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The generalized gradient correction method for positron-electron correlation effects in solids@B. Barbiellini
et al., Phys. Rev. B51, 7341 ~1995!# is applied in several test cases. The positron lifetime, energetics, and
momentum distribution of the annihilating electron-positron pairs are considered. The comparison with experi-
ments shows systematic improvement in the predictive power of the theory compared to the local-density
approximation results for positron states and annihilation characteristics.@S0163-1829~96!03824-6#

I. INTRODUCTION

Experimental methods based on positron annihilation give
valuable information on the electronic and ionic structures of
condensed media, especially defects in solids.1–3 The experi-
mental output is, however, indirect, e.g., in the form of the
lifetime of the positron or data related to the momentum
content of the annihilating electron-positron pair in a specific
environment. Clearly, the interpretation of these data calls
for theoretical methods with quantitative predicting power.4

On the other hand, the positron annihilation measurements
give unique experimental data to be used in comparing the
results of many-body theories for electron-electron and
electron-positron interactions.

The modernab initio electronic-structure calculations for
the properties of different types of materials including per-
fect crystal lattices, defect and surface systems, and finite
clusters of atoms are usually based on the density-functional
theory ~DFT!.5 The success of the DFT stems from the fact
that the electron-electron interactions can be handled simply,
but with often sufficient accuracy using the local-density ap-
proximation~LDA ! for the exchange and correlation effects.

The calculation of positron states and annihilation charac-
teristics can also be based on the DFT. For delocalized pos-
itron states in perfect lattices the usual DFT for an electronic
system is the sufficient starting point, because the locally
vanishing positron density does not affect the electronic
structure. The DFT calculations for positron states usually
employ the LDA. This means that for the effective positron
potential the attractive part due to the electron-positron cor-
relation effects is obtained from the local electron density
and using the results of the many-body calulations for a de-
localized positron in a homogeneous electron gas. The LDA
also means that the results of these many-body calculations
are used also for the contact electron density at the positron
site that determines the positron annihilation rate.

In the case of a positron trapped by a defect the maximum
of the positron density may be of the same order as the local
electron density. Then one should base the calculations on
the two-component density functional theory~TCDFT!,6

which solves for the mutually self-consistent electron and
positron densities. However, practical calculations6,7 have
shown that due to canceling effects, the ‘‘conventional’’
scheme, in which the electron density is calculated without

the effect of the localized positron, gives results very similar
to the full two-component calculations. The conventional
scheme can be justified by stating that the positron with its
screening cloud forms a neutral quasiparticle that does not
affect the remaining electronic system, i.e., the total electron
density of the system is a superposition of the ‘‘clean’’ sys-
tem density and the positron-induced screening cloud. We
will adopt the conventional scheme in this paper also when
calculating positron states at vacancy defects.

The shortcomings of the LDA in the electronic-structure
calculations are well known. They include too diffuse elec-
tron densities of atoms, the overbinding in molecules and in
solids, and the too narrow band gaps of semiconductors and
insulators.5 Therefore, it is not surprising that the LDA for
positron calculations also has problems.8 First, the LDA
electron-positron correlation potential fails clearly for posi-
trons outside solid surfaces and in insulators such as rare-gas
solids, in which cases the screening electron cloud cannot
follow the positron. To remedy this deficiency one has to
employ a nonlocal construction such as the weighted density
approximation9 or use somead hoc approach.10 Second,
when calculating the positron annihilation characteristics for
solids the LDA has shown a clear tendency to overestimate
the rate of positron annihilation. One has tried to correct this
deficiency by omitting the electron-positron correlation~en-
hancement! when calculating the annihilation with core
electrons.11,12 In the case of semiconductors one can argue
that the positron screening by valence electrons is, due to the
band gap, weaker than in an electron gas. This idea has been
successfully used in a semiempirical approach, which ac-
counts for the reduced screening ability by using the~finite!
high-frequency dielectric constant as a parameter. The two-
dimensional angular correlation of the annihilation radiation
~2D ACAR! measurements for several transition metals3,13

indicate that the enhancement ford electrons is smaller than
predicted by the LDA calculations. Finally, it has been
pointed out that the more accurate the many-body calculation
for the homogeneous gas, the higher the annihilation rate
increasing the discrepancy between the theoretical and ex-
perimental positron lifetimes.14

In the electronic-structure calculations, several attempts
and suggestions to go beyond the LDA have been studied.5,15

Over the past years especially the generalized gradient ap-
proximation~GGA! has attracted wide interest.16 In the GGA
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the gradient of the electron density is included, in addition to
the local density. The GGA is able to improve the descrip-
tion of some of the cohesive properties compared to the
LDA,17 but a general improvement in different kinds of sys-
tems has not yet resulted~see, for Ref. 18!. An example of a
physical situation in which the use of the GGA for the
electronic-structure calculation provides a significant im-
provement over the LDA is the H2 dissociation on the
Cu~111! surface.19 It has also been showed that the GGA
gives results in better agreement with the experiments than
the LDA for finite systems~atoms and molecules! and for
metallic surfaces.20,21 One reason is that the interactions in
these systems are related to the tails of the electronic wave
functions, for which the GGA should, in principle, give a
better description than the LDA.

Recently, we have proposed a GGA method for positron
states in solids.22 Clearly, the screening of the positron
should depend not only on the local electron density but also
on its gradient as well. In the case of positrons, the GGA
should be done consistently for both the electron-positron
correlation potential and the contact electron density at the
positron. The latter is an aspect which is not met in the pure
electronic-structure calculations. Because the contact density
can be directly monitored by different types of positron an-
nihilation measurements, the comparison of the theoretical
and experimental positron annihilation parameters is a
unique method for testing many-body theories such as DFT
and different approximations within them. In order to use
consistent data for the electron-positron correlation energy
and the contact density, we introduce for the latter an inter-
polation form based on the many-body calculations of Ar-
ponen and Pajanne.23

The results obtained for the properties of solids using the
GGA for the electronic structure show some scatter.24,25This
is presumably a result of computational approximations such
as the pseudopotential approximation or the shape approxi-
mations for the electron density or potential. In the case of
GGA for positron states we therefore study different methods
for constructing the electron density. The methods include
the linear muffin-tin orbital~LMTO! method within the
atomic-spheres approximation26 ~ASA! and the atomic su-
perposition method.27 In the LMTO ASA method the elec-
tron density and the potentials are self-consistent, but they
are assumed to be spherical. In the atomic superposition
method there are no shape approximations, but the electronic
structure is non-self-consistent. Moreover, we compare sev-
eral calculated annihilation parameters, i.e., the positron life-
time, positron affinity, and the 2D ACAR maps, with their
experimental counterparts. The comparison of the theoretical
and experimental results is easiest in the case of perfect crys-
tal lattices, which have delocalized positron states. However,
we also consider localized positron states trapped at vacan-
cies of the crystal lattice.

