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Doped Mott insulator: Results from mean-field theory
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The Mott transition phenomena can be studied systematically in the limit of large lattice spatial coordination.
We investigate the properties of doped Mott insulators with a variety of techniques and compare our results
with experiments on transition-metal oxid¢S0163-182@06)04524-9

[. INTRODUCTION consider the doped Hubbard model using, in addition to the
projective self-consistent method, two complementary tech-
The interaction-driven metal-insulator transition has fas-iques, the exact diagonalization algorithm of Caffarel and
cinated theorists and experimentalists for many years. Thikrauth!® and an extension of the iterative perturbation
transition is named after Sir Nevill Mott, who laid down the theory(IPT) introduced earlier by two of /&€.By combining
foundations of our physical understanding of thisthese two techniques we are able to explore larger values of
phenomenon. the interaction parameters than those that have been treated
A periodic system having an odd number of electrons pegg far and obtain a detailed picture of the correlated metallic

unit cell must be an insulatofMott insulato) when the  regime in the proximity of the density-driven Mott transition.
electron-electron correlations are much larger than the band- “a¢ present there is no exact solution of the Hubbard

width. In the limit of weak interactions band theory predicts ,o4el at zero temperature, even in the limit of infinite di-

the system to be metallic, so at some critical ratio of the,asions To address this problem we use extensively two
interactions to the bandwith a metal-insulator transition, theapproximatemethods mentioned above: the exact diagonal-

Mott transition, must occur. ization and the recently proposed IPT scheme. The nature of

The detailed understanding of this phase transition, thghe approximations in these two methods is of comoletel
Mott transition problem, has been elusive. It constitutes on PP P y

of the most challenging problems in condensed-matter phySQiffere_nt origin: the exact diagonalization sufferg _from rep-
ics because of its nonperturbative nature. The absence of/§S€nting the bath of the Anderson model by a finite number
natural small expansion parameter in the region near th@_f qrbltals and the IPT is only an interpolation betweep exact
transition makes this problem a test case study of nonpertufmits (U—0, t—0, o—=, and v—0). However, since
bative many-body physics. The solution of this problem is aboth methods give almost identical results on the imaginary
prerequisite for reaching a detailed understanding of the phaxis it is reasonable to trust the results thus obtained, at least
toemission spectra and of the physical properties ofts far as the trends on how various quantities evolve with
transition-metal oxides. doping are concerned.

The simplest model Hamiltonian exhibiting this phenom- ~ The content of this paper is the following. Section Il sum-
enon is the Hubbard model in the limit of large lattice marizes the methodology. In Sec. Il we describe the phase
coordinatior? At half filling, this model captures many prop- diagram of the fully frustrated model. Then the evolution of
erties of real three-dimensional transition metal oxides andhe one-particle spectral density as a function of doping at
has allowed a thorough investigation of the pressure-driveA€ro temperature is discusse®ec. IV). Section V addresses
Mott transition®=> This work is relevant to the metal- the doping dependence of the transfer of spectral weight by
insulator transition in Ni$Se;_,,® Ca;_, SrVO;,” and discussing the quasiparticle residue the compressibility, and
V,0,.8°10 the optical conductivity. Afterwards, we explore the mag-

The Mott transition can also be driven by changing thenetic susceptibilitySec. V) and subsequently some finite-
carrier concentration. This was realized experimentally in thdemperature effect¢Sec. VI). Section VIII discusses the
ternary compounds La,SrTiO; (Ref. 1) and the Hall coefficient and the quasiparticle lifetime at very low
Y, ,Ca TiO, systemsl.2'13 The simplest Hamiltonian de- temperatures. We conclude in Sec. IX with a discussion of

scribing this phenomenon is the Hubbard model away fronthe physical reasons why three-dimensional transition-metal
half filling. In the limit of infinite dimensions, this Hamil- ©0xides are well described by the mean-field formalism.
tonian has been studied extensively by means of the quantum
Monte Carlo method?~1®Good agreement between the pre- Il. METHODOLOGY
dictions of the mgglel and the experimental results of Tokura The Hubbard Hamiltonian
et al. was found:>

Very recently it has been established that doping a frus-
trated Mott insulator in the limit of large lattice coordination H=—2 (tj+m)cl ¢ ,+UD nip-ny (1)
induces states inside the Mott-Hubbard g4phis exact re- (0 '
sult, while restricted to infinitesimal doping, is a stringentis the simplest, the “bare bones” model that captures the
test of the accuracy of the approximate techniques used tmterplay of itinerancy and correlations. The hopping matrix
study correlated electrons in large dimensions. Here we reslementg;; in the limit of large spatial coordination, where a
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typical site hasn neighbors, are scaled g~ t/ml'~1I2 so  ization result®® and in addition yields smooth spectra on the

that the kinetic energy and the interactions remain finite foreal axis. For completeness, this method will be presented
2

m—co, briefly in the next subsection.
As in our previous studies at half filling;*> we consider
lattices that have magnetic frustration, i.e., in the localized A. IPT away from half filling

phase the spin degrees of freedom interact with magnetic
exchange constants of different signs. The local bare densit%(u
of states is assumed to be a semicircle

