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The Mott transition phenomena can be studied systematically in the limit of large lattice spatial coordination.
We investigate the properties of doped Mott insulators with a variety of techniques and compare our results
with experiments on transition-metal oxides.@S0163-1829~96!04524-9#

I. INTRODUCTION

The interaction-driven metal-insulator transition has fas-
cinated theorists and experimentalists for many years. This
transition is named after Sir Nevill Mott, who laid down the
foundations of our physical understanding of this
phenomenon.1

A periodic system having an odd number of electrons per
unit cell must be an insulator~Mott insulator! when the
electron-electron correlations are much larger than the band-
width. In the limit of weak interactions band theory predicts
the system to be metallic, so at some critical ratio of the
interactions to the bandwith a metal-insulator transition, the
Mott transition, must occur.

The detailed understanding of this phase transition, the
Mott transition problem, has been elusive. It constitutes one
of the most challenging problems in condensed-matter phys-
ics because of its nonperturbative nature. The absence of a
natural small expansion parameter in the region near the
transition makes this problem a test case study of nonpertur-
bative many-body physics. The solution of this problem is a
prerequisite for reaching a detailed understanding of the pho-
toemission spectra and of the physical properties of
transition-metal oxides.

The simplest model Hamiltonian exhibiting this phenom-
enon is the Hubbard model in the limit of large lattice
coordination.2 At half filling, this model captures many prop-
erties of real three-dimensional transition metal oxides and
has allowed a thorough investigation of the pressure-driven
Mott transition.3–5 This work is relevant to the metal-
insulator transition in NiSxSe12x ,

6 Ca12x SrxVO3 ,
7 and

V2O3.
8–10

The Mott transition can also be driven by changing the
carrier concentration. This was realized experimentally in the
ternary compounds La12xSrxTiO3 ~Ref. 11! and the
Y12xCax TiO3 systems.12,13 The simplest Hamiltonian de-
scribing this phenomenon is the Hubbard model away from
half filling. In the limit of infinite dimensions, this Hamil-
tonian has been studied extensively by means of the quantum
Monte Carlo method.14–16Good agreement between the pre-
dictions of the model and the experimental results of Tokura
et al.was found.15,14

Very recently it has been established that doping a frus-
trated Mott insulator in the limit of large lattice coordination
induces states inside the Mott-Hubbard gap.17 This exact re-
sult, while restricted to infinitesimal doping, is a stringent
test of the accuracy of the approximate techniques used to
study correlated electrons in large dimensions. Here we re-

consider the doped Hubbard model using, in addition to the
projective self-consistent method, two complementary tech-
niques, the exact diagonalization algorithm of Caffarel and
Krauth,18 and an extension of the iterative perturbation
theory~IPT! introduced earlier by two of us.26 By combining
these two techniques we are able to explore larger values of
the interaction parameters than those that have been treated
so far and obtain a detailed picture of the correlated metallic
regime in the proximity of the density-driven Mott transition.

At present there is no exact solution of the Hubbard
model at zero temperature, even in the limit of infinite di-
mensions. To address this problem we use extensively two
approximatemethods mentioned above: the exact diagonal-
ization and the recently proposed IPT scheme. The nature of
the approximations in these two methods is of completely
different origin: the exact diagonalization suffers from rep-
resenting the bath of the Anderson model by a finite number
of orbitals and the IPT is only an interpolation between exact
limits (U→0, t→0, v→`, and v→0). However, since
both methods give almost identical results on the imaginary
axis it is reasonable to trust the results thus obtained, at least
as far as the trends on how various quantities evolve with
doping are concerned.

The content of this paper is the following. Section II sum-
marizes the methodology. In Sec. III we describe the phase
diagram of the fully frustrated model. Then the evolution of
the one-particle spectral density as a function of doping at
zero temperature is discussed~Sec. IV!. Section V addresses
the doping dependence of the transfer of spectral weight by
discussing the quasiparticle residue the compressibility, and
the optical conductivity. Afterwards, we explore the mag-
netic susceptibility~Sec. VI! and subsequently some finite-
temperature effects~Sec. VII!. Section VIII discusses the
Hall coefficient and the quasiparticle lifetime at very low
temperatures. We conclude in Sec. IX with a discussion of
the physical reasons why three-dimensional transition-metal
oxides are well described by the mean-field formalism.