II. THEORY

The determination of electron and positron states in solids
is possible on the basis of the TCDFT.6 In the conventional
scheme, which is exact for delocalized positron states, the
electron densityn2(r ) is first calculated without the effect of
the positron. In the Kohn-Sham method the electron density

is obtained from the single-electron wave functionsc i
2(r )

n2~r !5(
i

uc i
2~r !u2, ~1!

where the sum is over the occupied statesi . Then the effec-
tive potentialV1(r ) for a positron is constructed as the sum
of CoulombVCoul(r ) and electron-positron correlation parts
Vcorr(r )

V1~r !5VCoul~r !1Vcorr~r !. ~2!

The Coulomb part arises from the nuclei and from the Har-
tree potential of the electron densityn2(r ). The correlation
part describes the energy lowering due to the pileup of the
screening charge around the positron. In the LDA for the
positron statesVcorr(r ) for a given point is calculated from
the electron density at that point. That is,

Vcorr
LDA~r !5ecorr

EG @n2~r !#, ~3!

where ecorr
EG(n2) is the electron-positron correlation energy

per a delocalized positron in a homogeneous electron gas
with densityn2. After the positron potential is constructed
its wave functionc1(r ) and energy eigenvalue are solved
from the corresponding one-particle Schro¨dinger equation.

In the DFT the Kohn-Sham wave functions are actually
auxiliary functions used to construct the total density, which
is the quantity with a real physical meaning in the theory.
The wave functions are, however, customarily used as real
single-particle wave functions in many different contexts.5 In
this work we will also start the discussion of the positron
annihilation characteristics by using the single-particle wave
functions for electrons and we will actually employ the
Kohn-Sham wave functions in calculating the momentum
distribution of the annihilating electron-positron pairs.

The positron annihilation rate as a function of the momen-
tump of the annihilating positron-electron pair is determined
from the electron and positron wave functions as28,4

r~p!5pr e
2c(

i
U E eip•rc1~r !c i

2~r !Ag i~r !drU2, ~4!

wherer e is the classical electron radius andc is the speed of
light. The summation is over all occupied electron states.
g i(r ) is the enhancement factor for thei th state, i.e., the ratio
between the contact electron density at the positron and un-
perturbed~host! electron density at that point.

The shape of ACAR spectra of thes andp valence elec-
trons in simple metals is already well described by a constant
state-independent enhancement factor, i.e., within the inde-
pendent particle model~IPM! in which g i(r )[1.3 Kahana29

has applied the Bethe-Golstone formalism to a positron in
the homogeneous electron gas and found that the enhance-
ment factor has a momentum dependence. Kahana proposed
the parametrization29

g i5e~p!5a~r s!1b~r s!~p/pf !
21c~r s!~p/pf !

4, p<pF ,
~5!

where r s is the electron density parameter
@r s5(3/4pn2)

1/3# and pF is the Fermi momentum~in
atomic unitspF51.92/r s). The 2D ACAR measurements
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performed for the alkali metals have yielded experimental
values for the ratiosb/a ~0.0 for Li and Na, 0.2 for K! and
c/a ~0.2 for Li, 0.4 for Na and K!.31 In inhomogenous sys-
tems the position dependence ofg i(r ) is much more impor-
tant than the state dependence. In that case the enhancement
factor g i(r ) in the momentum density equation~4! can be
approximated by the average over the statesi ,
g(r )5^g i(r )& .

32 In this approximation the effect of the en-
hancement factor to the momentum content is similar to that
of including the positron wave function.

The total annihilation rate is obtained from Eq.~4! by
integrating over the momentum. The result is

l5pr e
2cE n1~r !n2~r !g~r !dr . ~6!

The positron lifetimet is then the inverse of the annihilation
ratel. Equation~6! is in the spirit of the DFT in the sense
that the total densities, not the wave functions, are involved.
In the LDA for the positron states the enhancement factor
g(r ) is calculated as

gLDA~r !5gEG@n2~r !#, ~7!

wheregEG(n2) is the enhancement factor for the homoge-
neous electron gas. Our aim in this work is to go beyond the
LDA by introducing into Eqs.~7! and ~3! corrections de-
pending on the gradient of the electron density. However,
first we consider in Sec. II A the electron-positron correlation
in the homogeneous electron gas.

The 2D ACAR experiments do not give directly the mo-
mentum distribution of Eq.~4! but its integral along a certain
direction3

N~px ,py!5E r~p!dpz . ~8!

Actually the experimental information is the integral
N(px ,py) convoluted by the experimental resolution func-
tion. The Lock-Crisp-West~LCW! folding of the 2D ACAR
data allows one to put in evidence the Fermi surface breaks
by giving the partial positron annihilation rates for occupied
electronic states at givenk points within the first Brillouin
zone. The LCW folding of the momentum distribution of Eq.
~4! is defined as

l~k!5const(
G

r~k1G!5pr e
2cE n1~r !n2~r ,k!g~r !dr ,

~9!

whereG is a reciprocal lattice vector andn2(r ,k) is the
density of the occupied electronic states atk. If the positron
densityn1 and the enhancement factorg are constants, one
obtains the electron momentum distribution in the first Bril-
louin zone~the Lock-Crisp-West theorem33!. In the case of
metals, this distribution consists of occupied valence-state
regions with a certain constant density separated by the so-
called Fermi-surface breaks from the unoccupied valence-
state regions with a lower density. According to the measure-
ments, however,l(k) varies for differentk and thus the
Fermi-surface breaks are modulated by the positron wave
function and the enhancement effects. As the unfolded 2D
ACAR data, also its LCW folding is actually an integral of

the momentum distribution along a certain direction. This
fact reduces the detailed information content of the data.

