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We investigate spontaneous interlayer phase coherence and the occurrence of the quantum Hall effect in
triple-layer electron systems. Our work is based on a simple tight-binding model that greatly facilitates calcu-
lations and whose accuracy is verified by comparison with recent experiments. By calculating the ground state
in an unrestricted Hartree-Fock approximation and the collective-mode spectrum in a time-dependent Hartree-
Fock approximation, we construct a phase diagram delimiting regions in the parameter space of the model
where the integer quantum Hall effect occurs in the absence of interlayer tunneling.@S0163-1829~96!05723-2#

I. INTRODUCTION

Interactions among particles play an especially important
role in two-dimensional~2D! systems in the quantum Hall
~QH! regime because the kinetic energy is quenched. Kinetic
energy eigenstates bunch into quantized Landau levels with
macroscopic degeneracyNf5B'A/F0 . ~Here A is the
cross-sectional area of the system,B' is the magnetic field
strength, andF05hc/e is the magnetic flux quantum.! The
fractional QH effect~QHE!,1 which occurs when an orbitally
degenerate Landau level has a fractional filling factor
nT[Ne /Nf , where Ne is the total number of electrons,
arises from strongly correlated states produced entirely by
interactions.2,3

Interactions can play an important role even at integer
values ofnT , if at low energies the system has additional
degrees of freedom. An important example occurs for an
isolated 2D electron layer atnT51, when the Zeeman energy
is so small that the spins are not completely frozen. It turns
out in this case that the ground state is completely spin po-
larized, and that the energy gap for charged excitations
~which gives the QHE! is finite, even in the limit of vanish-
ing Zeeman splitting. However, there is strong experimental
evidence that fornT close, but not equal, to 1, the ground
state contains a large number of flipped spins.4 This property
of the single-layer system, which was anticipated
theoretically,5–7 is best understood by recognizing that the
ground state atnT51 is a 2D ferromagnet with spontaneous
spin polarization. 2D ferromagnets have stable finite-energy
topologically charged spin-texture excitations, commonly
known as skyrmions.8 A unique aspect of these QH ferro-
magnets, first appreciated by Sondhiet al.,6 is that their skyr-
mions also carry a unit electrical charge. It is the presence of
these unusual charged objects with many reversed spins in
their interior that is responsible for the rapid decline in the
spin polarization that occurs asnT moves away from 1.
Many aspects of the physics are very similar9–13 when the
additional degree of freedom comes from a second electron
layer, rather than from the two spin states available to spin-
1/2 particles. The role played by the Zeeman energy is taken
over in this case by the interlayer hopping amplitudet, the
broken symmetry is spontaneous interlayer phase coherence
rather than spin magnetization, and a QHE can occur14,15 at
nT51, even whent50. The combination of the integer QHE

and spontaneous broken symmetry in the ground state gives
rise to charged order-parameter textures and other new
physics.9

In this paper, we consider the case of triple-layer electron
systems~TLES’s!. Our work is motivated primarily by re-
cent progress in fabricating high-mobility electron systems,
which has made it possible to study these systems
experimentally.16–18Triple-layer systems in strong magnetic
fields have been studied previously,19 but the possibility of
QHE’s associated with spontaneously broken symmetries,10

on which we focus here, was not explicitly addressed. In Sec.
II of this paper, we introduce the tight-binding model that we
use to describe TLES’s in terms of a small number of pa-
rameters. We make some estimates of the size of the model
parameters in Sec. III, and discuss some electrostatic consid-
erations that are very important in interpreting experiments.
We test our model and demonstrate the possibility of deter-
mining its parameters by comparing with some recent ex-
periments at weak magnetic fields. In Sec. IV, we discuss
unrestricted Hartree-Fock approximations~HFA’s! for the
ground state of TLES’s in a strong magnetic field. The HF
wave functions allow for the possibility of spontaneous in-
terlayer phase coherence and are generalizations of those
proposed previously20 for double-layer systems atnT51:

uC&5)
X

Nf

~eif1ĉ1X
† 1eif2ĉ2X

† !u0&. ~1.1!

HereX is the guiding-center label for orbital states within a
Landau level in the Landau gauge, which we use throughout
this paper. This many-particle wave function exhibits inter-
layer coherence, because all electrons occupy states that are a
linear superposition of layerj51 and layer j52. When
f15f2 , Eq. ~1.1! represents a full Landau level formed
from the symmetric combination of isolated layer states, and
is evidently the exact ground state for a system of noninter-
acting electrons, when tunneling between the layers is de-
scribed in a tight-binding model. It turns out that it is also the
exact ground state in the presence of repulsive interactions,
even without tunneling, when the interactions are indepen-
dent of the layer indexj ~i.e., in the limit that the layer
separationd→0). When the interlayer Coulomb interactions
are different from the intralayer interactions (d.0), Eq.
~1.1! is still a good variational wave function because phase
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coherence guarantees good interlayer electronic correlations
and thereby lowers the interlayer Coulomb interaction
energy.9 Only when the layers are widely separated does Eq.
~1.1! become a poor variational wave function; eventually, it
becomes much more important to have good intralayer cor-
relations than to have good interlayer correlations. In this
case, the ground state no longer has spontaneous interlayer
correlations and the QHE will not generally occur atnT51
in the absence of interlayer tunneling.~An exception occurs
when the electrostatic environment is consistent with having
QHE’s in which interlayer correlations play no role, for ex-
ample, by havingn51/3 in each layer.! In Sec. V, we evalu-
ate the collective-mode dispersion of a TLES in the time-
dependent HF approximation~TDHFA!. In the absence of
interlayer tunneling, the energy in the double-layer case is
independent of the global phasesf j . The U(1) symmetry
associated withf12[f12f2 is broken in the ground state
of the double-layer system, giving rise to a gapless Gold-
stone mode associated with slow spatial variations of
f12.