II. METHODOLOGY

The Hubbard Hamiltonian

H52(
^ i , j &

~ t i j1m!ci ,s
† cj ,s1U(

i
ni↑•ni↓ ~1!

is the simplest, the ‘‘bare bones’’ model that captures the
interplay of itinerancy and correlations. The hopping matrix
elementst i j in the limit of large spatial coordination, where a
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typical site hasm neighbors, are scaled ast i j; t/mi i2 j i /2 , so
that the kinetic energy and the interactions remain finite for
m→`.2

As in our previous studies at half filling,19,15we consider
lattices that have magnetic frustration, i.e., in the localized
phase the spin degrees of freedom interact with magnetic
exchange constants of different signs. The local bare density
of states is assumed to be a semicircle

r0~e!5
2

pD
A12S e

D D 2, ~2!

with a half bandwidthD52t . In this case one can realize
the equations on a fully connected graph with random hop-
ping matrix elements.19,20

The mean-field approach replaces the quantum many-
body problem by a single-site quantum problem, an impurity
model in an effective medium that is solved for self-
consistently. Applying reliable techniques to the impurity
model while implementing the self-consistency condition
provides an accurate solution to the lattice problem.3

For the Hubbard model in the paramagnetic phase the
associated impurity model is an Anderson model defined by
the effective action

Seff@c,c
†#5(

s
E dtdt8cs

†~t!G0
21~t2t8!cs~t8!

1UE
0

b

dtni↑~t!2ni↓~t!. ~3!

The propagatorG0 plays the role of a Weiss field and, re-
stricting to the paramagnetic phase, obeys the self-
consistency condition

G0
21~ ivn!5 ivn1Dm2t2G~ ivn!@G0#, ~4!

whereG( ivn)52*0
beivnt^Ttc(t)c

†(0)&Seff@G0#dt is a func-

tional of @G0# and Dm:5m2m/2. After self-consistency is
attained, one can evaluate this functional at the self-
consistent value of the Weiss field function to obtain the
local Green’s function of the Hubbard model.

The mean-field equations can be analyzed by a variety of
methods. They range from qualitative arguments and ana-
lytic perturbative schemes to numerical methods based on
quantum Monte Carlo,5,21,15exact diagonalization,18,22,23and
iterative perturbation theory.24,20,15 The projective self-
consistent method25 is applicable in an infinitesimal neigh-
borhood of the transition and supplements the exact diago-
nalization studies. In this paper we will use the exact
diagonalization algorithms to be able to make statements
about rather large values ofU. These are not accessible with
conventional Monte Carlo algorithms because the expansion
parameter in that technique isUDt, whereDt is the value of
the imaginary time discretization parametert. The exact di-
agonalization technique yields, on the real axis, only a dis-
crete set of poles for the spectral function as a result of
treating only a finite number of particles in the corresponding
impurity model. Therefore we supplement these results with
an iterative perturbation scheme, which on the imaginary
axis is in good agreement with the exact diagonal-

ization results26 and in addition yields smooth spectra on the
real axis. For completeness, this method will be presented
briefly in the next subsection.

A. IPT away from half filling

We now describe the perturbation scheme we use to
supplement the exact diagonalization results. The approach26

is in the spirit of the iterative perturbation theory introduced
in Refs. 24 and 3 and similar to other schemes.27,30The key
idea is to search for a self-energy as a functional of the
‘‘Weiss field’’ such that the self-energy expression becomes
exact both in the weak- and in the strong-coupling limit.
Moreover, it should have the correct behavior at both small
and large frequencies. The naive extension of the method
originally proposed for half filling fails to give reasonable
results for finite doping. However, we propose a generaliza-
tion to arbitrary filling by constructing a self-energy expres-
sion that has the correct behavior in the limits discussed
above. Our ansatz for the self-energy is given by

S~2!~v!5Un1

n~12n!

n0~12n0!
S̃0

~2!~v!

12
~12n!U2m1m̃0

n0~12n0!U
2 S̃0

~2!~v!

. ~5!

Here S̃0
(2)(v) is the normal second-order contribution to the

self-energy

S̃0
~2!~v!5U2E

2`

0

de1E
0

`

de2de3
r~0!~e1!r

~0!~e2!r
~0!~e3!

v1e12e22e32 ih

1U2E
0

`

de1E
2`

0

de2de3
r~0!~e1!r

~0!~e2!r
~0!~e3!

v1e12e22e32 ih
,

~6!

wherer (0)5 (1/p) ImG̃0 . The ~advanced! Green’s function
G̃0(v) is defined by

G̃0~v!:5
1

v1m̃02t2G~v!
. ~7!

While n marks the physical particle number~obtained from
G), n0 is a fictitious particle number determined fromG0 .
The parameterm̃0 is chosen such that the Luttinger theorem
is fulfilled:

m05m2S~2!@ m̃0#~v50! , m0 :5muU50 . ~8!

The self-consistency is closed by

G21~v!5G̃0
21~v!2m̃01m2S~2!~v! . ~9!

For the numerical implementation it is more convenient to
fix m̃0 ~rather thanm). Then, starting with a guess forG and
m, one can computeG̃0 , n, andn0 . Afterward, ~5! yields
S (2)(v) and we obtain a newm from the Luttinger theorem.
The loop is closed by~9! and the iteration continued until
convergence is achieved.

In the case of half filling the procedure reduces to ordi-
nary IPT. Therefore, we are dealing with an extension of this
method to finite doping.
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Expression~5! becomes exact in the atomic limit and is
correct to orderU2 in the weak-coupling limit. The proper
large-frequency behavior is related to the fact that the spec-
tral moments up to quadratic order are reproduced
exactly.28,29 The correct zero-frequency behavior is ensured
by satisfying the Luttinger theorem. This is the main differ-
ence from an earlier scheme30 using related ideas and is es-
sential to obtain good agreement with the exact diagonaliza-
tion results.

