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It is shown that under certain conditions the resonant transport in mesoscopic systems can be described by
modified ~quantum! rate equations, which resemble the optical Bloch equations with some additional terms.
Detailed microscopic derivation from the many-body Schro¨dinger equation is presented. Special attention is
paid to the Coulomb blockade and quantum coherence effects in coupled quantum dot systems. The distinction
between classical and quantum descriptions of resonant transport is clearly manifested in the modified rate
equations.@S0163-1829~96!00323-2#

I. INTRODUCTION

Over the past decade great interest has been paid to arti-
ficially fabricated nanostructures containing a discrete num-
ber of quantum states. The discreteness of quantum states
manifests itself in peculiar transport properties of these sys-
tems as, for instance, in the Coulomb blockade oscillations.1

Actually, the study has been mostly concentrated on the
quantum transport through single devices~quantum dots!. In
fact, more interesting quantum mechanical effects can be
found incouplednanostructures devices, where the quantum
interference may strongly influence the resonance current.
The impressive progress in microfabrication technology now
allows us to extend the experimental investigation to these
systems too. For instance, the transport properties of coupled
dots are presently under intensive study.2,3

For description of quantum transport through a single
quantum dot~quantum well!, the ‘‘classical’’ rate equations
are usually used.4–6 They can be derived either by using
nonequilibrium Green’s functions technique,7 or directly
from the Schro¨dinger equation.8 The situation is different for
coupled wells with aligned levels. The quantum transport
through these devices goes on via quantum superposition
between the states in adjacent wells. It is thus quite obvious
that nondiagonal density matrix elements would appear in
the equations of motion. These terms have no classical coun-
terparts, and therefore the classical rate equations have to be
modified. A plausible modification of master equations for
some particular cases of the resonance tunneling through
double-dot structures has been proposed by Nazarov.9 A
more general case, though without account of Coulomb in-
teraction, has been considered in Ref. 10, where modified
rate equations have been proposed by using an analogy to the
optical Bloch equations.11 However, no microscopic deriva-
tion of the modified rate equations has been presented yet.

In this paper, we derive the rate equations for a general
case of resonant transport through mesoscopic systems, start-
ing with the many-body Schro¨dinger equation, with special
attention being paid to the Coulomb blockade and coherent
quantum mechanical effects. Our main goals are, first, to
substantiate and generalize the previously suggested rate
equations and second, to determine the region of validity of
the rate equations for the description of quantum transport in
general. Also, we believe that the microscopic derivation of

the rate equations will provide a better understanding of the
correspondence between quantum and classical description
of carrier transport in mesoscopic systems.

The plan of the paper is the following. In Sec. II, we give
a detailed derivation of the transport rate equations through a
single quantum well~dot!. In order to present our method
most lucidly, we neglect in this section the Coulomb inter-
action and spin effects. These effects are considered in Sec.
III. In Sec. IV, we derive the modified rate equations for
coupled well structures, taking into account the Coulomb and
spin effects. An example of coherent resonant transport with
inelastic transitions is studied in Sec. V. The derivation of
rate equations performed in this case allows us to establish
their correct form valid in a general case of quantum trans-
port. The general case and an example of coherent resonant
transport with inelastic transitions in the presence of strong
Coulomb blockade are presented in Sec. VI. The last section
is a summary.

II. SINGLE-WELL STRUCTURE

Let us consider a mesoscopic ‘‘device’’ consisting of a
quantum well~dot!, coupled to two separate electron reser-
voirs. The density of states in the reservoirs is very high
~continuum!. The dot, however, contains only isolated levels.
We first demonstrate how to achieve the reduction of a
many-body Schro¨dinger equation to the rate equation in the
simplest example, Fig. 1, with only one level,E1 , inside the
dot. We also ignore the Coulomb electron-electron interac-
tion inside the well and the spin degrees of freedom. Hence,
only one electron may occupy the well. With the stand sim-
plifications, the tunneling Hamiltonian of the entire system in
the occupation number representation is

H5(
l
Elal

†al1E1a1
†a11(

r
Erar

†ar

1(
l

V l~al
†a11a1

†al !1(
r

V r~ar
†a11a1

†ar !.

~2.1!

Here, the subscriptsl and r enumerate correspondingly the
~very dense! levels in the left~emitter! and right~collector!
reservoirs. For simplicity, we restrict ourselves to the zero
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temperature case. All the levels in the emitter and the collec-
tor are initially filled with electrons up to the Fermi energy
EF
L andEF

R , respectively. This situation will be treated as the
‘‘vacuum’’ state u0&.

This vacuum state is unstable; the Hamiltonian Eq.~2.1!
requires it to decay exponentially to a continuum state hav-
ing the forma1

†al u0& with an electron in the levelE1 and a
hole in the emitter continuum. These continuum states are
also unstable and decay to statesar

†al u0&, having a particle in
the collector continuum as well as a hole in the emitter con-
tinuum, and no electron in the levelE1 . The latter, in turn,
are decaying into the statesa1

†ar
†alal 8u0& and so on. The

evolution of the whole system is described by the many-
particle wave function, which is represented as

uC~ t !&5Fb0~ t !1(
l
b1l~ t !a1

†al1(
l ,r

blr ~ t !ar
†al

1 (
l, l 8,r

b1l l 8r~ t !a1
†ar

†alal 81•••G u0&, ~2.2!

whereb(t) are the time-dependent probability amplitudes for
finding the system in the corresponding states described
above with the initial conditionb0(0)51, and all the other
b(0)’s arezeros. Substituting Eq.~2.2! into the Schro¨dinger
equation i uĊ(t)&5HuC(t)&, results in an infinite set of
coupled linear differential equations for the amplitudes
b(t). Applying the Laplace transform

b̃~E!5E
0

`

eiEtb~ t !dt ~2.3!

and taking account of the initial conditions, we transform the
linear differential equations forb(t) into an infinite set of
algebraic equations for the amplitudesb̃(E),

Eb̃0~E!2(
l

V l b̃1l~E!5 i , ~2.4a!

~E1El2E1!b̃1l~E!2V l b̃0~E!2(
r

V r b̃lr ~E!50, ~2.4b!

~E1El2Er !b̃lr ~E!2V r b̃1l~E!2(
l 8

V l 8b̃1l l 8r~E!50,

~2.4c!

~E1El1El 82E12Er !b̃1l l 8r~E!2V l 8b̃lr ~E!1V l b̃l 8r~E!

2(
r 8

V r 8b̃l l 8rr 8~E!50, ~2.4d!

. . . .

