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The ground states of the one-dimensional Falicov-Kimball model are investigated in the small-coupling
limit, using nearly degenerate perturbation theory. For rational electron and ion densities, respectively, equal to
p/q, p;/q, with p relatively prime tog andp;/q close enough t(%, we find that in the ground state the ion
configuration has a periog. The situation is analogous to the Peierls instability, where the usual arguments
predict a periody state that produces a gap at the Fermi level and is insulating. Howevpy/ fpfar enough
from % this phase becomes unstable against phase separation. The ground state is a mixture ofjagreciod-
configuration and an emptyr full) configuration, where both configurations have the same electron density to
leading order. Combining these results with those previously obtained for strong coupling, it follows that a
phase transition occurs in the ground state, as a function of the coupling, for ion densities far enough from
3. [S0163-182(06)00924-1

[. INTRODUCTION fluctuations of the phonons about the distorted state, a fea-
ture which can lead to a stabilization of the undistorted
The theory of the electronic band structure of solids is ongphase, as illustrated in recent rigorous work on the one-
of the oldest theories in condensed-matter physics, datingimensional Holstein modél.
back to 1928 when Bloch proved the existence of electronic The Peierls distortion is generally studied at half filling
bands in solids. It was soon discovered that most metalsfor the electrons, in which case the distortion leads to a dou-
could be described with theearly free electron model bling of the unit cell. The conventional wisdom is that the
where the periodic ion potential felt by the electrons is weaklowestperiodic structure that produces a gap at the Fermi
The initial emphasis in the development of band theory foJevel will be the true ground state, or, in other words, the
cused on one-dimensional models, where both transfefP€ierls distortion is stable against any higher-order distor-
matrix resulté and exact solutiorié could be found. It was tions. This result has been recently proven to be true at half
only after the development of the pseudopotential métirod ~ filling. %%t _ o o
the 1960’s that the success of the nearly free electron model N one dimension, the restriction to half filling is not nec-
was understood. essary, with the result that a periodic distortion that produces
In the 1950’s, Peierfsreexamined the perturbation theory & gap at the Fermi level will always lower the total energy of
for the nearly free electron model and found that, in onethe system. Furthermore, one can generalize Peierls’ argu-
dimension, astatic distortion would always reduce the en- Ments to include other models, such as models for alloy for-
ergy of a solid, because the opening of a gapthe Fermi mation. Historically, these alloy models were studied before
level) in the electronic band structure would lower the en-the models of lattice distortions, where Hume-Rotféry
ergy of the occupied electronic states and raise the energy @pinted out that certain alloys form only when the electron-
the unoccupied states. Such a distortion would produce aptom ratio fell within very narrow ranges. In one-dimension,
insulator from the parentetaland Peierls’s work led to the Peierls-like arguments establish the Hume-Rothery rule,
conclusion that there can never be a one-dimensional metaiince a periodic arrangement of the ions will always produce
Frohlich” used nearly degenerate perturbation theory to showhe largest gap at the Fermi level.
that the decrease in the electronic energy was on the order of The simplest model of a binary alloy consists of one band
52Iné for a periodic distortion of amplitudes, while the of itinerant electrons interacting with static ions:
elastic energy was on the order &, so the net effect of the
distortion was to reduce the ground-state enefifyd was
small enough Two chemists, Longuet-Higgins and Salém,
independently arrived at the same conclusions by examining
a general class of Hamiltonians for ring-shaped moleculesvhere c;r is the creation operator for an electron at site
Note that these conclusions explicitly neglect the quantunw; is a classical variable that is 1 if the site is occupied by an