To test the validity of our method we compare it with
results obtained using the exact diagonalization algorithm of
Caffarel and Krauth.18 Both methods are in close agreement
when used on the imaginary axis~see Fig. 1!. The advantage
of the present IPT scheme is seen on real axis: In Fig. 2 we
display the spectral functions obtained by these two methods.
Although the exact diagonalization is doing its best in pro-
ducing the correct spectral distribution it is unable to give a
smooth density of states. Instead severald peaks occur as a
consequence of treating only a finite number of orbitals in
the Anderson model. The iterative perturbation scheme in
contrast yields a continuous plot. In this sense it supplements
the exact diagonalization.

III. PHASE DIAGRAM

The phase diagram of the half-filled model displays a co-
existence region in the temperature interaction strength
plane. Forgiven nonintegeraverage occupancyand in the
paramagnetic phase of the fully frustrated model, there is
only one solution of the mean-field equations. As function of
chemical potential, however, there is a region of coexistence
of two solutions that describe a doped metal and an insulator.
The phase diagram in them-U plane of the Hubbard model
on a fully frustrated lattice at zero temperature is shown in
Fig. 3. It was obtained by exact diagonalization with eight
sites forU54 by looking for the region where an insulating
solution with zero density of states at zero energy coexists
with the metallic solution having a finite low-energy density
of states. For the particle-hole symmetric case a detailed de-
scription of this procedure can be found in Ref. 22. The
shaded area denotes the region of parameter space where the
mean-field equations have two different solutions: one me-
tallic and the other insulating.

Following the technique discussed in Ref. 22, we mea-
sured the energy of each solution and determined that
through the coexistence region the metallic solution is the
lowest in energy. This is in agreement with the analytic ar-
gument presented in Refs. 25 and 17. The region of coexist-
ence is also in good agreement with the completely indepen-
dent determination of the phase diagram by means of the
projective self-consistent method.17

IV. EVOLUTION OF THE SPECTRAL DENSITY
AS A FUNCTION OF DOPING

In this section we discuss the evolution of the spectral
function as one dopes the Mott insulator. It has been shown17

that for infinitesimal doping, new states are created in the
Mott-Hubbard gap. The states in the doped system have no

FIG. 1. ImG(v) at T50 for U54D and hole doping
d50.14: iterative perturbation theory~full line! vs exact diagonal-
ization ~dashed line!.

FIG. 2. ImG(v) at T50 for U54D and hole doping
d50.14: iterative perturbation theory~full line! vs exact diagonal-
ization ~dashed line!.

FIG. 3. Phase diagram in them-U plane of the Hubbard model
on a fully frustrated lattice at zero temperature~exact diagonaliza-
tion!.
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simple relation to those that existed in the insulator. This
physical picture is similar to that obtained by the slave boson
treatment.31,32Notice that the results of the large-d approach
are in closer agreement with Ref. 32 than with Ref. 31.

Since the projective self-consistent method is restricted to
infinitesimal doping it is important to ask at which doping
the resonance merges with the Hubbard band and, more gen-
erally, how the spectral function evolves as one dopes a Mott
insulator. We address these and other questions below.

In Figs. 4 and 5 we show the evolution of the spectral
function of the Hubbard model as obtained from IPT for
U53 and 4. Figure 6 displays exact diagonalization results
for U510. For small doping the resonance peak is well sepa-
rated from the lower Hubbard band. But once the doping is
increased, the resonance moves quickly inside the band and
the qualitative results are very similar to those obtained with
the slave boson method.31,32

The position of the resonance as a function of doping can
be related to the different physical regimes of the corre-
sponding Anderson impurity model.3 For small doping the
lattice sites are predominantly single occupied. There are vir-
tually no charge fluctuations and the system is in thelocal
moment regimedominated by quantum fluctuations between
the u↑& and theu↓& states. In this case the resonance is well
separated from the lower Hubbard band.

With increasing doping charge fluctuations between
single occupied and empty states become important~mixed
valence regime!. The resonance merges into the lower Hub-
bard band.

Once the particle density gets so small that the lattice sites
are predominantly empty, theempty orbital regime is
reached. At this point the characteristic resonance peak loses

its identity and the spectral function resembles that of the
noninteracting system.

The crossover from the local moment to the mixed va-
lence regime is quite fast, as can be seen in Fig. 7. Here the
three regimes were distinguished by computing the expecta-
tion values nsingle5(s^(12ns)ns̄& and nempty
5^(12ns)(12ns̄)&. As a criterion for the single moment
regime we chosensingle.0.9, while the empty orbital regime
was determined fromnempty.0.8.