Equations~2.4! can be substantially simplified. Let us re-
place the amplitudeb̃ in the term(Vb̃ of each of the equa-
tions by its expression obtained from the subsequent equa-
tion. For example, substituteb̃1l(E) from Eq.~2.4b! into Eq.
~2.4a!. We obtain

FE2(
l

V l
2

E1El2E1
G b̃0~E!2(

l ,r

V lV r

E1El2E1
b̃lr ~E!5 i .

~2.5!

Since the states in the reservoirs are very dense~continuum!,
one can replace the sums overl and r by integrals, for in-
stance,( l→*rL(El)dEl , where rL(El) is the density of
states in the emitter. Then the first sum in Eq.~2.5! becomes
an integral, which can be split into a sum of the singular and
principal value parts. The singular part yields
2 iQ(EF

L1E2E1)GL/2, whereGL52prL(E1)uVL(E1)u2 is
the levelE1 partial width, due to coupling to the emitter. Let
us assume thatEF

L@E1@EF
R , i.e., the bias is large and the

energy level is deeply inside the band. In this case, the inte-
gration overEl (r ) variables can be extended to6`. As a
result, theu-function can be replaced by one, and the prin-
cipal part is merely included into redefinition of the energy
E1 . Also, the second sum~integral! in Eq. ~2.5! proves to be
negligibly small. Indeed, let us replaceb̃lr→b̃(El ,Er ,E),
and assume weak energy dependence ofV on El (r ) . Then
one finds from Eqs.~2.4! that the poles of the integrand in
the El(Er) variable are on one side of the integration con-
tour, and, therefore, this term vanishes.

Applying analogous considerations to the other equations
of the system~2.4!, we finally arrive to the following set of
equations:

~E1 iGL/2!b̃0~E!5 i , ~2.6a!

~E1El2E11 iGR/2!b̃1l~E!2V l b̃0~E!50, ~2.6b!

~E1El2Er1 iGL/2!b̃lr ~E!2V r b̃1l~E!50, ~2.6c!

~E1El1El 82E12Er1 iGR/2!b̃1l l 8r~E!2V l 8b̃lr ~E!

1V l b̃l 8r~E!50, ~2.6d!

. . . ,

where GR52prR(E1)uVR(E1)u2 is the level E1 partial
width, due to coupling to the collector.

Now we introduce the density matrix of the ‘‘device.’’
The Fock space of the quantum well consists of only two
possible states, namely:ua& — the levelE1 is empty, and
ub& — the levelE1 is occupied. In this basis, the diagonal

FIG. 1. Resonant transport through a single quantum well struc-
ture.
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elements of the density matrix of the ‘‘device,’’saa and
sbb , give the probabilities of the resonant level being empty
or occupied, respectively. In our notation, these probabilities
are represented as follows:

saa5ub0~ t !u21(
l ,r

ublr ~ t !u21 (
l, l 8,r,r 8

ubll 8rr 8~ t !u
21•••

[saa
~0!1saa

~1!1saa
~2!1•••, ~2.7a!

sbb5(
l

ub1l~ t !u21 (
l, l 8,r

ub1l l 8r~ t !u
2

1 (
l, l 8, l 9,r,r 8

ub1l l 8 l 9rr 8~ t !u
21•••

[sbb
~0!1sbb

~1!1sbb
~2!1•••, ~2.7b!

where the indexn in s (n) denotes the number of electrons in
the collector. The currentI (t) flowing through the system is
I (t)5eṄR(t), whereNR(t) is the number of electrons accu-
mulated in the collector, i.e.,

NR~ t !5(
n

n@saa
~n!~ t !1sbb

~n!~ t !#. ~2.8!

The density submatrix elements are directly related to the
amplitudesb̃(E) through the inverse Laplace transform,

s~n!~ t !5 (
l . . . ,r . . .

E dE dE8

4p2 b̃l •••r •••~E!b̃l •••r •••* ~E8!

3ei ~E82E!t. ~2.9!

By means of this equation, one can transform Eqs.~2.6! for
the amplitudesb(E) into differential equations directly for
the probabilitiess (n)(t). Consider, for instance, the term
sbb
(0)(t)5( l ub1l(t)u2, Eq. ~2.7b!. Multiplying Eq. ~2.6b! by

b̃1l* (E8) and then subtracting the complex conjugated equa-
tion with the interchangeE↔E8, we obtain

E dE dE8

4p2 ~E82E2 iGR!(
l
b̃1l~E!b̃1l* ~E8!ei ~E82E!t

2E dE dE8

4p2 2 Im(
l

V l b̃1l~E!b̃0* ~E8!ei ~E82E!t50.

~2.10!

One can easily deduce from Eq.~2.9! that the first integral in
Eq. ~2.10! equals2 i @ṡbb

(0)(t)1GRsbb
(0)(t)#. Next, substitut-

ing

b̃1l~E!5
V l b̃0~E!

E1El2E11 iGR/2
~2.11!

from Eq. ~2.6b! into the second integral of Eq.~2.10!, and
replacing( l→*rL(El)dEl , one can perform theEl integra-
tion in the integral, thus obtainingiGLsaa

(0)(t). Ultimately,
Eq. ~2.10! readsṡbb

(0)(t)5GLsaa
(0)(t)2GRsbb

(0)(t). We can go
on with this algebra for all the other amplitudesb̃(t). For
instance, the above procedure applied to Eq.~2.6d! converts

it into a differential equation for the density-matrix element
sbb
(1) , Eq. ~2.7b!. The only difference with the previous ex-

ample is an appearance of the ‘‘cross terms,’’ like
(V l b̃l 8r(E)V l 8b̃lr* (E8). Yet, these terms vanish after the in-
tegration overEl (r ) , just as the second term in Eq.~2.5!. The
rest of the algebra remains the same, so one obtains
ṡbb
(1)(t)5GLsaa

(1)(t)2GRsbb
(1)(t). Finally, we arrive at the fol-

lowing infinite system of the chain equations for the diagonal
elements,saa

(n) andsbb
(n) , of the density matrix,

ṡaa
~0!~ t !52GLsaa

~0!~ t !, ~2.12a!

ṡbb
~0!~ t !5GLsaa

~0!~ t !2GRsbb
~0!~ t !, ~2.12b!

ṡaa
~1!~ t !52GLsaa

~1!~ t !1GRsbb
~0!~ t !, ~2.12c!

ṡbb
~1!~ t !5GLsaa

~1!~ t !2GRsbb
~1!~ t !, ~2.12d!

. . . .

Summing up these equations, one easily obtains differential
equations for the total probabilitiessaa5(nsaa

(n) and
sbb5(nsbb

(n) :

ṡaa52GLsaa1GRsbb , ~2.13a!

