volume provides a further relation between the
wurtzite elastic constants.

Bh5
C33
h ~C11

h 1C12
h !22~C13

h !2

C11
h 1C12

h 12C33
h 24C13

h , ~2!

which is used as an internal check of the calculation’s accu-
racy.

We will show that the above procedure gives good agree-
ment with the recently measured values for wurtzite AlN and
GaN. Excellent agreement was also obtained for the full set
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of cubic elastic constants ofc-BN. For the remaining cases,
wurtzite BN, zinc-blende GaN and AlN, and both structures
of InN, our calculations provide predictions.

In the course of performing the relaxation calculations of
the wurtzite with respect to the internal parameteru which
determines the position of the anion relative to the cation
sublattice, we obtain the TO-phonon frequency of symmetry
A1 . TheC

h elastic constant, given in Eq.~1!, is obtained as
a byproduct of the relaxation with respect tou andc/a. We
find that u and c/a are strongly correlated. A relation is
derived between the slope (j) of u as a function ofc/a, the
A1 phonon frequency, and the elastic constantsCh andC0

h

defined in Eq.~1!, respectively, in the presence and in the
absence of internal relaxation. This generalizes a well-known
relation for cubic materials between theC44

c elastic constant,
the TO-phonon frequency atG, and the Kleinmanz param-
eter.

By using the approximate relation between TO phonons
in the cubic structure~of symmetryT2) and hexagonal struc-
ture ~of symmetryA1 andE1),

vT2
2 5~vA1

2 12vE1
2 !/3, ~3!

and our calculated values for the cubicT2 and hexagonal
A1 modes, we also obtain approximate values for theE1
phonon.

By analyzing the band structures for the materials in equi-
librium and subject to the small strain distortions used in the
calculation of the elastic constants, we obtain the so-called
deformation potentials. These describe the shifts and split-
tings of the band-structure eigenvalues to linear order in the
strain. A systematic group-theoretical analysis was provided
for cubic materials by Kane.21 As for any tensor, an arbitrary
strain can be reduced into irreducible components. Using
these and the irreducible representation of the specific eigen-
state under study, one obtains the complete set of deforma-
tion potentials for that state. From those, the behavior of the
state under any arbitrary strain state can be deduced. This
information is perhaps most important for the band edges
since these determine the band gaps and the band offsets at
heterojunctions. However, it is also of some relevance for
other eigenstates such as those involved in important critical
point optical transitions. In fact, these deformation potentials
describe essentially the elasto-optic behavior of such transi-
tions. The strain deformation potentials described here are
also the long-wavelength limit of the electron-phonon cou-
pling parameters for acoustic phonons and as such are rel-
evant to transport theory for the states near the band edges.

We emphasize that for all traceless strains, i.e., uniaxial
and volume conserving strains, the deformation potentials of
individual eigenvalues can be directly obtained from bulk
calculations. However, for the hydrostatic strain, only rela-
tive deformation potentials, i.e., differences between those
for different eigenstates, are meaningful. Because the elec-
trostatic reference level of an infinite periodic solid is ill
defined, the absolute deformation potentials under hydro-
static strain only obtain meaning as the long-wavelength
limit of acoustic phonons. They are thus direction dependent.
And, an interface calculation is required to take into account
the effects of charge transfer between compressed and ex-
panded regions of the crystal. A detailed study of this is

postponed to a future work. Here, we only present the values
obtained within a simple orientation independent treatment
of the band lineup problem between the compressed and ex-
panded regions of the crystal provided by the so-called di-
electric midpoint energy model~DME!.22

In order to allow for an easy comparison of the various
properties among the different materials in the class of the
group III nitrides, the results are organized by materials
property. A brief description of some of the relevant compu-
tational details is given in Sec. II followed by a discussion of
the relationship between theA1 TO-phonon and hexagonal
elastic constants for wurtzite in Sec. III. We present our re-
sults for the lattice constants in Sec. IV A, the bulk moduli in
Sec. IV B, the TO-phonon frequencies and their pressure de-
pendencies in Sec. IV C, the internal strain parameters (z
andj) in Sec. IV D, and the elastic constants in Sec. IV E.
Values are presented both for the zinc-blende and wurtzite
structures. We then discuss the trend of these elastic proper-
ties by first extracting the bond-stretching and bond-bending
parameters of the well-known Keating model in Secs. IV F
and IV G. The essential ingredients parametrizing the Keat-
ing model are indeed the cubic elastic constants and the TO-
phonon–LO-phonon splittings which provide information on
the long-range Coulomb effects. The splittings, which as yet
have not been calculated, are taken from experiment. The
Keating model in fact presumes certain relations between the
cubic elastic constants. We discuss the degree of validity of
these for the present materials. We also discuss the applica-
tion of the Keating model to the wurtzite form. Although it is
obviously not capable of reproducing the nonidealc/a ratios,
it does a fair job at reproducing the relation between the
c/a and internal parameteru of the wurtzite. After this dis-
cussion, we turn to the electronic properties. We present a
rather complete set of deformation potentials for several of
the important band states in zinc blende in Sec. V B. For the
convenience of the reader, we provide explicit definitions of
all the deformation potentials in question and their relation to
some other frequently used notations in Sec. V A. We also
define deformation potentials for the valence-band maximum
of the wurtzite structure underc/a distortion and the
transverse-opticalA1 mode and relate them to the@111#
strain and optical mode deformation potentials in zinc
blende.

II. COMPUTATIONAL METHOD

The calculations were performedab initiowithin the local
density approximation~LDA ! to the density functional
theory16 using the Hedin-Lundqvist parametrization of ex-
change correlation23 and the full-potential linear muffin-tin-
orbital method.17,18

A multiple-k muffin-tin-orbital ~MTO! basis set is used,
wherek2 is the kinetic energy of the MTO envelope func-
tion. A MTO consists of a linear combination of the radial
Schrödinger equation solution and its energy derivative
matched continuously and differentially onto the envelope
function at the muffin-tin-sphere radii. Three augmented
Hankel functions with decay energiesk2 of 20.01,21.0,
and22.3 Ry were used. The charge density and potential in
the interstitial region are expressed as expansions in a sepa-
rate set of Hankel functions centered on all spheres.18 For
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these, two decay energies (k2521.0 and23.0 Ry! are cho-
sen and an angular momentum cutoff ofl54(5) wasfound
to be adequate for zinc blende~wurtzite!.