We now describe the perturbation scheme we use to
pplement the exact diagonalization results. The appfdach
is in the spirit of the iterative perturbation theory introduced
) in Refs. 24 and 3 and similar to other schefe¥.The key
po(€)=—= 1—(—) , (2) idea is to search for a self-energy as a functional of the
7D D “Weiss field” such that the self-energy expression becomes
. : _ . . exact both in the weak- and in the strong-coupling limit.
with a half bandwidthD =2t . In this case one can realize Moreover, it should have the correct behavior at both small

the equations on a flé"}é connected graph with random hOpé\nd large frequencies. The naive extension of the method
ping matrix element$®

The mean-field approach replaces the quantum man originally proposed for half filling fails to give reasonable

body problem by a single-site quantum problem, an impurityreSUItS for finite doping. However, we propose a generaliza-

model in an effective medium that is solved for self- tion to arbitrary filling by constructing a self-energy expres-

consistently. Applving reliable techniaues to the imourit sion that has the correct behavior in the limits discussed
Y. APplying Te ques PUMY ahove. Our ansatz for the self-energy is given by

model while implementing the self-consistency condition

provides an accurate solution to the lattice probfem. n(1—n) ~

€

For the Hubbard model in the paramagnetic phase the No(1—Ng) 82)(w)
associated impurity model is an Anderson model defined by 3@ (w)=Un+ 0 o . )
the effective action ~(A=mU—putuo SO )
no(1—ng)u? =
Selc.cf1=> | drd7'cl (NG, X (r—7")c () HereS((w) is the normal second-order contribution to the
7 self-energy
B
o (0) (0) (0)
+uf drn;; (1) —n; (7). Q T, Zfo f p - (e1)p 7 (€2)p " (€3)
0 25 (w)=U _wdel . deydes ot e—e,—es i

The propagatofs, plays the role of a Weiss field and, re- - 0
stricting to the paramagnetic phase, obeys the self- +U2f delf deydeg
consistency condition 0 —w

p'%(e1)p'?(&2)pV(€3)
wte—€e—€3—i7

(6)

wherep®= (1/) ImGy,. The (advancellGreen’s function
whereG(i w,) = — [§€'“"(T,c(7)c'(0))s o d7 is @ func-  Go(w) is defined by

tional of [Go] and A :=u—u/2. After self-consistency is

attained, one can evaluate this functional at the self- Co(w):= 1 )
consistent value of the Weiss field function to obtain the oL 0+~ t2G(w)

local Green’s function of the Hubbard model. ) ) ] ]

The mean-field equations can be analyzed by a variety ofVhile n marks the physical particle numbgsbtained from
methods. They range from qualitative arguments and and?), No is a fictitious particle number determined froBy.
lytic perturbative schemes to numerical methods based ohN€ Parametef, is chosen such that the Luttinger theorem
quantum Monte CarIB',Zl'15e@cztoqisagonalizatioﬂ'ﬁ'zz’23and is fulfilled:
iterative perturbation theory:“>*> The projective self- ~ )
consistent methdd is applicable in an infinitesimal neigh- ro=n=2%L)(0=0), po:=uly=o- (8)
borhood of the transition and supplements the exact diago- the selt-
nalization studies. In this paper we will use the exact
diagonalization algorithms to be able to make statements G Yw)=Gy X w)~ T+t pn—3?(w) . (9)
about rather large values bf. These are not accessible with
conventional Monte Carlo algorithms because the expansiohior_the numerical implementation it is more convenient to
parameter in that techniquelisA 7, whereA 7 is the value of ~ fiX uo (rather thanu). Then, starting with a guess f@ and
the imaginary time discretization parameterThe exact di- x4, one can comput&,, n, andng. Afterward, (5) yields
agonalization technique yields, on the real axis, only a disX(®(w) and we obtain a new from the Luttinger theorem.
crete set of poles for the spectral function as a result offhe loop is closed by9) and the iteration continued until
treating only a finite number of particles in the correspondingconvergence is achieved.
impurity model. Therefore we supplement these results with In the case of half filling the procedure reduces to ordi-
an iterative perturbation scheme, which on the imaginaryary IPT. Therefore, we are dealing with an extension of this
axis is in good agreement with the exact diagonal-method to finite doping.

Go Hiwp) =iwn+Au—1t2G(i w,)[Gol, (4)

consistency is closed by
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Expression(5) becomes exact in the atomic limit and is
correct to ordetJ? in the yveak-coupling limit. The proper FIG. 3. Phase diagram in the-U plane of the Hubbard model
large-frequency behavior is relat_ed to the fact that the spe on a fully frustrated lattice at zero temperatexact diagonaliza-
tral moments up to quadratic order are reproduce ion).
exactly?®?° The correct zero-frequency behavior is ensured
by satisfying the Luttinger theorem. This is the main differ-
ence from an earlier scheffausing related ideas and is es-
sential to obtain good agreement with the exact diagonaliza- The phase diagram of the half-filled model displays a co-
tion results. existence region in the temperature interaction strength

