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We present two-dimensional simulations showing the spatiotemporal dynamics of the formation of current
filaments inn-type GaAs films in the regime of impurity impact ionization breakdown. From the spatial
distribution of carrier densities, electron temperature, current density, and electric field for nascent and for fully
developed filaments, we find a three-stage scenario for breakdown:~i! front creation and propagation from the
cathode,~ii ! stagnation in the phase of a rudimentary filament,~iii ! filament growth. Our model combines
semiclassical rate equations with microscopic transport parameters, which are obtained from Monte Carlo
simulations.@S0163-1829~96!04823-0#

I. INTRODUCTION

Impact ionization of impurities in doped semiconductors
at low temperature leads to a sharp increase of the carrier
density, and hence the conductivity, if a sufficiently large
electric field is applied. Depending on the precise nature of
the underlying generation-recombination~GR! kinetics,
strongly nonlinear current density-field characteristics result,
which may be either monotonically increasing orS shaped
with a regime of negative differential conductivity.1 In this
regime, a variety of spatiotemporal instabilities may occur.2

Self-organized transitions of a spatially homogeneous low-
conductivity state to a high-conductivity state characterized
by inhomogeneous, filamentary current flow are prominent
examples. While the stationary structure and the possible
nonlinear dynamic and chaotic oscillatory behavior of these
current filaments has been widely investigated, both
experimentally3–6 and theoretically7–13 in a variety of semi-
conducting materials, e.g.,p-type Ge orn-type GaAs at liq-
uid helium temperatures, little is known about the spatiotem-
poral dynamics of their formation process.

As actual measurement techniques are either space or
time resolved, investigations concentrate on fully developed
filaments as stationary or oscillating structures; hence there
is almost no experimental information available on how cur-
rent filaments arise. Previous theoretical attempts to model
current filaments were confined to one-dimensional~1D!
simulations, where only the transverse spatial coordinate per-
pendicular to the current flow was taken into account.7–12

The dipolar electric field between two point contacts was
included in a recent phenomenological model for current
filaments inn-type GaAs, but the calculations were effec-
tively reduced to one~transverse! dimension by several sim-
plifying assumptions.13 While there has been recent progress
in the microscopic analysis of low-temperature impurity
breakdown in terms of single-particle14 and many-particle
Monte Carlo ~MC! simulations15 for p-type Ge and for
n-type GaAs,16,17 the spatiotemporal modes of the break-
down process have so far merely been investigated in a one-
dimensional longitudinal model forp-type Ge, a model that
neglects the transverse spatial degree of freedom and, there-
fore, cannot explain filamentation.18 In order to study the
nascence of current filaments, it is necessary to combine the

transverse and the longitudinal degrees of freedom for a re-
alistic two-dimensional sample geometry with appropriately
modeled contacts, and include detailed microscopic informa-
tion on the GR kinetics as obtained from MC simulations.
This is the aim of the present paper.

Because of the complexity of the resulting system of
coupled nonlinear partial differential equations, it is no
longer feasible to use the particle-in-cell algorithm of Refs.
9,10 for the transverse nonlinear and chaotic dynamics of
current filaments inp-type Ge, which uses an explicit Euler
scheme to propagate a solution forward in time. Rather, we
must develop an efficient implicit simulation algorithm to
guarantee the stability of the solutions in time. Some prelimi-
nary results have been presented recently.19 Here, we dem-
onstrate the mechanism responsible for the formation of cur-
rent filaments in semiconductors when a voltage larger than a
threshold is applied, and compute the current-voltage char-
acteristic of the stationary filamentary branch forn-type
GaAs. The paper is organized as follows. In Sec. II, we
present the set of partial differential equations governing the
dynamics of current filament formation, and show how the
GR rates are derived from MC simulations. The main results
of the simulation of the current filament formation are pre-
sented and discussed in Sec. III. For a two-dimensional
sample geometry with point contacts, we compute in Sec. IV
the fully developed current filaments constituting the highly
conducting branch of theS-shaped current-voltage character-
istic and compare it with the states on the low conducting
branch. In Sec. V, we draw some conclusions.

