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The ground states of the one-dimensional Falicov-Kimball model are investigated in the small-coupling
limit, using nearly degenerate perturbation theory. For rational electron and ion densities, respectively, equal to
p/q, pi /q, with p relatively prime toq andpi /q close enough to12, we find that in the ground state the ion
configuration has a periodq. The situation is analogous to the Peierls instability, where the usual arguments
predict a period-q state that produces a gap at the Fermi level and is insulating. However forpi /q far enough
from 1

2, this phase becomes unstable against phase separation. The ground state is a mixture of a period-q ionic
configuration and an empty~or full! configuration, where both configurations have the same electron density to
leading order. Combining these results with those previously obtained for strong coupling, it follows that a
phase transition occurs in the ground state, as a function of the coupling, for ion densities far enough from
1
2 . @S0163-1829~96!00924-1#

I. INTRODUCTION

The theory of the electronic band structure of solids is one
of the oldest theories in condensed-matter physics, dating
back to 1928 when Bloch proved the existence of electronic
bands in solids.1 It was soon discovered that most metals
could be described with thenearly free electron model,
where the periodic ion potential felt by the electrons is weak.
The initial emphasis in the development of band theory fo-
cused on one-dimensional models, where both transfer-
matrix results2 and exact solutions3,4 could be found. It was
only after the development of the pseudopotential method5 in
the 1960’s that the success of the nearly free electron model
was understood.

In the 1950’s, Peierls6 reexamined the perturbation theory
for the nearly free electron model and found that, in one-
dimension, astatic distortion would always reduce the en-
ergy of a solid, because the opening of a gap~at the Fermi
level! in the electronic band structure would lower the en-
ergy of the occupied electronic states and raise the energy of
the unoccupied states. Such a distortion would produce an
insulator from the parentmetaland Peierls’s work led to the
conclusion that there can never be a one-dimensional metal.
Fröhlich7 used nearly degenerate perturbation theory to show
that the decrease in the electronic energy was on the order of
d2lnd for a periodic distortion of amplituded, while the
elastic energy was on the order ofd2, so the net effect of the
distortion was to reduce the ground-state energy~if d was
small enough!. Two chemists, Longuet-Higgins and Salem,8

independently arrived at the same conclusions by examining
a general class of Hamiltonians for ring-shaped molecules.
Note that these conclusions explicitly neglect the quantum

fluctuations of the phonons about the distorted state, a fea-
ture which can lead to a stabilization of the undistorted
phase, as illustrated in recent rigorous work on the one-
dimensional Holstein model.9

The Peierls distortion is generally studied at half filling
for the electrons, in which case the distortion leads to a dou-
bling of the unit cell. The conventional wisdom is that the
lowestperiodic structure that produces a gap at the Fermi
level will be the true ground state, or, in other words, the
Peierls distortion is stable against any higher-order distor-
tions. This result has been recently proven to be true at half
filling.10,11

In one dimension, the restriction to half filling is not nec-
essary, with the result that a periodic distortion that produces
a gap at the Fermi level will always lower the total energy of
the system. Furthermore, one can generalize Peierls’ argu-
ments to include other models, such as models for alloy for-
mation. Historically, these alloy models were studied before
the models of lattice distortions, where Hume-Rothery12

pointed out that certain alloys form only when the electron-
atom ratio fell within very narrow ranges. In one-dimension,
Peierls-like arguments establish the Hume-Rothery rule,
since a periodic arrangement of the ions will always produce
the largest gap at the Fermi level.

The simplest model of a binary alloy consists of one band
of itinerant electrons interacting with static ions:

H52t(
i51

N

~ci
†ci111ci11

† ci !2U(
i51

N

ci
†ciwi , ~1!

whereci
† is the creation operator for an electron at sitei ,

wi is a classical variable that is 1 if the site is occupied by an
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A ion and 0 if the site is occupied by a B ion. The hopping
integral ist andU denotes the difference in on-site energies
for an electron on a B site minus that of an electron on an A
site. The electron density,re , is the number of electrons per
site @re5(1/N)( i^ci

†ci&#, and similarly the ion densityr i is
the number of A ions per site@r i5(1/N)( iwi #, with N the
number of lattice sites. We are interested in the thermody-
namic limit, and so we takeN→`, but maintain finite values
for both re and r i . In the alloy picture (U.0), one can
envision that the electrons are donated by one of the ionic
species~say the A ion!, in which case a study of the neutral
case~wherer i5re) becomes most relevant.