N N
H= —tizl (CiTCi+1+CiT+10i)_UiZl clow;, 1)
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A ion and 0 if the site is occupiedyba B ion. The hopping U——<, it was conjectured that the most homogeneous
integral ist andU denotes the difference in on-site energiesphase was the ground state. These two conjectures have al-
for an electron o a B site minus that of an electron on an A ready been proven to be tri#&:2° Another conjecture, based
site. The electron density,, is the number of electrons per upon the many-body version of Rayleigh-Schroedinger per-
site[ pe=(1/N)Z;(clc;)], and similarly the ion density; is  turbation theory, stated that in the smélllimit the ground-
the number of A ions per sitgp;=(1/N)Z;w;], with N the  state configuration will be the configuration that produces the
number of lattice sites. We are interested in the thermodyrargest gap at the Fermi level, and this state was shown to
namic limit, and so we takll— o, but maintain finite values have the smallest periodicity that could produce a gap at the
for both pe and p;. In the alloy picture U>0), one can Fermi level (consistent with the Peierls pictyreRecent
envision that the electrons are donated by one of the ionignajyticaf* and numeric&? work on the neutral case has
speciegsay the A ion, in which case a study of the neutral ghown, however, that at low electron density, there is a ten-
case(wherep;=p,) becomes most relevant. dency for molecule formation, rather than a homogeneous
This model is a simplified versiofspinless, single band igyihytion of the ions, and a phase-separated configuration

of th_e model pr.oposed by Fal_|gov apd Kimtaito dlspuss 8f ions may yield a lower energy than a pure periodic phase.
semiconductor-insulator transitions in rare-earth oxides an In the spirit of the nearly free electron model, we establish

borides. Later, the same model was employed to study orde{\—N0 results in the framework of perturbation thedmhich

ing of rare-earth fons in mixed-valence systér‘hd\/lore gq are valid forU sufficiently smal): First, we show that if the

recentlyr® work on the Falicov-Kimball model has focuse eniant ; . :
on another aspect, that of periodic crystal formation. In thic!ectron density ip.=(p/q) with p relatively prime tog,

language the A sites are ions, and the B sites are empty site@1dpi=pi/ai, with (p’/q)<p;<(p’+1)/q for some inte-
The question studied is whether the mutual interaction of th@€r P’. then the ground-state configuration is a phase-
ions and electrons, coupled with the fact that the electron§eparated mixture of periaglphases, and possibly the empty
satisfy the Pauli exclusion principle, causes a periodic artor full) lattice.
rangement of the ions to be the ground-state configuration. The second result is a statement about the stability of the
This is the language that we adopt in this contribution. pure periodg phase forp.= p/q (with p relatively prime to
The Hamiltonian in Eqg.(1) exhibits two different q) andp;=p;/q. Forp;e[pcl—pc] with p.~0.371[solu-
symmetries=> an ion-occupied-empty-site symmetry and antion of Eqg. (23], the ground state has periaggdand is the
electron-hole symmetry. The first symmetry relates themost homogeneous configuration; it also has the smallest
ground-state energgper sitg for the configuration of ions periodicity needed to produce a gap at the Fermi level. On
{w;} to the energy of the conjugate configurationthe other hand, if the ion densify=p;/q is smaller than
{wi b ={1-wi}, 7 or greater thar?, then the ground state is always a phase-
. separated mixture of a phase wih,=p/q, p{=0 (or
EgU.pe {W7 ) =Egd = U.pe {Wi}) =Upe, (2 p/=1) and a period phase withp,=p/q, p/'=p//q a ra-
while the second symmetry employs the unitary transformational that is closest tqp. in a well-defined sense. For
tion ¢;—(— 1)‘diT that changes electrons to holes, yielding p;=p;/q<p. or pij=p;/q>1—p., the same is true, i.e., the
ground state is a phase-separated mixture, except for special
EgdU.1=pe {Wi}) =Egd —U.pe {Wi}) =Upi. (3  values ofp; [those satisfying Eq24)] for which the period-
These two symmetries allow restriction to the regjgi 9 Phase is stable. _ _
andU>0, without a loss in generality. . Thgge r.esults- show that the close analogy Wlth the Peierls
In the crystallization picture, the most natural assumptiornstability is valid only for p;<pj<1-p;. We view the
to make is that the number of electrons equals the number ginalogy as follows: ForU=0 (and pe=p/d, pi=pi/q
ions, and the system is Charge neutrﬁ‘lj:épi)_ However, fixed), any ion conﬁguration is a ground state, i.e., the prob-
the nonneutral case is also of interest, since the electron deability to find an ion at a given site is uniform and equals
sity can be modified by either doping the system with impu-p; . This uniform-density state is the “undistorted state,” has
rities, or by allowing the system to be coupled to an electrorno gap in the electronic spectrum, and is metallic. Bor
resevoir. The latter picture is important in making contact# 0, sufficiently small, a particular ion configuration is se-
with quasi-one-dimensional systems, where the neglectelécted, which has period. It corresponds to the Peierls-
bands act as an electron reservoir, allowing charge transférdich “distorted state,” which has a gap at the Fermi level
into or out of the one-dimensional chains. and is insulating. Fop;<p. or p;>1—p., the ground state
The Falicov-Kimball model has been actively studied inis (in general phase separated and is a mixture of a metallic
recent years, ever since Kennedy and Efeind Brandt and and an insulating state. This situation does not have a coun-
Schmidt® independently proved that the period-two phase isterpart in the standard theory of Peierls andHfiah.
the ground state for alU when the electron and the ion Finally, the above results establish the existence of a
densities are both equal th Most emphasis has concen- phase transition in the ground state of the Falicov-Kimball
trated on the one-dimensional model, where numericamodel whenU is varied. For densities such that the ground
studied’ indicated that the system phase separated into thstate is a phase-separated mixt(fee U sufficiently smal),
segregated phadevhere all the ions cluster on one side of there must be a phase transitionlasncreases. Indeed, for
the latticg for large enough interaction strengthpif# p; or U sufficiently large, the ground state is known to be either
petpi#1. In the other cases, wheig.=p; (the neutral the most-homogeneous phase or the segregated phlamh
casg andU—oo, or p.+ p;=1 (the mixed-valence casand s a different phase-separated state
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Our presentation is organized as follows: in Sec. |l thefor the ground-state energy of configuratipm;}.

