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We investigate fluctuations in the differential conductance of a mesoscopic sample as a function of magnetic
field and bias voltage. The sample consists of two funnel-shaped gold films connected by a narrow constriction.
The cross section of the constriction is of the order of 5 nm2. This is extremely small compared to the elastic
mean free pathl in the adjacent larger portions of the structure.l is of the order of 50 nm. The conductance
fluctuations~CF! are mainly due to diffusive motion of the conduction electrons in the wide regions of the gold
film. In this respect the constriction probes via the CF the impurity configuration in the region of the gold film,
which the electrons can explore coherently starting from a point within the constriction. Because of the
smallness of the constriction, the size of the CF is smaller than the universal value predicted by theory by a
factor of about 30. The fluctuation amplitude depends on the bias voltage. The dependence is in agreement with
the theory of Larkin and Khmel’nitski�. It can be studied in the magnetoconductance as well as in the
conductance as a function of bias voltage for fixed magnetic field. A detailed analysis of the fluctuation
amplitude yields identical values in both cases. This is in accordance with the ergodic hypothesis introduced by
Lee and Stone.@S0163-1829~96!01523-8#

I. INTRODUCTION

At low temperatures the time over which conductance
electrons in metals maintain their phase coherence,tw , can
exceed the elastic scattering timet by several orders of
magnitude.1 The latter is via the Drude law simply related to
the conductivity,s5ne2t/m. Heren is the electron density,
e the elementary charge, andm the electron mass. However,
the conductivity is only well defined as an average over
length scales that exceed the phase coherence lengthLw con-
siderably.Lw measures the average travel distance of a con-
duction electron during the phase coherence time. Therefore
the concept of conductivity, while extremely helpful in prob-
lems that involve metallic structures of larger size, loses its
meaning in the so-called mesoscopic regime where one stud-
ies the behavior of samples with dimensions smaller than
Lw . In this regime the conductance is not a function of the
conductivity and the sample geometry alone, but depends
sensitively on the position of each single impurity. The
Drude value of the conduction equals the mean value for the
conductance over the locations of the impurities. But the
conductance fluctuates significantly with the impurity con-
figuration. For simple theoretical models the rms amplitude,
rms(G)5Š(G2^G&)2‹1/2 of the conductance fluctuations
~CF! turns out to have a universal value of the order of
e2/h.2,3 If mesoscopic transport is diffusive the exact value
of rms(G) depends only weakly on the shape of the sample
and does not depend at all on the degree of disorder in a wide
range of impurity concentrations.

It is not hard to understand the origin of the conductance
fluctuations. A conduction electron originally located at a
given position within the sample spreads out during a time
t over a spherical volume of diameterADt. HereD is the
diffusion constant. It can reach every point within this dis-

tance on a great variety of random walks with the scattering
centers as corner points. All the paths that lead to a specific
point vary in length. This leads to a complicated interference
pattern for the amplitude of the electronic wave function. It
is essential that the phase coherence is maintained during the
time periodt. For t@tw the probability density of the elec-
tron tends to be homogeneous. The same type of interference
effect leads to a variation of the transmission probability of a
conduction electron through a mesoscopic sample with the
impurity configuration and hence to a variation of the con-
ductance. While a naive expectation would be that these
fluctuations are negligible due to the averaging over the tre-
mendous number of possible paths, a careful analysis yields
the universal conductance fluctuation~UCF! result. If a suf-
ficient number of impurities is moved so that the length of all
diffusive paths through the sample changes by a random
amount of the order of the Fermi wavelength the conduc-
tance changes on average by the universal value of the UCF
theory.4