In order to keep the interstitial volume small, empty
spheres are added to these open structures. The positions of
the empty spheres for zinc blende and wurtzite are given in
Table I, which contains the structural information. The posi-
tions of the atomic and empty spheres in wurtzite are shown
in Fig. 1. The radii of the muffin-tin spheres were usually
chosen so that they stay fixed and nonoverlapping under the
imposed distortions.~Radii were chosen as 95–97% of
touching.! Under hydrostatic volume changes they were
scaled with the volume. The reason for keeping constant
sphere radii during distortions is that there are small numeri-
cal errors related to the fitting of the quantities in the inter-
stitial region. These errors scale with the interstitial volume.
By keeping the latter constant, those errors are expected to
cancel in the energy differences related to the distortion. We
allowed one exception to this rule. For the wurtzitec/a re-
laxation, we found that keeping the sphere radius of the
small empty spheree1 fixed was not always satisfactory. An
improvement in the results forc/a resulted from allowing

that sphere to change size so as to remain nearly touching.
This was found to be the case primarily for InN, where the
relaxation will be shown to be mostly a bond angle variation.
This leads to a largelocal variation in the interstitial volume
near that sphere. On the other hand, the energy is not very
sensitive to the choice of the radius of the sphere in the open
channel (e2). We conclude that it is more important to keep
the volume of the interstitial region constant in the regions of
high charge density rather than overall interstitial volume.
For GaN the results were also slightly improved by adopting
a variable sizee1 sphere, while for AlN and BN there was no
change.

The basis set used for all the zinc-blende calculations has
MTO’s centered only on the real atoms~not on the empty
spheres!, implying a total of 27 orbitals per atom for the
ddd basis set used. The notationdddmeans the inclusion of
angular momenta up tol52 for eachk. This basis set was
previously found to be accurate for most zinc-blende crys-
tals. For wurtzite, because of the demanding accuracy for the
c/a andu relaxation, a separate convergence study was un-
dertaken. The basis set used for the final calculations is de-
scribed byf dp on the atoms ands on the large empty sphere
e2 . Even if no basis functions were centered on all empty
spheres, the MTO orbitals were of course augmented in all
empty spheres, i.e., the Hankel function tail of a function
centered on one site is expanded in spherical harmonics
around other sites and replaced by an appropriate linear com-
bination of the solutions of the radial Schro¨dinger equation
and their energy derivatives. An angular momentum cutoff
of l54 in zinc blende andl55 in wurtzite, equal to the
cutoff for the interstitial expansion set, was used for these
expansions.

Due to the dispersion of Ga 3d states and their hybridiza-
tion with N 2s it is necessary to treat the former as
bands.24–26Similarly, the In 4d are treated as bands for InN.
The results were obtained nonrelativistically except for InN
where the scalar relativistic version of the FP-LMTO method
was used. For the properties considered, the relativistic cor-
rections for BN, AlN, and GaN are negligible. The Brillouin
zone summations were performed with an adequately con-
verged set of ten special points27 for zinc blende and 36
points for wurtzite. For the calculations of zinc blende under
uniaxial distortions, a correspondingly larger set of inequiva-
lent k points was used as required by the lower symmetry.

To calculate the cubic elastic constants, the total energies
under hydrostatic, tetragonal, and trigonal strains were cal-
culated using strains up to 6%. For each strain the total en-
ergy differences between the strained and the unstrained
states were fitted to a parabola. In effect, this means that the
elastic constants were obtained from numerical second de-
rivatives of the total energy differences. For theu relaxation,
we used the Harris approach28,29 to calculate forces. In this
approach the self-consistent charge density at the structure
from which the force is to be calculated is decomposed into
a superposition of overlapping atom-centered~but not neces-
sarily spherically symmetric! charge densities. Those are
then displaced rigidly and appropriately by a small amount
dx for the structural distortion under consideration. The total
energy at two displaced configurations (6dx) is then calcu-
lated non-self-consistently via the Harris functional, and the
force ~or rather gradient with respect to parameterx) is ob-

TABLE I. Basis vectors and inequivalent atomic and empty
sphere positions in zinc blende and wurtzite, in units of the cubic
lattice constant for zinc blende,ac, and the hexagonal in-plane lat-
tice constant,ah . In wurtzite a second set of atoms is obtained by
applying a sixfold screw rotation.

Zinc blende Wurtzite

a1 0, 1/2, 1/2 1, 0, 0
a2 1/2, 0, 1/2 1/2,A3/2, 0
a3 1/2, 1/2, 0 0, 0,h
cation 0, 0, 0 0, 0, 0
anion 1/4, 1/4, 1/4 0, 0,uh
e1 1/2, 1/2, 1/2 0, 0, (u11)h/2
e2 3/4, 3/4, 3/4 0, 1/A3 , uh/2

FIG. 1. Atomic and empty sphere positions in wurtzite: projec-
tion on a (1̄100) plane.
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tained numerically as]E/]x5@E(x01dx)2E(x02dx)#/
2dx. Once we are within the harmonic region, the force at
one point and the knowledge of the equilibrium point imme-
diately give the force constant or the second derivative. The
fully self-consistent numerical and Harris gradient ap-
proaches were found to be in good agreement. In principle,
the latter approach could be used for thec/a relaxation as
well. However, because of the difficulties encountered for it,
we preferred to use the fully self-consistently calculated total
energies.

III. RELATIONS BETWEEN ELASTIC CONSTANTS
AND PHONONS FOR WURTZITE

The wurtzite structure is fully determined by two lattice
constantsa and c, or, equivalently, the volume of the unit
cell V5 A3/2a2c andh5c/a ratio, and one internal param-
eter u defined such that the cation-anion nearest neighbor
bond length along thec axis is given byd5uc. Thus the
total energy must be minimized as a function of three param-
eters. For a given cell volumeV, consider the expansion of
the energyE(h,u) in a Taylor series around the equilibrium
valuesh0 andu0 ,

E~h,u!5E~h0 ,u0!1
1

2
du2

]2E

]u2

1dudh
]2E

]u]h
1
1

2
dh2

]2E

]h2

5E01
1

2
du2c2F1dudhcVD1

1

2
dh2VCh,0 ,

~4!

where the second form introduces a force constant matrix
F, an internal strain matrixD, and an ‘‘unrelaxed’’ elastic
constantCh,0 . The volume of the unit cellV andc is intro-
duced so as to giveF andCh,0 the correct physical dimen-
sions. Indeed, the second derivative with respect to the inter-
nal parameteru basically defines an ‘‘atomic force,’’ while
the second derivative with respect to the external cell param-
eterh defines an elastic constant in the absence of internal
relaxation. The off-diagonal partial second derivative deter-
mines the coupling between the strain and the internal pa-
rameter and is thus related to internal strain. We can also
rewrite it asD5Fjc/V, introducing a new parameterj, the
physical meaning of which will become clear in a moment.

The first derivatives of Eq.~4! with respect tocu andh
define, respectively, a ‘‘force,’’

2F5cduF1dhVD, ~5!

and a ‘‘stress,’’

s5dhCh,01cduD. ~6!