This model is a simplified version~spinless, single band!
of the model proposed by Falicov and Kimball13 to discuss
semiconductor-insulator transitions in rare-earth oxides and
borides. Later, the same model was employed to study order-
ing of rare-earth ions in mixed-valence systems.14 More
recently,15 work on the Falicov-Kimball model has focused
on another aspect, that of periodic crystal formation. In this
language the A sites are ions, and the B sites are empty sites.
The question studied is whether the mutual interaction of the
ions and electrons, coupled with the fact that the electrons
satisfy the Pauli exclusion principle, causes a periodic ar-
rangement of the ions to be the ground-state configuration.
This is the language that we adopt in this contribution.

The Hamiltonian in Eq. ~1! exhibits two different
symmetries:15 an ion-occupied-empty-site symmetry and an
electron-hole symmetry. The first symmetry relates the
ground-state energy~per site! for the configuration of ions
$wi% to the energy of the conjugate configuration
$wi* %:5$12wi%,

Egs~U,re ,$wi* %!5Egs~2U,re ,$wi%!2Ure , ~2!

while the second symmetry employs the unitary transforma-
tion ci→(21)idi

† that changes electrons to holes, yielding

Egs~U,12re ,$wi%!5Egs~2U,re ,$wi%!2Ur i . ~3!

These two symmetries allow restriction to the regionre<
1
2

andU.0, without a loss in generality.
In the crystallization picture, the most natural assumption

to make is that the number of electrons equals the number of
ions, and the system is charge neutral (re5r i). However,
the nonneutral case is also of interest, since the electron den-
sity can be modified by either doping the system with impu-
rities, or by allowing the system to be coupled to an electron
resevoir. The latter picture is important in making contact
with quasi-one-dimensional systems, where the neglected
bands act as an electron reservoir, allowing charge transfer
into or out of the one-dimensional chains.

The Falicov-Kimball model has been actively studied in
recent years, ever since Kennedy and Lieb15 and Brandt and
Schmidt16 independently proved that the period-two phase is
the ground state for allU when the electron and the ion
densities are both equal to12. Most emphasis has concen-
trated on the one-dimensional model, where numerical
studies17 indicated that the system phase separated into the
segregated phase~where all the ions cluster on one side of
the lattice! for large enough interaction strength ifreÞr i or
re1r iÞ1. In the other cases, wherere5r i ~the neutral
case! andU→`, or re1r i51 ~the mixed-valence case! and

U→2`, it was conjectured that the most homogeneous
phase was the ground state. These two conjectures have al-
ready been proven to be true.18–20Another conjecture, based
upon the many-body version of Rayleigh-Schroedinger per-
turbation theory, stated that in the small-U limit the ground-
state configuration will be the configuration that produces the
largest gap at the Fermi level, and this state was shown to
have the smallest periodicity that could produce a gap at the
Fermi level ~consistent with the Peierls picture!. Recent
analytical21 and numerical22 work on the neutral case has
shown, however, that at low electron density, there is a ten-
dency for molecule formation, rather than a homogeneous
distribution of the ions, and a phase-separated configuration
of ions may yield a lower energy than a pure periodic phase.

In the spirit of the nearly free electron model, we establish
two results in the framework of perturbation theory~which
are valid forU sufficiently small!: First, we show that if the
electron density isre5(p/q) with p relatively prime toq,
andr i5pi /qi , with (p8/q),r i,(p811)/q for some inte-
ger p8, then the ground-state configuration is a phase-
separated mixture of period-q phases, and possibly the empty
~or full! lattice.

The second result is a statement about the stability of the
pure period-q phase forre5p/q ~with p relatively prime to
q) andr i5pi /q. For r iP@rc,12rc# with rc'0.371@solu-
tion of Eq. ~23!#, the ground state has periodq and is the
most homogeneous configuration; it also has the smallest
periodicity needed to produce a gap at the Fermi level. On
the other hand, if the ion densityr i5pi /q is smaller than
1
4 or greater than

3
4, then the ground state is always a phase-

separated mixture of a phase withre5p/q, r i850 ~or
r i851) and a period-q phase withre5p/q, r i95pi9/q a ra-
tional that is closest torc in a well-defined sense. For
r i5pi /q,rc or r i5pi /q.12rc , the same is true, i.e., the
ground state is a phase-separated mixture, except for special
values ofr i @those satisfying Eq.~24!# for which the period-
q phase is stable.