ṡbb5GLsaa2GRsbb , ~2.13b!

which should be supplemented with the initial conditions

saa~0!51, sbb~0!50. ~2.14!

Using Eqs.~2.8! and ~2.12!, we obtain the total current

I ~ t !5eṄR~ t !5eGR@sbb
~0!~ t !1sbb

~1!~ t !1sbb
~2!~ t !1•••#

5eGRsbb~ t !. ~2.15!

Thus, the currentI (t) is directly proportional to the charge
density in the well. Solving Eqs.~2.13! and substituting
sbb(t) into Eq. ~2.15!, we obtain~for t→`) the standard
formula for the dc resonant current,

I /e5
GLGR

GL1GR
. ~2.16!

Notice that, whereas the time behavior of the currentI (t)
depends on the initial condition, the stationary current
I5I (t→`), Eq. ~2.16!, does not.

Equations ~2.13!, derived from the many-body Schro¨-
dinger equation, coincide with the classical rate equations in
the sequential picture for the resonant tunneling, obtained
using nonequilibrium quantum statistical mechanics
technique.7 In contrast, our approach starts directly from the
many-body Schro¨dinger equation and will be straightfor-
wardly extended to more complicated situations. Note, how-
ever, that the method can be applied only when the reso-
nance energy is inside the band, andGL,R!EF

L2EF
R . If the

resonance is near the edge of the band, but the width of the
resonance is much smaller than the bandwidth, our method
still can be applied, but only to the stationary case (t→`).
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Yet, the time-dependent Scro¨dinger equation cannot be re-
duced to the rate equations~2.13!, and therefore this case is
not a subject of this paper.

III. COULOMB BLOCKADE

Now we extend the approach of Sec. II to include the
effects of Coulomb interaction. Consider again the quantum
well in Fig. 1, taking into account the spin degrees of free-
dom (s). In this case, the tunneling Hamiltonian~2.1! be-
comes

H5(
l ,s

Elals
† als1(

s
E1a1s

† a1s1(
r ,s

Erars
† ars

1(
l ,s

V l~als
† a1s1a1s

† als!1(
r ,s

V r~ars
† a1s1a1s

† ars!

1Ua1s
† a1sa1,2s

† a1,2s , ~3.1!

wheres561/2, andU is the Coulomb repulsion energy.
Writing down the many-body wave function,uC(t)&, in

the occupation number representation, just as in Eq.~2.2!,
and then substituting it into the Schro¨dinger equation
i uĊ(t)&5HuC(t)&, we find a system of coupled equations
for the amplitudesb(t)

Eb̃0~E!2(
l

V l@ b̃↑ l~E!1b̃↓ l~E!#5 i , ~3.2a!

~E1El2E1!b̃↑ l~E!2V l b̃0~E!2(
l 8

V l 8b̃↑↓ l l 8~E!

2(
r

V r b̃lr ~E!50, ~3.2b!

~E1El2Er !b̃lr ~E!2V r b̃↑ l~E!2(
l 8

V l 8@ b̃↑ l 8~E!

1b̃↓ l 8~E!#50, ~3.2c!

~E1El1El 822E12U !b̃↑↓ l l 8~E!2V l 8b̃↑ l~E!2V l b̃↓ l 8~E!

2(
r

V r@ b̃↑ l l 8r~E!1b̃↓ l l 8r~E!#50, ~3.2d!

. . . .

In order to shorten the notations, we eliminated the index~1!
of the levelE1 in the amplitudesb, so thatb̃↑(↓) . . . (t) de-
notes the probability amplitude for finding one electron in-
side the well with spin up~down!, and the amplitude
b̃↑↓ . . . (t) is the probability amplitude for finding two elec-
trons inside the well.

Equations~3.2! can be simplified by using the same pro-
cedure as described in the previous section. For instance, by
substitutingb̃lr from Eq. ~3.2c! and b̃↑↓ l l 8 from Eq. ~3.2d!
into Eq. ~3.2b!, and neglecting the ‘‘cross terms’’ on the
grounds of the same arguments as in the analysis of Eq.
~2.5!, we obtain

FE1El2E2E
2`

EF
L rL~El 8!V

2~El 8!dEl 8
E1El1El 822E12U

2E
EF
R

` rR~Er !V
2~Er !dEr

E1El2Er
G b̃↑ l~E!50. ~3.3!

SinceEl;E1 , the singular parts of the integrals in~3.3! are,
respectively,2 iQ(EF

L1E2E11U)GL8 /2 and2 iQ(E1E1

2EF
R)GR/2, where

GL~R!52prL~R!~E1!uVL~R!~E1!u2,

GL~R!8 52prL~R!~E11U !uVL~R!~E11U !u2.
~3.4!

Here,rL(R) is the spin up or spin down density of states in
the emitter~collector!, rL(R)[rL(R)↑5rL(R)↓ . As in the pre-
vious section, we assume the resonance level to be deeply
inside the band,EF

R!E1!EF
L . If, in addition,E11U!EF

L ,
the u-function in the singular parts of the integrals in~3.3!
can be replaced by one. In the opposite case,E11U@EF

L ,
the corresponding singular part is zero.

Proceeding this way with the other equations of the sys-
tem ~3.2!, we finally obtain

~E1 iGL!b̃0~E!5 i , ~3.5a!

~E1El2E11 iGL8 /21 iGR/2!b̃↑ l~E!2V l b̃0~E!50,
~3.5b!

~E1El2Er1 iGL!b̃lr ~E!2V r b̃↑ l~E!50, ~3.5c!

~E1El1El 822E12U1 iGR8 !b̃↑↓ l l 8~E!2V l b̃↓ l 8~E!

1V l 8b̃↑ l~E!50, ~3.5d!

. . . .

Equations~3.5! can be transformed into equations for the
density matrix of the ‘‘device’’ by using the method of the
previous section. Since the algebra remains essentially the
same, we give only the final equations for the diagonal
density-matrix elementssaa

(n)(t), sbb↑
(n) (t), sbb↓

(n) (t), and
scc
(n)(t). These are the probabilities of finding~a! no elec-

trons inside the well;~b! one electron with spin up~down!
inside the well, and~c! two electrons inside the well, respec-
tively. The indexn denotes the number of electrons accumu-
lated in the collector. We obtain

ṡaa
~n!522GLsaa

~n!1GRsbb↑
~n21!1GRsbb↓

~n21! , ~3.6a!

ṡbb↑
~n! 52~GL81GR!sbb↑

~n! 1GLsaa
~n!1GR8scc

~n21! , ~3.6b!

ṡbb↓
~n! 52~GL81GR!sbb↓

~n! 1GLsaa
~n!1GR8scc

~n21! , ~3.6c!