V. DOPING DEPENDENCE OF THE TRANSFER
OF SPECTRAL WEIGHT

As one dopes the Mott insulator with holes, spectral
weight is transferred from the upper Hubbard band to the
resonance near the Fermi level. As the weight of the reso-
nance grows the quasiparticle residueZ increases and con-
sequently the mass enhancement is reduced. The divergence
of the effective mass as the doping is decreased was estab-
lished in earlier publications.22,16 In this section we discuss
various aspects of the doping dependence of the quasiparticle
residue and of the integrated spectral weight, such as their
dependence onU/D for values ofU that were not accessible
to the quantum Monte Carlo method.

The evolution of the weight in the upper Hubbard band
w1 as a function of doping is shown in Fig. 8 for different
values ofU. The transfer of spectral weight can be param-
etrized asw1' 1/22a(U)d for U.Uc . This relation holds
for dopings up to a maximum valued̃, which increases as a
function of U ( d̃'0.04 forU53.5 andd̃'0.1 for U55).
WhenU is infinite, a(U) is equal to 0.5 and increases as

FIG. 4. Evolution of the spectral function as one dopes the Mott
insulator forU53 ~IPT!.

FIG. 5. Evolution of the spectral function as one dopes the Mott
insulator forU54 ~IPT!.
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U is reduced. These results are qualitatively similar to what
is observed in exact diagonalization studies of thefinite-
dimensionalHubbard model.33

The control parameter of the transition is the deviation of
the chemical potential from its critical valuemc . That is, the
weight w in the resonance behaves asw
;(m2mc)(mc2 U/2) for U.Uc . To convert from chemi-
cal potential to doping one needs the particle number as a
function ofm. This relation is displayed in Fig. 9.

The compressibility for infinitesimal doping is in general
finite, but vanishes atUc . The density as a function of
chemical potential near half filling can be parametrized as

d5A01A1S m2
U

2 D1A2S m2
U

2 D 2. ~10!

d denotes a small doping. The coefficientsAi depend on
U: A0 vanishes belowUc and increases~decreases! quickly
for hole ~electron! doping, whenU is increased aboveUc .
Moreover, A1'a1(U2Uc). The parameterA2 is always
positive and increases as a function ofU. This increase is
faster above, rather than below,Uc .

AboveUc , the critical region where the parametrization
~10! is applicable is relatively small~typically d<0.01).
However, it increases asU is lowered belowUc (d<0.05 for
U52).

The compressibility is nonsingular~except whenU ap-
proachesUc). This implies thatw;d, i.e., the weightw of
the resonance at zero frequency increases as a function of
doping.

To analyze the low-energy, low-temperature thermody-
namics, one has to investigate the properties of the states that

FIG. 6. Evolution of the spectral function as one dopes the Mott insulator forU510 ~exact diagonalization with eight sites!. The arrows
indicate the position of the resonance peak.
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form the low-energy resonance. The Mott transition as a
function of doping is driven by the low-energy spectral
weightw, which drives the quasiparticle residueZ to zero as
the doping vanishes as long as the interaction is above its
critical value.Z is in general proportional tow, but smaller
than this quantity. In infinite dimensions the vanishing ofZ
implies the divergence of the effective mass and conse-
quently the vanishing of the renormalized Fermi energy
eF5DZ.

The quasiparticle residue increases as a function of dop-
ing. It is sketched in Fig. 10 for different values ofU. With
the projective self-consistent method one can demonstrate
that Z5b(U)w, whereb(U) is a weak function ofU that
equals approximately 0.5 atU53 and 0.3 atU58.

A different measure of transfer of spectral weight appears
in the optical spectra. The optical conductivity of the model
at T50 can be represented as

s~v!5
vP*

2

4p
d~v!1s reg~v!, ~11!

where the coefficient in front of thed function is the Drude
weight andvP* is the renormalized plasma frequency. The
Drude weight and the integrated optical spectral weight
evolve as a function of doping. In infinite dimensions the
Drude weight is simply related toZ ~Refs. 10 and 14! via
vP*

2/4p5 (4pt2e2a2/\2n) Zr0(0) The integrated optical
weight is proportional to the kinetic energy^T&. Figure 11
shows this quantity as a function of doping for different val-
ues ofU. Notice that at half filling the kinetic energy is finite
and of the order of the magnetic exchange. For small values
of U the results are in excellent agreement with the results of
Monte Carlo calculations obtained earlier.14

VI. SUSCEPTIBILITY

The inverse magnetic susceptibilityxS
21 has been inves-

tigated in various publications and is easily understood not to

FIG. 7. Different regimes of the Hubbard model~see the text!:
~a! U-dm plane and~b! U-n plane.

FIG. 8. Weight of the upper Hubbard bandw1 as a function of
doping for various values of the interactionU ~data from exact
diagonalization!.

FIG. 9. Particle number versus the chemical potential for differ-
ent values of the interactionU ~exact diagonalization!.
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be divergent near half filling using the arguments of Ref. 22.
The exact diagonalization results near the transition are
found to be consistent with the parametrization

xS
21'c~U !w1J, ~12!

with c(U) depending weakly onU. In the insulating phase
xS

21'(J1T). Equation~12! indicates that the magnetic sus-
ceptibility remains finite at the transition due to the existence
of a nonzero superexchange constantJ5 2t2/U5 D2/2U .