These results show that the close analogy with the Peierls
instability is valid only for rc,r i,12rc . We view the
analogy as follows: ForU50 ~and re5p/q, r i5pi /q
fixed!, any ion configuration is a ground state, i.e., the prob-
ability to find an ion at a given site is uniform and equals
r i . This uniform-density state is the ‘‘undistorted state,’’ has
no gap in the electronic spectrum, and is metallic. ForU
Þ0, sufficiently small, a particular ion configuration is se-
lected, which has periodq. It corresponds to the Peierls-
Frölich ‘‘distorted state,’’ which has a gap at the Fermi level
and is insulating. Forr i,rc or r i.12rc , the ground state
is ~in general! phase separated and is a mixture of a metallic
and an insulating state. This situation does not have a coun-
terpart in the standard theory of Peierls and Fro¨hlich.

Finally, the above results establish the existence of a
phase transition in the ground state of the Falicov-Kimball
model whenU is varied. For densities such that the ground
state is a phase-separated mixture~for U sufficiently small!,
there must be a phase transition asU increases. Indeed, for
U sufficiently large, the ground state is known to be either
the most-homogeneous phase or the segregated phase~which
is a different phase-separated state!.
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Our presentation is organized as follows: in Sec. II the
perturbation theory is developed showing theU2lnU behav-
ior of the ground-state energy for smallU; in Sec. III the
perturbation-theory results are analyzed to show when pure
phases are the ground state and when the ground state is
phase separated; a discussion follows in Sec. IV.

II. PERTURBATION THEORY

It is most convenient to rewrite the Falicov-Kimball
Hamiltonian in a momentum-space representation before de-
veloping a perturbation-series expansion for the ground-state
energy. Using the standard Fourier transform

ak :5
1

AN(
j51

N

e2 ik jcj ~4!

~with the lattice spacing set equal to 1! yields

H5(
k

@e~k!2UW~0!#ak
†ak2U (

kÞk8
W~k2k8!ak

†ak8

~5!

for the Hamiltonian of the Falicov-Kimball model in mo-
mentum space. The wave vectorsk andk8 are restricted to
the first Brillouin zone (2p,k<p) and e(k):522t cosk
is the unperturbed band structure.W(2pn/Q) is the struc-
ture factor of the period-Q ion configuration$wi%,

W~2pn/Q!:5
1

Q(
j51

Q

e2 i ~2pn j /Q!wj , ~6!

defined forn50,1, . . . ,Q21. ~It is notationally simpler here
to define thek vectors with k52pn/Q to sometimes lie
outside of the first Brillouin zone. Of course, translation by
22p will shift these vectors back into the first Brillouin
zone.! Note thatW(0)5r i by definition.

We begin by performing the many-body version of
Rayleigh-Schro¨dinger perturbation theory with the double-
summation term in Eq.~5! acting as the perturbation. The
analysis is straightforward,17 requiring a momentum-space
integral that can be evaluated analytically, yielding

Egs~U,re ,$wi%!52
2t

p
sin~pre!2Urer i

1
U2

8pt (n51

Q21 uW~2pn/Q!u2

sin~pn/Q!

3 lnU sin~pn/Q!2sin~pre!

sin~pn/Q!1sin~pre!
U1O~U3!

~7!

for the ground-state energy of configuration$wi%.
The perturbative expansion in Eq.~7! has a singularity

when the electron density is rationalre5p/q and the ion
configuration has a period that is a multiple ofq ~with the
exception of those ion configurations, for which the relevant
structure factor vanishes!. It was argued heuristically in Ref.
17 that the configuration with the maximal singularity~i.e.,
with the maximal value ofuW(2pre)u) will be the ground-
state configuration, and this result agreed with the numerical
work. However, such logic is flawed, because the expansion
in Eq. ~7! is valid for U/t!u lnusin(pn/Q)2sin(pre)uu, which
cannot hold when an integral number of electronic subbands
are filled @i.e., whenre5(p/q)#. This result was known by
Fröhlich,7 and it arises from the fact that there are degenera-
cies in the unperturbed wave function that were neglected in
the above analysis.