ṡcc
~n!522GR8scc

~n!1GL8sbb↑
~n! 1GL8sbb↓

~n! . ~3.6d!

These rate equations look like a generalization of the rate
equations~2.12!, if one allows the well to be occupied by
two electrons. The Coulomb repulsion leads merely to a
modification of the corresponding ratesG→G8, due to in-
crease of the two-electron energy.
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Summing up the partial probabilities we obtain for the
total probabilities,s(t)5(ns

(n)(t), the following equa-
tions:

ṡaa522GLsaa1GRsbb↑1GRsbb↓ , ~3.7a!

ṡbb↑52~GL81GR!sbb↑1GLsaa1GR8scc , ~3.7b!

ṡbb↓52~GL81GR!sbb↓1GLsaa1GR8scc , ~3.7c!

ṡcc522GR8scc1GL8sbb↑1GL8sbb↓ , ~3.7d!

and for the current

I ~ t !5(
n

n@ṡ~n!~ t !#5eGR@sbb↑~ t !1sbb↓~ t !#

12eGR8scc~ t !. ~3.8!

Equations~3.7!, ~3.8! can be solved most easily for a dc,
I5I (t→`). In this case,ṡ50, and Eqs.~3.7a!–~3.7d! turn
into the system of linear algebraic equations. One also finds
from Eq. ~3.7! that saa1sbb↑1sbb↓1scc51. The latter
implies that dc does not depend on the initial conditions.
Finally, we obtain

I /e5
2GLGR8 ~GL81GR!

GLGL812GLGR81GRGR8
. ~3.9!

If E1!EF
L!E11U, one finds from Eq. ~3.3! that

GL850, so that the state with two electrons inside the well is
not available. In this case, one obtains from Eq.~3.9! for the
dc,

I /e5
2GLGR

2GL1GR
. ~3.10!

It is interesting to note that this result is different from Eq.
~2.16!, although in both cases only one electron can occupy
the well. However, if the Coulomb repulsion effect is small,
i.e., GL,R8 5GL,R , Eq. ~3.9! does produce the same result as
Eq. ~2.16!, provided the density of states is doubled due to
the spin degrees of freedom.

One can also consider the case when the Fermi level in
the right reservoirEF

R lies above the resonance levelE1 , but
below E11U, so thatGR50, Eq. ~3.3!. Then the resonant
transitions of electrons from the left to the right reservoirs
can go only through the state with two electrons inside the
well. Using Eq.~3.9!, one finds for the dc,

I /e5
2GL8GR8

GL812GR8
, ~3.11!

which coincides with the result found by Glazman and
Matveev.4

IV. DOUBLE-WELL STRUCTURE

A. Noninteracting electrons

Now we turn to the coherent case of resonant tunneling.
Let us consider the coupled-well structure, shown in Fig. 2.
We assume that both levelsE1,2 are inside the band, i.e.,
EF
R!E1 ,E2!EF

L . In order to make our derivation as clear as

possible, we begin with the case of no spin degrees of free-
dom and no Coulomb interaction. The tunneling Hamiltonian
for this system is

H5(
l
Eial

†al1E1a1
†a11E2a2

†a21(
r
Erar

†ar

1V0~a1
†a21a2

†a1!1(
l

V l~al
†a11a1

†al !

1(
r

V r~ar
†a21a2

†ar !, ~4.1!

wherea1,2
† ,a1,2 are creation and annihilation operators for an

electron in the first or the second well, respectively. All the
other notations are taken from Sec. II. The many-body wave
function describing this system can be written in the occupa-
tion number representation as

uC~ t !&5Fb0~ t !1(
l
b1l~ t !a1

†al1(
l ,r

blr ~ t !ar
†al

1(
l
b2l~ t !a2

†al1(
l l 8

b12l l 8~ t !a1
†a2

†alal 8

1 (
l, l 8,r

b1l l 8r~ t !a1
†ar

†alal 81•••G u0&. ~4.2!

Substituting Eq.~4.2! into the Shro¨dinger equation with the
Hamiltonian~4.1! and performing the Laplace transform, we
obtain an infinite set of the coupled equations for the ampli-
tudesb̃(t):

Eb̃0~E!2(
l

V l b̃1l~E!5 i , ~4.3a!

~E1El2E1!b̃1l~E!2V l b̃0~E!2V0b̃2l~E!50, ~4.3b!

~E1El2E2!b̃2l~E!2V0b̃1l~E!2(
l 8

V l 8b̃12l l 8~E!

2(
r

V r b̃rl ~E!50, ~4.3c!

~E1El1El 82E12E2!b̃12l l 8~E!2V l 8b̃2l~E!1V l b̃2l 8~E!

2(
r

V r b̃1l l 8r~E!50, ~4.3d!

. . . .

Using exactly the same procedure as in the previous sections,
Eq. ~2.5!, we transform Eqs.~4.3! into the following set of
equations:

FIG. 2. Resonant transport through a double-well structure.
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~E1 iGL/2!b̃0~E!5 i , ~4.4a!

~E1El2E1!b̃1l~E!2V l b̃0~E!2V0b̃2l~E!50, ~4.4b!

~E1El2E21 iGL/21 iGR/2!b̃2l~E!2V0b̃1l~E!50,
~4.4c!

~E1El1El 82E12E21 iGR/2!b̃12l l 8~E!2V l 8b̃2l~E!

1V l b̃l 8r~E!50, ~4.4d!

. . . .

The amplitudesb(t) determine the density submatrix of
the system,s i j

(n) , in the corresponding Fock space:~a! — the
levelsE1,2 are empty,~b! — the levelE1 is occupied,~c! —
the levelE2 is occupied,~d! — both levelsE1,2 are occupied;
the indexn denotes the number of electrons in the collector.
The matrix elements of the density matrix of the ‘‘device’’
can be written as

saa5(
n

saa
~n![ub0~ t !u21(

l ,r
ublr ~ t !u2

1 (
l, l 8,r,r 8

ubll 8rr 8~ t !u
21•••, ~4.5a!

sbb5(
n

sbb
~n![(

l
ub1l~ t !u21 (

l, l 8,r
ub1l l 8r~ t !u

2

1 (
l, l 8, l 9,r,r 8

ub1l l 8 l 9rr 8~ t !u
21•••, ~4.5b!

scc5(
n

scc
~n![(

l
ub2l~ t !u21 (

l, l 8,r
ub2l l 8r~ t !u

2

1 (
l, l 8, l 9,r,r 8

ub2l l 8 l 9rr 8~ t !u
21•••, ~4.5c!

sdd5(
n

sdd
~n![ (

l, l 8
ub12l l 8~ t !u

2

1 (
l, l 8, l 9, l-,r,r 8

ub12l l 8 l 9 l-rr 8~ t !u
21•••, ~4.5d!

sbc5(
n

sbc
~n![(

l
b1l~ t !b2l* ~ t !1 (

l, l 8,r
b1l l 8r~ t !b2l l 8r

* ~ t !