perturbation theory is developed showing théinU behav-
ior of the ground-state energy for small; in Sec. Ill the

The perturbative expansion in E/) has a singularity
when the electron density is rational=p/q and the ion

perturbation-theory results are analyzed to show when pureonfiguration has a period that is a multiple gf(with the
phases are the ground state and when the ground state @gception of those ion configurations, for which the relevant

phase separated; a discussion follows in Sec. IV.

Il. PERTURBATION THEORY

structure factor vanishigdt was argued heuristically in Ref.
17 that the configuration with the maximal singularitye.,
with the maximal value ofW(2p.)|) will be the ground-
state configuration, and this result agreed with the numerical

It is most convenient to rewrite the Falicov-Kimball \york. However, such logic is flawed, because the expansion
Hamiltonian in a momentum-space representation before déy £q. (7) is valid for U/t<|In|sin(n/Q)—sin(mpg)||, which

veloping a perturbation-series expansion for the ground-statgannot hold when an integral number of electronic subbands

energy. Using the standard Fourier transform

1 N
S —iKj
.= > e ikic,
N/=1 ‘

4
(with the lattice spacing set equal to ylields
H=> [e(k)—UW(0)]aja,—U >, W(k—k')aja,
k k#k’
5

for the Hamiltonian of the Falicov-Kimball model in mo-
mentum space. The wave vectdsandk’ are restricted to
the first Brillouin zone ¢ 7<k=<) and e(k): = — 2t cok
is the unperturbed band structub(27n/Q) is the struc-
ture factor of the period ion configuration{w;},

Q

1
02

defined fom=0,1, ... Q—1. (It is notationally simpler here
to define thek vectors withk=27n/Q to sometimes lie

W(27mn/Q):= e @My, ,

(6)

outside of the first Brillouin zone. Of course, translation by

—2a will shift these vectors back into the first Brillouin
zone) Note thatW(0)= p; by definition.

We begin by performing the many-body version of
Rayleigh-Schrdinger perturbation theory with the double-

summation term in Eq(5) acting as the perturbation. The
analysis is straightforwart!, requiring a momentum-space
integral that can be evaluated analytically, yielding

2t
Egs(U PeAWi})=— ;Sin(ﬂ'Pe) —Upep;

U2 Lt (W(2an/Q)|?2

are filled[i.e., whenp,=(p/q)]. This result was known by
Frohlich,” and it arises from the fact that there are degenera-
cies in the unperturbed wave function that were neglected in
the above analysis.