Minimizing the energy with respect tou for each value of
h requiresF50, or

dumin52~VD/cF!dh52jdh, ~7!

which makes clear thatj is the slope ofumin as a function of
h. Substituting Eq.~7! in Eq. ~6!, we obtain

s5dh~Ch,02V21Fc2j2!5dhCh , ~8!

defining the true elastic constantCh , including the effects of
the internal relaxation. Noting that the force constantF de-
termines theA1 tranverse-optical-phonon frequency through
F5m(vTO

A1 )2, with m the reduced mass, we obtain

Ch5Ch,02V21m~vTO
A1jc!2. ~9!

This equation is the equivalent for the wurtzite of the well-
known equation for zinc blende relating theC44

c shear elastic
constant for trigonal distortions to its unrelaxed value
C44,0
c , the transverse-optical-phonon frequencyvTO

c , and the
Kleinmanz parameter,

C44
c 5C44,0

c 2V21m@vTO
c z~a/4!#2. ~10!

Equation~9! shows thatj plays the same role for wurtzite as
the Kleinmanz parameter does for zinc blende.

To conclude this section, we note that for a traceless
uniaxial distortion along the hexagonalc axis ~i.e., a change
of h for fixed volume!, the strain tensor using the usual
matrix notation for elasticity theory30 is specified by

e15e252e/2,

e35e,

e45e55e650. ~11!

This leads to the stress tensor with components,

s15s25@C13
h 2~C11

h 1C12
h !/2#e,

s35@C33
h 2C13

h #e,

s45s55s650. ~12!

Since, furthermore, we haveh85(11e)c/(12e/2)a
'(11 3

2e)h, we obtaindh/h5 3
2e, or

Ch5V21~]2E/]e2!

5C33
h 22C13

h 1~C11
h 1C12

h !/2

5
9

4
h2V21~]2E/]h2!umin

5
9

4
h2Ch , ~13!

which provides a derivation of Eq.~1! and establishes its
relation to the second derivative ofE with respect toh.

Similarly, if we fix a and varyc5(11e)h0a, the strain
tensor is (0,0,e,0,0,0), the stress tensor is
(C13

h e,C13
h e,C33

h e,0,0,0), and the elastic energy becomes
1
2VC33

h e2, so the curvature ofE as function ofc for fixed
a yields directlyC33

h .
As an example, we show in Fig. 2 the total energy and

umin as a function ofh for InN at the experimental equilib-
rium valueV0 , from whichCh(V0) andj(V0) are derived.
We find that the variation ofj with volume can be ignored.
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IV. TOTAL ENERGY RELATED RESULTS

A. Lattice constants

Table II shows our calculated equilibrium lattice con-
stants and compares them with experimental5,31,32and other
computational results.15,33–53As usual, the LDA calculations
slightly underestimate the lattice constants. The cubic and
hexagonal lattice constantsac andah are underestimated by
about 1%. Thec lattice constants are underestimated by
2–3% and hence the volumes by 3–5%, thec/a by 0.1–
3%. The worst case forc/a occurs for InN. For that com-
pound we noted above that thec/a relaxation is quite de-
manding because of the very small energy differences
involved ~because of the lower elastic constants, see below!
and because of the predominance of bond-angle variation.
Also, there is a considerable spread in experimental values.

Because there are a large number of computational results
for the zinc-blende lattice constants, we indicate only the
range of values that have been reported in Table II. For
wurtzite, only a few calculations include a complete structure
determination. We thus compare our results with two well-
converged pseudopotential calculations, by Wright and
Nelson47 and by Yehet al.,46 the first one including thed
states of Ga and In as bands, the second one treating them as
core states. We note that the latter slightly overestimates the
lattice constants in contrast to ours which obtain the more
usual underestimate for the LDA. Our calculated wurtzite
lattice constants for AlN is nearly identical to those obtained
earlier by Christensen and Gorczyca45 using the FP-LMTO
method.

B. Bulk moduli

The bulk moduli are listed in Table III. Unfortunately, the
ranges of values obtained in other calculations for the zinc-
blende crystals and from experiments are quite large. Our
values are in agreement with well-converged pseudopotential

calculations47 to within a few percent. The deviations from
the experimental values are as large as 15% but the various
experiments differ among themselves by at least that much.
The LDA generally overestimates bulk moduli. That this is
not obvious here suggests that the experimental values
should be considered to be somewhat uncertain. This is not
surprising given that large single crystals are presently un-
available for these materials.

The differences between zinc-blende and wurtzite bulk
moduli are smaller than the estimated error due to LDA and
uncertainties associated with the computational differences
between the two crystal structures~e.g., a different interstitial
volume! and thus not considered to be significant. We em-
phasize that theE(V) used here for wurtzite were fully re-
laxed values with respect to bothc/a andu.

The present bulk moduli were obtained by fittingE(V) to
the equation of state curve of Roseet al.62 This fit also pro-
vides the pressure derivativeB8. However, the fitting is not
very sensitive toB8 over the range of volumes considered.
The resulting error bar forB8 is estimated to be about 0.5.
Within this error bar there are no systematic changes with
crystal structure nor with cation and a value ofB8'460.5 is
deduced for all nitrides. This is in agreement with experi-
ment forc-BN and for GaN, while somewhat larger values
have appeared in the literature for AlN and InN. Since fitting
of an equation of state to experimentalp(V) relations may
introduce a correlated error in bothB andB8 values and a
fairly large range of pressures is needed to determine B8
confidently, these values ofB8 should be considered some-
what uncertain.

As for the trend with materials, we may note that GaN
and AlN have very similar bulk moduli while that ofc-BN is
substantially higher and that of InN is substantially lower.

C. Phonons

The transverse-optical-phonon frequencies atG are given
in Table IV for the two polytypes. For wurtzite, we only
calculated theA1 phonon directly, theE1 phonon being de-
termined from Eq.~3!. Our calculated values appear to over-
estimate the experimental values by about 1–5%. For zinc-
blende GaN our value is slightly larger than that from the
FP-LMTO calculation by Gorczycaet al.63 and slightly
smaller than that from the FP-LMTO calculation by Fioren-
tini, Methfessel, and Scheffler.26 In the course of understand-
ing the cause of the differences, we found that for relative
displacements of 4% or larger anharmonic effects tend to
increase the phonon frequency. Also, values obtained using
the forces or the energies are found to differ from each other
by about 20 cm21. We thus consider this number to be a
conservative estimate of the numerical error bar on the re-
sults. With this in mind, the agreement of our calculation
both with experiment and with the other calculations is seen
to be quite good. In our calculations, we consider both
stretched and compressed bonds. Using only stretched bonds
would lead to lower values of the force constants and hence
lower phonon frequencies. Our basis set is also slightly dif-
ferent from that used in Ref. 63.

Only one value is given for the mode Gru¨neisen param-
eter for each material, because we find the differences be-
tween the values for the various TO modes discussed here to
be insignificant.