1•••. ~4.5e!

Now we transform Eqs.~4.4! into differential equations
for s (n)(t). Consider, for instance, the term
sbb
(0)5( l ub1l(t)u2, Eq. ~4.5b!, where the amplitudesb1l are

determined by Eq.~4.4b!. Multiplying Eq. ~4.4b! by
b̃1l* (E8) and subtracting the complex conjugate equation
with E↔E8, we find

(
l

~E82E!b̃1l~E!b̃1l* ~E8!2(
l

V l@ b̃0* ~E8!b̃1l~E!

2b̃0~E!b̃1l* ~E8!#2V0(
l

@ b̃2l* ~E8!b̃1l~E!

2b̃2l~E!b̃1l* ~E8!#50. ~4.6!

After applying the inverse Laplace transform, Eq.~2.9!, the
first term in this equation becomes2 i ṡbb

(0)(t). Next, substi-
tuting

b̃1l~E!5
V l b̃0~E!1V0b̃2l~E!

E1El2E1
~4.7!

from Eq.~4.4b! into the second term of Eq.~4.6!, and replac-
ing the sum by an integral overEl , we reduce this term to
iGLb̃0(E)b̃0* (E8). After the inverse Laplace transform it be-
comes iGLsaa

(0)(t). Notice that the ‘‘cross term,’’
}V0V l b̃0b̃2l , does not contribute to the integral overEl ,
since the poles of the integrand in theEl variable lie on one
side of the integration contour@cf. the second term
of Eq. ~2.5!#. The third term of Eq.~4.6! turns out to be
V0@sbc

(0)(t)2scb
(0)(t)#, after the inverse Laplace transform.

Finally, we obtain a differential equation for the density sub-
matrix elementsbb

(0) ,

ṡbb
~0!~ t !5GLsaa

~0!1 iV0~sbc
~0!2scb

~0!!. ~4.8!

In contrast to the rate equations of the previous sections, the
diagonal matrix elementsbb is coupled with the off-diagonal
density-matrix elementsbc .

The corresponding differential equation forsbc can be
easily obtained by multiplying Eq.~4.4b! by b̃2l* (E8) with
the subsequent subtraction of the complex conjugated Eq.
~4.4c!, multiplied by b̃1l . Afterwords, by integrating over
El , we obtain

ṡbc
~0!5 i ~E22E1!sbc

~0!1 iV0~sbb
~0!2scc

~0!!2 1
2 ~GL1GR!sbc

~0! .
~4.9!

Eventually, we arrive to the following set of equations for
s (n):

ṡaa
~n!52GLsaa

~n!1GRscc
~n21! , ~4.10a!

ṡbb
~n!5GLsaa

~n!1GRsdd
~n21!1 iV0~sbc

~n!2scb
~n!!, ~4.10b!

ṡcc
~n!52GRscc

~n!2GLscc
~n!2 iV0~sbc

~n!2scb
~n!!, ~4.10c!

ṡdd
~n!52GRsdd

~n!1GLscc
~n! , ~4.10d!

ṡbc
~n!5 i ~E22E1!sbc

~n!1 iV0~sbb
~n!2scc

~n!!2 1
2 ~GL1GR!sbc

~n! .
~4.10e!

Using Eqs.~4.10!, we can find the charge accumulated in the
collector, NR(t), and subsequently, the total current,
eṄ(t), as given by
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I ~ t !/e5Ṅ~ t !5(
n

n@ṡaa
~n!~ t !1ṡbb

~n!~ t !1ṡcc
~n!~ t !1ṡdd

~n!~ t !#

5GR@scc~ t !1sdd~ t !#. ~4.11!

As in the previous examples, the current is proportional to
the total probability of finding an electron in the well adja-
cent to the right reservoir. The off-diagonal elements of the
density matrix do not appear in Eq.~4.11!.

Summing up overn in Eqs.~4.10!, we obtain the system
of differential equations for the density-matrix elements of
the device,

ṡaa52GLsaa1GRscc , ~4.12a!

ṡbb5GLsaa1GRsdd1 iV0~sbc2scb!, ~4.12b!

ṡcc52GRscc2GLscc2 iV0~sbc2scb!, ~4.12c!

ṡdd52GRsdd1GLscc , ~4.12d!

ṡbc5 i ~E22E1!sbc1 iV0~sbb2scc!2 1
2 ~GL1GR!sbc ,

~4.12e!

@Eqs. ~4.12!# resemble the optical Bloch equations.11 Note
that the coupling with the reservoirs produces purely nega-
tive contribution into thenondiagonalmatrix element’s dy-
namic equation, Eq.~4.12e!, thus causing damping of this
matrix element.

Equations~4.12a!–~4.12e! are solved most easily for the
stationary current, I5I (t→`). Using saa1sbb1scc
1sdd51, we obtain

I /e5S GLGR

GL1GR
D V0

2

V0
21GLGR/41e2GLGR /~GL1GR!2

,

~4.13!

wheree5E22E1 . This result was obtained earlier in Refs.
12,13 in the framework of one-electron approach, and in Ref.
14 by using rate equations written in the eigenstate basis of
the double-well Hamiltonian.14

B. Coulomb blockade

The extension of the rate equations~4.12! for the case of
spin and Coulomb interaction is done exactly in the same
way as in Sec. III. Here, also, the rate equations for the
device density matrix are obtained only forE1,21U inside or
outside the band, but not close to the band edges
(EF

R!E1,21U!EF
L or E1,21U@EF

L). Eventually we arrive
at the rate equations of type Eqs.~4.12!, but with the number
of the available states of the device changed due to addi-
tional ~spin! degrees of freedom and Coulomb blockade re-
strictions. The Coulomb repulsion manifests itself also in a
modification of the transition amplitudeV and the rates
G ’s, Eq. ~3.4!.

In the case of large Coulomb repulsion, some of electron
states of the device are outside the band~the Coulomb block-
ade!. As a result, the number of the equations is reduced.
Consider, for instance, the situation where the Coulomb in-
teractionU of two electrons in the same well so large that
E1,21U@EF

L , but the Coulomb repulsion of two electrons in
different wells,Ū, is much smaller, so thatE1,21Ū!EF

L .
Then the state of two electrons in the same well is not avail-
able, but two electrons can occupy different wells. In this
case, the rate equations for the corresponding density-matrix
elements of the device are

ṡaa522GLsaa1GR~scc↑1scc↓!, ~4.14a!