10,12 The energy cost of the spatial variations of
f12(X) is due to the loss of interlayer Coulomb exchange
energy. We find that in triple-layer systems, two Goldstone
modes occur, associated with the two independent relative
phases. We use the stability of the collective modes as an
indication that the HF variational wave function is still good,
and use this criterion to map out the region in the model’s
parameter space where we expect a triple-layer integer QHE
to occur with spontaneous interlayer phase coherence in the
ground state. Section VI contains some brief concluding re-
marks. A future work will discuss charged order-parameter
textures and the effect of tilted magnetic fields in triple-layer
systems, using a field-theoretic approach.

II. MODEL FOR TRIPLE-LAYER SYSTEMS

Triple-layer QH systems have been realized experimen-
tally by Shayegan and co-workers.16–18 In order to observe
the QHE, the mobility of these samples needs to be very
high, which generally requires that they be remotely doped.
The simplest possible theory of the triple-layer system is one
that regards it as a macroscopic metal, and therefore requires
that the volume between the right and left layers be an equi-
potential. In such a theory, the Poisson equation allows no
charge in the central layer; repulsive interactions between the
electrons cause them to migrate to the left and right layers.
Obviously, this theory is incomplete, but its indication that
electrons tend to avoid the middle layer is telling, and this
tendency must be countered if true triple-layer systems are to
be realized. In the TLES’s grown by Shayegan’s group, the
middle layer is wider than the outside layers and therefore
has a smaller size-quantization energy.

The Shayegan group has demonstrated16–18 that at zero
magnetic field, the partitioning of electron density between
the three layers as a function of gate voltage can be accu-
rately rendered using a three-dimensional~3D! density-
functional-based independent-electron approximation. In or-
der to describe the many-body physics of these systems,
which is essential at strong magnetic fields, we require a
relatively simple model for the growth-direction
(z-direction! spatial degree of freedom. We proceed by gen-
eralizing the approach commonly used for double-layer 2D

electron systems. We assume that only the lowest electric
subband is important in each 2D layer, and use a tight-
binding description for thez-direction degree of freedom,
with tunneling amplitudet between neighboring layers, and
no direct tunneling between left and right layers.~Remote
tunneling can be readily incorporated in the model, if the
experimental situation warrants introducing this complica-
tion.! For the calculations reported here, we neglect the finite
width of the subband wave functions in each layer, but these
can easily be modeled if necessary in specific systems by
adding form-factor corrections21 to the effective electron-
electron interaction. We assume that the subband energy in
the middle layer~relative to the local electrostatic potential!
differs from the subband energies in the side layers~also
relative to the local electrostatic potential! by eb .

In experiments on TLES’s, it is extremely useful to be
able to manipulate charges in the layers with both a front
(F) gate, which we take to be closest to the left layer, and a
back (B) gate, which we take to be closest to the right layer.
We parametrize these gate voltages in terms of neutralizing
charge densitiespa (a5F,B), by defining

VaG5
4pe

e0
paDaG2VaG

~0! , ~2.1!

wheree0'13 is the dielectric constant for GaAs andDaG is
the distance from the closest layer in the system to gatea.
~For the systems fabricated by the Shayegan group,
DFG'0.45m m andDBG'0.45 mm.22! The last term repre-
sents an offset voltage. This model for the triple-layer system
is illustrated schematically in Fig. 1.

To test the appropriateness of such a model, and to deter-
mine model parameters for the experimental system with
which we will later compare our strong magnetic-field
theory, we have calculated the dependence of the state of the
triple-layer system on the front-gate voltage (VFG). For this
purpose, we have used a 2D version of the 3D local-density-
functional ~LDF! theory.23 The Kohn-Sham single-particle
equations separate and yield three two-dimensional free-
electron bands with minima at subband energies that are de-
termined by solving the three-site discrete Schro¨dinger equa-
tion for thez-direction degree of freedom. In this equation,
neighboring layers are coupled by the tunneling matrix ele-
ment2t and the LDF site energies are given~up to a com-
mon constant term! by

e15
2pe2d

e0
@~n12n3!2~pF2pB!#1mxc~n1!,

e25eb1
2pe2d

e0
n21mxc~n2!,

e35
2pe2d

e0
@~n32n1!2~pB2pF!#1mxc~n3!. ~2.2!