It is clear that a change in every parameter that influences
the phase of the electronic wave functions leads to CF as
well. The most important parameter in this connection is
probably the strength of the magnetic field. A change of the
magnetic field changes the phase of each path by an amount
(2p/F0)*DAdl, i.e., the phase change is proportional to the
path integral over the change in the vector potential.
F05h/e is the flux quantum. CF were first observed as a
function of the magnetic field.5 CF also occur as a function
of the Fermi energy6 and of the applied voltage across the
sample during the measurement.7 The connection between
the fluctuations as a function of these external parameters
and the fluctuations as a function of impurity configuration is
established by an ergodic assumption put forward by Lee and
Stone,2 which will be discussed briefly in Sec. II.
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One should keep in mind that the universal value of CF
predicted by theory is barely observed in experiments. This
is due to some drastic simplifications in the first theoretical
model, which were, on one hand, necessary to obtain analyti-
cal results and, on the other hand, extremely helpful in put-
ting forward our understanding of the physics of CF. In this
model a disordered region of constant cross section is con-
nected to exactly two particle reservoirs, which were kept on
different chemical potentials to force a current to flow
through the disordered region. So-called ideal leads connect
the reservoirs with the disordered region. Within these leads
no scattering of the electrons occurs at all. Thus, an electron
once entered into the lead on one side will leave it on the
other side in the same quantum state. The ideal leads sepa-
rate the relaxation processes, which occur in the reservoirs
and establish an equilibrium state there, from the purely elas-
tic motion within the disordered region. The UCF theory as
reported by Lee, Stone, and Fukuyama4 holds for this model.
However, in the most common experimental method to mea-
sure a resistance four reservoirs are connected with real leads
to the sample.8–10 Two of the reservoirs serve as a current
source, while the remaining two are used to measure the
resulting voltage drop across the sample. This classical
method is known to eliminate the contribution of the leads to
the total resistance. However, it is now well understood11

that each additional lead and reservoir attached to a meso-
scopic conductor influences the interference contribution.
During the phase coherence time the electrons explore por-
tions of the leads that are not part of the original sample. In
addition, inelastic processes are introduced by allowing elec-
trons to be substituted by electrons from the reservoirs that
have no phase relation to the former ones. This leads to
serious differences between the four-point measurement on
one side and the theoretical results on the ideal two-point
model. The size of the CF depends strongly on the separation
of the voltage probes. The universal value of the CF pre-
dicted by theory is only observed if the separation of the
voltage leads is equal toLw . One also finds asymmetries of
the conductance with respect to the magnetic field that are
actually in accordance with the Onsager relation but for the
same reason are not present in the ideal two-lead model.
Nevertheless, with a proper treatment of the additional fea-
tures arising from two additional leads attached to a mesos-
copic conductor, theory and experiment in four-point con-
figuration seem to be in good agreement.8,10,11

Further useful information has been obtained in configu-
rations where only two leads are connected to a mesoscopic
sample within a distance ofLw .

12–17 In these configurations
the resistance of the leads has to be kept small compared to
the mesoscopic sample itself to get meaningful information
about the sample itself. This problem has been dealt with in
two different approaches: Several groups12–14 have built a
sandwich structure of two metallic layers with an insulating
layer in between. The insulating layer contains a single hole
of mesoscopic diameter. The resistance of this configuration
is dominated by a mesoscopic volume around the hole. An-
other approach is to produce planar structures consisting of a
homogeneous mesoscopic wire with one funnel-shaped con-
tact on each end.15–17The size of the contacts is large com-
pared toLw . The whole configuration can be measured with
the classical four-point method, but the resistance is mainly

due to the mesoscopic wire in the center, which is coupled
only by two electrical connections to the outside world. In
this case one finds CF in the magnetoconductance that are
symmetric with respect to the magnetic field as expected for
a two-point configuration. We have shown recently,17 by
varying the length of the wire, that in this configuration a
weak geometry dependence of the CF can be observed that is
in good agreement with the theoretical predictions of the
ideal lead model.

II. ERGODICITY

As mentioned in the Introduction, a change of the mag-
netic flux through the sample by an amount of the order of
F0 alters the conductance on average by the same amount as
a rearrangement of the impurities. This is essentially the
statement of the ergodic hypothesis introduced to the theory
of UCF by Lee and Stone:2 The rms amplitude of the CF in
the magnetoconductance is equal to the rms amplitude of CF
in the ensemble of different impurity configurations:

^dG2~B5const!&ensemble5^dG2~B!&B .