It is easiest to see the origin of the degeneracies and how
to properly treat them by examining the perturbation theory
of the single-particle energy levels. Wigner-Brillouin pertur-
bation theory is used, because it automatically removes the
singularities. The ground-state energy is found by simply
filling up the lowest available single-particle energy levels in
the system. These energy levels can be expanded in a pertur-
bation series, which yields

2Q-1
— 2

"L EKU W) —e

2
E(k,U {w;})= e(k) + IW(2mn/Q)|

- 27Tn) '
Q
8

to second order inU. The quasiparticle energy
E(k,U,{w;}) appears on both sides of E@), because one
must self-consistently solve for the energy in a Wigner-
Brillouin perturbation-theory expansion. The equivalent
Rayleigh-Schrdinger expansion would replacg(k) by
€(k) in the right hand side of8), which produces a singu-
larity whenk= —7n/Q, because(k) = e(—k).

At this point, textbooks note that the dominant term in the
sum overn, in the right-hand side of Eq®8), is the term
wherek+27n/Q is closest to Zr— K, i.e., it is the term with
n closest toQ(1—k/#). If the other terms are neglected,
then Eq.(8) reduces to a quadratic equation that can be
solved exactly. This procedure is sometimes called nearly
degenerate perturbation theory, because it produces the cor-
rect secular equation in the degenerate case.

8wti=1 sin(wn/Q) : .
However, we choose to proceed in a more precise manner
sin(n/Q) — sin( mpy) in the case where the value of the interaction is much smaller
n| — - +0(U?) than the subband widtbh <#t/Q. In this case, the effect of
sin(an/Q) + sin(mpe) the additional terms can be treated in a perturbative fashion,
(7)  which gives
|
27n\] U?
E(k,U,{Wi})Z—t COQ(‘FCO% k— T) +Tfn(k)
27n|| U? 2 U [2mn)|[?
t\/[t COﬂ(—COS(k—T) -+ W(T +0(U?), (9)
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with U?/t, because the square root in HE) can always be ex-
panded in a convergent power serieslinHowever, no such
L W(Zﬂm) perturbation-series expansion can be made if the Fermi en-
R ergy lies within one of the band gaps. In this case, the
f(k):= T a= 2mm (10) ground-state energy actually has WInU dependencé,
m#n COK— cos( k— T) which is always larger than any ordér? dependence for
small enoughJ.
for w(n—3)/Q<k<m(n+3)/Q. The minus sign is for the We illustrate the origin of th&J?InU terms in the expan-
subband energy wittk— 7n/Q from below, and the plus sion for the ground-state energy for rational electron densi-
sign is fork—7n/Q from above. This form for the quasi- tiespe=(p/q) with p relatively prime tog. We consider any
particle energies iexact for all UwhenQ=2, but is pertur- ion configuration with a period) that is a multiple ofq.
bative for all higher periods. This guarantees that there will be a band gap at the Fermi
The ground-state energy is found by summing up all ofmomentumke= 7p.. The ground-state energy is
the quasiparticle energies wittk|<kg=mp, (kg is the
Fermi wave vector Since the quasiparticle energies repro-

duce the noninteracting result whéh=0, the zeroth- and Egs(u'pe’{wi}):|kng E(k,U.{wi})

first-order terms are correctly produced by this summation.

We want to concentrate on the higher-order terms. The solu-

tion for the quasiparticle energies reveals that a generic :_J E(k,U,iwi})dk. (12)

periodQ configuration will break intoQ subbands. The

band gaps are equal tdJ2W(27n/Q)| and are symmetri- Since the band gaps are symmetric to lowest order, the ef-
cally displaced to lowest order; the ordéf correction leads fects of the lower filled subbands cancel, and th&nuU

to asymmetries in the subband structure. If the Fermi energgontribution arises entirely from filling the uppermost sub-
lies within a subband, then it is easy to show that forband. Therefore, th&l2InU contribution comes from the in-
U<#t/Q the shift in the ground-state energy is of ordertegral