A. Positron in a homogeneous electron gas

The DFT LDA calculations for positron states in solids
are based on many-body calculations for a delocalized posi-
tron in a homogeneous electron gas. Several approaches exist
for solving this model system. The scheme of Arponen and
Pajanne23 is based on correcting the results of the random-
phase approximation~RPA! in a boson formalism. Lantto34

has used the hypernetted-chain approximation. The calcula-
tions by Arponen and Pajanne are generally considered as
the most accurate ones.34,14 The situation is, however, much
less satisfactory than in the case of the clean homogeneous
electron gas for which accurate Monte Carlo calculations
exists.35 The difficulty in the Monte Carlo calculations for a
positron in a homogeneous electron gas arise from the fact
that very high statistics are needed for an accurate descrip-
tion of the electron cusp at the positron.36

For the correlation energy, Boron´ski and Nieminen6 have
given an interpolation form, which for the metallic densities
follows the data calculated by Arponen and Pajanne. We will
adopt this interpolation form for the present calculations. In
the case of the enhancement factor the situation is not so
straightforward. Figure 1 shows the ensuing positron lifetime
in a homogeneous electron gas as a function of the density
parameterr s . The results of the many-body calculations by
Arponen and Pajanne23 as well as those by Lantto34 are
shown as discrete points. Figure 1 shows also the result of
the theory by Stachowiak and Lach.14 The lifetimes esti-
mated by scaling37 the contact density for a proton in a ho-
mogeneous electron gas are added. They give a rigorous
lower bound for the positron lifetime. At low densities all the
results approach the value of 500 ps, which is the average
lifetime for a positronium atom. The scatter in the results of

FIG. 1. Positron lifetime in a homogeneous electron gas as a
function of the density parameterr s . The results of the many-body
calculations by Arponen and Pajanne~Ref. 23! and those by Lantto
~Ref. 34! are shown as filled and open circles, respectively. The
lifetimes obtained in the scaled proton approximation~Ref. 37! are
denoted by a dotted line. The Stachowiak-Lach~Ref. 14! result is
drawn by a dash-dotted line. The interpolation function by Boron´ski
and Nieminen~Ref. 6! and the present one@Eq. ~ 10!# are drawn by
a dashed and by a solid line, respectively.
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the many-body calculations is surprisingly large. In the re-
gion, important for the transition metals, i.e., slightly above
100 ps, the scatter is about 15 ps. Around 230 ps, which is
typical for semiconductors, the scatter is close to 30 ps.

The widely used function by Boron´ski and Nieminen6 in-
terpolating Lantto’s results is also shown in Fig. 1. It repro-
duces quite faithfully Lantto’s points, but at low electron
densities it gives unphysically low lifetimes. We are not sat-
isfied with this parametrization and for the practical calcula-
tions we have made another interpolation function. We use
the results by Arponen and Pajanne23 because we want the
lifetime calculations to be consistent with the correlation en-
ergy used. Our enhancement function reads as

g5111.23r s20.0742r s
21 1

6 r s
3 . ~10!

This function has the same form as that used by Stachowiak
and Lach.14 As a matter of fact, the only fitting parameter in
this equation is the factor in the front of the square term. The
first two terms are fixed to reproduce the high-density RPA
limit and the last term the low-density positronium limit. In
the fitting procedure we have used the Arponen-Pajanne data
points only up tor s 5 5 because the data at lower densities
is less reliable@the Friedel sum rule is not obeyed forr s 5 6
and 8~Ref. 23! and ther s 5 8 point reaches even the scaled
proton limit in Fig. 1#. As we will see below, the positron
lifetimes calculated in the LDA with this interpolation for-
mula are systematically lower than the experimental ones.

B. Positron in an inhomogeneous electron gas

1. Gradient correction for the positron annihilation rate

The LDA shows in electronic-structure calculations a
clear tendency to overestimate the magnitude of the correla-
tion energy. This is seen, for example, in the case of free
atoms, for which comparison with experiments is possible.38

The overestimation of the correlation energy has been traced
back to the shape of the correlation hole close to the electron.
In the GGA for electrons the correlation energy is improved
by reducing the charge redistributed by the correlation hole
near the fixed electron~for a definition of this redistributed
charge, see Ref. 39!. Similarly, the gradient correction for
the electron-positron correlation should reduce the electron
density near the positron and thereby decrease the enhance-
ment factor and increase the positron lifetime. This will also
reduce the magnitude of the electron-positron correlation en-
ergy.

In the GGA the effects of the nonuniform electron density
are described in terms of the ratio between the local length
scalen/u¹nu of the density variations and the local Thomas-
Fermi screening length (qTF)

21 @in atomic units qTF
5A(4/p) pF#. The lowest-order gradient correction to the
LDA correlation hole density is proportional to the
parameter38

e5u¹nu2/~nqTF!25u¹ lnnu2/q TF
2 . ~11!

We use this parameter in describing the reduction of the
screening cloud close to the positron. In the case of a uni-
form electron gase 5 0, whereas when the density variations
are rapide approaches infinity. At the former limit the LDA
result for the induced screening charge is maintained and the

latter limit leads to the IPM result with no enhancement. We
interpolate between these limits by using for the induced
contact screening chargeDn the form

DnGGA5DnLDAexp~2ae!. ~12!

The corresponding enhancement factor reads

gGGA511~gLDA21!exp~2ae!. ~13!

Above,a is an adjustable parameter. It will be determined so
that the calculated and experimental lifetimes agree as well
as possible for a large number of different types of solids.
We have found that thea 5 0.22 used with the interpolation
form of Eq. ~10! gives lifetimes for different types of metals
and semiconductors, in good agreement with experiment.

In our previous work22 we showed that the GGA strongly
reduces the enhancement factor in the ion core region. The
resulting enhancement factor reflects sensitively the shell
structure of the atom in question in the sense that it is nearly
constant over the spatial region dominated by a given shell.
This means that the old scheme,40,27 in which the annihila-
tions with different atomic shells are separated and constant
enhancement factors are used for thed and core shells, finds
partial justification within the DFT, i.e., using the total elec-
tron density as the starting point.

The present GGA model for positrons reduces the contact
density at the positron. This means that the screening de-
creases, approaching zero at the IPM limit ofe→`. In this
sense the GGA model is related to the model by Puska
et al.41 for positron annihilation in semiconductors. In that
model the contact density decreases because the normaliza-
tion of the screening cloud is changed to correspond to the
reduced screening in semiconductors relative to the perfect
screening in a free-electron-gas model relevant for metals. In
the semiconductor model by Puskaet al. the norm of the
screening cloud depends on the high-frequency dielectric
constant of the material. Puskaet al. showed that the model
used with the Boron´ski-Nieminen interpolation scheme gives
positron lifetimes for group-IV and III-V semiconductors in
good agreement with experiments and that experimental
variations seen in the positron lifetime can be correlated with
the variations in the high-frequency dielectric constant.