HeredG(B)5G(B)2^G(B)&. The relation holds according
to the hypothesis if the magnetic field is not too small. For
zero magnetic field the ensemble fluctuations are expected to
be larger4 by a factor ofA2. It is worthwhile to mention that
the CF in the magnetoconductance are much easier to ob-
serve experimentally than the CF as a function of impurity
configuration. For the regime of large conductances
G@e2/h the ergodic assumption could be proven by
Al’tshuler, Kravtsov, and Lerner.18 An agreement within the
experimental errors has been found experimentally, as
well.19

UCF occur also as a function of Fermi energy and of the
applied voltage across the sample.7,20 Both parameters influ-
ence the velocity of the electrons participating in the elec-
tronic transport so as to cause a phase randomization of the
traversing electron trajectories. But the latter is much more
difficult to treat theoretically because a study of nonlineari-
ties in the voltage current characteristics excludes naturally
the application of linear response methods. An analysis by
Larkin and Khmel’nitski�21 indicates that the size of the fluc-
tuations in the differential conductanceGdiff5dI/dU as well
as in the conductanceGint5I /U itself as a function of the
bias voltage are expected to depend on the bias voltage. Ex-
perimental observations of CF in conductance versus voltage
characteristics (G/V curves!, on the other hand, show clear
indications that the phenomena are not fully understood.22,23

From a straightforward expansion of the ergodic assumption
by Lee and Stone2 one would expect that an average over the
magnetic field and over the bias voltage are equivalent to the
ensemble average and thus equivalent to each other. But one
encounters immediate difficulties. The average over the mag-
netic field is defined as

^•••&B5 lim
Bmax→`

1

2Bmax
E

2Bmax

Bmax
dB••• . ~1!

To calculate the rms amplitude of the magnetoconductance
by means of this average is straightforward, because the size
of the fluctuations is expected to be independent of the mag-
netic field~with the exception of a small field range close to
zero magnetic field!. To get a good estimate for the rms
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amplitude one has to measure the fluctuations over a large
field range. Since the size of the fluctuations in theG/V
curves is not constant, a generalization to the case of the bias
voltage is difficult. It is obvious that one cannot perform the
limes operation in the definition of the magnetic field aver-
age @Eq. ~1!#. This turns out to be in most cases the most
limiting factor in the precision with which one can measure
the rms amplitude. Similarly, one calculates the rms ampli-
tude for theG/V curves in small voltage intervals. The in-
tervals have to contain at least a couple of fluctuation
minima and maxima. The rms value that one gets with a
proper choice of the width of the averaging interval can be
taken as a measure for the rms amplitude for the center of the
determination interval. By sliding the determination interval
over the full measuring range one gets a continuous function.
For too narrow intervals this function is strongly fluctuating
itself and thus a poor measure of the dependence of the rms
amplitude, whereas for too large intervals the dependence is
smoothed out. If the rms amplitude does not change too
much over a single fluctuation period one can get in this way
a fairly good estimate for the bias voltage dependence of the
rms amplitude of the fluctuations in theG/V curves.

In summary we have two possibilities to determine the
rms amplitude of the CF for a given dc voltageVdc. We can
average over the magnetoconductance trace and we can av-
erage over a small voltage interval aroundVdc. In a gener-
alization of the ergodic hypothesis introduced by Lee and
Stone2 we can expect to get the same value for the rms
amplitude in both cases.

III. SAMPLE AND MEASUREMENTS

We report on measurements of CF obtained on a small
bridge between two funnel-shaped contacts. The structure is
made out of gold. The cross section of the bridge is consid-
erably smaller than the elastic mean free path in the adjacent
contacts. It is well known that in this case the resistance is
dominated by the so-called Sharvin contribution,24 which de-
scribes the resistance of a ballistic point contact and is given
by

RS5
h

e2
2p

AkF
2 .

HereA is the cross section of the point contact andkF the
Fermi wave vector. As common in the field of point contact
spectroscopy, the cross section of the bridge is estimated
using this formula. The resistance changed over the period of
investigation~11 months! from 150 to 220V. This yields a
cross section of 8–5 nm2.

The sample is produced bye-beam lithography and a lift-
off technique. The procedure is described in detail
elsewhere.25 Our method is capable of reproducible struc-
tures down to 25-nm lateral size, but by chance we can get
constrictions with considerably smaller size. Before the lift-
off, a gold film of 30-nm thickness is evaporated on top of
the structured polymethylmethacrylate-~PMMA-! based
electron resist. The evaporation is done in a high vacuum
chamber at room temperatures and gold with a purity of
99.999% is used. The mean free path in the resulting films at
T,100 mK has been measured to be typically 50 nm, corre-

sponding to a diffusion constant ofD.220 cm2/s. We use
doped silicon as a substrate that is insulating at sub-Kelvin
temperatures.