To test the validity of our method we compare it with plane. Forgiven nonintegeraverage occupancgnd in the
results obtained using the exact diagonalization algorithm oparamagnetic phase of the fully frustrated model, there is
Caffarel and Krauttt® Both methods are in close agreementonly one solution of the mean-field equations. As function of
when used on the imaginary axisee Fig. 1 The advantage chemical potential, however, there is a region of coexistence
of the present IPT scheme is seen on real axis: In Fig. 2 wef two solutions that describe a doped metal and an insulator.
display the spectral functions obtained by these two methodShe phase diagram in the-U plane of the Hubbard model
Although the exact diagonalization is doing its best in pro-on a fully frustrated lattice at zero temperature is shown in
ducing the correct spectral distribution it is unable to give aFig. 3. It was obtained by exact diagonalization with eight
smooth density of states. Instead sevei@leaks occur as a sites forU =4 by looking for the region where an insulating
consequence of treating only a finite number of orbitals insolution with zero density of states at zero energy coexists
the Anderson model. The iterative perturbation scheme invith the metallic solution having a finite low-energy density
contrast yields a continuous plot. In this sense it supplementsf states. For the particle-hole symmetric case a detailed de-

Ill. PHASE DIAGRAM

the exact diagonalization.

scription of this procedure can be found in Ref. 22. The
shaded area denotes the region of parameter space where the
mean-field equations have two different solutions: one me-

Im G(®)
2.5 | - tallic and the other insulating.
Following the technique discussed in Ref. 22, we mea-
2.0 7 sured the energy of each solution and determined that
through the coexistence region the metallic solution is the
15l i lowest in energy. This is in agreement with the analytic ar-
| gument presented in Refs. 25 and 17. The region of coexist-
Lol ¥ ] ence is also in good agreement with the completely indepen-
: dent determination of the phase diagram by means of the
05| | ] projective self-consistent methdd.
00— I E— IV. EVOLUTION OF THE SPECTRAL DENSITY
4 2 2 4 6 AS A FUNCTION OF DOPING
(0]
In this section we discuss the evolution of the spectral
FIG. 2. ImG(w) at T=0 for U=4D and hole doping function as one dopes the Mott insulator. It has been shbwn

6=0.14: iterative perturbation theofjull line) vs exact diagonal-

ization (dashed ling

that for infinitesimal doping, new states are created in the
Mott-Hubbard gap. The states in the doped system have no
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~ FIG. 4. Evolution of the spectral function as one dopes the Mott  F|G. 5. Evolution of the spectral function as one dopes the Mott
insulator forU=3 (IPT). insulator foru=4 (IPT).

simple relation to those that existed in the insulator. Thisits identity and the spectral function resembles that of the
physical picture is similar to that obtained by the slave bosomoninteracting system.
treatment’**Notice that the results of the large-approach The crossover from the local moment to the mixed va-
are in closer agreement with Ref. 32 than with Ref. 31.  |ence regime is quite fast, as can be seen in Fig. 7. Here the
Since the projective self-consistent method is restricted tehree regimes were distinguished by computing the expecta-
infinitesimal doping it is important to ask at which doping tion  values Nsingie= = o{ (1= N,) N5 and  Nempy
the resonance merges with the Hubbard band and, more gen-((1—n_)(1—n;)). As a criterion for the single moment
erally, how the spectral function evolves as one dopes a Motegime we chos@gj,ge> 0.9, while the empty orbital regime
insulator. We address these and other questions below.  as determined froMempry>0.8.
In Figs. 4 and 5 we show the evolution of the spectral
function of the Hubbard model as obtained from IPT for
U=3 and 4. Figure 6 displays exact diagonalization results V. DOPING DEPENDENCE OF THE TRANSFER
for U=10. For small doping the resonance peak is well sepa- OF SPECTRAL WEIGHT
rated from the lower Hubbard band. But once the doping is ) )
increased, the resonance moves quickly inside the band and AS one dopes the Mott insulator with holes, spectral
the qualitative results are very similar to those obtained withVeight is transferred from the upper Hubbard band to the
the slave boson methdd32 resonance near the Fermi level. As the weight of the reso-

The position of the resonance as a function of doping cafi@nce grows the quasiparticle residnigncreases and con-
be related to the different physical regimes of the corre-Sequently thg mass enhancemen_t is .reduced. The divergence
sponding Anderson impurity mod&lFor small doping the ©f the effective mass as the 960p|ng.|s decreased was estab-
lattice sites are predominantly single occupied. There are vidished in earlier publication&:'®In this section we discuss
tually no charge fluctuations and the system is in ltheal ~ Various aspects of the doping dependence _of the qua5|part|c_le
moment regimelominated by quantum fluctuations betweenresidue and of the integrated spectral weight, such as their
the|7) and the||) states. In this case the resonance is weldependence ob/D for values ofU that were not accessible
separated from the lower Hubbard band. to the quantum Monte Carlo method.