It is easiest to see the origin of the degeneracies and how
to properly treat them by examining the perturbation theory
of the single-particle energy levels. Wigner-Brillouin pertur-
bation theory is used, because it automatically removes the
singularities. The ground-state energy is found by simply
filling up the lowest available single-particle energy levels in
the system. These energy levels can be expanded in a pertur-
bation series, which yields

E~k,U,$wi%!5e~k!1
U2

t (
n51

Q21 uW~2pn/Q!u2

E~k,U,$wi%!2eS k1
2pn

Q D ,
~8!

to second order in U. The quasiparticle energy
E(k,U,$wi%) appears on both sides of Eq.~8!, because one
must self-consistently solve for the energy in a Wigner-
Brillouin perturbation-theory expansion. The equivalent
Rayleigh-Schro¨dinger expansion would replaceE(k) by
e(k) in the right hand side of~8!, which produces a singu-
larity whenk52pn/Q, becausee(k)5e(2k).

At this point, textbooks note that the dominant term in the
sum overn, in the right-hand side of Eq.~8!, is the term
wherek12pn/Q is closest to 2p2k, i.e., it is the term with
n closest toQ(12k/p). If the other terms are neglected,
then Eq. ~8! reduces to a quadratic equation that can be
solved exactly. This procedure is sometimes called nearly
degenerate perturbation theory, because it produces the cor-
rect secular equation in the degenerate case.

However, we choose to proceed in a more precise manner
in the case where the value of the interaction is much smaller
than the subband widthU!pt/Q. In this case, the effect of
the additional terms can be treated in a perturbative fashion,
which gives

E~k,U,$wi%!52tFcosk1cosS k2
2pn

Q D G1
U2

t
f n~k!

6AH tFcosk2cosS k2
2pn

Q D G2
U2

t
f n~k!J 21 U2

t UWS 2pn

Q D U21O~U3!, ~9!
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with

f n~k!:52
1

4(
m51
mÞn

Q21 UWS 2pm

Q D U2
cosk2cosS k2

2pm

Q D ~10!

for p(n2 1
2)/Q,k,p(n1 1

2)/Q. The minus sign is for the
subband energy withk→pn/Q from below, and the plus
sign is for k→pn/Q from above. This form for the quasi-
particle energies isexact for all UwhenQ52, but is pertur-
bative for all higher periods.

The ground-state energy is found by summing up all of
the quasiparticle energies withuku,kF5pre (kF is the
Fermi wave vector!. Since the quasiparticle energies repro-
duce the noninteracting result whenU50, the zeroth- and
first-order terms are correctly produced by this summation.
We want to concentrate on the higher-order terms. The solu-
tion for the quasiparticle energies reveals that a generic
period-Q configuration will break intoQ subbands. The
band gaps are equal to 2UuW(2pn/Q)u and are symmetri-
cally displaced to lowest order; the orderU2 correction leads
to asymmetries in the subband structure. If the Fermi energy
lies within a subband, then it is easy to show that for
U!pt/Q the shift in the ground-state energy is of order

U2/t, because the square root in Eq.~9! can always be ex-
panded in a convergent power series inU. However, no such
perturbation-series expansion can be made if the Fermi en-
ergy lies within one of the band gaps. In this case, the
ground-state energy actually has aU2lnU dependence,7

which is always larger than any orderU2 dependence for
small enoughU.

We illustrate the origin of theU2lnU terms in the expan-
sion for the ground-state energy for rational electron densi-
tiesre5(p/q) with p relatively prime toq. We consider any
ion configuration with a periodQ that is a multiple ofq.
This guarantees that there will be a band gap at the Fermi
momentumkF5pre . The ground-state energy is

Egs~U,re ,$wi%!5 (
uku,kF

E~k,U,$wi%!

5
1

pE0
pre

E~k,U,$wi%!dk. ~11!

Since the band gaps are symmetric to lowest order, the ef-
fects of the lower filled subbands cancel, and theU2lnU
contribution arises entirely from filling the uppermost sub-
band. Therefore, theU2lnU contribution comes from the in-
tegral

I :52
1

pEp@re2~1/2Q!#

pre AH t@cosk2cos~k22pre!#2
U2

t
f p~k!J 21 U2

t
uW~2pre!u2dk. ~12!