II. MODEL

A. Constitutive equations

We consider a doped semiconductor at helium tempera-
tures. In the following, we shall assumen-type material;
p-type semiconductors can be treated analogously. The car-
rier density in the conduction band, and hence the current
density, is determined by the GR processes of carriers be-
tween the conduction band and the donor levels. The experi-
mentally observedS-shaped current density-field relation in
the regime of impurity breakdown can be explained in terms
of standard GR kinetics, only if impact ionization from at
least two impurity levels is taken into account.20,21 There-
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fore, we model the infinite hydrogenlike energy spectrum of
the shallow donors by the ground state and an ‘‘effective’’
excited state close to the band edge. In this case, the state of
the system can be characterized by the spatial distribution of
the carrier densities in the conduction bandn(x,t), as well as
in the impurity ground state and excited staten1(x,t),
n2(x,t), respectively, wherex is the spatial coordinate and
t denotes time.

The temporal evolution ofn is then governed by the con-
tinuity equation,

ṅ5
1

e
¹• j1f~n,n1 ,n2 ,uEu!, ~1!

where the dot denotes the partial derivative with respect to
time,e is the electron charge, andE is the local electric field
within the sample. Within the drift-diffusion approximation
the current densityj can be expressed as

j5e~nmE1D¹n!, ~2!

with the diffusion constantD and the mobilitym. We as-
sume the validity of the Einstein relationD5mkBTL /e,
wherekB is Boltzmann’s constant andTL is the lattice tem-
perature.

The ratef of GR processes depends on the local values
of the carrier densities in the conduction band and at the
impurities, given byn, n1 , and n2 , respectively, and the
strength of the electric fieldE5uEu. Analogously, ratesf1 ,
f2 determining the temporal evolution ofn1 , n2 can be
defined as

ṅi5f i~n,n1 ,n2 ,E!, ~3!

with i51,2.
In an explicit model7 for n-type GaAs at 4.2 K, the GR

rates are given by

f5X1
sn22T1

snpt1X1nn11X1* nn2 , ~4!

f15T* n22X* n12X1nn1 , ~5!

f252f2f1 , ~6!

where pt5ND2n12n2 is the density of ionized donors,
ND is the total density of donors,X1

s is the thermal ionization
coefficient of the excited level,T1

s is its capture coefficient,
X1 , X1* are the impact ionization coefficients from the
ground and excited level, respectively,X* , T* denote the
transition coefficients from the ground level to the excited
level and vice versa, respectively.

The electric field is coupled to the carrier densities via
Poisson’s equation,

e¹•E5e~ND*2n12n22n!, ~7!

where e is the dielectric constant andND*[ND2NA holds
with the compensating acceptor concentrationNA . From
equations~1!,~3!,~6!,~7!, the charge conservation equation
can be derived, given by

¹•J50, ~8!

with J5eĖ1 j, whereJ is the total current density composed
of displacement current and conduction current densities. If
the initial values ofn, n1 , n2 , andE satisfy Poisson’s equa-
tion ~7!, ~7! and ~8! are not independent and we can substi-
tute ~7! by ~8! for the numerical treatment of the time-
dependent problem in the drift-diffusion approximation. In
many cases, this approach turns out to be advantageous.22–24

B. Generation-recombination coefficients

The essential nonlinearities of the constitutive model
equations~1!–~8! in the regime of low-temperature impurity
breakdown are contained in the dependence of the GR coef-
ficients uponn, n1 , n2 , andE. In order to derive these from
a microscopic theory, we have performed single-particle MC
simulations for a spatially homogeneous steady state as de-
scribed in Ref. 16. Thermal ionization of the excited donor
level, acoustic phonon-assisted recombination into the ex-
cited level~Lax-Abakumov!,25,26and impact ionization from
both the ground and the excited donor level were included as
band-impurity processes. The relevant intraband scattering
processes were elastic ionized impurity scattering~Conwell-
Weisskopf approximation! and inelastic acoustic deforma-
tion potential scattering.~Optical phonon scattering is ne-
glected because of the low lattice temperature, although
optical phonon emission becomes relevant for energies
above 36 meV.27 However, those states are not frequently
populated except at highest fields.17!