2 2

1 (7pe 2
+ T|W(277Pe)|2d k. (12

li=—— \/[t[coi—cos(k—%rpe)]—U—fp(k)
12Q)] t

™ 77[P97 (

Use of the identity cds-cosk—2mp.)=—2 sinmpsSink—mp,) and shifting the integration rande— —k+ 7rp, yields

-4

2
+U2|W(2mpe)|?dk. (13

2tsinmrpSink — p( mpe—K)

The U?InU behavior originates from the region near the ori- not multiples ofq, since those states only havéJa correc-

gin andf ,(mp.—k) does not depend strongly upérin this  tion to their ground-state energy, because the Fermi level
region, so we can approximate the integral by replacingloes not lie within a subband gap.

sikk—k and fy(mpe—K)—f,(mpe). The substitution

k—>[U|W(21-rpe)|smh<+(U2/t)f (2t sinmpy) yields an inte-

grable form forl, which contains a constant term and a lll. PHASE-SEPARATION ANALYSIS

U2InU term. The smallJ expansion for the ground-state en-

We are interested in finding the ground state of the
ergy then becomes

Falicov-Kimball model as a function of the electron and ion
densities. The analysis is based on the expregdidnof the
ground-state energy and is exact in the framework of pertur-
bation theory. To make the results of this section rigorous,
2 we would have to prove that the remainder term in @d)
1 W2mpe)| UZInU +O(U?) is indeedO(U?) uniformly in g and{w;}.
4wt sinmpe ’ The perturbative expansion in E(L4) depends orp, in
(14) the zeroth-orderterm, which is aconvexfunction of the elec-
tron density. Therefore, fdd =0, phase separation can only
which contains ndf, dependence. The above form is only occur between two different ion configuratiotiat have the
valid for U< wt/Q. This perturbative expansion shows that same electron densiiy, as the pure phase
the ground state will be found by determining the periodic Let us examine the effect of the first-order term. To order
configuration{w;} that maximizes the square of the structureU, Eq. (14) is a concave function ofg(,p;) and thus the
factor [W(2mp,)|? at twice the Fermi momentum. Further- ground state will be a mixture of two phases with densities
more, it eliminates all configurations with perio@sthat are  (pg,pi{) and (pa.pi). We set pe=api+(1—a)ps,

2t
EgdU.pe Awi})=— ?Smﬂ'pe_ Upepi
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pi=ap/+(1—a)p!, andp.=pe+ Spe. Since—sin(mp,) is electron density is fixed in all candidate ground-state con-
figurations, the criterion for selecting the ground-state con-
figuration is to maximize the square of the structure factor
|W(2mpe.{w;})|?, including the possibility that phase-
separated mixtures may be needed in the maximization.

The construction of the maximum square structure factor
aE(pl.pl)+(1—a)E(pL,p}) (15 s a straightforward exercise for each phésg}. Consider a
rational electron densitp.=(p/q) with p relatively prime
to g and a rational ion density;= (p; /q;) with p; relatively

Up, prime toq; . Then the maximum diw|? is achieved with the
Spe=o—ri——, pI'=0, (16)  following  periodQ ion  configuration’  (with
2t sin(mpe) Q= lem{q,q;}=:s0). We define theg numbersr; by

ar;d the decrease in the ground-state eneggy is of the order
U<. This is negligible in comparison to tHg“InU term, so L o
one can assumép.=0 at this order. (prj):=j mody, j=0.1,...0-1, (a7

It is the coefficient of theU?InU term that determines
which ion configuration yields the lowest energy. Since theand setw;=1 for

convex, then fold =0, we havesp.=0 and the probability
that a given site is occupied by an ion gs. Hence, dpe
tends to zero akl—0. Furthermore, one can check that the
minimum of

(at first ordey is attained for

i=rj+mgq, j=0,1,...p—1, m=0,1,...,s—1, n=intfqpi],

i=r,+mg, m=any(Qp;—sn) numbersinthesdD,1,...s—1}. (18

Note that the above construction is not necessarily unique 8keh but every configuration constructed in such a fashion
will have the same square structure fadive orderU? corrections to the energy should split any remaining degenejatties
is easy to verify that the above construction does sati¢f@)=p; and