This should be contrasted with the behavior of the local
spin susceptibility~in units ofgmB/2), which diverges as the
Mott transition is approached:

x loc
21'd~U !w. ~13!

The coefficientd(U) decreases slowly withU and is given
by 0.12 atU53 and falls to 0.07 atU58. This leads us to
the definition of a generalized Wilson ratioRg defined as the
ratio of x loc/g to its noninteracting (U50) valuex loc0/g0

@where x loc05 16/3pD (gmB/2)
2 and g054pkB

2/(3D)#.
Rg measures the enhancement of the susceptibility at a ge-
neric q in the Brillouin zone. It increases very slightly as
U increases:Rg52.6 forU53 andRg52.75 forU510. A
plot of this quantity vsU obtained with the projective self-
consistent method is shown in Fig. 12.

VII. CROSSOVER AT FINITE TEMPERATURES

The infiniteU Anderson impurity model is known to have
a Kondo resonance. Here we study the Hubbard model in the
intermediate-U regime where a resonance peak is also
present. This analogy3 is particularly useful for understand-
ing the temperature dependence of the local spectral func-
tion. From the theory of the Anderson impurity model it is
known that there exists a scaleT0 , the Kondo energy, above
which the electrons and the impurity are weakly coupled and
below which a resonance at the Fermi level is formed. Two
important issues are the dependence of the coherence tem-
peratureT0 on physical parameters of the Hubbard model
and the nature of the crossover between the high-temperature
and the low-temperature regime in this model.

Jarrell and collaborators have addressed some of these
issues in Refs. 16 and 34. They investigated the evolution of
the spectral function and other physical properties as func-
tion of temperature using the Monte Carlo method and the
maximum-entropy technique. Here we address this problem

FIG. 10. Quasiparticle residueZ as a function of doping for
various values of the interaction~exact diagonalization, with an
effective temperatureTeff50.01).

FIG. 11. Kinetic energy as a function of doping~exact diago-
nalization!.

FIG. 12. Generalized Wilson ratioRg for infinitesimal doping as
a function of the interactionU ~results from exact diagonalization!.
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using exact diagonalization and some analytic consider-
ations.

Figure 13 displays the temperature dependence of the
spectral function as obtained from an exact diagonalization
calculation forU54 and d50.075. For comparison, we
plotted the corresponding IPT results in Fig. 14. Both figures
display the decay of the resonance peak with increasingT.

The temperature dependence of the local spin susceptibil-
ity x loc is shown in Fig. 15. It has the form
x loc5 1/aT1T0 , wherea increases with increasing doping
(a'1.1 for d50.06 anda'1.3 for d50.4) so that there is
no universal scaling function describing the temperature de-
pendence ofx as in the single impurity model. The increase
of a as doping increases has a simple physical interpretation
since the doping decreases the effective magnetic moment
per site.

The parameterT0 defines again the coherence temperature
below which Fermi liquid theory is applicable. For small
doping we find T05ad3/2. This relation holds up to
d'0.14 forU54 ~with a'0.5D), as shown in Fig. 16.

One can understand this unusual dependence of the coher-
ence temperature on doping by a simple energetic argument.
We construct a free-energy functional of the coherence pa-
rameterw, the weight in the resonance. At zero temperature
it gives the energy difference between the metallic and the
insulating phase and is proportional tod2. A concrete real-
ization of the energy functional isE(w)5(m2mc)w
1bw2. Its minimization results in an energy difference that
is proportional to (m2mc)

2, i.e., to the square of the doping.
At finite temperatures, one has to include entropy effects. For

FIG. 13. Evolution of the spectral function as a function of
temperature displaying the temperature dependence of the reso-
nance peak. A six-site exact diagonalization was used for
d50.075 andU54.

FIG. 14. Spectral function for different temperatures as obtained
from IPT for U54 andd50.075.
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a Fermi system with a Fermi energyeF , the entropy per
lattice site is approximately constant ('S0) when T@eF ,
while at low temperaturesS'T/eF . So we can parametrize
the entropy byS'S0tanh(T/wDS0) . Balancing this entropy
against the energy difference, which is of orderd2, sets the
crossover scaleT0;d3/2.

Interestingly,T0 is considerably smaller than the renor-
malized Fermi energyeF5ZD ~e.g., T0/ZD'0.12 for
d50.1).

The existence of a low-energy scale and the associated
anomalous temperature dependence of the spectral function
cause a strong variation of the number of particles as a func-
tion of temperature for fixed chemical potential. This is dis-
played in Fig. 17.

The observed temperature dependence is due to two com-
peting effects.~a! In the metallic correlated regime, spectral
weight is transferred from the resonance to the lower Hub-
bard band as the temperature increases. Since the chemical
potential is kept fixed, this causes an increase in the particle
number. ~b! As the temperature increases some holes are

thermally activated and the number of particles decreases.
This effect is the only effect present in the insulating phase
(m.mc) and dominates in the metallic state very near the
metal insulator transition at higher temperatures.