The microscopic rates of all band-impurity processes de-
pend upon the carrier densities in the band and impurity
states, which in turn depend upon the nonequilibrium carrier
distribution function. To obtain these carrier densities, the
MC method has to be combined self-consistently with the
rate equations~1!–~3! in the homogeneous steady state,
where the GR coefficientsX1 , X1* , T1

s are calculated by
averaging the microscopic transition probabilities (Pii

1 ,
Pii
2 , Prec for impact ionization from the ground state, the

excited state, and capture, respectively! over the nonequilib-
rium distribution functionf (k), which is extracted from the
MC simulation at each step:

X1~n,n1 ,n2 ,E!5
1

nn1
E d3k f~k;n,n1 ,n2 ,E!Pii

1 ~k,n1!,

X1* ~n,n1 ,n2 ,E!5
1

nn2
E d3k f~k;n,n1 ,n2 ,E!Pii

2 ~k,n2!,

~9!

T1
s~n,n1 ,n2 ,E!5

1

npt
E d3k f~k;n,n1 ,n2 ,E!Prec~k,pt!.

Note that f , and henceX1 , X1* , and T1
s , in turn depend

parametrically onn, n1 , n2 , andE. An iteration procedure,
wheren1 andn2 are expressed by their steady-state depen-
dence onn and E, is used to solve the above problem
self-consistently.16

As a result, the impact ionization coefficientsX1 andX1*
as well as the capture coefficientT1

s depend not only on the
local electric fieldE, but also on the electron concentration
n. This dependence onn is associated with a higher electron
temperatureTe

up on the upper branch of theS shapedn(E)
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characteristic as compared to the valuesTe
lo on the lower and

the middle branch as shown in Ref. 19. The MC data for the
electron temperature can be represented by smooth fit func-
tions

Te
up~E!5a11

a2
11exp~a32a4g2E!

1a5g2E, ~10a!

Te
lo~E!5b11

b2
11exp~b32b4g2E!

1b5g2E, ~10b!

with parametersai , bi ( i51, . . . ,5) as given in Table I. A
strong increase ofTe with rising electric field occurs on the
high-conductivity branch as opposed to only a slight increase
on the low-conductivity branch. Physically, the strong in-
crease is associated with a population inversion between the
donor ground and excited state on the upper branch. For
E.9 V/cm, impact ionization does no longer contribute to
energy relaxation in a significant way, since the donor
ground states are almost completely ionized and impact ion-
ization from the excited state dominates, which is now more
strongly populated than the ground state. Because of the
much smaller energies involved, this process cools less effi-
ciently. The transition fromTe

lo to Te
up at a certain threshold

electron densitynth corresponding to the smallest value of
n on the upper branch may be described by a hyperbolic
tangent. Thus, the MC data for the electron temperature in
dependence onE andn can be parametrized by the following
smooth fit function:

Te~E,n!5
1

2
g0

21$@Te
up~E!1Te

lo~E!#1@Te
up~E!

2Te
lo~E!#tanh@ log10~g1n/nth!#%. ~10c!

It is possible to express the dependence of the GR coef-
ficients uponE and n through the electron temperature
Te(E,n), as shown in Ref. 19. The MC data for impact ion-
ization from the ground state and the excited state can be
represented by the fit functions,

X1~Te!5g3c1expF c2
11exp~c32c4g0Te!

1c5g0TeG ,
~11a!

X1* ~Te!5g3d1expF d2
11exp~d32d4g0Te!

1d5g0TeG .
~11b!

X1 exhibits a sharp increase between 30 and 50 K, while
X1* shows a much weaker dependence onTe , because of the
much smaller ionization energy. The capture coefficient is
represented by

T1
s~Te ,n!5

1

2
g3$@T1

sup~Te!1T1
s lo~Te!#1@T1

sup~Te!

2T1
slo~Te!#tanh@ log10~g1n/nth!#%, ~11c!

T1
sup~Te!5e1exp@e2~g0Te2q1!

e3#, ~11d!