The sample is thermally coupled to the mixing chamber
of a dilution refrigerator. The temperature was constant
(65 mK! well below T,100 mK. At this temperature the
impurity configuration is fixed. This can be concluded from
the reproducibility of the magnetoconductance fluctuations.
The cross correlation of successive measured magnetofinger-
prints is usually larger than 80 %. A small ac current
(I ac5250 nA! of constant amplitude superimposed on a dc
currentI dc that varies between plus and minus 100mA was
applied. The ac part of the resulting voltage dropVac is
monitored with a lock-in amplifier.Gdiff5I ac/Vac is a mea-
sure for thedifferentialconductance. In this paper we discuss
the differential conductance and omit from now on the sub-
script atGdiff . The differential conductance is a function of
I dc as well as of the magnetic fieldB. Since the observed
conductance changes are at least smaller by a factor of
231024 than the mean conductance it is convenient to cal-
culate the dc voltage dropVdc5I dc/G and we discussG as a
function of B and Vdc: G5G(B,Vdc). In this parameter
space ofG we have chosen two types of measurements.
First, we measured the magnetoconductance for different
values of fixedVdc, G(B,Vdc5const). This we refer to as a
magnetoconductance measurement. Then we measuredG as
a function ofVdc for different values of the magnetic field,
G(B5const,Vdc). We call this aG/V curve in the follow-
ing. The size of the CF does not depend on the temperature
for T,100 mK. The dependence for higher temperatures is
discussed elsewhere.26 In this paper we are only considering
the low-temperature saturation value.

We were able to study the behavior of the sample over a
period of 11 months. During this time seven cooling cycles
were performed. In between the sample was stored at room
temperature. While the fingerprints of the CF were stable as
long as the sample was kept belowT5100 mK, uncorrelated
fingerprints were observed after warming up to room tem-
perature. This is due to the high mobility of defects in gold at
room temperature and the high sensitivity of the CF to
changes in the impurity configurations. But tempering of the
sample at room temperature for a couple of months was even
sufficient to alter considerably the mean conductance of the
very sensitive device. While the first measurement yielded a
conductance of 1/(150V) the conductance decreased during
the period of investigation to 1/(220V). This corresponds to
a decrease of the constriction dimensions. Most likely this is
due to diffusion of some gold atoms into the silicon sub-
strate. For the discussion of the results of our measurements
it is of importance that the reduction of the conductance cor-
responds to a significant change in the sample geometry.
While we have done all measurements at one single device,
it nevertheless corresponds to a couple of different devices
with slightly varying geometry. The overall behavior of the
CF is preserved in all measurements and is therefore be-
lieved to be a common feature for mesoscopic two-point
configurations in the nearly ballistic limit.

A. Magnetoconductance

Figure 1 shows examples for both types of performed
measurements. The fluctuations are of the order of
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1022e2/h. This value is a factor of about 20 smaller than the
universal value predicted by theory. A reduction of similar
magnitude has been observed by Holweget al.12,13 and can
be attributed to the reduced return probability in ballistic
constrictions. For a given magnetoconductance measurement
the amplitude of the fluctuations is roughly constant as is
obvious from Fig. 1. On the other hand, the rms amplitude of
the fluctuations clearly changes withVdc. As usual we get
the amplitude of the magnetoconductance fluctuations from
the maximum of the autocorrelation function

AG~DB!5
1

2Bmax
E

2Bmax

Bmax
dBdG~B!dG~B1DB!.

Obviously rms(G)5AAG(DB50). In Fig. 2 we show the
result of the analysis for three different cooling cycles. The
rms amplitude is small for zero dc voltage and increases
considerably with increasing dc voltage. The solid curves are
drawn as a guide to the eye. For higher dc voltages we find a
decrease of rms(G) resulting in a maximum for some inter-
mediate values ofVdc. In the next section we show that the
same behavior is found for the rms amplitude of theG/V
curves and discuss it briefly. We point out that the magneto-

FIG. 1. ~a! Magnetoconductance measurements for different dc
voltages (T,100 mK!. ~b! G/V curves for B50 and 3 T.