ṡbb↑5GLsaa1GR8 ~sdd↑↑1sdd↑↓!1 iV0~sbc↑2scb↑!,
~4.14b!

ṡcc↑52GRscc↑22GL8scc↑2 iV0~sbc↑2scb↑!, ~4.14c!

ṡdd↑↑52GR8sdd↑↑1GL8scc↑ , ~4.14d!

ṡbc↑5 i ~E22E1!sbc↑1 iV0~sbb↑2scc↑!

2 1
2 ~2GL81GR!sbc↑ , ~4.14e!

where GL(R)8 52prL(R)(E11Ū)uVL(R)(E11Ū)u2. Here, to
be brief, we wrote only the equations for the ‘‘spin up’’
component of the density matrix. The same equations are
obtained for the ‘‘spin down’’ components of the density
matrix. The total current is

I /e5GR~scc↑1scc↓!1GR8 ~sdd↑↑1sdd↑↓1sdd↓↑1sdd↓↓!.
~4.15!

It is quite clear that the ‘‘spin up’’ and ‘‘spin down’’
components of the density matrix are equal, i.e.,
sbb↑5sbb↓5sbb , the same holding forscc , sdd compo-
nents. Therefore, Eqs.~4.14! and ~4.15! can be rewritten as

ṡaa522GLsaa12GRscc , ~4.16a!

ṡbb5GLsaa12GR8sdd1 iV0~sbc2scb!, ~4.16b!

ṡcc52GRscc22GL8scc2 iV0~sbc2scb!, ~4.16c!

ṡdd52GR8sdd1GL8scc , ~4.16d!

ṡbc5 i ~E22E1!sbc1 iV0~sbb2scc!2 1
2 ~2GL81GR!sbc ,

~4.16e!

and

I /e52GRscc14GR8sdd . ~4.17!

Usingsaa12sbb12scc14sdd51, we obtain for the dc

I /e5S 2GLGR8

2GL81GR
D V0

2

4V0
2
GLGL81GLGR81GRGR8 /4

~2GL81GR!2
1

GLGR8

2
1e2

2GLGR8

~2GL81GR!2

, ~4.18!
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where e5E22E1 . Notice that the current~4.18! differs
from that given by Eq. ~4.13! even for GL85GL and
GR85GR , despite the fact that in both cases only one electron
can occupy each of the wells.

It is interesting to compare our result with that of Stoof
and Nazarov15 for the case of strong Coulomb repulsion be-
tween two electrons in different wells (E1,21Ū@EF

L), where
only one electron can be found inside the system. It corre-
sponds toGL850. In this case, the dc current given by Eq.
~4.18! is

I /e5
GRV0

2

V0
2~21GR/2GL!1GR

2/41e2
. ~4.19!

This result is slightly different from that obtained by Stoof
and Nazarov~by the factor two in front ofGL). The differ-
ence stems from the account of spin components in the rate
equations, which has not been done in Ref. 15.

V. INELASTIC PROCESSES

As an example of a system with coherent tunneling ac-
companied by inelastic scattering, let us consider the
coupled-dot structure shown in Fig. 3. In this system, a reso-
nant current flows due to inelastic transition from the upper
to the lower level in the left well. For simplicity, we restrict
ourselves to noninteracting spinless electrons. The Coulomb
interaction and the spin effects can be accounted for pre-
cisely in the same way as in the previous sections, namely,
by allowing for states with doubly occupied levels~exclud-
ing states violating Coulomb restrictions! and modifying
transition amplitudes and inelastic rates.

The tunneling Hamiltonian of the system has the follow-
ing structure:

H5(
l
Elal

†al1E1a1
†a11E2a2

†a21E3a3
†a31(

a
Ea
phca

†ca

1(
r
Erar

†ar1V0~a2
†a31a3

†a2!1(
l

V l~al
†a11a1

†al !

1(
a

Va
ph~a2

†a1ca
†1a1

†a2ca!1(
r

V r~ar
†a31a3

†ar !.

~5.1!

Here, the subscripta enumerates the states in the phonon
bath andVa

ph is the corresponding coupling. The many-
particle time-dependent wave function of the system is

uC~ t !&5Fb0~ t !1(
l
b1l~ t !a1

†al1(
l ,a

b2la~ t !a2
†alca

†

1(
l ,a

b3la~ t !a3
†alca

†1 (
l, l 8,a

b12l l 8a~ t !a1
†a2

†alal 8ca
†

1 (
l, l 8,a

b13l l 8a~ t !a1
†a3

†alal 8ca
†1•••G u0&. ~5.2!

Repeating the procedure of the previous sections, we find the
following set of equations for the Laplace transformed am-
plitudes,b̃(E):

~E1 iGL/2!b̃05 i , ~5.3a!

~E1El2E11 iG in/2!b̃1l2V l b̃050, ~5.3b!

~E1El2Ea2E21 iGL/2!b̃2la2Va
phb̃1l2V0b̃3la50,

~5.3c!

~E1El2Ea2E31 iGL/21 iGR/2!b̃3la2V0b̃2la50,
~5.3d!

~E1El1El 82E12E22Ea!b̃12l l 8a2V l 8b̃2la1V l b̃2l 8a

2V0b̃13l l 8a50, ~5.3e!

~E1El1El 82E12E32Ea1 iG in/21 iGR/2!b̃13l l 8a

2V0b̃12l l 8a2V l 8b̃3la1V l b̃3l 8a50, ~5.3f!

. . . .

whereG in52prphuVphu2 is the partial width of the levelE1
due to phonon emission andrph is the density of phonon
states.

The density matrix elements of the device is
s i j (t)5(ns i j

(n)(t), wheres i j
(n)(t), are related to the ampli-

tudesb̃(E) via Eq.~2.9!. All possible states electron states of
the device are shown in Fig. 4. Using the previous section
procedure fordiagonalmatrix elements, we obtain master
equations analogous to Eq.~4.12!, in which transitions be-
tween isolated levelsE2 andE3 take place through the cou-
pling with nondiagonal matrix elements. These equations
have the appearance of the optical Bloch equation.11 How-
ever, the master equation for thenondiagonalmatrix ele-
ment, se f , contains an additional term. Therefore, we
present the derivation of the master equations for ‘‘coher-
ences’’se f andscd in some detail. Consider, for example,
the nondiagonal density submatrix elementsscd

(0)

5( l ,ab2la(t)b3la* (t) and se f
(0)5( l, l 8,ab12l l 8a(t)b13l l 8a

* (t).
The differential equation forscd

(0)(t) can be obtained by mul-
tiplying Eq. ~5.3c! by b̃3la* (E8), with subsequent subtraction
of the complex conjugated Eq.~5.3d!, multiplied by
b̃2la(E). Then using Eq.~2.9!, we obtain

ṡcd
~0!5 i ~E32E2!scd

~0!1 iV0~scc
~0!2sdd

~0!!