With increasing doping charge fluctuations between The evolution of the weight in the upper Hubbard band
single occupied and empty states become importaited W+ as a function of doping is shown in Fig. 8 for different
valence regime The resonance merges into the lower Hub-Vvalues ofU. The transfer of spectral weight can be param-
bard band. etrized asv, ~ 1/2—a(U)  for U>U,. This relation holds

Once the particle density gets so small that the lattice sitefr dopings up to a maximum valug which increases as a
are predominantly empty, thempty orbital regimeis  function of U (6~0.04 forU=3.5 andd~0.1 for U=5).
reached. At this point the characteristic resonance peak los#8hen U is infinite, a(U) is equal to 0.5 and increases as
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FIG. 6. Evolution of the spectral function as one dopes the Mott insulatdd fofl0 (exact diagonalization with eight site§he arrows
indicate the position of the resonance peak.

U is reduced. These results are qualitatively similar to whats denotes a small doping. The coefficiemts depend on
is observed in exact diagonalization studies of fimite-  U: A, vanishes belowJ, and increaseédecrease@squickly
dimensionaHubbard modef? for hole (electron doping, whenU is increased above..

The control parameter of the transition is the deviation ofMoreover, A;~a,(U—U.). The parameted, is always
the chemical potential from its critical valye.. That is, the  positive and increases as a functionldf This increase is
weight w in the resonance behaves asw  faster above, rather than below,.

~(u—pe)(ue— U/2) for U>U.. To convert from chemi- Above U, the critical region where the parametrization
cal potential to doping one needs the particle number as @.0) is applicable is relatively smalitypically §<0.01).
function of w. This relation is displayed in Fig. 9. However, it increases a3 is lowered belowJ (6<0.05 for

The compressibility for infinitesimal doping is in general U=2).
finite, but vanishes atJ.. The density as a function of The compressibility is nonsinguldexcept whenU ap-
chemical potential near half filling can be parametrized as proachedJ.). This implies thatv~ ¢, i.e., the weightv of
the resonance at zero frequency increases as a function of
) doping.
_E) (10) To analyze the low-energy, low-temperature thermody-
5 -

S=A,+A ; , : ;
or e namics, one has to investigate the properties of the states that

TAz m

U
)
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FIG. 8. Weight of the upper Hubbard band as a function of
doping for various values of the interactidh (data from exact
diagonalization

(1)*2
(0)= 5 8(0) + o o), (1)
where the coefficient in front of thé@ function is the Drude
weight andw} is the renormalized plasma frequency. The
Drude weight and the integrated optical spectral weight
evolve as a function of doping. In infinite dimensions the
Drude weight is simply related td (Refs. 10 and 14via
w5?l4m= (4mt%e?a?/h?v) Zp®(0) The integrated optical
weight is proportional to the kinetic enerd¥). Figure 11
shows this quantity as a function of doping for different val-
ues ofU. Notice that at half filling the kinetic energy is finite
and of the order of the magnetic exchange. For small values
of U the results are in excellent agreement with the results of
Monte Carlo calculations obtained earlfér.

VI. SUSCEPTIBILITY

2.00 2.50 3.00 3.50 4.00 4.50
Interaction U

FIG. 7. Different regimes of the Hubbard modske the text
(&) U-6u plane andb) U-n plane.

form the low-energy resonance. The Mott transition as a
function of doping is driven by the low-energy spectral
weightw, which drives the quasiparticle residdego zero as
the doping vanishes as long as the interaction is above its
critical value.Z is in general proportional tav, but smaller
than this quantity. In infinite dimensions the vanishingZof
implies the divergence of the effective mass and conse-
quently the vanishing of the renormalized Fermi energy
ee=DZ.

The quasiparticle residue increases as a function of dop-
ing. It is sketched in Fig. 10 for different values df With
the projective self-consistent method one can demonstrate
that Z=b(U)w, whereb(U) is a weak function olU that
equals approximately 0.5 &t=3 and 0.3 alU=8.

A different measure of transfer of spectral weight appears
in the optical spectra. The optical conductivity of the model
at T=0 can be represented as

The inverse magnetic susceptibilijggl has been inves-

n(l)
1.00 I 1 ]
U=3

---------- U= L7
oso}— U=10 s
0.60 ]
0.40 ]
0.20 ]
0.00 o -

| | 1 | |

1.00 050 0.00 0.50 T.00
18

tigated in various publications and is easily understood not to

FIG. 9. Particle number versus the chemical potential for differ-

ent values of the interactiod (exact diagonalization
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FIG. 12. Generalized Wilson rati, for infinitesimal doping as

FIG. 10. Quasiparticle residug as a function of doping for a function of the interactiot) (results from exact diagonalizatipn

various values of the interactiofexact diagonalization, with an

effective temperatur@e;=0.01). This should be contrasted with the behavior of the local

) - _ spin susceptibilityin units ofgug/2), which diverges as the
be divergent near half filling using the arguments of Ref. 22ott transition is approached:
The exact diagonalization results near the transition are
found to be consistent with the parametrization