2. Gradient correction for the electron-positron correlation
potential

Let us suppose that the electron-positron correlation for
an electron gas with a relevant density is mainly character-
ized by one lengtha, as is the case of the scaled positronium
approximation.9 Then for the electron-positron correlation
energydEcorr/d(1/a) is constant and the normalization factor
of the screening cloud scales asad with d53 for the dimen-
sion of space. Compared to the IPM result, the electron-
positron correlation increases the annihilation rate as
l2l IPM5(g21)l IPM , which is proportional to the density
of the screening cloud at the positron. Consequently, we
have the scaling law42

Ecorr5c1~l2l IPM!1/d1c2 . ~14!

In the scaled positronium approximation, the second coeffi-
cient c250 and the correlation energy in rydbergs reads as
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Ecorr52
@3/4~g21!#1/3

r s
. ~15!

The values of the correlation energy calculated by Arponen
and Pajanne23 obey the form of Eq.~15! quite well and the
coefficientc2 has a relatively small value of 0.11 Ry. There-
fore, one can use in the practical GGA calculations the cor-
relation energy EGGA

corr , which is obtained from the
homogeneous-electron-gas result (ELDA

corr ) by the scaling

EGGA
corr ~r !5ELDA

corr @n2~r !#S lGGA2l IPM

lLDA2l IPM
D 1/3

5ELDA
corr @n2~r !#e2ae/3, ~16!

wherelLDA andlGGA are the annihilation rates in a homo-
geneous electron gas, i.e., in the LDA model, and in the
GGA model, respectively. We use for the correlation energy
ELDA
corr the interpolation form of Ref. 6. Our formula~16! ne-

glects the small termc2(12e2ae/3). Moreover, with the res-
caling of the potential we are not able to describe the image
potential at a metallic surface seen by the positron.9

The resulting positron potential is more repulsive in the
GGA than in the LDA. The open volume for the positron
state decreases in the GGA, raising the positron zero-point
energy. This effect can be seen in the calculated positron
affinitiesA1 . The affinity is defined as43

A15m21m1 , ~17!

wherem2 and m1 are the electron and positron chemical
potentials measured with respect to a common electrostatic
crystal zero, i.e.,m2 andm1 are the position of the Fermi
level and the bottom of the lowest positron band, respec-
tively. The positron affinity can be measured using the slow
positron beam techniques.44,45 The comparison of the theo-
retical and experimental positron affinities directly tests the
validity of the positron potential construction.

III. RESULTS AND DISCUSSION

In order to test the GGA scheme we perform calculations
for positron states and annihilation characteristics for perfect
crystal lattices as well as for lattices containing vacancies.
We use the LMTO method within the ASA~Ref. 26! and the
atomic superposition method.27 In the LMTO ASA the self-
consistent potentials and charge densities are spherical
around the nuclei and in the case of diamond-type lattices
also around interstitial tetrahedral sites. In the atomic super-
position method the electron density and the Coulomb poten-
tial are constructed non-self-consistently by overlapping free
atom densities and Coulomb potentials, respectively. The full
three-dimensional geometry of the problem is retained and
the resulting three-dimensional Schro¨dinger equation is
solved in a real-space point mesh.27,30We calculate the mo-
mentum distribution~4! with the scheme by Singh and
Jarlborg46 using the LMTO ASA method and including the
corrections for the effects of the overlapping spheres. Va-
cancy calculations are performed with the LMTO ASA or
the atomic superposition method within the supercell ap-
proximation. Periodic boundary conditions have been em-
ployed for the positron state~positron wave vectork[0). In

the LMTO ASA calculations we use a basis set consisting of
s partial waves for delocalized positron states, whereas for
states at vacancies we enlarge the basis by including alsop
andd waves. The lattice constants used in the calculations
are the experimental ones for the very low temperatures. The
lattice constant used are quoted in Refs. 43 and 41.

A. Positron lifetimes and affinities in perfect crystal lattices

The positron lifetimes and affinities calculated for several
types of perfect solids in the LDA and GGA models are
compared in Table I. The GGA increases the positron life-
time relative to the LDA both according to the LMTO ASA
and the atomic superposition method. This is mainly due to
the change in the enhancement factor; the differences in the
correlation potentials influence through the changes in posi-
tron wave function, but this effect is small. Among the el-
emental materials the increase of the positron lifetime is larg-
est, about 20%, for the alkali metals~except Li!, late
transition metals, and noble metals. Similar increases are
seen also for elemental solids~Zn and Ge! and compounds
~III-V and II-IV compounds! with relatively high-lying filled
d bands. The common feature for these materials is the rela-
tively high annihilation rate with core electrons~including
the uppermostd electrons!. The GGA suppresses very effi-
ciently the enhancement factor for the core andd-band elec-
trons. For the earth-alkali and the early transition metals the
increase of lifetime due to GGA is smaller, around 10%, and
for the Al with a very compact core electron structure the
increase is only about 5%.

A set of the calculated LDA and GGA positron lifetimes
of Table I are compared with experimental values in Fig. 2.
We have tried to make a collection that represents many
types of solids, but, on the other hand, we have tried to use
as few experimental sources as possible. This is because we
want to get reliable trends between different materials also
when the lifetime differences are small. The LDA results are
consistently below the experimental positron lifetimes. How-
ever, it is interesting to note that the LDA results fall quite
accurately on the same line and that good agreement with
experiment can be achieved simply by multiplying the LDA
results by a constant. A least-squares fit with the theoretical
values corresponding to the enhancement factor of Eq.~10!
gives the value of 1.21 for this constant. A similar behavior
is valid also for the LDA results obtained using the
Boronski-Nieminen enhancement form,6 but the constant
factor is somewhat smaller, about 1.1. With the exception of
Al, the GGA results agree well with the experiment, showing
that the GGA is able to introduce a correction that is propor-
tional to the calculated positron lifetime itself. For the mate-
rials in Fig. 2 ~with the striking exception of Al! the GGA
corrections to the LDA are quite similar, about 20 %. There-
fore the good agreement seen in Fig. 2 may be to some
extent fortuitous. In order to see if the finer details of GGA
are also physical, it would be very interesting to compare
experimental and GGA lifetimes for the early transition met-
als for which the relative GGA corrections are clearly
smaller. Unfortunately, it is hard to find a consistent and
comprehensive set of experimental lifetimes for transition
metals.

Positron lifetimes calculated for several materials using
the atomic superposition method are given in Table I. The
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LDA results for the bcc and fcc metals are typically less than
5 ps longer than those obtained by the LMTO ASA method.
In the case of the diamond and zinc-blende structures the
atomic superposition gives slightly, of the order of 2 ps,
shorter lifetimes than or very similar lifetimes to the LMTO
ASA method. In the LDA there exists an efficient feedback
effect, which tries to keep the positron lifetime unchanged
irrespective of the small transfers of electron density.27,7 In
the present comparison the electron density changes from the
non-self-consistent superposition of free atom densities to

the self-consistent density of the solid. The positron density
is calculated in each case according to the electron density in
question. Thereby the positron density follows the transfer of
the electron density in such a way that the overlap and the
positron lifetime change only slightly. The shape approxima-
tion ~spherical charge distributions and potentials! made in
the LMTO ASA can partly be considered as such a charge
transfer and its effect the positron lifetime is also quite small.