2 1
2 ~2GL1GR!scd

~0! . ~5.4!

FIG. 3. Resonant transport through a double-well structure in
the presence of inelastic process.
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Similarly, multiplying Eq. ~5.3e! by b̃13l l 8a
* (E8) and Eq.

~5.3f! by b̃12l l 8a(E), we find the differential equation for
se f
(0)(t),

ṡe f
~0!5 i ~E32E2!se f

~0!1 iV0~see
~0!2s f f

~0!!

2 1
2 ~G in1GR!se f

~0!2 iD, ~5.5!

where

D5 (
l, l 8,a

E dE dE8

4p2 @ b̃13l l 8a
* ~E8!V l 8b̃2la~E!

2b̃13l l 8a
* ~E8!V l b̃2l 8a~E!2b̃12l l 8a~E!V l 8b̃3la* ~E8!

1b̃12l l 8a~E!V l b̃3l 8a
* ~E8!#ei ~E82E!t. ~5.6!

Substituting the amplitudesb̃12l l 8a from Eq. ~5.3e! and
b̃13l l 8a
* from Eq. ~5.3f! into Eq. ~5.6!, and replacing the sum

over l ( l 8) by the corresponding integral, we find
2 iD5GLscd

(0) . It implies that the nondiagonal density ma-
trix se f given by Eq.~5.5!, is coupled withscd via a single-
electron transition from the emitter to the left well. Such a
term does not appear in the Bloch equations, which deal with
two-level systems.

Summing up overn in the rate equations for the density
submatrixs i j

(n)(t), we obtain the set of rate equations for the
density-matrix of the device

ṡaa52GLsaa1GRsdd , ~5.7a!

ṡbb5GLsaa2G insbb1GRs f f , ~5.7b!

ṡcc5G insbb1 iV~scd2sdc!1GRsgg2GLscc , ~5.7c!

ṡdd52GRsdd1 iV~sdc2scd!2GLsdd , ~5.7d!

ṡee5GLscc1 iV~se f2s f e!1GRshh , ~5.7e!

ṡ f f5GLsdd2GRs f f1 iV~s f e2se f!2G ins f f , ~5.7f!

ṡgg5G ins f f2GRsgg2GLsgg , ~5.7g!

ṡhh5GLsgg2GRshh , ~5.7h!

ṡcd5 i ~E32E2!scd1 iV~scc2sdd!21/2~2GL1GR!scd ,
~5.7i!

ṡe f5 i ~E32E2!se f1 iV~see2s f f !21/2~G in1GR!se f

1GLscd , ~5.7j!

and the resonant current flowing through this system is
I /e5GR@sdd1s f f1sgg1shh#.

VI. GENERAL CASE

Now utilizing the results obtained in the previous sec-
tions, we can write the rate equations for the general case.
These equations describing the time evolution of the density
matrix sab(t) of the device are as follows:

ṡaa5 i (
b~Þa!

Vab~sab2sba!2saa (
d~Þa!

Ga→d

1 (
c~Þa!

sccGc→a , ~6.1a!

ṡab5 i ~Eb2Ea!sab

1 i S (
b8~Þb!

sab8Vb8b2 (
a8~Þa!

Vaa8sa8bD
2
1

2
sabS (

d~Þa!
Ga→d1 (

d~Þb!
Gb→dD

1
1

2 (
a8b8Þab

sa8b8~Ga8→a1Gb8→b!, ~6.1b!

whereVab denote the couplings between nonorthogonal iso-
lated states, as, for instance, between the levels in adjacent
wells, andsba5sab* . The widthGa→b is the probability per
unit time for the system to make a transition from the state
ua& to the stateub& of the device, due to the tunneling to~or
from! the reservoirs, or due to interaction with the phonon
bath, or any other interaction, generated by a continuum state
medium. Notice that Eq.~6.1a! for diagonal elements has a
classical rate equation form, except for the first term. This
term describes transitions between isolated states through the
coupling with nondiagonal terms. Therefore, it is responsible
for coherent~quantum! effects in the transport.

The nondiagonal matrix elements are described by Eq.
~6.1b!, which resembles the corresponding Bloch equation,
supplemented with an additional term. The latter appears
whenever aone-electrontransition converts the stateua8&
into ua& and the stateub8& into ub&. The positive sign of the
additional term calls forth a suspicion that Eq.~6.1b! might
have unbounded solutions. This is not the case, however,
since any positive contribution from the additional term in
the equation forṡab has its negative counterpart in the equa-
tion for ṡa8b8, which corresponds to the conversion

FIG. 4. All possible electron states of the device, shown in Fig.
3: ~a! —all the levelsE1,2,3are empty;~b! — the upper level,E1 , is
occupied;~c! — the lower level,E2 , is occupied;~d! — the level
E3 is occupied;~e! — the levelsE1 andE2 are occupied;~f! — the
levels E1 and E3 are occupied;~g! — the levelsE2 and E3 are
occupied;~h! — all the levelsE1,2,3 are occupied.
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(a8b8)→(ab) and originates from the third term in the rhs
of Eq. ~6.1b!. Moreover, the negative contributions, corre-
sponding to the conversions (ab)→(a8b) and (ab)
→(ab8) have no positive counterparts. Therefore, the cou-
pling with continuum leads to negative total balance, and
hence, to the damping of nondiagonal matrix elements.

The current through the mesoscopic device is the time
derivative of the total charge accumulated in the collector.
We find that the current is totally determined through the
diagonalelements of the density matrix of the device by the
following relation:

I ~ t !5e(
c

scc~ t !GR
~c! , ~6.2!

whereuc& are the occupied states in the well adjacent to the
collector, andGR

(c) is the partial width of the stateuc&, due to
tunneling to the collector.

Although the nondiagonal density-matrix elements do not
enter explicitly in Eq.~6.2!, they are coupled with diagonal
matrix elements in the rate equations@the first term in
~6.1a!#, and therefore influence the resonant current. The
coupling with nondiagonal elements always appears in the
rate equation, whenever a carrier jumps from one to another
isolatedstates inside the device. In the absence of such tran-
sition as, for instance, in resonant tunneling through a single
well, the diagonal and nondiagonal matrix elements are de-
coupled and the evolution of diagonal density-matrix ele-
ments is described by theclassicalrate equation.