Xie~d(U)w. (13

The coefficientd(U) decreases slowly witk and is given

by 0.12 atU=3 and falls to 0.07 aU=8. This leads us to
the definition of a generalized Wilson raty defined as the
with c(U) depending weakly otJ. In the insulating phase ratio of o/ to its noninteracting Y =0) value x|ocd vo
X51~(J+T). Equation(12) indicates that the magnetic sus- [Where xioc0= 16/37D (gug/2)? and yo=4mk3/(3D)].
ceptibility remains finite at the transition due to the existenceRy measures the enhancement of the susceptibility at a ge-
of a nonzero superexchange constant2t?/U= D?/2U . neric q in the Brillouin zone. It increases very slightly as

U increasesRy=2.6 forU=3 andRy;=2.75 forU=10. A

plot of this quantity vsU obtained with the projective self-
consistent method is shown in Fig. 12.

xs ~=c(U)w+J, (12)
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FIG. 11. Kinetic energy as a function of dopirigxact diago-

nalization.
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VIl. CROSSOVER AT FINITE TEMPERATURES

The infiniteU Anderson impurity model is known to have
a Kondo resonance. Here we study the Hubbard model in the
intermediated regime where a resonance peak is also
present. This analodyis particularly useful for understand-
ing the temperature dependence of the local spectral func-
tion. From the theory of the Anderson impurity model it is
known that there exists a scdlg, the Kondo energy, above
which the electrons and the impurity are weakly coupled and
below which a resonance at the Fermi level is formed. Two
important issues are the dependence of the coherence tem-
peratureT, on physical parameters of the Hubbard model
and the nature of the crossover between the high-temperature
and the low-temperature regime in this model.

Jarrell and collaborators have addressed some of these
issues in Refs. 16 and 34. They investigated the evolution of
the spectral function and other physical properties as func-
tion of temperature using the Monte Carlo method and the
maximum-entropy technique. Here we address this problem
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FIG. 13. Evolution of the spectral function as a function of 0.0 i | | |
temperature displaying the temperature dependence of the reso- 2 0 2 4 )

nance peak. A six-site exact diagonalization was used for
6=0.075 andU=4.
FIG. 14. Spectral function for different temperatures as obtained

using exact diagonalization and some analytic considerffom IPT forU=4 and$=0.075.
ations.

Figure 13 displays the temperature dependence of the The parameter defines again the coherence temperature
spectral function as obtained from an exact diagonalizatiofbelow which Fermi liquid theory is applicable. For small
calculation forU=4 and §=0.075. For comparison, we doping we find To=aé%% This relation holds up to
plotted the corresponding IPT results in Fig. 14. Both figuresd~0.14 forU=4 (with a«~0.5D), as shown in Fig. 16.
display the decay of the resonance peak with increasing One can understand this unusual dependence of the coher-

The temperature dependence of the local spin susceptibiénce temperature on doping by a simple energetic argument.
ity xoc IS shown in Fig. 15. It has the form We construct a free-energy functional of the coherence pa-
Xioc= 1/aT+ Ty, wherea increases with increasing doping rameterw, the weight in the resonance. At zero temperature
(a~1.1 for 6=0.06 anda~ 1.3 for §=0.4) so that there is it gives the energy difference between the metallic and the
no universal scaling function describing the temperature deinsulating phase and is proportional 8. A concrete real-
pendence of¢ as in the single impurity model. The increase ization of the energy functional isE(W)=(u—uc)W
of « as doping increases has a simple physical interpretatior bw?. Its minimization results in an energy difference that
since the doping decreases the effective magnetic momeit proportional to 1 — u)?, i.e., to the square of the doping.
per site. At finite temperatures, one has to include entropy effects. For
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FIG. 15. Temperature dependence of the inverse local spin sus- B B
ceptibility. Plot of[ Toxu{@=0,T)] * as a function ofl/T,. Re-
sults from exact diagonalization witd =4 and 6 sites.
a Fermi system with a Fermi energy, the entropy per
lattice site is approximately constart=G,) when T> e, | | | | [

while at low temperatureS~T/er. So we can parametrize 0.02 0.04 0.06 0.08 0.1
the entropy byS~ Sptanh(T/wDS,)). Balancing this entropy
against the energy difference, which is of ordr sets the Temperature T

crossover scal@,~ 5°2. , , _

Interestingly, T, is considerably smaller than the renor- FIG. 17. Particle number per site as a function of temperature
malized Fermi energyer=2D (e.g., To/ZD~0.12 for 'of U=4 and Ap=u= (U/2)=-1.05-12,-14,~16 using
5=0.1). exact diagonalization with-61 orbitals.

The existence of a low-energy scale and the associated ) )
anomalous temperature dependence of the spectral functigfermally activated and the number of particles decreases.
cause a strong variation of the number of particles as a funclhiS €ffect is the only effect present in the insulating phase
tion of temperature for fixed chemical potential. This is dis-(#> #c) and dominates in the metallic state very near the
played in Fig. 17. metal insulator transition at _hlgher temperatures. _

The observed temperature dependence is due to two com- |t has been emphasized in Refs. 16 and also in 35 that in
peting effects(a) In the metallic correlated regime, spectral @ Wide temperature range the resistivity of the doped Hub-
weight is transferred from the resonance to the lower HupPard model is linear and it is suggested that the crossover
bard band as the temperature increases. Since the chem;&@m the Fermi liquid regime is very slow. Here we investi-
potential is kept fixed, this causes an increase in the partic/g@t€ this issue further and conclude that the crossover behav-
number. (b) As the temperature increases some holes aré@r from the Fermi liquid regime is actually quite rapid. Fig-

ure 18 displays the behavior of the resistivity and the
scattering rate as a function of temperature fb+3 and
T, 5=0.25.
Both quantities change their behavior at the scBle
= Moreover, the resistivity has a wide linear region that is due
to a saturation in the scattering rate. Notice that this regime
occurs well above; where the crossover has already taken
place.