T1
slo~Te!5g1exp@g2~g0Te!

g3#, ~11e!

where different functionsT1
sup(Te) andT1

s lo(Te) have been
used to express the enhancement ofT1

s at the onset of the
upper branch of then(E) characteristic. The enhancement
occurs due to strong impact ionization, which scatters many
carriers back to the band minimum, from where they can
recombine with high probability. Generally, the capture rate
decreases with increasing carrier temperature, due to the re-
duced Coulombic scattering cross section at higher carrier
energy. The parametersai , bi , ci , di , ej , gj , i51, . . . ,5,
j51,2,3, are results from a nonlinear fit with fixed param-
etersnth andq1 . The factorsg0 , g1 , g2 , g3 are ‘‘scaling’’
factors that are used to attach the correct units to the equa-
tions.

In the following, our strategy will be to insert the fitted
analytical representations of the MC data into the macro-
scopic equations~1!–~8!. We use this approach in order to
take into account as much detailed information as possible
about the microscopic scattering processes, while still retain-
ing manageable expressions. As a check of consistency, the
spatially uniform stationaryn(E) characteristic obtained with
the fit functions from~4!–~6! in the steady state using the
condition of charge neutrality ND*5n(E)1n1(E,n)
1n2(E,n), can be compared with the characteristic obtained
by direct MC simulation as done in Ref. 19. The successful
reproduction of theS shape ofn(E) justifies the arbitrary
choice of basis functions for the fit ofX1 , X1* , T1

s , and
Te . The construction of these functions takes into account
that the MC data forTe(E,n) and forT1

s(Te ,n) take on dif-

TABLE I. Generation-recombination parameters from a fit to Monte Carlo data forn-type GaAs at 4.2 K.

GR coefficients:X1
s51.173106 s21, X*53.363103 s21, T*54.103107 s21

Unit factors:g051/TL , g151/ND* , g251/E05(548.10 V/cm!21, g35(ND* tM)
21

Fixed parameters:nth50.1, q152.143
Fit parameters:
i ai bi ci di ei gi

1 2.366 3.417 1.16131025 7.53031023 4.97931026 6.13831023

2 18.111 1.689 6.687 0.458 9.726 -0.265
3 2.896 6.098 5.928 4.657 -0.278 1.254
4 1.4053102 6.7893102 0.694 1.030
5 57.967 63.191 6.10431022 2.83631022
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ferent values for the middle and the lower branch of the
characteristic on the one hand and the upper branch on the
other. If n!nthND* holds, only the lower and middle branch
of the ‘‘S’’ dominates; however, forn@nthND* the upper
branch prevails. All numerical parameters of the GR rates are
given in Table I.

C. Numerical simulation

In order to solve the space- and time-dependent constitu-
tive equations~1!–~6!,~8! for a 2D sample geometry under
voltage control, we use an implicit finite element
scheme.24,28Due to the strong nonlinearities and steep spatial
gradients in the regime of impurity breakdown, an elaborate
numerical algorithm with efficient time step control and up-
date of the spatial grid is required. Our algorithm is not
based on an explicit Euler scheme as the particle-in-cell al-
gorithms of Refs. 9,10, but uses a semi-implicit scheme for
the propagation of the solutions of~1!–~6!,~8! in time. This
guarantees a degree of numerical stability of the solutions of
these highly complex nonlinear spatiotemporal partial differ-
ential equations, which an explicit Euler scheme could not
provide without using unreasonably small iteration time
steps and hence requiring amounts of CPU time that would
make it unfeasible to use simulations as an investigative tool
of studying filament formation in 2D.

We choose a square sample geometry with side lengths
Lx5Lz50.02 cm representing a thin GaAs film. The thick-
ness of the film isLy51.431023 cm. This value is only
relevant for the scaling of the integral current through the
sample. We model point contacts by applying Dirichlet
boundary conditions to two opposite regions of length
Lc5831024 cm at the centers of the sample edges parallel
to the z axis. At the contactsn is fixed to a value
nD5531015 cm23 to model Ohmic contacts. All other

boundaries are treated as insulating where the components of
the current densityj and the electric fieldE perpendicular to
the boundaries vanish. We start our simulation at time
t0[0 with the sample in thermal and chemical equilibrium,
i.e., vanishing currents and fluxes. The material parameters
for then-type GaAs sample are given in Table II.