FIG. 2. Total energy~with respect to minimum! and umin in
wurtzite InN as a function ofc/a at the experimental equilibrium
volume.
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D. Internal strain parameters

The well-known Kleinmanz parameter for zinc blende
and thej parameter for wurtzite introduced in Sec. III de-
scribe the relative positions of the cation and anion sublat-
tices under volume conserving strain distortions in which the
positions are not fixed by symmetry. These are trigonal dis-
tortions along@111# for zinc blende and hexagonal distor-
tions for wurtzite. The calculated values for these parameters
are given in Table V.

We recall that a low value ofz or uju implies that there is
a large resistance against bond-angle distortions while the
reverse is true for a high value. The values for AlN and GaN,
which are almost the same, are much larger than those for
BN and smaller than those for InN. The importance of bond-
angle forces in BN is similar to that in diamond.

E. Elastic constants

The results for the elastic constants of the nitrides in the
zinc-blende structure are given in Table VI. Experimental
data are only available forc-BN.13 The agreement with ex-
periment and with the only other first-principles calculation42

is very good.
Our results for the elastic constants of the nitrides in the

wurtzite structure are given in Table VII. Good agreement is
obtained with the recent experimental data for AlN and GaN,
the only two materials for which direct experimental data are
available up to now.

It should be noted that otherCi j data for wurtzite BN,
GaN, and InN were reported earlier.8 These were obtained
from analyses of temperature-dependent broadening of x-ray
diffraction spectra from powders.8 These values, obtained
rather indirectly70 differ markedly from those obtained from

TABLE II. Lattice constants of zinc blende and wurtzite III nitrides~in Å!.

BN AlN GaN InN

Zinc blende

Present 3.59 4.32 4.46 4.92
Other calculations 3.56–3.77a 4.33–4.42b 4.30–4.50c 4.93–4.98d

Experimente 3.615 4.37 4.50f 4.98g

Wurtzite

Present a 2.54 3.06 3.17 3.53
c 4.17 4.91 5.13 5.54
c/a 1.64 1.60 1.62 1.57
u 0.375 0.383 0.379 0.388

Other calculationsh a 3.084 3.162 3.501
c 4.948 5.142 5.669
c/a 1.604 1.626 1.619
u 0.3814 0.3770 0.3784

Other calculationsi a 3.099 3.095 3.536
c 4.997 5.000 5.709
c/a 1.612 1.633 1.615
u 0.381 0.378 0.380

Experimentj a 3.11 3.189 3.54–3.60
c 4.98 5.185 5.69–5.76
c/a 1.60 1.626 1.59–1.62

aReferences 33–43.
bReferences 43–48.
cReferences 15, 43, and 46–52.
dReferences 43, 46, 47, and 53.
eFrom Ref. 5, Chaps. 1, 4. Because of the unavailability of data for zinc-blende AlN, the tabulated value
corresponds to the volume per atom in the wurtzite form.
fLei et al. ~Ref. 31!.
gStriteet al. ~Ref. 32!.
hPseudopotential with Ga 3d and In 4d by Wright and Nelson~Ref. 47!.
iPseudopotential without Ga 3d and In 4d by Yeh et al.~Ref. 46!.
jFrom Ref. 5, Chaps. 1, 4.
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the Brillouin scattering measurements and from the calcula-
tions. This is evident from Fig. 3 which compares all experi-
mentalCi j with the corresponding calculated values. The
figure also displays the overall agreement between the calcu-
lations and the velocity of sound based measurements. Be-
cause of the apparent imprecision of the earlier data,8 it is
excluded from the tables even though it contains the only
data for InN.70

Figure 4 and the numbers in parentheses and square
brackets in Table VII provide some detail on how the results
for the elastic constants for wurtzite crystals depend on the
computational model. The numbers in parentheses in Table
VII for C11

h , C12
h , andC44

h are the results obtained by simply
rotating the cubic tensor to the coordinate system appropriate
for the hexagonal crystals without applying the internal
strain correction. We see that the internal strain term pro-
vides a sizable correction for the nitrides. The numbers in
square brackets forC13

h andC33
h are the results obtained from

the tensor rotation method withoutc/a and u relaxation.
These are unaffected by the internal strain correction. How-
ever, it is evident that the actual~measured! values are
strongly affected by the relaxation. Figure 4 shows that aside
from C13 andC33, theCi j obtained by Martin’s transforma-
tion method are in good accord with the experimental values.
It also shows that most of the discrepancies between theory
and experiment forC13 andC33 are removed by the structure
relaxation.

At the bottom of Table VI we show the values ofC44
c0 , the

constant without the internal strain contribution. Similarly, in
the bottom rows of Table VII, we give the values of the
wurtzite elastic constantsCh andCh0 defined by Eq.~1! with
and without the internal strain relaxation. The comparisons
show that the coupling of these strain distortions to the optic
phonon are quite important for all nitrides except for BN,
where the bond-angle forces are large, or, alternatively, the
values ofz and uju are extremely low.

Finally, we show the bulk moduli as obtained from the
Ci j . These values are in good agreement with those found
from the direct calculations and presented in Sec. IV B.

F. Keating model parameters

The Keating model71 is a frequently used semiempirical
potential for tetrahedrally bonded semiconductors because of
its simplicity. It is thus of interest to obtain its force constant
parameters for the nitrides and to investigate the model’s
applicability to these materials. It was generalized for par-
tially ionic zinc-blende crystals by Martin.72 The elastic en-
ergy in the model is described in terms of bond-stretching
and bond-bending force constant parameters,a andb, by

Eel5
1

2
aS 3

4r 2D(i51

4

@D~r i•r i !#
2

1
1

2
bS 3

4r 2D(iÞ j
@D~r i•r j !#

2, ~14!

where the first sum is over all bonds, the second is over all
bond pairs centered on a given atom,r i is the vector linking
an atom to one of its four neighbors, andr is the equilibrium
bond length. The parameters are determined by fitting the
elastic constants and some phonon data as described below.
The long-range Coulomb force, which produces the LO-
phonon–TO-phonon splitting, is characterized by the effec-
tive charge parameterZ* ~or, equivalentlyS) through

S5Z* 2/e5~V/4pe2!m~v l
22v t

2!. ~15!

Martin derived the following relations between the elastic
constants and the Keating parameters:

C1112C125~A3/4r !~3a1b!20.355SC0, ~16a!

TABLE III. Bulk moduli for zinc blende and wurtzite III nitrides.

BN AlN GaN InN

Zinc blende
Present B 400 203 201 139

B8 4.1 3.2 3.9 4.4
Other calculations B 353–412a 195–228b 173–200c 137–161d

B8 3.1–3.6a 3.9,4.0e 2.66–4.6c 3.9–4.3d

Experiment B 369–382f

B8 4.0–4.5f

Wurtzite
Present B 397 202 207 146

B8 3.7 3.8 4.5 3.4
Other calculationsg B 205 202 139

B8
Experiment B 185–212h 188–245i 125j

B8 5.7–6.3h 3.2–4.3i 12.7j

aFrom Refs. 33–43. fFrom Refs. 13, 38, 55, and 56.
bFrom Refs. 43–45, 47, 48, and 54. gWright and Nelson~Ref. 47!.
cFrom Refs. 15, 43, 47–50, and 52. hFrom Refs. 57–59.
dFrom Refs. 43, 47, and 53. iFrom Refs. 57, 60, and 61.
eFrom Refs. 43 and 44. jUenoet al. ~Ref. 57!.
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C112C125~A3/r !b10.053SC0, ~16b!