The ‘‘bare’’ middle-well on-site energyeb represents the dif-
ference in the size-quantization energy of the middle layer,
relative to that of the side layers. It is negative~attractive!
when the middle well is wider than the side wells. The
Hartree terms are proportional to 2pe2d/e0 . The areal
densities of the left, middle, and right layers are denoted

15 982 53C. B. HANNA AND A. H. MACDONALD



by n1 , n2 , and n3 , respectively. The exchange contribu-
tion to the exchange-correlation potentialmxc of local-
density-functional theory is mx(n)5d@nex(n)#/dn
52e2A8n/p/e0 , whereex(n) is the contribution to the ex-
change energy per particle in a 2D electron gas of uniform
densityn.23 We have not included correlation-energy contri-
butions tomxc , but this could be added if desired. The sub-
band energiesEl are obtained by diagonalizing the 333
LDF Hamiltonian matrix. The density in layerj is given by

nj5 (
l51

3

Nluzj
~l!u2, ~2.3!

where

Nl[~EF2El!n0Q~EF2El! ~2.4!

is the areal-density contribution from thelth subband,zj
(l) is

the amplitude of thelth subband wave function in layerj ,
and n05m* /p\2 is the 2D electron-gas density of states
~m*'0.07me is the band effective mass for GaAs!. Equa-
tions ~2.2! and~2.3! have to be solved self-consistently, with
the Fermi energy chosen so that(lNl5NT5pF1pB , con-
sistent with overall charge neutrality.

III. MODEL PARAMETERS

Rough estimates of the size of the model parameters may
be obtained from simple arguments. In the limit of infinitely
strong barriers separating the layers, the size-quantization en-

ergies arep2\2/2m*wj
2 , wherewj is the width of thej th

quantum well. For side-well widths of 15.4 nm and a middle-
well width of 18.8 nm, the difference in the size-quantization
energies giveseb;28 meV for the TLES of Shayegan and
co-workers that we study here. We note that the next group
of three electric subbands is higher in energy by roughly
3p2\2/2m*w2;50 meV, and may be neglected in studying
the ground state and low-energy excitations of the TLES.
The tunneling energy may be crudely estimated from a semi-
classical~WKB! argument, by equating 2t/\ with the rate at
which the wave-function amplitude of an electron leaks out
of its well by tunneling through the confining barrier:

2t

\
;

v
2w

e2kb5
1

\

E0

p
e2kb, ~3.1!

wherev/2w is the frequency with which an electron of av-
erage velocityv5A2E0 /m* in a well of width w;17 nm
hits the side of the well,E0'p2\2/2m*w2;20 meV is the
energy of the confined electron,\k5A2m*(V02E0)
'A2m*V0, where

22 V0'1 eV is the barrier height, and
b'1.3 nm is the width of the barrier. From this estimate, the
tunneling energyt;0.5 meV, and is thus expected to be an
order of magnitude smaller than the on-site energyeb . We
numerically solved the one-dimensional Schro¨dinger equa-
tion for the triple quantum-well potential shown in Fig. 1 in
an effective-mass approximation to obtain the bound-state
energies. The three lowest energies determineeb and t
through Eqs.~3.5! and ~3.6!, and giveeb'24.7 meV and
t'0.5 meV. We also find an energy separation of 34 meV to
the next group of three electric subbands.

Electrostatic energies tend to be larger than planar kinetic
energies, tunneling energies, and exchange-correlation ener-
gies. For the densities shown in Fig. 2, electrostatic energies
are typically about four times larger than planar kinetic en-
ergies, about six times larger than the exchange energy, and
can be on the order of 100 times larger than the tunneling
energies, depending on the barrier widths. As a result, Fig. 2
can be understood qualitatively in an electrostatic approxi-
mation, where the electronic charge resides entirely in the
layer with the lowest~Hartree plus ‘‘bare’’ on-site! site en-
ergy, unless two or more layers are placed in equilibrium by
having the same energies. For 4pe2dpF /e0<eb,0, it fol-
lows that in this approximation, all electrons will occupy the
right layer, andn35pB1pF . With increasingpF , charge
will be added first to the middle layer, until
eb14pe2dpF /e0'0. As pF is increased further, all charge
is added to the left layer. These considerations provide two
straightforward measurements ofeb . First, at the front-gate
voltageV3'20.3 V where the third subband first becomes
occupied, electrostatic considerations show that

eb'2
2pe2d

e0
N2~V3!'24.7 meV ~3.2!

for N2(V3)'3.531010 cm22 and d518.4 nm. Second, for
fixed back-gate voltage, the difference betweenV3 and the
value of the front-gate voltage (V2;20.6 V! at which the
second subband first becomes occupied also measureseb :

FIG. 1. Schematic illustration of the triple-layer electron system
of Ref. 18. The solid lines represent the energy of the confining
barriers, and the long-dashed lines are the energies of the lowest-
energy quantum state for a given well. The dotted curves represent
electron densities, which are peaked at midwell. Our model ideal-
izes the electron density to be midwelld functions.

53 15 983SPONTANEOUS COHERENCE AND THE QUANTUM HALL . . .



eb'2
1

2

ed

DFG
~V32V2!

'2
2pe2d

e0
~V32V2!

dNT

dVFG
;26 meV ~3.3!

for V32V2;0.3 V. In Eq.~3.3!, we have used the fact that
1/DFG is proportional to the front-gate capacitance per unit
area,d(2eNT)/dV FG.