III. FILAMENT FORMATION

In this section, we study the nascence of current filaments
when the applied voltage is switched rapidly to a value
above breakdown threshold, so that the semiconductor is
forced from the nearly insulating state to a highly conducting
state. Within 1ps the voltage is linearly increased from
U50 V to U50.48 V, corresponding to an average field
of E524 V/cm. Due to the Ohmic nature of the contacts, we
find small regions in the vicinity of the contacts in which the
electron concentrationn in the conduction band is largely
enhanced compared to the bulk where it is very low.19 Prac-
tically all carriers are bound in the donor ground state. The
carrier concentration in the excited donor leveln2 @Fig. 1~a!#
and the current densityj[u ju @Fig. 2~a!# are very low and
remain so during the voltage increase. The electron tempera-
ture in the whole sample is equal to the lattice temperature

FIG. 1. Temporal evolution of the electron
densityn2(x,z) in the excited donor level as a
function of the spatial coordinatesx andz for a
square sample with two point contacts.~a!
t51 ps, ~b! t50.5 ns, ~c! t51.0 ns, ~d!
t52.5 ns. The applied voltageU50.48 V cor-
responds to an average fieldE524 V/cm, i.e.,
above the threshold fieldEth517 V/cm of the
homogeneousn(E) characteristic~calculated with
the parameters of Tables I, II!.

TABLE II. Material parameters forn-type GaAs.

Parameter Symbol Value

Donor concentration ND 7.031015 cm23

Acceptor concentration NA 2.031015 cm23

Lattice temperature TL 4.2 K
Mobility m 1.03105 cm2/Vs
Dielectric constant e 10.9 e0
Dielectric relaxation time tM 7.83310214 s
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TL ~Ref. 19!. Due to the assumed voltage control, the elec-
tric field E reacts quasi-instantaneously forming a dipole-like
electric field distribution@Figs. 3~a!, 4~a!# and inducing en-
larged areas of increased electron density at both the cathode
and the anode. Subsequently, impact ionization multiplies
the electron concentration at the cathode~at x50.02 cm)
and establishes a front that moves towards the anode@Figs.
1~b!, 2~b!#. The propagation of the front is accompanied by a
high field domain@Fig. 3~b!# associated with a slightly in-
creased electron temperatureTe . Although the electric field

behind the front is smaller than in front of it, for reasons of
current conservation, the increased electron density in re-
gions passed by the front is almost conserved because re-
combination is a much slower process than generation.
Hence impact ionization downstream is encouraged, whereas
further generation upstream is inhibited. When the front
meets the region of increased carrier density around the an-
ode, a rudimentary filament is formed, albeit with a carrier
density several orders of magnitude lower than that corre-
sponding to completely ionized donor states of density

FIG. 2. Temporal evolution of the current
density j (x,z). Time steps and voltage as in Fig.
1. The gray scale of the density plots corresponds
to a logarithmic scale ofj . Note that the injecting
cathode is at the top.

FIG. 3. Temporal evolution of the modulus of
the electric fieldE(x,z). Time steps and voltage
as in Fig. 1.
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ND*5531015 cm23. Now donor impact ionization is be-
coming enhanced in the rudimentary filament, because the
excited leveln2 is increasingly populated@Fig. 1~c!#. The
current density@Fig. 2~c!# and the electron temperature are
significantly growing in the rudimentary filament. The poten-
tial distributionF is being deformed@Fig. 4~c!# by the na-
scent filament, and the high field domain reverses its direc-
tion of motion and moves back from the anode to the cathode
@Fig. 3~c!#, again for the reason of current conservation. Fi-
nally, impact ionization leads to a uniform increase of elec-
tron density until the filament reaches its mature state, where
almost all donors are ionized, and the carrier density corre-
sponds to the upper branch of the homogeneous steady state
characteristicn(E). Within the filament, the excited donor
level is much more highly populated than outside@Fig. 1~d!#,
nevertheless still only about 2% of the band carriers are
trapped in the excited level, while the ground level iscom-
pletelydepleted inside the filament. Thus, the population ra-
tio between ground and excited level is inverted in the fila-
ment. Also, the current densityj and the electron
temperatureTe are much larger inside the filament than out-
side @Fig. 2~d!#. The high field domain vanishes@Fig. 3~d!#,
and the deformation of the potential distribution is completed
@Fig. 4~d!#.