18 (j—Kk)
|W<2wpe,pi)|2=@jgl ijkcos{ZWpeT}

_n—QPi+(n—QPi)2+ 1 1+(gpi—n—1)cod27n/q)—(gqp;—n)cog27(n+1)/q] 19
B 92 297 sirflq '

In the special case where=1, so thatn=qp;, the above isfies g/q<p;<(p’+1)/q for some integer f Then a mix-

form simplifies to ture of ionic phases with ion densities/g and (p’ +1)/q
will have a larger square structure factor than the pure
, 1 (1—cos2mp;) phase with ion density; .
|W(27pe,pi)| 2@ sitalq Proof: We need to show that the maximal square structure
. factor in Eq.(19) is locally convex. To do this we must
1 sirfap; examine the condition for convexity, by computing
=P etag D (20)
g“ sinw/q "2

Note that|W(2mp.,p;)|? depends orp, only through the
denominatorg. This fact greatly simplifies the analysis be-

, p
C=(p +1—0|pi)‘W(27Tpe.E

low. +(q ._pr) W(Z’IT p,+1 ?
The ion configuration that maximizes the square of the P Pe:
structure factor is identical to Lemberger's most- 2
homogeneous configuratithin the neutral case;=p,. In —|W2mpe,pi)|*. (22)

the nonneutral cases, the maximal ion configuration satisfiel$ C>0, then the square structure factor is locally convex,
uniform-distribution propertié$ in which the configuration and the lemma will have been proven. Substituting E49).

is composed of clusters of ions, with only islands of dize and (200 into Eq. (21 vyields C=[gpi—p’
and|—1 appearing. Furthermore, these islands are “most+ (qp;—p’)?]/q%, which is greater than zero for
homogeneously” distributedthe most-homogeneous con- 0<gp;—p’<1, which is a condition that holds by hypoth-
figuration is the special case with islands of size 1 esis. Q.E.D.

Lemma (local convexity of the squared structure factor). CommentThe above lemma shows that the search for a
Assume that the electron density is ratiopal= (p/g) with  maximal square structure factor can be limited to those ion
p relatively prime to ¢ and that the ion density is also configurationghat possess the minimal periodicity q needed
rational p;=(p; /q;) with p; relatively prime to ¢, and sat-  to produce a gap at the Fermi levét has not determined the
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global maximum. That search will be completed below. The
lemma does allow us to immediately obtain in the framework 0.4 7 /74 /3 7 ' ]
#

of perturbation theory our first result about phase separation
in the Falicov-Kimball model.

Property 1 (minimal-period phase separation). If the elec-
tron and ion densities satisfy the hypothesis of the lemma,
then for U sufficiently small (i.e., Ugl), the ground-state
configuration is a mixture of two period-q phases, with den-
sitiesp; =(p’/q) and p{'=(p"/q) (p’ or p” can be equal to
0 or Q). 0.25 T I

Indeed, the perturbative analysis of Sec. Il established that 0 0.1 0.2 0.3 0.4
in the limit U—0, the ground-state configuration is deter- .
mined by maximizing the square of the structure factor Electron Density o,
evaluated at twice the Fermi wave vector. The above lemma
shows that such a search can be limited to a search over ion FIG. 1. Stable periodic configuration farmolecules, i.e., states
configurations withp/ =(p’/q), p’=0,... q. This means With pi=np.. The valuesn=1 (solid doy, n=2 (open square

that if the ion density does not equall/g, then it must phase N=3 (Solid triangle, n=4 (open dof, n=>5 (solid squarg n=6
pen trianglg andn=7 (x) are all plotted. The phases are stable

,Sjizazr;/tg)Ir:r?dai(r;::xélérr]esi(:{e?ﬁgsé%a;n3\./6;,[?;%;8: f(:ce)rr:]sny ?E)?k\]/:p; 25 indicated by the solid lines. The dashed lines are guides
the lemma that we only need to search for the ground state ye.
among the ion configurations with period] [given
pe=(p/q) with p relatively prime toq], therefores=1 and B,
the square structure factor is given by E2Q). sinm—>| =
The function (coszp—1) is concave forp;[0,3]U pi+1
[2,1] and convex forp; e[ 3,3]. Hence, ifp; lies in the in-  and unstable if Eq(24) is not satisfied.
terval[0,5] U[ 2,1], the pure-phase cannot be stable against To summarize, giverp/q andp;/q, the largest rational
phase separation. with denominatorq that is smaller thamp., if Eq. (24) is
The convex envelope of the function (ceg?—1) is  satisfied, then forp;=p;/q [respectively, *(p;/q)] the
given by ground-state configuration is periodic, given by ELy), and
for all p;<(p;/q) the ground state is a mixture wigj =0