Hence, the distinction between isolated and continuum
states becomes very essential in the description of quantum
transport. At first sight, it may seem that in a real situation
such a distinction can hardly be carried out, since there are
no pure isolated states. For instance, a single-electron state
inside the device is always coupled with the continuum states
of phonons. However, the corresponding density of states
would display peaks in energy dependence, and they can be
considered as isolated states. Indeed, if we have written
equations like Eqs.~2.5!, ~3.3!, etc., for such a system, the
contribution from these peaks in the integrals over con-
tinuum states would generate a coupling with nondiagonal

density-matrix elements in the rate equations, just as in a
transition between two isolated states, Eqs.~6.1!.

As an example of the application of Eq.~6.1! in the case
of strong Coulomb blockade, we consider the system shown
in Fig. 5. The wells may represent two coupled dots. An
electron tunnels from the emitter to the first well, and then to
the second well into the upper levelE2 . After that, it can
either relax inelastically into the lower levelE3 due to inter-
action with the phonon bath, and then tunnel into the collec-
tor, or tunnel out directly into the collector. Here,G in and
GR8 are the partial widths of the upper level,E2 , due to
coupling to the phonon reservoir and the collector, respec-
tively, andGR is the width of the levelE3 , due to coupling to
the collector. Let us assume that the Coulomb blockade pre-
vents the system from being occupied by two electrons, even
in different wells. Then there are four possible states of the
device~a! — all the levelsE1,2,3 are empty;~b! — the level
E1 is occupied;~c! — the levelE2 is occupied;~d! — the
level E3 is occupied. It is clear that the density-matrix ele-
ments for an electron with spin up and spin down inside the
system are equal,sbb↑5sbb↓5sbb , and the same holds for
scc andsdd . Hence, Eqs.~6.1! can be written in this case as

ṡaa522GLsaa12GR8scc12GRsdd , ~6.3a!

ṡbb5 iV0~sbc2scb!1GLsaa , ~6.3b!

ṡcc52 iV0~sbc2scb!2~GR81G in!scc , ~6.3c!

ṡdd52GRsdd1G inscc , ~6.3d!

ṡbc5 i ~E22E1!sbc1 iV0~sbb2scc!2
1

2
~GR81G in!sbc ,

~6.3e!

and the dcI , Eq. ~6.2!, is given by

I /e52sccGR812sddGR . ~6.4!

Usingsaa12sbb12scc12sdd51, Eqs.~6.3! can be easily
solved fort→`, yielding for the dc

I /e5S 2GLGR

G in1GR8
D V0

2

V0
2
2G inGL1G inGR14GLGR1GRGR8

~G in1GR8 !2
1

GLGR

2
1e2

2GLGR

~G in1GR8 !2

. ~6.5!

This result shows a very peculiar dependence of the dc of the
inelastic widthG in . One could expect, at least forGR8;GR ,
that the current should increase whenG in grows. However, as
follows from Eq.~6.3!, the currentI→0 for G in→` ~cf. with
another example in Ref. 10!. In fact, such an unexpected
behavior of the dc would always take place in the presence
of coherent transitions between isolated states in carrier
transport. For instance, it can be traced even in a more

simple case of the resonant tunneling through a double-well
structure, Eq.~4.19!. One finds thatI→0 whenGR→`. This
phenomenon can be understood by analyzing Eq.~6.1b! for
nondiagonal density-matrix elements. In contrast with the
rate equation for diagonal matrix elements, Eq.~6.1a!, the
coupling with continuum states always leads to damping of
nondiagonal matrix elements. Since the transport through
isolated states goes only via nondiagonal density-matrix ele-
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ments, Eq.~6.1a!, the total current would always decrease
with the growth of the corresponding partial widths.

VII. SUMMARY

In this paper, we have studied quantum transport in me-
soscopic systems~quantum dots! containing a finite number
of isolated quantum states. Starting with the many-particle
wave function in the occupation number representation, and
integrating out the continuum states, we have found the
equations of motion for the density submatrix of the system.
These equations have a form of the master~rate! equations
for diagonal density-matrix element. But in addition, nondi-
agonal density-matrix elements, responsible for transitions
between isolated quantum states, appear in these equations.
If, however, these transitions are generated by a continuum
states medium, the diagonal and nondiagonal density-matrix
elements become decoupled, and the quantum transport is
described by classical rate equations.

It follows from our derivation that the reduction of many-
body Schro¨dinger equation to the modified rate equations for
density submatrix of the device can be performed only if two
conditions are met: first, the energy states of the system
which carry the resonant transport must be inside the bias,
EF
L2EF

R ; second, the width of these states is much smaller
than the bias. If the second condition is satisfied, but the
resonant levels of the device are close to band edges, our rate

equations cannot be derived. Yet, the method still can be
used for a dc. However, when the bias is less than the level
width, the continuum states of the reservoir cannot be inte-
grated out in the manner of Sec. II, and our method cannot
be applied.

We have compared some of our results with results that
were obtained earlier in the literature. For example, for the
resonant tunneling through a single dot, we obtained the
same result as Glazman and Matveev.4 In the case of reso-
nant tunneling through double-dot structure, we found
simple analytical expression for a dc under a condition of
strong Coulomb repulsion inside the dots, when no more
than one electron can occupy the dots. The obtained expres-
sion is very close to that found in Refs. 9 and 15 in a phe-
nomenological rate equation approach.

Of course, the quantum transport in multidot structures
can be treated by different methods, which are not necessar-
ily the rate equations. For instance, the multidimensional
Landauer approach16 has been used to study the resistance
resonances in multiple-dot structures.17 However, charging
effects have not been included. In fact, their account is rather
complicated in the framework of Landauer approach. Also
the nonequilibrium Green’s function method18 has been used
to study multibarrier resonant tunneling, again without
charging effects.19 The charging can be taken into account
via direct diagonalization of the multidot Hamiltonian. It has
been done for double-dot20 and multiple-dot21 systems by
assuming weak coupling to the leads. Yet, this treatment is
mainly numerical, and the inelastic scattering is accounted
for phenomenologically. In contrast, the quantum rate equa-
tions method allows in many cases the analytical treatment
of the problem. It also proves to be technically much simpler
than the other approaches. An even more important advan-
tage of our treatment is that the effects of charging, inelastic
scattering, and coupling with the leads are included from the
very beginning.

As an application of our equations, we considered a more
complicated case of the resonant tunneling in a coupled-dot
system, where the inelastic process takes place in the course
of transport. It was found that the resonant current decreases
with the growth of the inelastic width. We found that this
anomalous behavior always emerges whenever coherent
transitions are accompanied by inelastic processes.
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