During this breakdown process the total current19 in-
creases rapidly after a stage of very low current@Figs. 1~b!–
4~b!#, where the front travels from cathode to anode. When
the rudimentary filament is established@Figs. 1~c!–4~c!# the
current increases, but shows a local minimum in its growth
rate. Afterwards the transition to the mature filament@Figs.

1~d!–4~d!# occurs much more rapidly.
Hence, from our simulation, we find three stages of im-

pact ionization breakdown: a stage of front creation and
propagation from the injecting contact, i.e., the cathode,
~stage I! followed by a stage of stagnation after the front has
reached the anode~stage II!, and a final stage during which
the rudimentary filament grows to a mature filament~stage
III !. Whereas there are indications from one-dimensional
simulations ignoring the transversez dependence that the
stagnation of the breakdown process in the second-stage re-
sults from a seesawlike mode, in which a high field domain
moves back and forth between the anode and the cathode,18

the mechanism for the slowing down of the increase inI (t)
in the 2D case is not completely clear, but appears to be
similar.

IV. FULLY DEVELOPED FILAMENTS

Our simulations in the previous section have shown that
the final high-current steady state reached after breakdown is
characterized by an inhomogeneous, filamentary current den-
sity distribution, as indeed experimentally found by spatially
resolved measurements ofn-type GaAs at liquid helium
temperature.5,29,30We are now in a position to compute the
stable parts of theS-shaped stationary current-voltage char-
acteristic from our detailed simulations of the 2D sample.

The procedure to calculate these points is to increase the
voltage stepwise and to wait after each step until the system
returns to its steady state. We start at zero voltage and in-
crease the voltage until switching from the low conductive

FIG. 4. Temporal evolution of the potential
F(x,z). Time steps and voltage as in Fig. 1. Po-
tential isolines are shown.
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state to the highly conductive state occurs, as described in
Sec. III. Then, on the upper branch of the characteristic, we
let the filament develop completely. Afterwards the voltage
is decreased stepwise and again after each step we let the
system return to a steady state. This is done until the voltage
drops below the holding voltage, where the upper branch
becomes unstable and returns to the lower branch. The deci-
sion if the system reaches its steady state after increasing the

voltage is based on the information of the total current
I (t). When I (t) becomes constant, the steady state is
reached.

For this simulation, we use the same initial conditions as
described in Sec. II.C. The points on the lower branch are
calculated in voltage steps ofDU50.025 V, starting from
U50 V. The voltage increase ofDU is done linearly within
1ps. The relaxation time to the steady state turns out to be
less than 1ns. For the calculation of the points on the upper
branch, we switch to the highly conductive state at
U50.5 V. Voltage is decreased in steps ofDU50.025 V
in the same manner as before.

The resulting points are plotted in Fig. 5, in comparison
with the spatially homogeneous steady-state solution. Obvi-
ously, on the highly conducting branch, the slope of the ho-
mogeneous solution is larger by a factor of about 5 than that
of the inhomogeneous solution, whereas on the low conduct-
ing branch the current in both cases is almost zero. The rea-
son for the reduced slope is that the current is carried only by
the filamentary channel, which has a smaller cross section.
Both solutions show an almost constant slope on the highly
conducting branch, which is obvious since the carrier density
does not change significantly in this regime. The shape of the
current-voltage characteristic is in good agreement with
characteristics obtained from experiments.30

For four different points on the current-voltage character-
istic @labeled~a!–~d! in Fig. 5#, we display the spatial distri-
bution of the electron density in the conduction band
n(x,z) ~Fig. 6! and in the excited donor leveln2(x,z) ~Fig.
7!, and the potential distributionF(x,z) ~Fig. 8!. Regarding
the electron densitiesn on the lower branch@Fig. 6~a!,~b!#,
there is just a slight increase in electron concentration in the
vicinity of the contacts. With increasing voltage, there is also
an increase in the bulk except at the corners of the sample.