0.08
0.06

004 VIIl. LOW-TEMPERATURE LIFETIMES

AND THE HALL COEFFICIENT

0.02 . . . . I
It is also interesting to study the behavior of the lifetime

as obtained from the imaginary part of the retarded self-
energy. It is quadratic in frequency and has a stronger diver-
gence than the quasiparticle residue. DefinlngwD, we

obtain using the projective self-consistent method following

Refs. 25 and 17
FIG. 16. Doping dependence of the coherence temperature for

U=4: T, as a function ofs®? (thick line). The thin line was ob-
tained by fitting T=a 6% to the exact diagonalization data for
6=<0.14. The inset show$y( ).

0.00

s(U)D
-5

Im3(w+i0",T)= (w’+7T?). (14)
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p(T) : | T T T ]

U=3, §=0.25 - 0.82 — -
0.8 [ .

0.6 — 078 — —

Im Z(0=0)

0.4~ 04f 1 7

0.76 — “~

T w)?

0.0 0.1 0.2 0.3 0.4

07— —

FIG. 18. Resistivity and self-energy as a function of temperature T s 20 T
for U=3 and§=0.25 (lPT) Interaction U

FIG. 19. [9*S/(dw)?]/ (921 dw)?|, o for infinitesimal doping
as a function of the interactiofexact diagonalization The ratio is
proportional toA/ 2.

s(U) increases slowly at) increases varying from 1.4 at
U=3 to 3.3 atU=8.
A related quantity is the low-temperature resistivity. In
mean-field theory, we write It is remarkable that the Hall coefficient at very low tem-
peratures is given by the bare band structure even when the
®po -2 correlations are very strong. This results from the contribu-
p(T)=<ﬁ) 2 Im3(T)=AT?, (15  tion of the quasiparticles to the transport. At high tempera-
tures the resonance disappears and the rigid band picture of
) , Hubbard gives an accurate description of the physics of the
where the plasma frequency of the noninteracting systém Igyodel?® The Hall number is then holelike for small hole
defined by (po/2m)% = (e°/112)23wi (). Using  doping. This was observed in the Monte Carlo calculations at
1/e€%/h~4KQ and a typical distance in the cubic perovskite high temperatures in the hole-doped Hubbard mdge.
structure  of &, we find for the ratio A/%*  detailed study of the temperature dependence of the Hall
~1.5x107* @ cm(mol K/mJf at U=3. This ratio coefficient displaying the change of sign as a function of
decreases very slightly s increases towards large values. temperature has been recently carried out by Jarrell and col-
This can be seen from Fig. 19, where we plottedigporators in Ref. 34.
[°2/(w)?] (921dw)?|,-o, which is proportional to Equation(16) evaluated in the limit of infinite coordina-
Aly. tion number yields Ry=—(2a%eD?) [uo/po(mo)l,

In infinite dimensions it is possible to make some rigorousyhere po(e) is the bare lattice density of states.
statements about the behavior of the Hall coefficient aptsing Eq. (2), we obtain, for the Bethe lattice,
proaching zero temperature. Since vertex corrections can iR, = (27a%/e)[ uo/D/V1— (uo/D)?].
neglected in the limit of Vanishing wave number, the Hall However, with respect to experimentS, it is more reason-
coefficient can be evaluated directly in terms of the exachple to evaluaté16) in the spirit of mean-field theory, i.e.,
one-particle Green’s function. This statement is not entirelyfor a realistic band structure. As an application, we calcu-

obvious but follows from a restriction of the careful general|ated the Hall coefficient as a function of doping for a three-
analysis of Kohno and Yamatfao the limit of large lattice  pand  model given by €X= — 2t(cogk,+cog)

coordination. ) — (2 :
) . . €’ = — 2t(coK,+Cok,), ande;” = — 2t(cok,+cosky). This
b Tihe fdg;\g:rr]amsf Hi'a;] arre rréeglﬁ]ciﬁd 'nmthﬁ'(rj trriafrr?ent r?nt tt‘}?pproach yields a semirealistic description of the
a?es i\?acteofgh'o hergofdeor 'nean e easns%n 'r?jJrZIa% Ceotos a a1_,Sr,TiO 3 system. Figure 20 shows the negative inverse
; '9 : xpansion | v (Eall coefficient — 1/Ry obtained for this caséthick line).