In contrast with the LDA, the positron lifetimes obtained
in the GGA using the atomic superposition method differ in
some cases quite strongly from their LMTO ASA counter-
parts. The reason is that the gradient is sensitive to the self-
consistency and the shape of the electron density. This is
seen clearly in the case of Cu for which we have used two
different atomic configurations, 3d104s and 3d94s2 ~see
Table I!. The latter configuration gives in the GGA a lifetime
close to the LMTO ASA value. When the configuration is
changed to 3d104s the positron lifetime increases by 10 ps.
For comparison, in the LDA the difference is only 3 ps due
to the feedback effect. In the case of II-VI compound semi-
conductors the strong charge transfer between the atoms is
not taken properly into account in the atomic superposition
calculations. This is also seen to affect remarkably the posi-
tron lifetimes calculated within the GGA. The shape approxi-
mation of the ASA is not expected to influence the compari-
son of the GGA results between the LMTO ASA and the
atomic superposition method, because the GGA correction
arises mainly in the ion core region where the true electron
density is spherical. Therefore, one can conclude that in or-
der to get accurate positron lifetimes in the GGA, self-
consistent electron densities should be used. However, it
could be possible to improve the atomic superposition results
by using for free atoms electronic configurations that corre-
spond to the partial-wave expansions of the LMTO ASA
method.47

The GGA reduces the percentages of the core electron
contributions relative to the total annihilation rates. In the
case of the alkali metals~with the exception of Li! the core

TABLE I. Theoretical positron bulk lifetimest for different
types of solids. The results are obtained with the LMTO ASA or the
atomic superposition method using the LDA enhancement factor of
Eq. ~2! and the corresponding GGA witha50.22. In the atomic
superposition method the ground-state electronic configurations are
used for the free atoms. For example, the configuration 3d104s is
used for Cu, whereas the results obtained with the configuration
3d94s2 are given within parenthesis for comparison.

LMTO ASA Atomic superposition
tLDA tGGA tLDA tGGA

Material Lattice ~ps! ~ps! ~ps! ~ps!

Li bcc 257 282 259 284
C diamond 86 96 84 93
Na bcc 279 329 281 337
Al fcc 144 153 149 160
Si diamond 186 210 184 207
K bcc 329 392 332 402
Ca fcc 245 276 250 281
Sc fcc 167 189 173 198
Ti fcc 127 145 132 153
V bcc 103 119 107 125
Cr bcc 91 105 96 118
Mn fcc 93 108 97 114
Fe bcc 91 108 94 111
Co fcc 89 106 91 109
Ni fcc 88 107 90 109
Cu fcc 96 118 101~98! 130~120!
Zn fcc 120 144 124 156
Ge diamond 191 228 190 229
Rb bcc 341 409 343 420
Nb bcc 109 122 114 135
Mo bcc 101 112 106 126
Pd fcc 94 114 99 131
Ag fcc 109 136 113 148
Cs bcc 356 430 358 439
Ta bcc 108 117 108 124
W bcc 93 101 95 109
Pt fcc 88 101 92 116
Au fcc 98 118 102 130
SiC zinc blende 124 139 121 134
GaAs zinc blende 190 231 190 232
InP zinc blende 201 248 200 247
ZnS zinc blende 179 223 179 232
CdTe zinc blende 228 290 228 310
HgTe zinc blende 222 285 222 310
TiC rocksalt 94 110 101 116
YBa2Cu3O7 120 157 143 188

FIG. 2. Positron lifetimes in perfect lattices. The solid and open
circles give the GGA and LDA results as a function of the experi-
mental ones~Ref. 48!, respectively. The solid line corresponds to
the perfect agreement between the theoretical and experimental re-
sults, whereas the dashed line is a linear least-squares fit to the LDA
data.
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contributions are large, about 25–35 % in the LDA, as in the
calculation by Daniuket al.47 The GGA reduces them by
about one-third. For Al and Ca, the core contributions are
9.3% and 23.0% in the LDA, respectively, and 5.9% and
16.3% in the GGA, respectively. In the case of semiconduc-
tors, the relative core contributions are small in magnitude,
e.g., 3.1% for Si and 11.0% for GaAs in the LDA. This
reflects the large interstitial open volume. The reduction due
to the GGA is typically smaller for semiconductors than for
metals. The values for Si and GaAs are 2.3% and 9.3% in the
GGA, respectively. The relative core contribution can be es-
timated from the ACAR or from the coincidence Doppler
line-shape data. An accurate estimation may, however, be
difficult due to superposition of the core and the umklapp
components of the valence annihilation at high momentum
values. On the other hand, in the theory an unambiguous
distinction between the core and valence electrons is diffi-
cult. For instance, in the case of the transition, noble, and
Zn-column metals, as well as the II-VI compound semicon-
ductors, the uppermostd electrons have to be treated as band
states, which can hybridize with thes valence states.

The positron affinities calculated within the LDA and
GGA models are compared with those measured by the re-
emitted positron spectroscopy44,45 in Fig. 3. The electron
chemical potentials needed are calculated in all cases within
the LDA ~Ref. 43! in order to study the effects of the GGA
for positron states only. However, we have calculated that if
the effect of the GGA~Ref. 38! on electron states is taken
into account, the Fermi level raises and the magnitude of the
positron affinity decreases by; 0.3 eV. Compared to the
LDA results the GGA for the positron states reduces the
magnitude of the affinity by 0.3–0.7 eV due to the increase
of the positron zero-point energy. The LDA is seen to over-
estimate the magnitude of the affinity within the 3d series
and there the GGA is a clear improvement. In the case of the
4d and 5d transition metals studied the LDA results are, with
the exception of Mo, in quite good agreement with experi-
ments and the GGA leads to affinities with too small magni-
tudes in comparison with the experimental data. The trend
that the GGA improves the LDA results for the 3d series
while worsens them for the 4d and 5d series is also seen in

the case of electronic structure calculations for the cohesive
properties such as the lattice constant and bulk moduli.18

B. Positron lifetimes at vacancies in solids

We have employed the present GGA model also in calcu-
lating annihilation characteristics for positrons trapped at
ideal vacancies in solids. This means that the ions neighbor-
ing the vacancy are not allowed to relax from their ideal
lattice positions. In the case of metal vacancies this is ex-
pected to be a good approximation because first-principles
calculations indicate only very small relaxations.49 For va-
cancies in semiconductors with more open lattice structures
the ionic relaxations are more important~see, for example,
Ref. 50 for the vacancy in Si and Refs. 51 and 52 for the
vacancies in GaAs! and the relaxation may depend strongly
on the charge state of the vacancy. In these cases the trapping
of the positron has a tendency to compensate the inward
relaxation of the vacancy.53,52,7Moreover, it has been shown
that the charge state does not strongly affect the positron
lifetime if the ionic relaxation is omitted.54 As a result, the
ideal ~neutral! vacancy is a relevant reference system also in
the case of semiconductors.