C445~A3/4r !~a1b!20.136SC02Cz2, ~16c!

where

C5~A3/4r !~a1b!20.266SC0, ~17a!

z5C21@~A3/4r !~a2b!20.294SC0#, ~17b!

C05e2/r 4. ~17c!

Here,a and b are obtained from Eqs.~16a! and ~16b!
using our calculatedC11 andC12 andS from Eq.~15! and the
measured LO-phonon–TO-phonon splittings.5 Equations

~16c! and ~17b! then give Keating model predictions for
C44 andz. These are compared with the directly calculated
values to gauge the validity of the Keating model for the
nitrides. The relevant data, resulting parameters, and consis-
tency checks are given in Table VIII. We note that the qual-
ity of the Keating model predictions forC44 deteriorates as
we go down the series. However, the model gives a fair
reproduction of the trend inz values. In particular, a low
value ofz for BN is found. An important parameter for the
Keating model isb/a, which indicates the relative impor-
tance of bond-bending to bond-stretching forces. From the
discussions in Sec. IV D, we see that the relatively large
b/a for BN is consistent with its low value ofz.

Although the Keating model is unable to predict the non-
ideal c/a and u values for wurtzite, it can be used to find
umin as a function ofc/a for a given ratiob/a. From that the
model prediction for thej parameter can be found by Eq.
~7!. Figure 5 shows how theumin varies withc/a for b/a
which correspond to those obtained for BN, AlN, GaN, and
InN as well as the pure bond-stretching limitb50 and the
~unrealistic! pure bond-bending limita50. The values ob-
tained forj are 0.06 for BN, 0.11 for AlN and GaN, 0.12 for
InN, and 0.15 forb50. These values are in fair agreement

TABLE IV. Transverse-optical-phonon frequencies atG for the group III nitrides~in cm21 with our values rounded to the nearest 10
cm21 because of the estimated error bar!. To the precision of the calculations, the mode Gru¨neisen parameterg is identical for the
zinc-blende and wurtzite forms. It is thus only tabulated for the zinc-blende structures.

Symmetry BN AlN GaN InN

Zinc blende
T2 present 1070 680 580 540

other calculations 1000a,1070b 648c,652d 558c, 551d, 600e

experiment 1055f, 1056g,h 556i

Wurtzite
A1 present 1040 610 570 450

other calculations 601c,629d, 668j 534c, 537d

experiment 1090h 607k,614h,659f,660l 532h 400m

E1 present 1080 710 585 580
other calculations 650c, 649d, 734j 556c,555d

experiment 1120h 673h,672f,l 560h 490m

g present 1.2 1.5 1.8 1.5
other calculations 1.42–1.50d 1.48–1.52d

experiment 1.5f,g 1.58k, 1.6f 1.53n

aPseudopotential LDA, Lam, Wentzcovitch, and Cohen~Ref. 37!.
bPseudopotential LDA, Rodriguez-Herna´ndez, Gonza´lez-Diaz, and Mun˜oz ~Ref. 42!.
cPseudopotential LDA, Miwa and Fukumoto~Ref. 48!.
dFP-LMTO LDA, Gorczycaet al. ~Ref. 63!.
eFP-LMTO LDA, Fiorentini, Methfessel, and Scheffler~Ref. 26!.
fRaman data, Sanjurjoet al. ~Ref. 64!.
gRaman data, Alvarenga, Grimsditch, and Polian~Ref. 56!.
hFrom Ref. 5, Chap. 8.
iRaman data, Murugkaret al. ~Ref. 65!.
jHartree-Fock, Ruiz, Alvarez, and Alemany~Ref. 54!.
kRaman data forA1 mode, Perlin, Polian, and Suski~Ref. 66!.
lRaman data, Hayashiet al. ~Ref. 67!.
mRaman data, Inushimaet al. ~Ref. 68!.
nRaman data forA1 mode, Perlinet al. ~Ref. 61!.

TABLE V. Internal strain parametersz and j for zinc blende
and wurtzite, respectively.

BN AlN GaN InN

z 0.1 0.6 0.5 0.7
2j 0.00 0.12 0.11 0.14
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with the values given in Table V.

G. Trends

Here, we summarize the trends obtained for the various
properties presented above. For most of these, we find that
GaN and AlN are very similar to each other, while BN is
considerably ‘‘harder’’ and InN considerably ‘‘softer.’’ The
bulk moduli and elastic constants in particular exhibit this
trend. Also, the lattice constants and bond lengths of AlN
and GaN are close to each other while those of InN are
substantially larger~10%! and those for BN substantially
smaller~20%! than the first two. The internal strain param-
eters and the Keating parameters derived from our calculated
elastic constants show that BN is strongly resistant to bond-
angle distortions while InN is close to the pure bond-
stretching limit. The phonon frequencies show a somewhat
larger difference between AlN and GaN than other properties
and decrease monotonically with increasing cation atomic
number.

V. ELECTRONIC PROPERTIES

A. Definition of deformation potentials

The splitting of the bands as a result of a ‘‘pure’’ uniaxial
strain and the relative shift of the weighted average, e.g.,
with respect to the valence-band maximum, for hydrostatic
strain can be expressed in terms of linear deformation poten-
tials for small strains. In this section we provide the defini-
tion of the deformation potentials for specific strains and
some eigenstates for zinc-blende crystals using the system-
atic group-theoretical approach of Kane.21Within this frame-
work a hydrostatic strain is described by

~e1 ,e2 ,e3 ,e4 ,e5 ,e6!5~h1 /A3,h1 /A3,h1 /A3,0,0,0!,

a volume conserving~tetragonal! strain along the@001# di-
rection by

~2h3 /A6,2h3 /A6,2h3 /A6,0,0,0!,

TABLE VI. Elastic constants of zinc blende III nitrides.

BN AlN GaN InN
Present Experimenta Other calculations Present Other calculationsb Present Present

C11
c ~GPa! 837 820 830c, 844d 304 348 296 184

C12
c ~GPa! 182 190 420c, 190d 152 168 154 116

C44
c ~GPa! 493 480 450c, 483d 199 135 206 177

C44
c0 ~GPa! 495 230 225 209

B 400 203 201 139

aGrimsditch, Zouboulis, and Polian~Ref. 13!.
bHartree-Fock, Ruiz, Alvarez, and Alemany~Ref. 54!.
cSemiempirical, Sokolovskii~Ref. 69!.
dPseudopotential, Rodriguez-Herna´ndez, Gonza´lez-Diaz, and Mun˜oz ~Ref. 42!.