Use of the identity cosk2cos(k22pre)522 sinpresin(k2pre) and shifting the integration rangek→2k1pre yields

I52
1

pE0
p/2QAF2tsinpresink2

U2

t
f p~pre2k!G21U2uW~2pre!u2dk. ~13!

TheU2lnU behavior originates from the region near the ori-
gin andf p(pre2k) does not depend strongly uponk in this
region, so we can approximate the integral by replacing
sink→k and f p(pre2k)→ f p(pre). The substitution
k→@UuW(2pre)usinhx1(U2/t)fp#/(2t sinpre) yields an inte-
grable form for I , which contains a constant term and a
U2lnU term. The small-U expansion for the ground-state en-
ergy then becomes

Egs~U,re ,$wi%!52
2t

p
sinpre2Urer i

1
1

4pt

uW~2pre!u2

sinpre
U2lnU1O~U2!,

~14!

which contains nof p dependence. The above form is only
valid for U!pt/Q. This perturbative expansion shows that
the ground state will be found by determining the periodic
configuration$wi% that maximizes the square of the structure
factor uW(2pre)u2 at twice the Fermi momentum. Further-
more, it eliminates all configurations with periodsQ that are

not multiples ofq, since those states only have aU2 correc-
tion to their ground-state energy, because the Fermi level
does not lie within a subband gap.

III. PHASE-SEPARATION ANALYSIS

We are interested in finding the ground state of the
Falicov-Kimball model as a function of the electron and ion
densities. The analysis is based on the expression~14! of the
ground-state energy and is exact in the framework of pertur-
bation theory. To make the results of this section rigorous,
we would have to prove that the remainder term in Eq.~14!
is indeedO(U2) uniformly in q and$wi%.

The perturbative expansion in Eq.~14! depends onre in
thezeroth-orderterm, which is aconvexfunction of the elec-
tron density. Therefore, forU50, phase separation can only
occur between two different ion configurationsthat have the
same electron densityre as the pure phase.

Let us examine the effect of the first-order term. To order
U, Eq. ~14! is a concave function of (re ,r i) and thus the
ground state will be a mixture of two phases with densities
(re8 ,r i8) and (re9 ,r i9). We set re5are81(12a)re9 ,
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r i5ar i81(12a)r i9 , andre85re1dre . Since2sin(pre) is
convex, then forU50, we havedre50 and the probability
that a given site is occupied by an ion isr i . Hence,dre
tends to zero asU→0. Furthermore, one can check that the
minimum of

aE~re8 ,r i8!1~12a!E~re9 ,r i9! ~15!

~at first order! is attained for

dre5
Ur i

2t sin~pre!
, r i950, ~16!

and the decrease in the ground-state energy is of the order
U2. This is negligible in comparison to theU2lnU term, so
one can assumedre50 at this order.

It is the coefficient of theU2lnU term that determines
which ion configuration yields the lowest energy. Since the

electron density is fixed in all candidate ground-state con-
figurations, the criterion for selecting the ground-state con-
figuration is to maximize the square of the structure factor
uW(2pre ,$wi%)u2, including the possibility that phase-
separated mixtures may be needed in the maximization.

The construction of the maximum square structure factor
is a straightforward exercise for each phase$wi%. Consider a
rational electron densityre5(p/q) with p relatively prime
to q and a rational ion densityr i5(pi /qi) with pi relatively
prime toqi . Then the maximum ofuWu2 is achieved with the
following period-Q ion configuration17 ~with
Q5 lcm$q,qi%5:sq). We define theq numbersr j by

~pr j !:5 j modq, j50,1, . . . ,q21, ~17!

and setwi51 for

i5r j1mq, j50,1, . . . ,n21, m50,1, . . . , s21, n5 int@qr i #,

i5r n1mq, m5any~Qr i2sn! numbers in the set$0,1, . . . ,s21%. ~18!

Note that the above construction is not necessarily unique whensÞ1, but every configuration constructed in such a fashion
will have the same square structure factor~the orderU2 corrections to the energy should split any remaining degeneracies!. It
is easy to verify that the above construction does satisfyW(0)5r i and

uW~2pre ,r i !u25
1

Q2 (
j ,k51

Q

wjwkcosF2pre
~ j2k!

Q G
5
n2qr i1~n2qr i !

2

q2
1

1

2q2
11~qr i2n21!cos~2pn/q!2~qr i2n!cos@2p~n11!/q#

sin2p/q
. ~19!