When the dependence of the chemical potential on the
density in each layer is taken into account, there is a small
correction to the electrostatic result. This correction is mea-
surable, and has been exploited by Eisenstein and
co-workers24,25 in the double-layer case to measure the com-
pressibility of the electron-gas systems within each layer. For
example,16 features occur in the charge-density distribution
when the density in one of the layers is very small, which
reflect the diverging~negative! compressibility in the low-
density limit of an electron gas. In this picture, adding tun-
neling between the layers turns crossings of site energies into
avoided crossings of subband energies, and smooths out
cusps in the dependences of the subband densities on the
electric field.

For double-layer systems, the hopping parametert is sim-
ply related to the subband energy separation when the gate
voltage is adjusted so that the two layers have equal density:
2t5E22E1 . This simple relationship is very helpful in
characterizing experimental systems. It is worth remarking
that a similar simple relationship exists for triple-layer sys-
tems. WhenpF5pB , inversion symmetry guarantees that
n15n3 ande15e3 . The Hamiltonian matrix can be readily
diagonalized for this case with the result:

E15
e11e2
2

2AS e12e2
2 D 212t2,

E25e1 ,

E35
e11e2
2

1AS e12e2
2 D 212t2. ~3.4!

The subband energiesEl can be determined up to an overall
constant by the sublayer occupanciesNl , which are ob-
tained from the Shubnikov–de Haas~SdH! experiments, us-
ing Eq. ~2.4!. Equation ~3.4! can be solved to express
e22e1 andt in terms of the two independent subband energy
differences. We find that

e22e15E322E21E1 , ~3.5!

and that

t5A~E32E2!~E22E1!

2
. ~3.6!

Since it is clear from Fig. 2 that, for the experimental system,
E32E2.E22E1 when inversion symmetry is established,
we see immediately thate22e1.0 because of the electro-
static energy cost of putting electrons in the middle layer. To
determinet experimentally, it is only necessary to identify
the gate voltageV13 at which inversion symmetry is estab-
lished, and use Eq.~3.6!. V13 may be determined in practice
as the point where (N12N2) is minimized, and electrostatic
considerations giveV13'V314peDFGN̄2 /e0'0.1 V, where
N̄2;631010 cm22 is the asymptotic value ofN2 at large
VFG. Unfortunately, the energy difference betweenE1 and
E2 at the symmetric point is close to the limit of resolution of
the experiment. An estimate oft can be obtained from the
minimum difference betweenN2 andN3 ~for N3.0), which
occurs when the densities of layers 1 and 2 are equal. This
occurs at a front-gate voltageV12'V314peDFGN̄3 /e0
;20.1 V, whereN̄3;331010 cm22 is the asymptotic value
of N3 at largeVFG. We obtain

t'
1

2
min~E32E2!5

min~N22N3!

2n0
'0.45 meV

~3.7!

for (N22N3)'2.531010 cm22.
Subband densities can be extracted experimentally from

weak-field SdH oscillation experiments. The parameters of
the model~the offset voltages, the distances to the gates, the
size-quantization energyeb , and the hopping parametert)
may be determined by fitting to the gate-voltage dependence
of the measured subband densities. Experimental results are
compared with a model fit in Fig. 2. The model calculations
were performed with layer separationd518.4 nm, the mid-
well to midwell distance in the experimental system. The
offset voltagesVaG

(0) are consistent with the condition18 that
the electron density in the layers is left-right~LR! symmetric
for VFG50.03 V andVBG50, when the total electron density
is 14.831010 cm22. Close agreement with experiment is ob-
tained by choosing the tunneling and on-site energies to be

FIG. 2. Shubnikov–de Haas data taken from Ref. 18, and the
subband~solid curves! and layer densities calculated from the tight-
binding model described in the text.
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within about 25% oft50.4 meV and 5% ofeb524.6 meV.
The layer densities in Fig. 2 are in close agreement with the
SdH data and with the layer densities obtained in Ref. 17
from 3D LDF calculations. This level of agreement provides
us with the necessary confidence in our model, and deter-
mines with some assurance the model parameters for the
system of immediate interest. We note that this calculation
~for B'50) explicitly neglects nonlocal interlayer exchange
and correlation. This approximation appears to be well justi-
fied at zero magnetic field,26 but we will see that in the
strong magnetic-field limit, nonlocal interlayer exchange is
important.

IV. QUANTUM HALL GROUND STATE

We now turn our attention to the strong magnetic-field
limit. Reference 18 finds strong QHE’s atnT51 and 2; ex-
plaining the physics of the underlying incompressible states
at these filling factors is the main objective of this paper. The
fact that a QHE occurs at these integer filling factors is, at
first sight, surprising. To understand why, it is useful to
imagine repeating the calculations outlined in the previous
section for nT51. The crucial difference between the
B'50 and strong-field situations in such an independent-
particle description is that, because the kinetic energy is
quenched, the density of states consists of ad function at the
subband energies in the strong-field case, whereas it is a
constant above the subband energy in theB'50 case. As a
result, the distribution of density between the three layers at
n51, which we have emphasized is dictated largely by elec-
trostatics, can be expressed simply in terms of the subband
wave function:

nj5~2pl 2!21uzj
~1!u2. ~4.1!