TABLE VII. Elastic constants of wurtzite III nitrides. Numbers in parentheses were obtained without
internal strain correction and those in square brackets were obtained without relaxation ofc/a andu.

BN AlN GaN InN
Present Present Experimenta Experimentb Present Experimentc Present

C11
h 987 398 345 411 396 391 271

~1003! ~427! ~431! ~327!
C12
h 143 140 125 149 144 143 124

~127! ~111! ~109! ~68!
C13
h 70 127 120 99 100 108 94

@72# @70# @64# @21#
C33
h 1020 382 395 389 392 399 200

@1058# @468# @476# @375#
C44
h 369 96 118 125 91 103 46

~383! ~117! ~116! ~82!
C66
h 422 129 110 131 126 124 74

~438! ~158! ~161! ~129!

Ch 1445 397 462 209
Ch0 1445 458 519 259
B 395 218 207 147

aTsubouchi and Mikoshiba~Ref. 10!.
bMcNeil, Grimsditch, and French~Ref. 11!.
cPolian, Grimsditch, and Grzegory~Ref. 12!.
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and a volume conserving~trigonal! strain along the@111#
direction by

~0,0,0,h5 ,h5 ,h5!. ~18!

An arbitrary strain tensor can be decomposed into the above
irreducible components with magnitudes determined byh1 ,
h3 , and h5 , where the labels 1, 3, and 5 correspond to
G1 , G12, andG15, respectively, in the more commonly used
Bouckaert, Smoluchowski, and Wigner notation for the irre-
ducible representations of the tetrahedral group.

The splittings of the most relevant states~highest valence
and lowest conduction bands! atG, L, andX are summarized
in Table IX. For the splittings of theG15 states, the first
column refers to the singletG1 , the second to the doublet
G6 . For the nondegenerateL1 state, the first corresponds to

thek state along the@111# direction parallel to the strain axis
while the second to the other^111& directions whose equiva-
lence to the@111# is lifted by the strain. Similarly for the
doubly degenerateL3 state, the splitting depends on whether
we have anL3 along@111# or along one of the nonequivalent
directions,@ 1̄11#, @11̄1#, and@111̄#. For the nondegenerate
X1 state, the first value is for the state along the@001# direc-
tion ~the strain axis! and the second for the states along the
inequivalent@100# and @010# directions. For the doubly de-
generateX5 state under@001# strain, there are again different
splittings depending on the location of theX5 state along the
direction of the strain or in orthogonal directions. Under hy-
drostatic strain, all states are only subject to a shiftd1h1 but
not to any splittings. Also,G1 is left unaffected by either
@111# or @001# strain andL1 andX1 are unaffected by@001#
and @111# strains, respectively. For the valence-band maxi-
mum (G15) deformation potentials, the Pikus-Bir73 notation
is more commonly used and it corresponds to the Kane21

definition as follows:

a5d1 /A3, b5d3 /A3, d5d5 /A2, and do5d5o /A2.

Some other relations between definitions of deformation po-
tentials used by different authors are given in Kane,21 Table
XI.

For the splitting of theG15 state by a trigonal strain, one
introducesd58 , the deformation potential corresponding to no
internal displacement andd5o corresponding to the optical
mode deformation potential. The unprimedd5 is related to
them by

d55d582
1

4
zd5o . ~19!

A similar decomposition is used ford1
5 , d3

5 , andd4 .
The calculation of deformation potentials by the present

method was tested for silicon. Our results are found to be in
good agreement with the available experimental data and
will be given elsewhere.

The d5 deformation potential for theG15 state is closely
related to the wurtzite deformation potential for the uniaxial
strain along thec axis. An important difference is that in

FIG. 3. Elastic constants of wurtzite III nitrides: comparison
between theory and experiment. Open symbols from x-ray analysis
by Sheleg and Savastenko~Ref. 8!, closed symbols from sound
velocity measurements by Polian, Grimsditch, and Grzegory~PGG!
~Ref. 12!, Grimsditch, Zouboulis, and Polian~GZP! ~Ref. 13!
~transformed fromc-BN!, McNeil, Grimsditch, and French~MGF!
~Ref. 11!, and Tsubouchi and Mikoshiba~TM! ~Ref. 10!.

FIG. 4. Elastic constants of the wurtzite III nitrides in various
approximations:3 denotesCi j transformed from the cubic elastic
constants using coordinate rotation, filled circles include Martin’s
internal strain correction forC11, C12, andC44 and direct first-
principles values forC13 andC33, and open circles are from ex-
periment.

FIG. 5. Keating model predictions forumin as a function of
c/a for various values ofb/a.
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wurtzite there is in effect a splitting into aG6 doublet and a
G1 singlet in the absence of strain, i.e., for the equilibrium
value of c/a and u. Let us definedG i

6z5dEG i
/d lnhuVeq as

deformation potential for the eigenvalueG i for a distortion
along the sixfold axis,ẑ[ ĉ, at equilibrium volume. Now
consider the traceless strain tensor along@111# in zinc blende
given by (0,0,0,h5 ,h5 ,h5) as in Eq.~18! transformed to a
newz axis along@111#, x axis along@11̄0#, andy axis along
@ 1̄ 1̄2#. It becomes precisely the strain tensor of Eq.~11!
with e52h5 , i.e., (2h5 ,2h5,2h5,0,0,0). Hence
d lnh53h5, and using the results of Table IX forG15 and
@111# strain we expect

dG6

6z52
1

A6
d5 and dG1

6z51
2

A6
d5 . ~20!

Since d5 is negative, this implies that under expansion of
c/a, theEG6

2EG1
splitting increases.

In analogy with the definition of thed5o optical mode
deformation potential, given by

DEG15
5S 32D

3/2d

4
d5o , ~21!

where the DEG15
is the splitting of theG15 state and

d5d lnr with r the nearest neighbor bond length, we define
theA1 optical mode deformation potentialdA1 by

d~EG6
2EG1

!5dA1d lnu. ~22!

Here,d lnu is the relative change of theu parameter which
equals that of the bond length along thec axis. Hence we
expect

dA15
1

4 S 32D
3/2

d5o . ~23!

The spin-orbit coupling produces a further splitting of the
G6 state into aG9 andG7 state. The latter then couples to the
G7 state derived from theG1 . These couplings lead to non-
linear behavior as a function of strain and optical mode dis-
tortion which need further study.