In the special case wheres51, so thatn5qr i , the above
form simplifies to

uW~2pre ,r i !u25
1

2q2
~12cos2pr i !

sin2p/q

5
1

q2
sin2pr i
sin2p/q

~s51!. ~20!

Note that uW(2pre ,r i)u2 depends onre only through the
denominatorq. This fact greatly simplifies the analysis be-
low.

The ion configuration that maximizes the square of the
structure factor is identical to Lemberger’s most-
homogeneous configuration20 in the neutral caser i5re . In
the nonneutral cases, the maximal ion configuration satisfies
uniform-distribution properties17 in which the configuration
is composed of clusters of ions, with only islands of sizel
and l21 appearing. Furthermore, these islands are ‘‘most-
homogeneously’’ distributed~the most-homogeneous con-
figuration is the special case with islands of size 1!.

Lemma (local convexity of the squared structure factor).
Assume that the electron density is rationalre5(p/q) with
p relatively prime to q, and that the ion density is also
rational r i5(pi /qi) with pi relatively prime to qi , and sat-

isfies p8/q,r i,(p811)/q for some integer p8. Then a mix-
ture of ionic phases with ion densities p8/q and (p811)/q
will have a larger square structure factor than the pure
phase with ion densityr i .

Proof:We need to show that the maximal square structure
factor in Eq. ~19! is locally convex. To do this we must
examine the condition for convexity, by computing

C5~p8112qr i !UWS 2pre ,
p8

q D U2
1~qr i2p8!UWS 2pre ,

p811

q D U2
2uW~2pre ,r i !u2. ~21!

If C.0, then the square structure factor is locally convex,
and the lemma will have been proven. Substituting Eqs.~19!
and ~20! into Eq. ~21! yields C5@qr i2p8
1(qr i2p8)2#/q2, which is greater than zero for
0,qr i2p8,1, which is a condition that holds by hypoth-
esis. Q.E.D.

Comment.The above lemma shows that the search for a
maximal square structure factor can be limited to those ion
configurationsthat possess the minimal periodicity q needed
to produce a gap at the Fermi level. It has not determined the
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global maximum. That search will be completed below. The
lemma does allow us to immediately obtain in the framework
of perturbation theory our first result about phase separation
in the Falicov-Kimball model.

Property 1 (minimal-period phase separation). If the elec-
tron and ion densities satisfy the hypothesis of the lemma,
then for U sufficiently small (i.e., Uq!1), the ground-state
configuration is a mixture of two period-q phases, with den-
sitiesr i85(p8/q) andr i95(p9/q) (p8 or p9 can be equal to
0 or q).

Indeed, the perturbative analysis of Sec. II established that
in the limit U→0, the ground-state configuration is deter-
mined by maximizing the square of the structure factor
evaluated at twice the Fermi wave vector. The above lemma
shows that such a search can be limited to a search over ion
configurations withr i85(p8/q), p850, . . . ,q. This means
that if the ion density does not equalp8/q, then it must phase
separate into a mixture of states, that have electron density of
re5(p/q) and ion densitiesp8/q andp9/q. It follows from
the lemma that we only need to search for the ground state
among the ion configurations with periodq @given
re5(p/q) with p relatively prime toq#, therefores51 and
the square structure factor is given by Eq.~20!.

The function (cos2pri21) is concave forr iP@0,14]ø
@ 3
4,1] and convex forr iP@ 1

4,
3
4]. Hence, if r i lies in the in-

terval @0,14]ø@ 3
4,1], the pure-phase cannot be stable against

phase separation.
The convex envelope of the function (cos2pri21) is

given by

~cos2prc21!
r i
rc

for 0<r i<rc ,

~cos2pr i21! for rc<r i<12rc ,

~cos2prc21!
12r i

rc
for 12rc<r i<1, ~22!

whererc'0.3710 is the solution to the equation

2prc5tanprc . ~23!

Thus, if r i is a rational in the interval@rc,12rc#, the pure
phase withre5(p/q), r i5(pi /q) is stable.

Let us now analyze what happens for densitiesr i in the
interval @0,rc#. The case@12rc,1# is similar. The lemma
states that we must consider only the ion densities in the
discrete set$r i5(p8/q)%. Given re5(p/q), let (p̃i /q) be
the largest rational in the set$p8/q% which is smaller than
rc . From the construction of the convex envelope, for any
r i, p̃i /q we know that the ground-state configuration is a
mixture of the empty configurationr i850 and a period-q
configuration with densityr i95( p̃i /q) or (p̃i11)/q.