FIG. 2. rms(G) vs Vdc extracted from the magnetoconductance
measurements for three different cooling cycles. The lines serve to
guide the eye.~a! Data from the first cooling cycle.R5150V. ~b!
Data from the second cooling cycle@after four months, evaluated
from the data in Fig. 1~a!# R5160V. ~c! Data from the third cool-
ing cycle ~after another three months! R5180V.
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conductance fluctuations are highly symmetric, showing the
two-point character of our mesoscopic setup.

B. G/V curves

In Fig. 1~b! we showG/V curves taken atB50 and 3 T.
The CF are not symmetric with respect toVdc and the rms
amplitude depends onVdc. The difficulties in determining
the size of the CF inG/V curves is discussed in detail in Sec.
II. We calculate the rms amplitude of overlapping portions of
theG/V curves containing four minima and maxima. Such a
small number of fluctuations within the determination inter-
val DVdc leads to a low resolution and is not fully satisfying.
On the other hand, increasingDVdc starts to smooth out the
essential features of the rms(G) dependence. Therefore in-
creasingDVdc is inappropriate and an improved resolution
can be achieved by averaging over the results for uncorre-
latedG/V curves. Two methods have been used to obtain
uncorrelatedG/V curves. The more time consuming one is
to warm up the sample to'77 K between successive mea-
surements. At these temperatures the impurity configuration
changes due to the enhanced mobility of defects resulting in
uncorrelated fluctuation patterns. More efficient is to change
the magnetic field by an amount that exceeds the correlation
field Bc considerably. In one cooling cycle we measured
G/V curves for five different magnetic fields between 0 and
200 mT. The correlation between the different measurements
is listed in Table I. Two fluctuation patterns taken at the
same magnetic field are correlated to'89 %. For a field
change of 50 mT theG/V curves are still highly correlated,
but for a change of 100 mT the correlation has already
dropped to 47%. In Fig. 3 we show the autocorrelation func-
tion of a magnetoconductance measurement. The autocorre-
lation function drops to half its maximum value for
DB596 mT, in excellent agreement with the value obtained
from the correlation of theG/V curves~Table I!. The corre-
lation scale of theG/V curves in Fig. 1~b! increases from a
constant value of Vc580610mV for bias voltages
Vdc,2 mV to Vc5150610mV at Vdc510 mV.

The averaged values of the rms amplitudes of theG/V
curves forB50 T andB.0 T are plotted in Fig. 4. We see
that the fluctuations inG/V curves measured at finite field
are considerably smaller than those measured at zero field.
From the theory one expects a reduction of the rms ampli-
tude of the fluctuations by a factor ofA2.4 As soon as the
magnetic field exceedsBc we find no indication of a further
dependence of the rms amplitude of theG/V curves on the
magnetic field. For finite field we can use therefore uncorre-
latedG/V curves measured at different magnetic fields for
the averaging procedure described above. To improve the

resolution for the data at zero field we have to average over
results from uncorrelatedG/V curves, which we get by ther-
mally cycling the sample.

The closed dots in Fig. 4 represent the result of our com-
plete analysis for finite fields while the open circles corre-
spond to the results at zero field. As a guide to the eye we
have drawn splines through the finite field data~lower solid
curves!, which summarize the common features of the results
of the three cooling cycles. We get the upper splines by
multiplying the lower ones by a factor ofA2. They describe
within the accuracy of our experiment the data obtained at
zero field so as to confirm the theoretical expectation.

IV. DISCUSSION

In Fig. 5 we compare the data obtained from magnetocon-
ductance measurements~Fig. 2! with the rms amplitudes es-
timated from theG/V curves in finite magnetic field~Fig. 4,
lower curves!. Figure 5 proves the equivalence of magnetic
field and bias voltage averaging. It is important to notice,
that we do not have a universal behavior of the CF. Their
magnitude is much smaller than in the theory of UCF and
they depend significantly on an external parameter, namely,
the dc voltage. At zero bias voltage the rms amplitude of the
fluctuations has the value rms„G(B,Vdc50)….0.01e2/h,
which is about a factor of 30 smaller than predicted by
theory4 for a diffusive mesoscopic two-dimensional sample.
A similar reduction has been found by other authors for qua-
siballistic point contacts.12–14 Nevertheless, both averaging
mechanisms yield the same rms amplitude of the conduc-
tance fluctuations.