the I_eadmg terms. A.t zero temperature, where Fermi liqui or comparison we also included the result for a Bethe lat-
applies, one is left with the results of thk=0 problem. For

i . ice with infini rdination numbe(thin line). Near half
an arbitrary band structure one obtainsTat0, tice wit te coordination numbet ®). Near ha

filling the Hall coefficientR, vanishes in both cases. In the
zero-particle limit, however, this quantity remains finite for
vy ,dvy the more realistic band structuf@ue to the two-dimensional
Ux(9_|(y_”y(;_|(x nature of the modgl while it vanishes for the Bethe lattice
1 5 (16)  with infinite coordination number. In the next section our
_2 _ 2 results will be compared with experimental data measured in
5( ek Iu‘O)UX . 1
N the La, _,Sr, TiO 5 systent

1

28 N2y e ko)

RH:_%
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tion between ferromagnetic and antiferromagnetic exchange
interactions among different spin and orbital configurations.
This results in an effective magnetic frustration. The energy
difference between different orbital-spin orderings is quite
small and results in a very small magnetic transition tem-
perature at half filling. This is confirmed by the magnitude of
- the magnetic ordering temperature, which is of the order of
1300 K in the quasi-two-dimensional cuprates, but only
about 150 K in the cubic titanates. The one-band model in
7 the limit of infinite dimensions can capture the weakening of
the effective magnetic couplindand the very low ordering
temperaturéswhen defined on very frustrated lattices.
In the light of the previously mentioned caveats, we limit
0.0 0.2 0.4 0.6 0.8 1.0 ourselves to a qualitative comparison of our theoretical re-
particle density n sults with the measurements of Tokura and
co-workerstt339\We find good agreement with respect to
FIG. 20. Doping dependence of tiieegative inverse Hall co-  various physical quantities.
efficient — 1/Ry at zero temperature. The thick line corresponds to  Mass enhancement was established in Ref. 15 that the
the three-band model mentioned in the text, the thin line to theguasiparticle residue scales to zero as the Mott transition is
Bethe lattice with infinite coordination number. The inset containsapproached with decreasing hole doping, causing a diver-
the Hall coefficientR,, . gence of the specific-heat mass, in quantitative agreement

; ; : 11
IX. CONNECTION WITH EXPERIMENTS: with the experiments performed on La,Sr, TiO5;."~ The

WHEN DOES MEAN-FIELD THEORY WORK? compound La_,Ca, YO has a larger value dfi/D, which
’ allows us to test the dependence of the effective mass

In this paper we explored in some detail the mean-fieldn*=f(U/D)& ! on the ratioU/D. From Fig. 10 we expect
theory of the density-driven metal-to-insulator transition. Itthe linear term in the specific heat to increaselH® is
is important to ascertain the region of validity as well as theincreased. The same qualitative behavior is found in the ex-
applicability to real systems. The doping-induced Mott tran-periments: Forx=0.5, we havey=5.2(mJK*mol?) for
sition is found in two-different systems: in two-dimensional La;_,Sr,TiO5 and y=8.2(mJK*mol)? for Y ,_,Ca,TiO
copper oxide layers as realized in 13Sr,CuO, and the 3).* We stress again that the opposite behaitioe specific-
three-dimensional titanates such as ;LgSr,TiO; and heat coefficientvanishesnear zero dopingis seen in the
Y ;_Ca,TiO 3.1 When comparing with experiments it is copper oxide systems such as,LaSr,CuQ,, so the mean-
important to bear in mind that these are disordered alloys anfield approach to the Hubbard moder perhaps the Hub-
the disorder eventually localizes the carriers at low dopingbard model itseff) is not applicable in this case.
levels. The effective strength of the disorder increases with Transfer of spectral weighiAs one dopes the Mott insu-
increasingU/D . As a result, it is not possible to approach lator the spectral weight of the upper Hubbard band is re-
the density driven Mott transition very closely. In particular duced, while at the same time new states are created within
this is true for the ¥,_,Ca,TiO 5 (Ref. 13 system. Further- the gap. The details of the photoemission spectra in
more, the titanates have a perovskite structure with smalla;_,Sr,TiO 3 cannot be described by the Hubbard model
distortions, implying that the level is threefold degenerate without taking into account the effects of inhomogeneities on
to a good approximation. Therefore the one-band Hubbarthe surfacé! Nevertheless, optical experiments can probe
model is, strictly speaking, not applicable to these systemsthe transfer of spectral weight to low energi@veasure-

On the theoretical side, the main limitation of the mean-ments inR;_,Ca,TiO3, with R=La, Nd, Sm, or Y, have
field theory is the omission of magnetic correlations in theestablished experimentally that the weight of the Drude peak
paramagnetic phase. These correlations become very impdn the optical conductivity is proportional to the dopitdy
tant as the transition is approached, as we know from studieBhe proportionality constant increasesW& decreases, in
using the largeN expansior?’ The omission of magnetic agreement with the results in Figs. 10 and 8 and the relation
correlations in the single-particle spectra is the main reasohetween the Drude weight and the quasiparticle residue. A
why this approach cannot provide a good description of thenore careful study of the optical conductivity is necessary,
cuprate superconductors. This can be seen by comparing thewever, for a quantitative comparison with these experi-
specific heat vs doping curves of the lamjeHubbard ments. In particular the proportionality constant does not di-
model® with the experimental results of Loraratal®®  verge atU. in our treatment.