To decide between the two possible values ofr i9 , we
have to determine whetherp̃i /q corresponds to a pure phase,
or a mixture of the empty state and a period-q configuration
with density (p̃i11)/q. Using Eqs.~14! and~20!, it follows
that the pure phasep̃i /q is stable if

sinp
p̃i
q

.S p̃i

p̃i11
D 1/2sinp p̃i11

q
, ~24!

and unstable if Eq.~24! is not satisfied.
To summarize, givenp/q and p̃i /q, the largest rational

with denominatorq that is smaller thanrc , if Eq. ~24! is
satisfied, then forr i5 p̃i /q @respectively, 12( p̃i /q)# the
ground-state configuration is periodic, given by Eq.~17!, and
for all r i,( p̃i /q) the ground state is a mixture withr i850
and r i95( p̃i /q) @respectively, for all r i.12( p̃i11)/q,
r i851 andr i9512( p̃i /q)#. On the other hand, if Eq.~24! is
not satisfied, then for allr i,( p̃i11)/q the ground state is a
mixture with r i850 and r i95( p̃i11)/q, and similarly for
r i.12( p̃i /q).

In Table I, we give the values ofp̃i for q53–34, and
indicate whether the pure phase withr i5 p̃i /q is stable (s)
or unstable (u). For example, the state withre5

4
15 is un-

stable for anyr i,
6
15 or r i.

9
15 and stable forr i5

6
15,

7
15,

8
15,

9
15 . The state withre5

2
9 is unstable forr i,

3
9 or r i.

6
9 and

stable forr i5
3
9,

4
9,

5
9,

6
9. In these two examples, the neutral

statere5r i is unstable. On the other hand, forre5
4
11,rc ,

the neutral state is stable.
In general, the neutral statere5r i is unstable for

r i,rc , with an infinite number of exceptions@given by Eq.
~24!# for which the first few electron densities arere5

1
3,

1
4,

4
11 ,

5
14,

6
17,

7
19,

7
20,

9
25,

10
27,

11
30. The state with diatomic mol-

eculesr i52re is unstable forr i,rc with an infinite number
of exceptionsre5

1
6,

2
11,

3
17,

5
27,

5
28,

7
38, . . . Similarly, in the

triatomic caser i53re , the exceptional electronic densities
for which the pure state is stable arere5

1
9,

2
17,

3
25,

4
33, . . . In

any case, it appears that for anye.0 and for any state with
n moleculesr i5nre , there is a finite number of exceptions
in @ 1

4,rc2e] as shown in Fig. 1.
These observations lead us to the following result:
Property 2. If the electron density is rational,

re5(p/q), with p relatively prime to q, and the ion density
is r i5(pi /q). Then,

FIG. 1. Stable periodic configuration forn molecules, i.e., states
with r i5nre . The valuesn51 ~solid dot!, n52 ~open square!,
n53 ~solid triangle!, n54 ~open dot!, n55 ~solid square!, n56
~open triangle!, andn57 ~x! are all plotted. The phases are stable
aboverc as indicated by the solid lines. The dashed lines are guides
to the eye.
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~a! For (pi /q)P@rc,12rc], or (pi /q)5( p̃i /q) with p̃i
solving Eq. (24), the ground-state configuration is periodic
with period q.

~b! For (pi /q),rc (or (pi /q).12rc) and (pi /q)
Þ( p̃i /q) with p̃i solving Eq. (24), the ground-state configu-
ration is a mixture of the empty latticer i850 and the period-
q configuration withr i95( p̃i11)/q, (respectively,r i851 and
r i9512@( p̃i11)/q]).

~c! For all (pi /q),
1
4 or (pi /q).