0.35 F i

lon Density p;
o
(¢}
T
|

~ 1/2 _~
: +1
L) sinmr p'q , (24)

pi and p{'=(p;/q) [respectively, for allp;>1—(p;+1)/q,
(cos2mpc—1) = for 0<pi=pe, p! =1 andp”=1— (P, /q)]. On the other hand, if Eq24) is
not satisfied, then for ap;<(p;+ 1)/q the ground state is a
(cos2mp;—1) for p.<p;<1—p¢, mixture with p/ =0 and p{'=(p;+1)/q, and similarly for
pi>1—(pi/q).
1—p; In Table I, we give the values gb; for q=3-34, and
(cos2mp.—1) for 1—pc<pi<1, (22)  indicate whether the pure phase wjth=p;/q is stable 6)
¢ or unstable @). For example, the state with,=1: iS un-
wherep,~0.3710 is the solution to the equation stable for anyp; < or p;> 1 and stable fop;= %, %, %,
2 . The state withp,= 2 is unstable fomp;<3 or p;> ¢ and
2mp.=tanmp,. (23)  stable forp;=2, 3, 3, 5. In these two examples, the neutral

o ] . ) statep,= p; is unstable. On the other hand, fog=5<pe,
Thus, if p; is a rational in the intervélp.,1—p.], the pure  the neutral state is stable.
phase withpe=(p/q), pi=(p;/q) is stable. o In general, the neutral statp,=p; is unstable for
~ Let us now analyze what happens for densiiesn the ;. <, " with an infinite number of exceptiorigiven by Eq.
interval [0,p.]. The casg1—p,1] is similar. The lemma (24)] for which the first few electron densities agg= 2, 2,
states that we must consider only the ion densities in th(aift_1 , 508 L I 8 10 U The state with diatomic mol-
discrete se{p;=(p'/a)}. Given pe=(p/a), let (pi/q) be  ecylespy,=2p, is unstable fop; < p. with an infinite number
the largest rational in the s¢p’/q} which is smaller than ¢ exceptionsp,=3, 2, 2 5 51 Similarly, in the
pc- From the construction of the convex envelope, for anyiatomic casep;=3p., the exceptional electronic densities
pi<pi/q we know that the ground-state configuration is afgr which the pure state is stable grg=3, 2, 2, 2 ... In
mixture of the empty configuratiop; =0 and a periodt  any case, it appears that for asy-0 and for any state with
configuration with density{=(p;/q) or (p;+1)/q. n moleculesp;=np,, there is a finite number of exceptions

To decide between the two possible valuespf we in[3 p.— €] as shown in Fig. 1.

have to determine wheth@f/q corresponds to a pure phase, These observations lead us to the following result:
or a mixture of the empty state and a peripdonfiguration Property 2. If the electron density is rational,
with density ;+ 1)/q. Using Egs.(14) and(20), it follows  p.=(p/q), with p relatively prime to g and the ion density

that the pure phasg,/q is stable if is pi=(pi/q). Then,
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TABLE I. Largest integeip;, such that p;/q) <p.~0.371. The letters andu denote whether Ed.24) is satisfied §), implying the
pure phase;=(p;/q) is stable, or is not satisfie@), implying the pure phasg;=(p;/q) is unstable.

g 3456 7 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

»m 11122233 4 4 45 5 5 6 6 7 7 7 8 8 8 9 9 10 10 10 11 11 11 12 12
S SuUSUUS U SS U S U U S U S S U S U U S U s s U sS U u s u

(@ For (pi/q) e[pe.l—pd, or (pi/q)=(p;/q) with B; argument is true for a nearly free electron model only if the
solving Eq. (24), the ground-state configuration is periodicion density is close enough to half filling. For ion densities
with period q. away from half filling, the system will phase separate into a