Another important issue for the calculations of positron
states at vacancies is how the effects of the finite positron
density on the electronic structure should be taken into ac-
count. As discussed in the Introduction, the conventional
scheme used in the present calculations is a good starting
point. To test this we performed a LDA two-component DFT
~Ref. 6! calculation for a positron trapped at a vacancy in Cu.
We used the LMTO ASA supercell method described below
and the parametrization for the enhancement given in Ref. 7.
The positron distribution obtained is close to and the positron
lifetime is only about 2 ps shorter than that in the conven-
tional LDA scheme. A similar agreement between the full
two-component and the conventional scheme has been ob-
tained previously for metal vacancies within the jellium
model6 and recently for the Ga vacancy in GaAs in a calcu-
lation using the pseudo-potential plane-wave description for
electronic structure.7 Encouraged by this experience, we will
in this work compare the LDA and GGA models for the
positron states by using only the computationally much more
efficient conventional scheme.

In the vacancy calculations we use the supercell scheme,
in which a large cell containing one vacancy is repeated pe-
riodically so that a regular superlattice of vacancies is
formed. In order to get converged results for the positron
lifetime, it is necessary to use such a large supercell that the
positron wave function is vanishingly small at its boundaries
when a vacancy is created at the center. In the atomic super-
position calculations we have used supercells up to 255, 249,
and 215 atoms for vacancies in fcc, bcc, and zinc-blende~or
diamond! structures, respectively. In the LMTO ASA calcu-
lations the electronic structures of the vacancies are calcu-
lated using smaller super cells, which in the fcc, bcc, and
zinc-blende structures contain 63, 63, and 31 atoms, respec-
tively. In both methods the results are then extrapolated to
the infinite supercell size. The slow convergence of the pos-
itron lifetime with the size of the supercell can be seen, for
example, in the case of the vacancy in Cu. In the LMTO
ASA calculations the converged lifetime is about 20 ps
longer than that obtained with the small supercell of eight

FIG. 3. Positron affinities in perfect lattices. The solid and
dashed lines are drawn through the GGA and LDA results, respec-
tively. The open and filled circles are the experimental results by
Jibalyet al. ~Ref. 44! and by Gidley and Frieze~Ref. 45!.
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atomic sites. The atomic superposition method gives a simi-
lar trend with a positron lifetime increase of about 10 ps. We
conclude that positron lifetimes obtained with supercells of
four and eight atomic sites, which are used, for example, in
the LMTO ASA calculations of Ref. 12, are not converged
with respect to the positron distribution. This kind of super-
cell gives, however, reasonable estimates for positron life-
times in comparison with experiments.

The results of our calculations for positron states at va-
cancies in solids are collected in Table II. For the vacancies
in the diamond or zinc-blende structure the supercell calcu-
lations with the LMTO ASA method demand relatively more
computer resources than the calculations for fcc and bcc met-
als, because empty spheres are needed. Therefore we have
performed atomic superposition calculations in the case of
vacancies in Si and GaAs and the LMTO ASA calculation
only for the vacancy in Si. Within the LDA the LMTO-ASA
method gives slightly longer positron lifetimes than the
atomic superposition method. In the GGA the LMTO ASA
lifetimes are either shorter or longer than the atomic super-
position ones. The positron trapping energies are quite simi-
lar in both methods. The differences between the LMTO
ASA and the atomic superposition results reflect the effects

of the self-consistency of the electronic density. As in the
case of positron bulk lifetimes, these effects are more impor-
tant in the GGA than in the LDA.

The theoretical positron lifetimes for vacancies are com-
pared with experiment in Table III. The first column gives
the experimental lifetimes for positrons trapped at different
vacancies. For the experiment-theory comparison the ratios
between the vacancy and bulk lifetimes are calculated from
the experimental works and from the results of Tables I and
II. It can be seen that within the calculation scheme, LMTO
ASA, or atomic superposition, the LDA and the GGA mod-
els give similar ratios. For the metal vacancies the lifetime
ratios obtained using the atomic superposition method are of
the same order as or slightly smaller than the experimental
ones. The ratios from the LMTO ASA calculations are sys-
tematically larger than those from the atomic superposition
method, reflecting a stronger localization of the positron at
the vacancy. The reason for the differences between the
LMTO ASA and the atomic superposition methods can be
understood as follows. In the former self-consistent calcula-
tion a dipole-type potential arises so that electron density is
transferred from the vacancy region~the vacancy sphere and
its 12 nearest-neighbor atomic spheres! further away to the

TABLE II. Positrons trapped by vacancies in solids. The lifetimest and positron binding energiesEb are
obtained with the LMTO ASA or the atomic superposition method using the LDA enhancement factor of Eq.
~2! and the corresponding GGA witha50.22.

LMTO ASA Atomic superposition
tLDA Eb tGGA Eb tLDA Eb tGGA Eb

Lattice Material ~ps! ~eV! ~ps! ~eV! ~ps! ~eV! ~ps! ~eV!

fcc Al 215 2.1 237 1.9 212 2.1 231 2.1
Cu 158 1.7 193 1.9 153 1.3 200 1.5

bcc Fe 159 2.6 186 2.7 158 3.4 183 3.7
Nb 197 3.1 218 3.2 195 3.7 225 3.9

dia Si 215 0.7 244 0.7 209 0.4 240 0.3
zb GaAs, VGa 214 0.3 264 0.2

GaAs, VAs 212 0.2 261 0.2

TABLE III. Positrons trapped by vacancies in solids. The experimental positron lifetimestexpt
vac are given.