3
4, the ground state con-

figuration is a mixture like in (b).
Comments: ~i! The exceptional ion densities can all be

found by studying Eq.~24!. We have not been able to deter-
mine an explicit formula for these exceptional ion densities.
~ii ! The phase-separated state is not an insulating state, but
rather is the mixture of a metallic state~the empty lattice!
and an insulating state~the period-q phase withp filled sub-
bands!. ~iii ! In the neutral case,re5r i5r, for any r
P@rc,12rc# and for the ‘‘exceptional’’ values in the inter-
vals @0,rc# or @12rc,1#, the ground state is most homoge-
neous, since the state with the maximal structure factor sat-
isfies the uniform-distribution property. It is also the
configuration obtained by Lemberger’s construction.20 For
these pure states, it is expected that the ground state does not
have any phase transition whenU increases from10 to
1`, since, for any rational densityr, the ground state is
known to be the most homogeneous state forU sufficiently
large. This expectation is also confirmed for intermediate
values ofU (U>0.1) by exact numerical calculations.22 Us-
ing the same argument for the ‘‘regular’’ values ofr in
@0,rc# or @12rc ,rc#, there will be a phase transition asU
varies.~iv! These results only hold forU sufficiently small
with respect to 1/q, wherere5(p/q), for theU2lnU term to
dominate the perturbation expansion. Forre5(p/q) and
r i5(pi /q)Þre , the phase separation that may occur for
smallU rapidly disappears asU is increased from 0 tò to
yield either a pure state or the segregated phase.22 For U
sufficiently large, it is expected that the state is either neutral
or the segregated phase.

IV. CONCLUSION

The band theory of solids is perhaps the defining theory
for condensed-matter physics. It has been applied to virtually
every interesting material that has been studied. Neverthe-
less, the conventional wisdom of Peierls and Fro¨hlich for
optimizing the band structure for the ground state of one-
dimensional crystals is not always correct. They argue, that
the ion configuration that produces the largest gap at the
Fermi level will yield the ground state. We find that this

argument is true for a nearly free electron model only if the
ion density is close enough to half filling. For ion densities
away from half filling, the system will phase separate into a
mixture of states that have the same electron density, but
have different ion densities (r i50 andr i close to 0.371 or
r i51 andr i close to 0.629!. It is possible that this phase
separation can be observed in quasi-one-dimensional metals
and insulators. We are not aware of any experiments that
have seen this phase separation. In fact, because entropy ef-
fects will suppress such phase separation at finite tempera-
tures, it may be problematic to observe this behavior experi-
mentally.

Our results hold only forU sufficiently small, because
they are based on perturbation-theory arguments that maxi-
mize the leading corrections of the ground-state energy as a
function ofU. Since these corrections of orderU2lnU will
compete with orderU2 corrections for finite values ofU, the
phase separation discovered here may rapidly disappear as
U increases. Numerical evidence indicates that this is true
for the densities between14 and

3
4, but larger values ofU are

necessary for the densities near 0 or 1.
Furthermore, since the ground state is known to be either

a different phase-separated state~nonneutral cases! or the
most-homogeneous state~neutral case! for largeU, the spin-
less Falicov-Kimball model must have a phase transition as a
function ofU. In the neutral case, when the ground state is
not a phase-separated state, but is the Peierls-type state that
maximizes the band gap at the Fermi level, it is possible that
the ground state has no phase transitions for 0,U,1`,
since the small-U ground state is identical to the large-U
ground state. We are unable to prove this conjecture here.

Our analysis was restricted to the spinless single-band
Falicov-Kimball model, but the general ideas may also hold
for more complicated models such as tertiary alloy problems
~wherewi would assume three different values! or the static
Holstein model~wherewi is continuous!, but the determina-
tion of the maximal structure factor becomes much more
complicated, since one must maximize with respect to both
the phase and the amplitude, as opposed to maximizing only
with respect to the phase, as we did here.

ACKNOWLEDGMENTS

We would like to acknowledge useful conversations with
E. H. Lieb and D. Ueltschi. J.K.F. would like to acknowl-
edge the hospitality of the Institut de Physique The´orique at
the EPFL, where this work was started J.K.F. would also like
to acknowledge the Donors of The Petroleum Research
Fund, administered by the American Chemical Society, for
partial support of this research~ACS-PRF No. 29623-GB6!.

TABLE I. Largest integerp̃i , such that (p̃i /q),rc'0.371. The letterss andu denote whether Eq.~ 24! is satisfied (s), implying the
pure phaser i5( p̃i /q) is stable, or is not satisfied~u!, implying the pure phaser i5( p̃i /q) is unstable.

q 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

p̃i 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8 8 9 9 10 10 10 11 11 11 12 12
s s u s u u s u s s u s u u s u s s u s u u s u s s u s u u s u
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