It has been emphasized in Refs. 16 and also in 35 that in
a wide temperature range the resistivity of the doped Hub-
bard model is linear and it is suggested that the crossover
from the Fermi liquid regime is very slow. Here we investi-
gate this issue further and conclude that the crossover behav-
ior from the Fermi liquid regime is actually quite rapid. Fig-
ure 18 displays the behavior of the resistivity and the
scattering rate as a function of temperature forU53 and
d50.25.

Both quantities change their behavior at the scaleT0 .
Moreover, the resistivity has a wide linear region that is due
to a saturation in the scattering rate. Notice that this regime
occurs well aboveT0 where the crossover has already taken
place.

VIII. LOW-TEMPERATURE LIFETIMES
AND THE HALL COEFFICIENT

It is also interesting to study the behavior of the lifetime
as obtained from the imaginary part of the retarded self-
energy. It is quadratic in frequency and has a stronger diver-
gence than the quasiparticle residue. DefiningD5wD, we
obtain using the projective self-consistent method following
Refs. 25 and 17

ImS~v1 i01,T!52
s~U !D

D2 ~v21pT2!. ~14!

FIG. 15. Temperature dependence of the inverse local spin sus-
ceptibility. Plot of @T0x loc(v50,T)#21 as a function ofT/T0 . Re-
sults from exact diagonalization withU54 and 6 sites.

FIG. 16. Doping dependence of the coherence temperature for
U54: T0 as a function ofd3/2 ~thick line!. The thin line was ob-
tained by fitting T5ad3/2 to the exact diagonalization data for
d<0.14. The inset showsT0(d).

FIG. 17. Particle number per site as a function of temperature
for U54 and Dm5m2 (U/2)521.05,21.2,21.4,21.6 using
exact diagonalization with 511 orbitals.
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s(U) increases slowly asU increases varying from 1.4 at
U53 to 3.3 atU58.

A related quantity is the low-temperature resistivity. In
mean-field theory, we write

r~T!5S vp0

2p D 22

2 ImS~T!5AT2, ~15!

where the plasma frequency of the noninteracting system is
defined by (vpo/2p)2:5 (e2/\a)2(kvkx

2 d(ek). Using
1/e2/\'4KV and a typical distance in the cubic perovskite
structure of 6A, we find for the ratio A/g2

'1.5310211 V cm (mol K / m J)2 at U53. This ratio
decreases very slightly asU increases towards large values.
This can be seen from Fig. 19, where we plotted
@]2S/(]v)2# (]S/]v)2uv50 , which is proportional to
A/g2.

In infinite dimensions it is possible to make some rigorous
statements about the behavior of the Hall coefficient ap-
proaching zero temperature. Since vertex corrections can be
neglected in the limit of vanishing wave number, the Hall
coefficient can be evaluated directly in terms of the exact
one-particle Green’s function. This statement is not entirely
obvious but follows from a restriction of the careful general
analysis of Kohno and Yamada36 to the limit of large lattice
coordination.

The diagrams that are neglected in their treatment on the
basis of being of higher order in the small damping constant
are in fact of higher order in an expansion in 1/d relative to
the leading terms. At zero temperature, where Fermi liquid
applies, one is left with the results of theU50 problem. For
an arbitrary band structure one obtains, atT50,

RH52
a3

\e

1

N(
k,s

d~ek2m0!S vx2 ]vy
]ky

2vy
2 ]vy

]kx
D

S 1N(
k,s

d~ek2m0!vx
2D 2 . ~16!

It is remarkable that the Hall coefficient at very low tem-
peratures is given by the bare band structure even when the
correlations are very strong. This results from the contribu-
tion of the quasiparticles to the transport. At high tempera-
tures the resonance disappears and the rigid band picture of
Hubbard gives an accurate description of the physics of the
model.23 The Hall number is then holelike for small hole
doping. This was observed in the Monte Carlo calculations at
high temperatures in the hole-doped Hubbard model.16 A
detailed study of the temperature dependence of the Hall
coefficient displaying the change of sign as a function of
temperature has been recently carried out by Jarrell and col-
laborators in Ref. 34.

Equation~16! evaluated in the limit of infinite coordina-
tion number yields RH52(2a3/eD2) @m0/r0(m0)#,
where r0(e) is the bare lattice density of states.
Using Eq. ~2!, we obtain, for the Bethe lattice,
RH5 (2pa3/e)@m0 /D/A12(m0/D)

2# .
However, with respect to experiments, it is more reason-

able to evaluate~16! in the spirit of mean-field theory, i.e.,
for a realistic band structure. As an application, we calcu-
lated the Hall coefficient as a function of doping for a three-
band model given by ek

(x)522t(cosky1coskz),
ek
(y)522t(coskx1coskz), andek

(z)522t(coskx1cosky). This
approach yields a semirealistic description of the
La12xSrxTiO3 system. Figure 20 shows the negative inverse
Hall coefficient21/RH obtained for this case~thick line!.
For comparison we also included the result for a Bethe lat-
tice with infinite coordination number~thin line!. Near half
filling the Hall coefficientRH vanishes in both cases. In the
zero-particle limit, however, this quantity remains finite for
the more realistic band structure~due to the two-dimensional
nature of the model!, while it vanishes for the Bethe lattice
with infinite coordination number. In the next section our
results will be compared with experimental data measured in
the La12xSrxTiO3 system.