Mean-field theory predicts~ 61, while experiments in the Wilson ratia Another physically relevant quantity is the
cuprates clearly indicate the opposite trend. behavior of the Wilson ratio as a function of doping and of

The mean-field approach, however, is quite useful for unD/U . ForU close toU, this question was examined in Ref.
derstanding the physical properties of three-dimensional5 in the context of the one-band Hubbard model where it
transition-metal oxides. The physical reason for the successas shown that the Wilson ratio goes to zero very close to
of the mean-field theory for these systems is related to theinalf filling, but it is close to one for dopings larger than 0.05.
orbital degeneracy. Orbital degeneracy reduces the relatide an orbitally degenerate situation, there are important
importance of the magnetic correlations in the paramagnetiorbital contributions to the susceptibility even in the nonin-
phase. In an orbitally degenerate system, there is a competieracting limit. For the case of the cubic perovskites

=)

-1/Rg(e/a’)
=
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R,_,Ca,TiO3, taking the magnetic moment operator to . ;
2S+L and restricting our attention to the threefold degener- 3 / ®
ated band, one obtains in the limit of small number of par-
ticles

E flen) —flew)

3 2 34
X / /2(“’ 82 | €1k €2k , (
) 7 :B § f r( )
o €1k

(S
I

-1/Ry (10°Clent)
—
| |

which is therefore larger than oney, e, are two of the o
bands considered in the discussion of the Hall coefficient. -
Experimentally the Wilson ratio is close to 2 for all dopings L |

in La,_,Sr,TiO5. For Y;_,Ca,TiO5 the Wilson ratio is 2 0.0 0.2 04 0.6 0.8 Lo
for large doping and increases slightly as the doping is re- filling n=1-x

duced[for x=0.5 we obtairR~3.2(3u3/7?k3)]. This trend

is the same as the trend we find in our generalized Wilson FIG. 21. Inverse Hall coefficient 1/R; : data from mean-field
ratio Ry = (xiod/ )/ (xo/ ¥0) - The generalized Wilson ratio theory (fu!l line) in c.omparison with experimental data of
depends weakly on doping and its value increases slightly@1-xSiTiOs (closed circles

with U (Rg~2.6 forU=3 andRy~2.75 forU=10). Y, ,CaTiO; is of the same order of magnitude as in
Low-temperature resistivityln our treatment the low- La,_,Sr,TiO (e.g, for x=05 we have

temperature resistivity obeys=AT?, whereA is propor- —1/Ry~0.76x10 2 cm %e in La;_,Sr,TiO; and

tional to ¥2. Earlier work® estimated —1/R,~1.0x10"%2 cm 3/e in Y,_,Ca,TiOs). Devia-

Aly?~15x10"*" O cm(mol K/mJ} at U=U;, which  tions may be explained by differences in the lattice constants
was in good agreement with experimental data forand by the presence of disorder.

La;_,SrTiO3 [107 O cm(moleK/mJF]. Here we In this paper we have discussed various aspects of the
showed tha#\/ y* decreasesvith increasingU. This predic-  density-driven Mott transition. When comparing the behav-
tion cannot be tested in )Y ,Ca,TiO 5, because its resistiv- ior of various physical quantities as a function BfD we

ity has aT® dependence at the only composition where it hadind satisfactory agreement between the mean-field theory

been measuredxE0.42), which is very close to the and experimental data. o o N
disorder-induced metal-insulator transition. The next step towards a realistic description of transition-

Hall coefficient.For hole doping the Hall coefficient at Metal oxides would be to introduce a more realistic density

T=0 is electronlike and essentially unrenormalized from thePf States as well as crystal structures and the orbital degen-
band-structure value. The results for the three-band mod&racies characteristic for these systems. From a physical

treated in Sec. VIII should be compared with experimentaPCiNnt Of view, frustration should emerge as a result of the
data for the La_,Sr,TiO5 system. From experiments it is orbital degenerady rather than having to be put in by hand,

known thatn=(1—x). Assuming a lattice constant 026 as a geometric property of the lattice, as is done in the con-

the mean-field approach yields the data plotted in Fig. ofext of the one-band description. We expect, however, that

(full line). The closed circles indicate the experimental datal€ Mmain qualitative conclusions of the mean-field theory in

At large dopings Xx>0.3), there is a reasonable qualitative the paramagnetic phase will hot be_changed by the orbital
agreement. Also, the order of magnitude is the same in botﬂ?generacy. Work along these lines Is already L_mder way. I_n
cases. Note, however, that the Hall coefficient is proportional'iS "eSPect the recent success of the mean-field theory in
to a3, so that|R.| depends strongly on the choice far predlctlng th% results of optical experiments opQ%; is very
Deviations from the measured data are large at small dopin&ncouraglngl.
where the theoretically determined inverse Hall coefficient

diverges. Such a divergence cannot be seen in the experi-

ments. However, there is still a superlinear enhancement of This work has been supported by the National Science
|1/Ry| in this region. The Hall coefficient found in Foundation Grant No. DMR 95-29138.
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