The ratios between the vacancy and bulk lifetimes are calculated from the experimental results~Expt.! and
from the theoretical results obtained with the LMTO ASA or the atomic superposition method using the LDA
enhancement factor of Eq.~2! and the corresponding GGA witha50.22.

tvac/tbulk

texpt
vac LMTO ASA Atomic superposition

Material ~ps! Expt. LDA GGA LDA GGA

Al 251 a 1.54a 1.49 1.55 1.42 1.44
Cu 179b 1.63b 1.65 1.64 1.51 1.54
Fe 175c 1.59c 1.75 1.72 1.68 1.65
Nb 210d 1.72d 1.81 1.79 1.71 1.67
Si 1.16 1.16 1.14 1.16
GaAs, VGa

32 260e 1.13e 1.13 1.14
GaAs, VAs

2 257f 1.11f 1.12 1.13
GaAs, VAs

0 295f 1.28f

aFrom Ref. 55. dFrom Ref. 58.
bFrom Ref. 56 eFrom Ref. 59.
cFrom Ref. 57. fFrom Ref. 60.
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region of the perfect lattice. The dipole, reversed for the
positron potential, results in a localization of the positron
wave function that is stronger than in the atomic superposi-
tion calculations. This strong positron localization increases
the positron lifetime. Note that the feedback effect discussed
above in the context of the bulk lifetimes is not effective for
this kind of longe-range field.

The vacancy-bulk lifetime ratios obtained with the LMTO
ASA and the atomic superposition method for Si are very
similar. The experimental vacancy-bulk lifetime ratios for
the triply negative Ga vacancy and the singly negative As in
GaAs agree well with the atomic superposition results for the
ideal vacancies. The much larger experimental ratio for the
neutral As vacancy may be a result of a large lattice relax-
ation occurring between the negative and the neutral charge
states.51

C. Angular correlation of annihilation radiation

1. 2D ACAR spectra

The 2D ACAR technique stands out in its unique capabil-
ity to yield high-resolution information about the momentum
density and the Fermi surface~FS! of metals. Moreover, the
LCW theorem33 proposes that when the 2D ACAR spectrum
is folded into the first Brillouin zone, mainly the structures
related to the FS remain. In some cases, the FS breaks can be
inferred just by studying the occupation of the bands cross-
ing the Fermi energy. However, the presence of the positron
makes the procedure inexact, because the background is
modulated by positron annihilation with the electronic states
that do not contribute to the FS. These positron wave func-
tion effects are included within the IPM. However, again
enhancement has to be considered, although it is not of such
crucial importance as in describing the positron lifetime.

For example, in the case of Cu a careful comparison of
the 2D ACAR distributions shows a considerable deviation
between the IPM and the experiment.63,64 The deviation is
attributed to many-body effects. In order to compare theory
with experiment, Wakohet al.63 considered the ratio

r ~px ,py!5
Nexpt~px ,py!2NIPM~px ,py!

NIPM~px ,py!
, ~18!

whereNexpt andNIPM are normalized to the same volume.
The shape ofr (px ,py) indicates that the many-body en-
hancement increases as the first Brillouin zone is ap-
proached; outside this zone the enhancement gradually di-
minished, indicating that for tightly bound electrons the
enhancement is smaller than for thesp conduction electrons
in the first zone. We have performed a detailed study on
copper to check whether the LDA and the GGA explain
these trends.

The momentum density of annihilating positron-electron
pairs for the valence states in Cu is shown in Fig. 4~a! along
the directionG-X ~at theX point, p'6.7 mrad!. Due to a
symmetry-induced selection rule,65 only two bands, which
are hybridizations of ansp-like and a d-like conduction
band, contribute along this direction. The FS breaks are
clearly visible within the first and second Brillouin zones.
These discontinuities are not shifted by the electron-positron
correlation, which is in agreement with the Majumdar

theorem.66 At low momenta mainly thesp bands contribute.
The relative contribution of the localizedd electrons in-
creases towards higher Brillouin zones with the maximum
around 11–13 mrad. Wakohet al.63 concluded that the IPM
overestimates the contributions of thed electrons. Figure
4~b! shows that both the LDA and the GGA predict a reduc-
tion of the enhancement in the momentum region where the
d electrons dominate and should improve the theoretical fit
to the experimental data.

In order to find out whether the LDA or the GGA agrees
better with the experiment, we have compared the shapes of
the 2D ACAR distributions in Fig. 5. The figure shows the
calculated 2D ACAR spectra containing the contributions
from both the core and valence electrons and corresponding
to the momentum distribution~4! integrated in the@111# di-
rection. The corresponding experimental data64 are also
shown. A cut of the two-dimensional map along the@1–1 0#

FIG. 4. ~a! Momentum density and~b! the corresponding en-
hancement factor for annihilating positron-electron pairs for Cu
along the directionG-X in the momentum space. The densities are
normalized to give the relative total valence annihilation rates. The
solid, dashed, and dash-dotted lines are the results in the GGA,
LDA, and IPM calculations, respectively.

FIG. 5. Two-dimensional ACAR spectra for Cu. The momen-
tum densities are integrated in the@111# direction and normalized to
the same value at the zero momentum. The cuts along the
@1210# direction are given. The solid, dashed, and dash-dotted
lines are the results in the GGA, LDA, and IPM calculations, re-
spectively. The experimental points are given by dots.
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direction is given. The effect of the enhancement factor is to
favor annihilation in the interstitial, low-electron-density re-
gions of the lattice and the gradient correction makes this
trend stronger. As a result, the localization of annihilation in
the momentum space increases from the IPM to the LDA
and further to the GGA. The suppression is important in the
region around 10 mrad, where the contribution of thed elec-
trons dominates. On the basis of Fig. 5 one can conclude that
these trends improve the agreement with experiment.

2. Deenhancement of d-electron annihilation

Two dimensional ACAR studies for the transition metals
indicate that the enhancement factor for thed electrons is
clearly smaller than that for thes and p electrons.3,13 Jarl-
borg and Singh61 have shown that the LDA approach for the
electron-positron enhancement can account for the observed
trends. The enhancement factor they use is obtained by solv-
ing a two-body problem for a positron and an electron in a
correlation cell of radiusr s determined by the local electron
density. In the original model, the reduced massm of the
electron-positron pair is treated as a free parameter and the
comparison with the experimental 2D ACAR results does
not give a unique value form. The positron lifetime
calculations62 show unambiguously that the correct value is
m51/2. However, in some cases, e.g., for Ni, the theoretical
2D ACAR results calculated with the value ofm51 agree
clearly better with experiment than those calculated with the
value ofm51/2. This fact indicates that the actual enhance-
ment should be more delocalized within the Wigner-Seitz
cell than that calculated withm51/2. Below we show that
this apparent contradiction is solved within our GGA scheme
for the positron annihilation.