In order to have the charge distributed relatively equally
among all the layers, the site energies cannot differ by more
than;t. The difference between subband energies, which
would give the QH activation gap in such a theory, would
then also be;t. A gap of this size might be reduced or
possibly eliminated by disorder in the samples. In the experi-
ments, however, the observed gaps can be much larger than
t. It seems clear that the explanation for these QHE’s must
lie in the interaction physics of the triple-layer system at
strong fields, and that the gap would exist even ift were
zero. Further evidence is found in the experimental observa-
tion that as the ratio of side-layer to middle-layer electron
density is increased, thenT51 state collapses, but the
nT52 state becomes stronger. We shall show that these ob-
servations are consistent with the behavior expected if spon-
taneous interlayer phase coherence occurs in these triple-
layer systems. In the following, we focus on the case
nT51; the nT52 case is simply related by a particle-hole
transformation.27 We shall also assume that the system has
three layers, although most aspects generalize in an obvious
way to systems with more than three layers.

The single Slater-determinant states considered in this
section have the form

uC&5)
X

Nf S (
j51

3

zj ĉjX
† D u0&, ~4.2!

wherezj is the component in layerj of a normalized three-
subband wave function, andĉ jX

† is the second-quantization
operator that creates an electron in layerj , in the lowest
Landau-level Landau-gauge state with guiding-center coor-
dinateX. This wave function is a full Landau-level state for
the subband with state vectorZ†5(z1* ,z2* ,z3* ). In our HFA,
we allowZ to be varied to minimize the energy. This varia-
tion generally results in a broken-symmetry ground state,
sincezi* zjÞ0 even whent50; i.e., the HF ground state has
spontaneous interlayer phase coherence. For double-layer
systems, the broken symmetry is robust under appropriate
circumstances, and exists in the exact quantum-mechanical
ground state. We expect spontaneous interlayer phase coher-
ence to be similarly robust for triple-layer systems.

It is convenient to define the density matrix

r jk~X!5^Cuĉ jX
† ĉkXuC&5zj* zk , ~4.3!

where uC& is the coherent ground-state wave function, Eq.
~4.2!. Note that the filling factor of layerj is n j5r j j . In
terms of the density matrix, the HF total energy is

EHF5(
jX

H 2(
k
t jkr jk~X!1e jr j j ~X!

2(
aY

n̄aDa j~Y!r j j ~X!

1
1

2(kY @Djk~X2Y!rkk~Y!r j j ~X!

2Ejk~X2Y!rk j~Y!r jk~X!#J , ~4.4!

wheret jk denotes the tunneling energy between layersj and
k, e j is the on-site size-quantization energy of layerj , and
a indexes neutralizing planes of charges with areal charge
densityepa5en̄a/2pl 2 produced by remote ionized donors
or gates. The unit of length is the magnetic length,
l 5A\c/eB. As an aside, we note that in the long-
wavelength limit,EHF has the form of aCPN21 model8

when expressed in terms of thezj .
28

In the lowest Landau level, the Coulomb interaction be-
tween electrons in layersj and k enters through the direct
term Djk(X2Y) and the exchange termEjk(X2Y). These
quantities are conveniently expressed in terms of projected
Fourier transforms: e.g.,

Djk~X!5E d2q

~2p!2
Djk~q!e~1/4! q2l 2E d2r ^Xur &eiq•r^r uX&,

~4.5!

where

Djk~q!5
2pe2

q
e2qdu j2kue2 ~1/2! q2l 2, ~4.6!

and

Ejk~q!5
l 2

2pE d2pDjk~p!ei ~ ẑ•p3q!l 2. ~4.7!
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The layers are located atz5d j , where j is in general a real
number, unless all the layers are separated by integer mul-
tiples of d. We have neglected the finite thickness of the
electron wave functions in thez direction, although this ef-
fect could be included, if desired.

WhennT51, it follows from Eq.~4.2! that

r jk~X!rk j~X!5r j j ~X!rkk~X!. ~4.8!

This relation, which follows from the phase-coherent nature
of the assumed ground state, is of great practical importance
to us, because unlike in theB'50 case, it allows us to easily
express the exchange contribution to the HF ground-state
energyEHF

0 in terms of the layer occupancies:

EHF
0

Nf
5(

jk
F2t jkAn jnk1d jkS e j2(

a
n̄aD̄a j D n j

1
1

2
~D̄ jk2Ējk!n jnkG , ~4.9!

where

D̄ jk52@D0~q50!2D u j2ku~q50!#/2pl 252vc
d

l
u j2ku

~4.10!

with vc[e2/e0l , and

Ēu j2ku[(
X

Ejk~X!

5
Ejk~q50!

2pl 2

5vcE
0

`

dxe2 ~1/2! x2e2xu j2kud/l . ~4.11!

Equation~4.8! also allows us to write

r jk~X!5An jnke
if jk~X!. ~4.12!

In the ground state,r jk is independent ofX, so that we may
take eif j (X)51. Since( jn j51, the HF ground state is in
general determined by two parameters. We will concentrate
below on the situation where the triple-layer system is sym-
metric, i.e.,n̄F5 n̄B . Then the system has inversion symme-
try around the middle well,n15n3 , and the ground state is
completely fixed byn2 .