B. Results for deformation potentials

The deformation potential results for zinc blende are
given in Table X. To identify the state for which deformation
potentials are given, its eigenvalue relative to that of the
valence-band maximum is also presented. To our knowledge,
no experimental data or other calculations for the uniaxial
deformation potentials are presently available for these ni-
trides. We note that only forc-BN is theG15

c state the lowest
conduction-band state atG. In the other compounds, it is the
G1 state, which is only subject to hydrostatic strain shifts.
The tendency of thep states to lie relatively low in BN is
also reflected in the fact that theL3

c state is located just above
the lowestL1

c state. That the small separation between these
states, roughly 0.2 eV, is smaller than splittings of theL3

c

encountered in the computations leads to strong interactions
between the states. The resultant nonlinear splittings under
@001# and @111# strains are shown in Fig. 6. Since the latter
does not reduce theC3v symmetry of theL point along
@111#, there are no interactions for this point. The interac-
tions occur at the other threeL points. The treatment for
these two cases, from which the deformation potentials and
the interaction parameters can be determined, is discussed in
the Appendix.

The calculation of the absolute values of the hydrostatic
shifts differs in a significant way from the ones reported

TABLE VIII. Keating model parameters: experimental LO- (v l) and TO- (v t) phonon frequencies from
Ref. 5; effective charge parametersS andZ* ; force constant parametersa, b, andb/a, directly calculated
(z) and its Keating model predictionzK; and Keating model predictionC44

K for C44.

v l v t S Z* a b b/a z zK C44
K /C44

~cm21) ~cm21) ~N/m! ~N/m!

BN 1304 1056 0.858 2.0 139.6 57.6 0.41 0.1 0.28 0.94
AlN 908 654 1.551 3.2 98.0 15.0 0.15 0.6 0.58 0.79
GaN 731 551 1.246 2.5 96.3 14.8 0.15 0.5 0.63 0.69
InN 694 478 1.983 3.1 79.2 7.1 0.09 0.7 0.70 0.49

TABLE IX. Splittings of energy bands in terms of deformation
potentials and irreducible strain components.

G15 @001# 1A2d3h3
2

1

A2
d3h3

@111# 1A6d5h5
2

A3
A2

d5h5

L1 @111# 1A3d1
5h5

2
1

A3
d1
5h5

L3 @001# 1d3
3h3 2d3

3h3

@111# 1A3d1
5h5

2
1

A3
d1
5h56

2A2
A3

d3
5h5

X1 @001# 1d1
3h3 2

1
2d1

3h3

X5 @001# 1d1
3h3

2
1
2d1

3h36
A3
2
d3h3

@111# 1d4h5 2d4h5
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here, which correspond to traceless~i.e., volume preserving!
shear strains. The reason for this was explained in the Intro-
duction. The hydrostatic deformation potentials given in
Table X are defined relative to the valence-band maximum.

Of particular interest is the hydrostatic shift of
the conduction-band minimum with respect to the valence-
band maximum. This is the band-gap deformation
potential. Commonly, one gives the value of

TABLE X. Deformation potentialsd for the high-lying valence- and low-lying conduction-band states in
the cubic III nitrides for@001# and @111# strains and optical-phonon distortion in eV. The energyE of each
state and its relative hydrostatic deformation potential with respect to the valence-band maximum is also
given.

State Strain E andd ~eV! BN AlN GaN InN

G15
v E 0 0 0 0

@001# d3 25.9 22.5 22.8a 22.3
@111# d58 23.3 24.7 23.4 22.7

d5 24.7 27.5 25.3 23.8
optic d5o 54.0 19.4 14.6 6.3

G1
c E 10.9 4.6 2.0 20.2

d1
b 28.2 215.9 211.1 25.2

G15
c E 8.8 12.8 10.3 9.5

d1
b 228.7 217.4 211.2 29.6

@001# d3 4.1 0.5 1.5 1.3
@111# d58 221.1 222.2 220.7 219.0

d5 220.1 222.0 219.2 217.6
optic d5o 242.8 21.3 211.3 27.6

L3
v E 22.0 20.5 21.0 20.9

d1
1b 3.3 0.1 2.2 2.5

@001# d3
3 9.6 5.3 4.8 3.4

@111# d1
58 13.6 7.0 8.1 6.9
d1
5 14.0 8.9 8.1 5.6

d3
58 1.4 2.2 1.0 0.9
d3
5 0.2 4.5 4.4 4.8

optic d1o
5 214.6 213.3 0.4 6.9
d3o
5 56.3 216.7 227.0 221.5

L1
c E 10.5 7.7 4.8 3.3

d1
1b 223.0 215.9 212.2 27.7

@111# d1
58 16.1 16.4 14.4 8.2
d1
5 16.1 14.7 15.9 10.9

optic d1o
5 224.0 12.1 211.0 215.0

L3
cc E 10.7

X5
v E 25.0 21.8 22.8 22.5

d1
1b 8.7 1.8 6.1 6.4

@001# d1
3 11.3 7.0 6.4 4.8
d3 0.2 0.2 0.3 0.5

@111# d48 19.1 12.8 12.7 10.7
d4 19.8 15.1 14.3 11.9

optic d4o 232.0 216.7 212.6 26.8

X1
c E 4.4 3.2 3.3 2.9

d1
1b 22.0 20.7 20.5 0.8

@001# d1
3 14.6 4.0 5.6 3.7

aAn identical value is calculated by Chow, Wright, and Nelson~Ref. 74!.
bNote that the hydrostatic deformation potentialsd1 andd1

1 are measured with respect to the valence-band
maximum, i.e., the values listed ared12d1,G

15
v andd1

12d1,G
15
v , respectively.

cThe L3
c is very close to L1

c only in BN. ~See text.!
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ag5dEg /d lnV5d1 /A3, or dEg /dp5ag /B,

whereB is the bulk modulus. Our values for these param-
eters are compared with those in the literature in Table XI.

As mentioned in the Introduction, the calculation of the
absolute hydrostatic deformation potentials requires an inter-
face calculation between compressed and expanded regions
of the crystal, in order to determine their band lineup. As a
result they are generally orientation dependent. However,
within a simple treatment of the band-offset problem, based
on the idea of aligning a suitable internal reference level in
each part of the solid, one can obtain a first approximation of
these important deformation potentials. In the charge neutral-
ity point ~CNP! model of Flores and Tejedor,75 one assumes
that a certain energy level in the middle of the gap~called the
CNP! should be aligned across the interface. The idea behind
this is that the states above this level will lead to an accumu-
lation of negative charge when they are filled while the states
below it when empty will tend to produce a positive

charge.76 In a variant of this model, called the dielectric mid-
point energy model,22 this CNP is identified with the average
of the highest valence and lowest conduction band over the
Brillouin zone. By calculating this level and the valence-
band maximum at two different lattice constants and assum-
ing the DME’s to align, we obtain the absolute hydrostatic
deformation potentialav5dEv /d lnV for the valence-band
maximum. We have carried out this calculation for the zinc-
blende form, using the Baldereschi-point Brillouin zone
average77 to define the dielectric midgap point. The resulting
values forav are 0.9 eV for BN, 1.6 eV for AlN, 0.8 eV for
GaN, and 0.5 eV for InN. We note that the uncertainty in this
DME calculation on the deformation potential is at least 2
eV, which for the present values implies that the sign can be
reversed. From previous experience, we expect that the DME
gives an underestimate.78 At this point, we can thus only
conclude that theav for the nitrides are of the order of 1 eV,
which is small compared to some of the relative deformation
potentials, given in Table X. For wurtzite, one may assume
that the above applies to the weighted average of theG6 and
G1 crystal field split states. By taking into account the rela-
tive hydrostatic deformation potentiald1 , one can obtain an
estimate of the absolute hydrostatic deformation potential of
any state of interest, e.g., the conduction-band minimum. For
example, one would obtain thatac5dEc /d lnV'29 eV,
26 eV, and23 eV for the conduction-band minimum at
G for AlN, GaN, and InN, respectively. These values should
apply equally to wurtzite as well as to zinc blende to first
approximation.