(b) For (pi/a)<pe (or (pi/g)>1—p) and (p;/q) mixture of states that have the same electron density, but
#(p;/q) with p; solving Eq. (24), the ground-state configu- have different ion densitiesp(=0 andp; close to 0.371 or

ration is a mixture of the empty lattigef =0 and the period- Pi=1 andp; close to 0.629 It is possible that this phase

q configuration withp!' = (B, +1)/q, (respectivelyp’ =1 and separation can be observed in quasi-one-dimensional metals

o =1 (P; +1)/a]) ! ' ’ ! and insulators. We are not aware of any experiments that
i [ .

have seen this phase separation. In fact, because entropy ef-
1 , 3 -
' © I_:or ‘.”‘” (Py /.Q)<4 or (p./q)> + the ground state con fects will suppress such phase separation at finite tempera-
figuration is a mixture like in (b).

. . . . tures, it may be problematic to observe this behavior experi-
Comments(i) The exceptional ion densities can all be ybep P

found by studying Eq(24). We have not been able to deter- mentally.

mine an explicit formula for these exceptional ion densities Our results hold only for) sufficiently small, because
P P they are based on perturbation-theory arguments that maxi-

E!\%h-le—??sptr;]aesfr;isxetﬁza;?isr;aet?allﬁcngt;?mnelnesrlrjwlattmlgat?itsge’ bH1 ze the leading corrections of the ground-state energy as a
by function of U. Since these corrections of ordgfinU will

and an insulating stakehe periodg phase withp filled sub- compete with ordet)? corrections for finite values af, the

ba[ndé.i_(m)] Iann dﬂ;gr ?heeUt“r:J(cZa?i?)pn ‘;T,p\i/; Sésf%r tr?gnf[)er- phase separation discovered here may rapidly disappear as
€LPo > Pc P . U increases. Numerical evidence indicates that this is true
vals[0,0.] or [1—p.,1], the ground state is most homoge-L

neous, since the state with the maximal structure factor sal or the densities betweehand, but larger values ot are
' ecessary for the densities near 0 or 1.

fg'ﬁﬁs ut:'aetiorl:ngg{;?rgggtgbuﬂg&bgrrogf,gyé:o:st'ricgé?mthe Furthermore, since the ground state is known to be either
9 y g : a different phase-separated st@t®nneutral casésor the

these pure states, it is (_a>_<pected that the ground state does W&st—homogeneous stateeutral casgfor large U, the spin-
have any phase transition wha increases from+0 to less Falicov-Kimball model must have a phase transition as a

+e2, since, for any rational density, the ground state is function of U. In the neutral case, when the ground state is

known 1o be the most homogeneous stateUosufficiently not a phase-separated state, but is the Peierls-type state that

large. This expectation is also conflrmed for Im%me‘j'ate'maximizes the band gap at the Fermi level, it is possible that
values ofU (U=0.1) by exact numerical calculatiofAsUs- the ground state has no phase transitions ferld< -+,

ing the same argument for .the regular vaIue_; pfin since the smald ground state is identical to the large-
[0pc] Or[1=pc.pcl. there will be a phase transition 85 14 state. We are unable to prove this conjecture here.
vgrles.(w) These results only hold fad S“ff"z"e”“y small Our analysis was restricted to the spinless single-band
with respect to X, wherep,=(p/q), for theUInU term 10 £ kimball model, but the general ideas may also hold
dominate the perturbation expansion. Fer=(p/q) and for more complicated models such as tertiary alloy problems
pi=(pi/a)#pe, the phase separation that may occur for,herew. would assume three different valyas the static
S!’“a” U. rapidly disappears ad is increased from 0 te> to Holstein modekwherew; is continuoug, but the determina-
ylelq .elther a pure state or the segregated .pﬁ%?lfmr U ion of the maximal structure factor becomes much more
sufficiently large, it is expected that the state is either ”eu”aiomplicated, since one must maximize with respect to both
or the segregated phase. the phase and the amplitude, as opposed to maximizing only

with respect to the phase, as we did here.
IV. CONCLUSION
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