The layer occupancies can be calculated by minimizing
Eq. ~4.9!; equivalently, the following simple argument may
be used in the absence of tunneling. Foreb sufficiently large,
all electrons reside in the side layers, closest to the gates.
Suppose that both side layers~1 and 3! are occupied, and
imagine moving an electron from layer 1 to the middle layer
~2!. The energy gained by moving to the middle has three
components: the on-site energyeb , the Hartree energy
D̄1@(n11n3)2( n̄F1 n̄B)# due to the direct Coulomb interac-
tion with the side layers and gates, and the exchange energy
2Ē1(n11n3) of the middle electron with the side layers.
The energy lost by moving to the middle also has three con-
tributions: the Hartree energyD̄2(n32 n̄B) of a layer-1 elec-
tron with the electrons in layer 3 and the gates, the on-site

exchange energy2Ē0n1 in layer 1, and the exchange energy
2Ē2n3 of an electron in layer 1 with those in layer 3. Spe-
cializing to the case ofnT51, and usingD̄252D̄1 , the en-
ergy cost to move an electron to the middle layer is seen to
be

DE5eb1D̄1@~n12n3!2~ n̄F2 n̄B!#

1~Ē02Ē1!n12~Ē12Ē2!n2 . ~4.13!

The middle layer will be occupied whenDE,0. For the case
of equal side-layer densities, this happens wheneb,eb

max,
where

eb
max52 1

2~Ē022Ē11Ē2!. ~4.14!

A similar argument can be used to find the valueeb
min of the

on-site energy below which all electrons reside in the middle
layer:

eb
min52~2D̄12Ē01Ē1!. ~4.15!

Equations~4.14! and ~4.15! show that near-neighbor in-
terlayer exchange (Ē1) plays an essential role in increasing
the size of the interval where all three layers are occupied
and spontaneous triple-layer phase coherence occurs. The lo-
cal density approximation for exchange, commonly used in
electronic structure calculations, fails qualitatively for triple-
layer ~and double-layer! systems in the QH regime, because
it does not include the effects of interlayer exchange, in-
cluded here throughĒj for j.0. The on-site exchange
(Ē0) favors maximizing the charge of individual layers,
and Ē2 favors next-nearest neighbor occupancy. For
eb
min<eb<eb

max, the middle-well occupancy decreases linearly
with eb , so that

n25F eb
max2eb

eb
max2eb

minG . ~4.16!

Whenn251, all the electrons are in the middle well, and we
have, in effect, a single-layer system. Whenn250, all the
electrons are shared between the outside layers, and we have
a double-layer system. For 0,n2,1, charge exists in all
three layers and the HFA ground state has triple-layer coher-
ence.

We may use the HF ground-state calculation ofn2 in Eq.
~4.16! to define a phase diagram in the space of model pa-
rameters in the absence of interlayer tunneling. For symmet-
ric triple-layer systems, the state of the system is determined
by the middle-well size-quantization energyeb in units of the
Coulomb energyvc;10 meV, and by the interlayer spacing
d in units of l . We consider the limitt/vc!1, which ac-
cording to our analysis of the SdH data is satisfied by the
device studied in Ref. 18, and sett50. The region of stabil-
ity of the triple-layer coherent state att50 is bounded by the
dotted and dashed~upper and lower! lines of Fig. 3~a!. These
two lines are defined by the equationsn251 andn250. At
fixed d, the system transforms with increasinguebu, first
from a double-layer system to a triple-layer system, and fi-
nally to a single-layer system with all the charge in the
middle layer. At fixedeb , these transformations occur in the
opposite order with increasingd, as electrostatic consider-
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ations become more dominant. Figure 3~b! shows the same
plot for nT52, obtained from a calculation nearly identical to
that of thenT51 case. If, in a given sample, front and back
gate voltages are adjusted simultaneously to maintain LR
symmetry as the total density changes, the system will fol-
low a line in this phase diagram that moves downward and
toward the right with increasing magnetic field, as illustrated

in Fig. 3. By this procedure, the triple-layer regime should be
accessible to experimental study in typical TLES’s. The HF
ground-state calculation by itself suggests that the entire re-
gion between the dotted and dashed lines in Fig. 3 might
support a triple-layer coherent state. However, as we show in
the following section, a stability analysis using the TDHF
equations shows that for sufficiently large interlayer spacing,
the phase-coherent state cannot be the ground state.

In closing this section, we remark that the distribution of
electrons between the three layers can be markedly different
for the same gate voltages and sample parameters in the QH
regime, as compared to theB'50 case. Reference 18 found,
using their 3D LDF calculations, that for their triple-layer
sample at symmetry, with a total density of 14.831010

cm22, the ratio of the density of electrons in the middle layer
to the total density wasn2 /nT'0.22 whenB'50. The 2D
tight-binding model of the previous section gives the same
result. For the same model parameters, we find that in the
nT51 phase-coherent triple-layer QH~3LQH! state,
n2 /nT'0.27, while fornT52 we obtainn2 /nT'0.09. The
low value of n2 /nT for nT52 is due to the fact that for
inversion-symmetric triple-layer systems, thel52 subband
wave function has no weight in the middle layer. ThusB'

can have a large effect on the ratio of layer densities.