FIG. 5. Stationary current-voltage characteristic calculated with
the parameters of Tables I, II, from the spatially inhomogeneous
solution of the two-dimensional sample~squares!, in comparison
with the homogeneous solution~full lines!. The letters correspond
to the plots shown in Figs. 6–8 below.

FIG. 6. Electron densityn(x,z) in the steady
state corresponding to the points labeled~a!–~d!
in the current-voltage characteristic of Fig. 5.~a!
U50.075 V ~lower branch!, ~b! U50.3 V
~lower branch!, ~c! U50.075 V ~upper branch!,
~d! U50.3 V ~upper branch!.

53 15 977DYNAMICS OF NASCENT CURRENT FILAMENTS IN LOW- . . .



On the upper branch@Fig. 6~c!,~d!#, we have a fully devel-
oped filament that shows a slight decrease in electron con-
centration as the voltage is reduced. For the electron concen-
tration in the excited donor leveln2 , on the lower branch we
find just changes in the contact region similar ton. On the

upper branch, however, the concentrationn2 decreases with
increasing voltage due to reduced recombination with grow-
ing electron temperature.19 Note that, for the same reason,
n2 assumes its largest values at the filament boundaries and
is somewhat smaller in the interior of the filament where the

FIG. 7. Same as Fig. 6 for the
electron density in the excited do-
nor leveln2(x,z).

FIG. 8. Same as Fig. 6 for the potential
F(x,z). DU denotes the steps between the po-
tential isolines shown.
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electron temperature is higher. Outside the filament, practi-
cally all carriers are trapped in the donor ground level, which
is, in turn, strongly depleted inside the filament. Our simula-
tions thus give detailed microscopic information about the
density profiles of carriers in band states and in ground and
excited donor states in a cross section of the filament. This
corrects former phenomenological 1D modeling, which as-
sumed either a peak ofn2 in the filament wall but no popu-
lation inversion inside the filament,31 or monotonic wall pro-
files of n2 and n1 , and values ofn much lower thann1 ,
n2 inside the filament.13

The potentialF(x,z) ~Fig. 8! shows a dipolelike distribu-
tion for the lower branch and a deformation caused by the
filament on the upper branch. There, the electric field is of
the same order inside and outside the filament, but distinctly
higher at the filament boundaries. All values correspond to
the regime of bistability between the holding field and the
threshold field of then(E) characteristic, thus allowing for
the spatial coexistence of the low conducting and the highly
conducting state.

V. CONCLUSIONS

In this paper, we have presented detailed simulations of
the spatiotemporal dynamics of the nascence of a current
filament during impurity breakdown. It is shown that this
process can be characterized by three stages:~1! front cre-
ation at the injecting contact and propagation towards the
noninjecting contact,~2! stagnation in the phase of a rudi-
mentary filament when the front has reached the opposite
contact,~3! uniform growth of the rudimentary filament to a
fully developed filament.

Using our results for the fully developed filaments, we
have been able to construct the complete current-voltage
characteristic including the highly conducting filamentary

upper branch. Our results are in good agreement with both
global I (U) measurements and spatially resolved images of
current filaments32 in n-type GaAs obtained from scanning
electron microscopy,3,29,33 laser scanning microscopy,30 and
suppressed photoluminescence measurements.34

Our analysis of the evolution of the spatial distributions of
carriers in band and impurity states, of the electron tempera-
ture, of the current density, the electric field, and the poten-
tial has elucidated the breakdown mechanism and its impli-
cations for the formation of current filaments in
semiconductors. By combining a self-consistent solution of
the carrier continuity equation and Poisson’s equation for a
two-dimensional sample geometry with single-particle
Monte Carlo simulations of the microscopic scattering and
generation-recombination processes including impact ioniza-
tion of shallow impurities, we have developed a powerful
tool to study various problems in the field of current insta-
bilities and filamentation. The elaborate numerical algorithm
will enable us to consider different sample structures and
contact geometries, including multiple arrays of point con-
tacts as proposed recently with the aim of realizing multifila-
mentary switching.35 Future research will be conducted in
this direction.
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