We now discuss briefly the behavior of the fluctuations in
the differential conductance as a function of the dc voltage.
Larkin and Khmel’nitski�21 ~LK ! have predicted an increase
of the rms amplitude of the differential conductance with the
applied bias voltage. In their introduction they give simple

TABLE I. Cross correlation ofG/V curves for different mag-
netic fields in %.

50 mT 100 mT 150 mT 200 mT

0 mT 77 47 30 4
50 mT 60 40 12
100 mT 79 33
150 mT 55

FIG. 3. Autocorrelation function of the magnetofingerprint
Vdc50 mV in Fig. 1~a!. The half widthBc596 mT defines the
correlation field.
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physical arguments that rms(G)}AV/Vc.
27 As the final re-

sult for the rms amplitude of the differential conductance
using the diagrammatic technique of Keldysh they get

rms~G!5AKg~V,DV50!

5
1

p

e2

h
AV

Vc
Acoth

eV

kBT
2
kBT

eV
. ~2!

HereKg(V,DV) is the correlator of the differential conduc-
tance. We observe an increase of the rms amplitude of the
fluctuations withVdc, which is in qualitative agreement with
this theoretical prediction. The calculation of LK assumes a
special geometry withl /L!1. HereL is the length of the
mesoscopic system. LK mention that the overall predictions
of their theory will also hold for other geometries and ratios
of l /L. So the exact voltage dependence of the fluctuation
amplitude of our sample probably differs from Eq. 2. But the
observed increase of the amplitude withVdc is still expected.

In experiments of other authors7,14 the increase was not
observed. This might be due to heating effects, which are
caused by the high current density.28 Heating leads to a
strong decrease of both the phase coherence length and the
thermal diffusion lengthLT5(hD/kBT)

1/2. LT limits in ad-
dition toLw the distance over which the conduction electrons
maintain their phase coherence. The decrease of the charac-
teristic length scales leads to a reduction of the CF amplitude
in contrast to the theoretical predicted behavior. Measure-
ments of magnetoconductance fluctuations by Holweg
et al.12 at Ag point contacts showed an increase of rms(G)
with applied dc voltage up toVdc'3 mV but the authors did
not discuss it.

In our case we are able to observe the increase because
even for relatively large bias voltages the current density in
the funnel-shaped contacts where those electron trajectories,
which dominate the CF, are located stays low. This is the
advantage of the almost ballistic motion in the region of high
current density. In this region the electrons are rarely scat-
tered and therefore cannot cause a rise of temperature. Only
for higher dc voltages do we observe a decrease of the CF
amplitude. For these voltages the large excess energy of the
conduction electrons after acceleration by the electric field in
the constriction leads to a generation of phonons and thus to
a reduction of the phase coherence length. LK expanded
their theory to higher voltages and temperatures and pre-
dicted a decrease of the amplitude of the fluctuations of the
differential conductance due to inelastic processes.21

FIG. 4. rms(G) vs Vdc extracted from theG/V curves. The
closed dots represent the results for finite magnetic fields while the
open circles corresponds to the results at zero field. The splines for
finite field ~lower curves! show the overall behavior of rms(G). The
upper lines are obtained by multiplying the lower ones by a factor
of A2. The different parts of the figure correspond to the same
cooling cycles as in Fig. 2.~b! is evaluated from the data in Fig.
1~b!.

FIG. 5. Comparison of rms(G) vs Vdc from Fig. 2 ~solid line!
and the finite field data of Fig. 4~dotted line! showing the ergodic
behavior of the fluctuations.
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V. CONCLUSION

In this paper we report on measurements of fluctuations in
the differential conductance of a small point-contact-like
constriction in a mesoscopic gold structure as a function of
magnetic field and applied bias voltage. The averaging pro-
cedure to obtain the rms amplitude was performed over both
the magnetic field as well as over the bias voltage. The rms
amplitude turned out to be a function of the bias voltage but
within the experimental resolution we got the same value,
regardless of the type of the average mechanism. We could

also confirm theA2 reduction of the rms amplitude of the
fluctuations by a magnetic field.
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