V. TIME-DEPENDENT HARTREE-FOCK
COLLECTIVE MODES

In the TDHF description of the collective behavior, the
variational wave function for the ground and excited states of
the system both have the HF form, Eq.~4.2!, but the density
matrix elementsr jk are allowed to have spatial and time
dependence. In particular, the low-lying collective modes
arise from slow long-wavelength variations of the phase dif-
ferencesf jk(X). In practice, there are several ways to imple-
ment the TDHF approximation: diagrammatically, by path-
integral methods, or by various equation of motion~EOM!
approaches. TDHF collective modes for a triple-layer system
were calculated previously by Fertig29 using a diagrammatic
approach, for the unphysical case of equidistant, individually
charge-neutral layers with periodic boundary conditions, i.e.,
with the tunneling and Coulomb energies between end layers
taken to be the same as between neighboring layers. Here we
briefly describe a calculation based on the EOM of the den-
sity matrix. For the sake of generality, we use the language
of anN-layer system, although we will apply our results to
the caseN53.

Following Ref. 30, we define the projected density-matrix
operator

r̂ jk~q!5e~1/4! q2l 2(
XY

ĉjX
† F E d2r ^Xur &e2 iq•r^r uY&G ĉkY ,

~5.1!

and the density-density response function

x jklm~q,t !5
1

i
^Tr̂ jk~q,t !r̂ jk~2q,0!&, ~5.2!

where T denotes the time-ordering operator. The physical
quantities of interest to us are a function ofq5uqu, due to the
isotropy of the system. The HFA tox is obtained from the
EOM

FIG. 3. ~a! Phase diagram for the symmetricnT51 3LQH co-
herent state.~b! Phase diagram for the symmetricnT52 3LQH
coherent state. The mean-field regions of stability lie between the
dotted and solid lines. All calculations are fort50, for the case of
equal left and right layer densities. The dot-dashed lines represent
values of (d/l ,2eb /vc) obtained for a sample withd518nm, for
total density in the range of 1 to 231011 cm22, usingeb528 meV
for nT51, andeb526 meV for nT52.
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i\] tr̂ jk~q!5@ r̂ jk~q!,ĤHF#, ~5.3!

whereĤHF is the HF Hamiltonian. The commutator is evalu-
ated by use of the identity

@ r̂ jk~p!,r̂ lm~q!#5dklr̂ jm~p1q!ei ~ ẑ•p3q!l 2

2dmjr̂ lk~q1p!ei ~ ẑ•q3p!l 2. ~5.4!

In the TDHFA,x(q,v) is obtained from the HFx (0) by
including the effects of the Coulomb interaction between a
particle in layerj and a hole in layerk with total in-plane
momentumq, within a generalized random-phase approxi-
mation. This results in a Dyson equation forx in terms of the
direct and exchange interaction between a particle and hole.
In matrix notation,

x5x~0!1x~0!
1

\
Wx, ~5.5!

whereW5H2X is the sum of the Hartree and Fock contri-
butions to the particle-hole interaction, given by

Hjklm~q!5d jkd lm
D jl ~q!

2pl 2 , ~5.6!

and

Xjklm~q!5d jmdkl
Ejl ~q!

2pl 2 . ~5.7!

Since the layer indices each haveN possible values, Eq.~5.5!
may be solved numerically by inverting anN23N2 matrix.

The collective modes are obtained from the poles of
x(q,v) that have nonzero residues. The results of a sample
calculation for (t50,2eb /vc50.75, d/l 51.6), which has
n250.838, are shown in Fig. 4.~The collective mode for
nT52 can be obtained from that fornT51 by particle-hole
conjugation, usingn2→12n2 .) As seen from Fig. 4, there
are two collective modes, which correspond to linear super-
positions of variations inf12(X) andf23(X). As the spacing
d between the layers increases, one of the collective modes
softens and eventually becomes unstable at a wave vector
q;l 21. This signals the onset of a charge-density wave
instability in the HFA, on which we comment further below.
The lack of an anticrossing repulsion at the point~away from
q50) where the two collective-mode frequencies are equal
is a special feature of the assumed LR symmetry of the
charge distribution in the TLES. When this symmetry is
present, the collective modes are excitations from a subband
state (l51) that has even parity to subband states that have
even (l52) or odd (l53) parity. The opposite parity be-
tween the two final states provides a selection rule that pre-
vents the two collective modes from mixing.

So far, we have focused on the case where the tunneling
t jk is negligible compared to the Coulomb interaction energy
scale vc , and can be set to zero. This results in gapless
Goldstone modes, as shown, for example, in Fig. 4.~When
1,nT,N21, gapped collective modes exist, even in the
absence of tunneling.! The tunneling energy can be varied by
changing the thickness of the barrier between the quantum
wells. The @U(1)#N21 invariance associated with the free-
dom to choose theN21 relative phasesf j , j11 in each layer

is broken once the electronic states in different layers are
coupled by tunneling. The loss of this invariance gives a gap
of order 2t ~for nearest-neighbort jk5t) in the collective-
mode spectrum asq→0.

In our TDHF collective-mode calculations, we find that
for fixed eb , the collective-mode spectrum in the triple-layer
regime softens with increasingd, and that, except for suffi-
ciently small values ofd/l , an instability occurs before the
n250 line in Fig. 3~a! is reached. The first collective mode
that goes soft corresponds to an excitation from the filled
l51 subband to the emptyl52 subband, which has all the
charge on the outside layers; this is the favored arrangement
for the charge at larged. This instability appears in the
TDHFA as an imaginary-valued collective-mode frequency.
Based on extensive calculations performed previously for the
case of double-layer systems,30 the broken translational sym-
metry HF ground states that are found for larger values of
d will quickly lose their interlayer phase coherence, and the
charge gap~incompressibility! necessary for the integer QHE
will rapidly go to zero. In our view, the broken translational
symmetry of the state on the large-d side of this instability is
likely to be an artifact of the HFA, which can enhance intra-
layer correlations only by breaking translational symmetry.
When quantum fluctuations are included, the broken transla-
tional symmetry of this state is likely to be lost, but in our
view the loss of interlayer phase coherence and the vanishing
of the QH charge gap will remain. We therefore use the
location of the TDHF instabilities as an estimate of the layer
separation at which spontaneous coherence and the integer
QHE are lost. The results are shown in Fig. 3~a! for nT51.
The solid line shows the border of the TDHF instability. For
nT51, the region between the upper dotted line (n251!