11

FIG. 18. Resistivity and self-energy as a function of temperature
for U53 andd50.25 ~IPT!.

FIG. 19. @]2S/(]v)2#/(]S/]v)2uv50 for infinitesimal doping
as a function of the interaction~exact diagonalization!. The ratio is
proportional toA/g2.
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IX. CONNECTION WITH EXPERIMENTS:
WHEN DOES MEAN-FIELD THEORY WORK?

In this paper we explored in some detail the mean-field
theory of the density-driven metal-to-insulator transition. It
is important to ascertain the region of validity as well as the
applicability to real systems. The doping-induced Mott tran-
sition is found in two-different systems: in two-dimensional
copper oxide layers as realized in La22xSrxCuOx and the
three-dimensional titanates such as La12xSrxTiO3 and
Y 12xCaxTiO3 .

11,13When comparing with experiments it is
important to bear in mind that these are disordered alloys and
the disorder eventually localizes the carriers at low doping
levels. The effective strength of the disorder increases with
increasingU/D . As a result, it is not possible to approach
the density driven Mott transition very closely. In particular
this is true for the Y12xCaxTiO3 ~Ref. 13! system. Further-
more, the titanates have a perovskite structure with small
distortions, implying that thed level is threefold degenerate
to a good approximation. Therefore the one-band Hubbard
model is, strictly speaking, not applicable to these systems.

On the theoretical side, the main limitation of the mean-
field theory is the omission of magnetic correlations in the
paramagnetic phase. These correlations become very impor-
tant as the transition is approached, as we know from studies
using the large-N expansion.37 The omission of magnetic
correlations in the single-particle spectra is the main reason
why this approach cannot provide a good description of the
cuprate superconductors. This can be seen by comparing the
specific heat vs doping curves of the large-d Hubbard
model15 with the experimental results of Loramet al.38

Mean-field theory predictsg;d21, while experiments in the
cuprates clearly indicate the opposite trend.

The mean-field approach, however, is quite useful for un-
derstanding the physical properties of three-dimensional
transition-metal oxides. The physical reason for the success
of the mean-field theory for these systems is related to their
orbital degeneracy. Orbital degeneracy reduces the relative
importance of the magnetic correlations in the paramagnetic
phase. In an orbitally degenerate system, there is a competi-

tion between ferromagnetic and antiferromagnetic exchange
interactions among different spin and orbital configurations.
This results in an effective magnetic frustration. The energy
difference between different orbital-spin orderings is quite
small and results in a very small magnetic transition tem-
perature at half filling. This is confirmed by the magnitude of
the magnetic ordering temperature, which is of the order of
1300 K in the quasi-two-dimensional cuprates, but only
about 150 K in the cubic titanates. The one-band model in
the limit of infinite dimensions can capture the weakening of
the effective magnetic couplings~and the very low ordering
temperatures! when defined on very frustrated lattices.

In the light of the previously mentioned caveats, we limit
ourselves to a qualitative comparison of our theoretical re-
sults with the measurements of Tokura and
co-workers.11,13,39We find good agreement with respect to
various physical quantities.

Mass enhancement.It was established in Ref. 15 that the
quasiparticle residue scales to zero as the Mott transition is
approached with decreasing hole doping, causing a diver-
gence of the specific-heat mass, in quantitative agreement
with the experiments performed on La12xSrxTiO3 .

11 The
compound La12xCaxYO3 has a larger value ofU/D, which
allows us to test the dependence of the effective mass
m!5 f (U/D)d21 on the ratioU/D. From Fig. 10 we expect
the linear term in the specific heat to increase asU/D is
increased. The same qualitative behavior is found in the ex-
periments: Forx50.5, we haveg55.2(mJ/K4mol2) for
La12xSrxTiO3 and g58.2(mJ/K4mol)2 for Y 12xCaxTiO
3).

13We stress again that the opposite behavior~the specific-
heat coefficientvanishesnear zero doping! is seen in the
copper oxide systems such as La22xSrxCuO4, so the mean-
field approach to the Hubbard model~or perhaps the Hub-
bard model itself40! is not applicable in this case.