VI. CONCLUSIONS

In this paper we have presented a theoretical study of the
elastic constants and the related vibrational and electronic
properties for the group III nitrides~BN, AlN, GaN, and
InN! using the full-potential LMTO method. Fully relaxed
lattice constants and bulk moduli were obtained for both the
zinc-blende and wurtzite structures and shown to be in good
agreement with other calculations and experimental data
where they were available. A relation of the TOA1 phonon

FIG. 6. The behavior of the close-lyingL1
c andL3

c states in BN
~a! under a pure@001# strain and~b! under @111# strain for anL
point not along the strain axis. The points are the energies obtained
from the first-principles calculation while the solid curves are the
analytical energies from Eqs.~A2! and ~A3! of the Appendix for
d1
5516.1 for L1

c , d3
3510.6, d1

556.90, and d3
557.96 for L3

c ,
uI tetu527.0, anduI trigu513.0.

TABLE XI. Band-gap deformation potential and pressure coefficients.

BNa AlNb GaN InN

ag ~eV! zinc blende present 21.2 20.38 26.4 23.0

otherc 21.1 20.37 27.4 22.2

wurtzite present 1.5 29.0 26.9 22.8

otherd 1.4 27.1 to29.5 27.8,29.8 24.1,24.25

dEg /dp ~meV/GPa! zinc blende present 3.0 1.9 32 22

otherc 2.8 1.7 40 16

wurtzite present 3.8 44 33 19

otherd 3.7 36 to 43 39 to 47 25,33

aFor X1 conduction-band minimum in zinc blende and forK1 conduction-band minimim in wurtzite structures.
bFor X1 conduction-band minimum in zinc blende.
cTheory from Ref. 43.
dExperiment and theory from Ref. 5, Chap. 4 and Ref. 43.
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to thec/a relaxation in wurtzite and the elastic constant as-
sociated with the uniaxial strain along thec axis was derived.
The calculated TO phonons in wurtzite and zinc blende were
found to be in agreement with experimental data and other
recent calculations within a few percent. The mode
Grüneisen parameters of these phonons were also obtained.
The elastic constants of the zinc-blende structure were ob-
tained directly from first-principles calculations of the total
energy under appropriate strain distortions and were found to
be in good agreement with experiment forc-BN. The elastic
constantsC11

h , C12
h , andC44

h of wurtzite obtained from those
of zinc blende merely by the transformation to the coordi-
nates adapted to the hexagonal symmetry were found to be
quite close to the experimental values. A small improvement
resulted from Martin’s internal strain correction.20 Explicit
calculations for the wurtzite crystals under hexagonal
symmetry-preserving distortions show thatC13

h andC33
h are

significantly affected by the nonidealc/a ratios. Very good
agreement was shown for AlN and GaN with recent experi-
mental data obtained from sound velocity measurements.
The older literature values derived from x-ray diffraction
data, however, were found to be rather inaccurate. Our cal-
culations for InN, the zinc-blende forms of AlN and GaN,
and wurtzite BN contain predictions yet to be verified by
experiment.

The force constant parameters of the well-known Keating
model were derived from our calculated elastic constants and
experimental LO-phonon–TO-phonon splittings. We found
that the Keating model does not describe the shear elastic
constantC44

c very well for these materials and becomes
poorer as we proceed from BN to InN. The Keating model
shows that the ratio of bond-bending to bond-stretching
forcesb/a is significantly larger in BN than in AlN and GaN
which in turn are larger than that in InN. This behavior also
explains the trend in the values of the internal strain param-
eters: the Kleinmanz parameter for zinc blende and a similar
parameterj52dumin /d(c/a) for wurtzite introduced in the
present work.

The strain and optical-phonon induced changes in the
band structure were determined for small strains and ex-
pressed in terms of uniaxial deformation potentials for the
G, L, and X eigenvalues of zinc-blende crystals near the
band gap. These provide values for these parameters which
to date have neither been measured nor calculated. The band-
gap hydrostatic deformation potentials and pressure coeffi-
cients were also obtained and compared to experimental data
and previous calculations. The deformation potentials of the
valence-band maximum for@111# strain and for the
transverse-optical mode can be used to obtain estimates of
those in wurtzite structure, respectively, forc/a distortion
and for theA1 tranverse optical mode. A rough estimate is
provided for the absolute hydrostatic deformation potentials

of the valence-band maximum using the dielectric midgap
approach.
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APPENDIX

In this appendix we discuss the behavior of nearly degen-
erateL1 andL3 levels, as occurs in the conduction band of
c-BN, under strain. In the presence of a@001# strain the sym-
metry of the pointL is reduced to the group containing only
the identity and a reflection plane. The same is true under a
@111# strain for theL points not on the@111# axis. For the
L on that axis the symmetry is unaffected. Thus theL3

c state
even under the reflection interacts with theL1

c state. The odd
state does not and hence undergoes a linear shift. The inter-
action between the two even states for both situations is
given by the simple secular equation

U2d~L1!e2E Ie

I * e D2d~L3e!e2EU50, ~A1!

where D is the L32L1 separation ate50 and I e is the
coupling strength. The energies for the two states relative to
E(L1

c) at zero strain are

E1,25
1

2
$@D2d~L1!e2d~L3e!e#

6A@D2d~L1!e2d~L3e!e#214uI u2e2%, ~A2!

while that for the odd state is

E35D1d~L3o!e. ~A3!

For the tetragonal strain, d(L1)50 and
d(L3e)5d(L3o)5d3

3 with e5h3 . For the trigonal strain,
d(L1)5 (1/A3) d1

5 , d(L3e)5 (1/A3) d1
51 (2A2/A3) d3

5 ,
and d(L3o)52 (1/A3) d1

51 (2A2/A3) d3
5 with e5h5 . In

accordance with Eq.~A3!, one of theL3
c levels is found to

vary linearly with strain, allowing a simple determination of
the deformation potentiald(L3o). A fit of the behavior of the
other two levels as a function ofe with uI u513.0 for trigonal
and uI u527.0 for tetragonal strains is shown in Fig. 6.
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