FIG. 4. Collective modes of thenT51 3LQH coherent state for
(t50,2eb /vc50.75,d/l 51.6), which hasn250.838. The lack of
an avoided crossing atql ;0.4 is due to the assumed left-right
inversion symmetry of the system.
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where the middle layer is fully occupied, and the solid line,
where the TDHF instability occurs, is the resulting estimate
of the region in parameter space where a 3LQH coherent
state occurs. This shows that asd/l increases, thenT51
phase-coherent 3LQH state is more likely to be stable when
the middle layer hasmore electrons than the side layers.31

Figure 3~b! shows the phase diagram fornT52. In this case,
the 3LQH state at largerd/l is likely to be more stable when
the middle layer hasfewer electrons than the side layers.
These behaviors are seen in the experiments of Ref. 18. The
dot-dashed lines in Fig. 3 represent values of
(d/l ,2eb /vc) for a hypothetical sample withd518 nm, as
the total density is varied from 1 to 231011 cm22, where we
have usedeb528 meV for nT51 and eb526 meV for
nT52. As the total density andB' are increased while keep-
ing the total filling factornT constant, the dot-dashed lines in
Fig. 3 show that the ratio of middle-layer density to side-
layer density decreases. In all cases, the presence of inter-
layer tunneling will enlarge the region where a triple-layer
QHE is expected to occur. We emphasize that the TDHF
instability with increasingd is driven by the increasing rela-
tive importance of intralayer correlations compared to inter-
layer correlations. At large enough layer separations, the in-
terlayer coherence that provides for good interlayer
correlations will be lost, along with the charge gap necessary
for the QHE. This scenario for the disappearance of the QHE
with increasing layer separation does not require that the
TLES make a transition to a bilayer system, as was hypoth-
esized in Ref. 18.

VI. CONCLUDING REMARKS

We have shown that TLES’s, such as those fabricated by
Shayegan and co-workers, can be described using a simple
tight-binding model, which allows them to be characterized
in terms of a small number of parameters. The tight-binding
model is able to quantitatively account for weak-field SdH
experimental results for the dependence of the three subband
energies on the gate voltage. Using this model, we have es-
timated the dependence of the ground state of the system on
model parameters for filling factorsnT51 and 2. We pro-
pose that in triple-layer systems, as in double-layer systems,
the QHE can occur at integer total filling factors, even when
the charge is distributed among all three layers and there is
no hopping between the layers.~Tunneling would be re-
quired for noninteracting electrons to produce a gap at inte-
ger filling factors.! These QHE’s occur because of the for-
mation of broken-symmetry ground states with spontaneous
interlayer coherence.

The distribution of charge between the three layers of the
system is typically determined predominantly by electro-
static considerations, and states can occur with the electrons
distributed among one, two, or three layers. Our HF theory
of the ground state shows that for physically accessible re-
gions of the middle-well on-site energy and layer separation,
a triple-layer phase coherent state is possible. The stability of
this state was estimated using the TDHFA, and a phase dia-
gram was constructed, delimiting the regions in the param-
eter space of the TLES for which triple-layer coherence is
likely to be found. The QH states studied by Shayegan and
co-workers atnT51 and 2 show the behavior expected for
phase-coherent states. In particular, they exhibit the QHE,
even for small tunneling energies and unequal layer densi-
ties. Additionally, thenT51 QHE is suppressed by increas-
ing occupancy of the side wells at the expense of the middle
well, while for nT52, the opposite is true, in agreement with
our findings. Future detailed comparisons between our phase
diagram and experiment will be facilitated by the possibility
of following lines in the phase diagram for a single sample,
by adjusting gate voltages so that inversion-symmetric
nT51 and 2 states occur for a range of magnetic fields. In
any such quantitative comparison, it will be necessary to
approximately account for the finite widths of the individual
quantum wells, which we have not done here.

As in the case of the double-layer coherent state, a useful
footprint of interlayer coherence is unusual sensitivity to
small tilts of the magnetic field away from the normal to the
layers.15 The most convincing evidence for triple-layer co-
herence would be the observation of a strong suppression in
the activation energy of the 3LQH states due to the applica-
tion of a moderate parallel magnetic field. The state of the
triple-layer system in a tilted magnetic field is most informa-
tively described using a field-theoretical approach. We have
calculated the magnitude of the parallel field required to sup-
press the activation energy as a function of the layer density,
for both triple-layer and unbalanced double-layer systems.
The effect of a parallel field on triple-layer states, charged
order-parameter textures of triple-layer states, and other re-
lated properties of triple-layer phase-coherent states will be
discussed in a forthcoming paper.28
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