It has been suggested that the enhancement depends on
the electronic binding energy.67,68 Figure 6 gives the so-
called deenhancement for the Nid electrons68,61 as a func-
tion of the energy eigenvalueE. Actually, the abscissa is the
relative position x5(E2Ebot)/(EF2Ebot) within the d
bands. Above,EF denotes the Fermi energy andEbot the

bottom of the energy band at theG point. The deenhance-
ment is defined as the enhancement at the energy in question
divided by the enhancement at the bottom of thed bands. In
practice, we calculate the enhancement factor for a given
energy by integrating over the Wigner-Seitz sphere the local
enhancement factor weighted by the positron density and the
density of the LMTO ASA partial wave at that energy. Fig-
ure 6 shows that the enhancement is stronger for the rela-
tively more delocalized bonding states at the botton of the
d band than for the more localized antibonding states at the
top of thed band. The GGA increases the sensitivity of the
enhancement factor to thed electron localization and the
related energy eigenvalue. Jarlborg and Singh61 showed that
they could fit well the experimental LCW in Ni using their
enhancement withm51. However, the use ofm51 gives a
wrong value for the lifetime.62 Figure 6 shows that the GGA
gives a similar deenhancement. In conclusion, the GGA
gives a lifetime value and momentum distribution in good
agreement with the experiments.

It should be noted that the approximation of averaging the
enhancement factor over the electronic states cannot describe
the increase of the enhancement for the nearly freesp elec-
trons close to the Fermi momentum as it is predicted in the
Kahana theory.29 Daniuk et al.28 have proposed a method
that treats the enhancement corrections locally in real space
using the jellium approximation. This method predicts both
the relative deenhancement for thed electrons and the in-
crease of the enhancement as a function of the increasing
electron energy for the nearly electron-gas systems. A
straightforward gradient correction for the scheme of Daniuk
et al. can be obtained by using a formulation similar to Eq.
~13!.

According to the above theoretical model, the deenhance-
ment for thed electrons close to the Fermi level is most
pronounced for metals with filledd band. Examples are Ni
and Pd. This is in good agreement with experimental
results.13 In the early transition metals the Fermi level lies
below the center of thed bands. Therefore, it is expected that
the influence of the enhancement for the momentum distri-
bution of the annihilating positron-electron pairs is smaller
than for the late transition metals and that already the IPM
produces good results. Indeed, the LCW-folded experimental
data for V and Nb reflect well the electron momentum dis-
tribution in the first Brillouin zone, i.e., the LCW theorem is
fairly well fulfilled. Nevertheless, in order to obtain good
agreement between theory and experiment for the relative
strength of the core contribution, it is necessary to use the
enhancement factor, which accounts for the smaller enhance-
ment of the localized core states relative to the valence
states.

3. Fermi surface study in high-temperature superconductors

Since the advent of high-temperature superconductivity in
the copper oxides, it was felt that strong electron correlation
effects must be involved. While searching for the FS, it is
natural to wonder which is the influence of the strong corre-
lations on the electronic structure. Actually the nature and
the existence of the FS is the crucial point in many theories
of the superconductivity.69 The relative mastery in calculat-
ing the positron-electron correlation effects in lifetime and in
2D ACAR with the methods outlined above encourages us to

FIG. 6. Deenhancement for the Nid electrons as a function of
the relative position of the energy eigenvalue within thed bands.
For the definitions, see the text. The solid and dashed lines give the
GGA and LDA results, respectively. The upper and lower dash-
dotted lines are the result of the Jarlborg-Singh theory with
m51/2 and 1, respectively~Ref. 68!.
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make theoretical predictions on the FS signal arising in pos-
itron annihilation measurements. Moreover, the large charge-
density inhomogeneities in the high-temperature supercon-
ductors suggest that the GGA should have, in comparison to
the LDA, a strong effect on the positron annihilation in these
materials.

With respect to the 2D ACAR measurements, the situa-
tion in copper oxides differs sharply from that in simple
metals, in which the FS effects dominate. In copper oxides
the spatial distribution of the positron wave function has a
large influence on the ACAR maps, whereas the FS signals
are weak. Actually a combined experimental and theoretical
study70 for La22xCexCuO4 reveals strong effects due to the
positron-electron overlap in experimental data, consistent
with the theoretical calculations. The authors also found dis-
continuities in the LCW folding from Sr-doped sample con-
sistent with the presence of a FS.

Nd22xCexCuO42d is a good candidate for probing the
Fermi surface. This is because the positron density has a
substantial overlap with the Cu-O planes. The LCW-folded
2D ACAR spectra for Nd22xCexCuO42d calculated within
the IPM, LDA, and GGA are shown in Fig. 7. The Fermi
surface breaks in the direction shown are already modulated
by the wave-function effects in the IPM. The effects of tak-

ing into account the enhancement are similar to that of the
positron wave function and consequently the relative signal
at the low-density regions strengthens when the enhancement
is included. The GGA is more sensitive to the electronic
structure than the LDA. Therefore, as shown in Fig. 7, the
partial annihilation rates vary more and the LCW spectrum is
more modulated in the GGA than in the LDA. As a matter of
fact, a recent 2D ACAR experiment for Nd22xCexCuO42d
~Ref. 71! indicates a Fermi surface signal in good agreement
with a calculation based on the present GGA scheme.72

However, as the real sample contains some defects, we can-
not extract unambiguously the experimental correlations ef-
fects to compare with the theory. Nevertheless, our calcula-
tion predicts that the GGA electron-positron correlation
makes the LCW more modulated, but does not spoil the pos-
sibility to observe the FS in Nd22xCexCuO42d .

IV. CONCLUSION

We have made a comprehensive study of the recently in-
troduced gradient correction scheme for positron states and
annihilation in several types of solids. We have considered
positron lifetimes in perfect crystal lattices as well as trapped
by vacancy defects. The positron energetics is monitored by
calculating the positron affinities. Moreover, we have studied
the effects of the gradient correction on the momentum dis-
tribution of the annihilating positron-electron pairs using
several representations. The gradient correction improves
systematically the too large annihilation rates obtained in the
LDA and generally brings them into good agreement with
existing experimental positron lifetimes. The GGA gives
also a natural explanation for the so-called deenhancement
for the annihilation of thed electrons discussed in the con-
text of the 2D ACAR maps of certain transition metals.

The GGA approach is more sensitive to the quantum-
mechanical shell structure and to the self-consistency of the
electron density than the LDA. This calls for the use of the
most sophisticated self-consistent electronic-structure calcu-
lation methods. On the other hand, this means that positron
measurements contain more detailed electronic-structure in-
formation than has been previously thought and the GGA
can open a way for extracting it.
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