Transfer of spectral weight. As one dopes the Mott insu-
lator the spectral weight of the upper Hubbard band is re-
duced, while at the same time new states are created within
the gap. The details of the photoemission spectra in
La12xSrxTiO3 cannot be described by the Hubbard model
without taking into account the effects of inhomogeneities on
the surface.41 Nevertheless, optical experiments can probe
the transfer of spectral weight to low energies.39 Measure-
ments inR12xCaxTiO3 , with R5La, Nd, Sm, or Y, have
established experimentally that the weight of the Drude peak
in the optical conductivity is proportional to the dopingd.
The proportionality constant increases asU/D decreases, in
agreement with the results in Figs. 10 and 8 and the relation
between the Drude weight and the quasiparticle residue. A
more careful study of the optical conductivity is necessary,
however, for a quantitative comparison with these experi-
ments. In particular the proportionality constant does not di-
verge atUc in our treatment.

Wilson ratio. Another physically relevant quantity is the
behavior of the Wilson ratio as a function of doping and of
D/U . ForU close toUc this question was examined in Ref.
15 in the context of the one-band Hubbard model where it
was shown that the Wilson ratio goes to zero very close to
half filling, but it is close to one for dopings larger than 0.05.
In an orbitally degenerate situation, there are important
orbital contributions to the susceptibility even in the nonin-
teracting limit. For the case of the cubic perovskites

FIG. 20. Doping dependence of the~negative! inverse Hall co-
efficient21/RH at zero temperature. The thick line corresponds to
the three-band model mentioned in the text, the thin line to the
Bethe lattice with infinite coordination number. The inset contains
the Hall coefficientRH .
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R12xCaxTiO3 , taking the magnetic moment operator to
2S1L and restricting our attention to the threefold degener-
ated band, one obtains in the limit of small number of par-
ticles

x

g Y 3mB
2

p2kB
2 511

2

3(k
f ~e1k!2 f ~e2k!

e1k2e2k

(
k

f 8~e1k!

, ~17!

which is therefore larger than one.e1k ,e2k are two of the
bands considered in the discussion of the Hall coefficient.
Experimentally the Wilson ratio is close to 2 for all dopings
in La12xSrxTiO3 . For Y12xCaxTiO3 the Wilson ratio is 2
for large doping and increases slightly as the doping is re-
duced@for x50.5 we obtainR'3.2(3mB

2/p2kB
2)#. This trend

is the same as the trend we find in our generalized Wilson
ratio Rg :5 (x loc/g)/(x0/g0) . The generalized Wilson ratio
depends weakly on doping and its value increases slightly
with U (Rg'2.6 forU53 andRg'2.75 forU510).

Low-temperature resistivity.In our treatment the low-
temperature resistivity obeysr5AT2, whereA is propor-
tional to g2. Earlier work25 estimated
A/g2'1.5310211 V cm(mol K/mJ)2 at U5Uc , which
was in good agreement with experimental data for
La12xSrxTiO3 @10211 V cm(moleK/mJ)2#. Here we
showed thatA/g2 decreaseswith increasingU. This predic-
tion cannot be tested in Y12xCaxTiO3 , because its resistiv-
ity has aT3 dependence at the only composition where it has
been measured (x50.42), which is very close to the
disorder-induced metal-insulator transition.

Hall coefficient.For hole doping the Hall coefficient at
T50 is electronlike and essentially unrenormalized from the
band-structure value. The results for the three-band model
treated in Sec. VIII should be compared with experimental
data for the La12xSrxTiO3 system. From experiments it is
known thatn5(12x). Assuming a lattice constant of 6A,
the mean-field approach yields the data plotted in Fig. 21
~full line!. The closed circles indicate the experimental data.
At large dopings (x.0.3), there is a reasonable qualitative
agreement. Also, the order of magnitude is the same in both
cases. Note, however, that the Hall coefficient is proportional
to a3, so thatuRHu depends strongly on the choice fora.
Deviations from the measured data are large at small doping,
where the theoretically determined inverse Hall coefficient
diverges. Such a divergence cannot be seen in the experi-
ments. However, there is still a superlinear enhancement of
u1/RHu in this region. The Hall coefficient found in

Y 12xCaxTiO3 is of the same order of magnitude as in
La12xSrxTiO3 ~e.g., for x50.5 we have
21/RH'0.76310222 cm23/e in La12xSrxTiO3 and
21/RH'1.0310222 cm23/e in Y 12xCaxTiO3). Devia-
tions may be explained by differences in the lattice constants
and by the presence of disorder.

In this paper we have discussed various aspects of the
density-driven Mott transition. When comparing the behav-
ior of various physical quantities as a function ofU/D we
find satisfactory agreement between the mean-field theory
and experimental data.

The next step towards a realistic description of transition-
metal oxides would be to introduce a more realistic density
of states as well as crystal structures and the orbital degen-
eracies characteristic for these systems. From a physical
point of view, frustration should emerge as a result of the
orbital degeneracy31 rather than having to be put in by hand,
as a geometric property of the lattice, as is done in the con-
text of the one-band description. We expect, however, that
the main qualitative conclusions of the mean-field theory in
the paramagnetic phase will not be changed by the orbital
degeneracy. Work along these lines is already under way. In
this respect the recent success of the mean-field theory in
predicting the results of optical experiments on V2O3 is very
encouraging.10
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