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Microscopic derivation of rate equations for quantum transport
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It is shown that under certain conditions the resonant transport in mesoscopic systems can be described by
modified (quantum rate equations, which resemble the optical Bloch equations with some additional terms.
Detailed microscopic derivation from the many-body Scimger equation is presented. Special attention is
paid to the Coulomb blockade and quantum coherence effects in coupled quantum dot systems. The distinction
between classical and quantum descriptions of resonant transport is clearly manifested in the modified rate
equations[S0163-18206)00323-7

[. INTRODUCTION the rate equations will provide a better understanding of the
correspondence between quantum and classical description
Over the past decade great interest has been paid to artf carrier transport in mesoscopic systems.
ficially fabricated nanostructures containing a discrete num- The plan of the paper is the following. In Sec. II, we give
ber of quantum states. The discreteness of quantum statégietailed derivation of the transport rate equations through a
manifests itself in peculiar transport properties of these syssingle quantum wel(dot). In order to present our method
tems as, for instance, in the Coulomb blockade oscillattons.most lucidly, we neglect in this section the Coulomb inter-
Actually, the study has been mostly concentrated on th@&ction and spin effects. These effects are considered in Sec.
quantum transport through Sing'e devi¢qaantum dotB In Il. In Sec. |V, we derive the mOdIerd rate equations for
fact' more interesting quantum mechanical effects can béoupled well Structures, tak|ng into account the Coulomb and
found in couplednanostructures devices, where the quantun$pin effects. An example of coherent resonant transport with
interference may Strong]y influence the resonance Curren'tnelastic transitions is studied in Sec. V. The derivation of
The impressive progress in microfabrication technology nowate equations performed in this case allows us to establish
allows us to extend the experimental investigation to theséheir correct form valid in a general case of quantum trans-
systems too. For instance, the transport properties of couple@Prt. The general case and an example of coherent resonant
dots are presently under intensive stddy. transport with inelastic transitions in the presence of strong
For description of quantum transport through a Sing|e-COU|0mb blockade are presentEd in Sec. VI. The last section
guantum dotquantum well, the “classical” rate equations S & summary.
are usually usei-® They can be derived either by using
nonequilibrium Green’s functions technigqleor directly Il. SINGLE-WELL STRUCTURE
from the Schtdinger equatioff. The situation is different for _ i i
coupled wells with aligned levels. The quantum transport L€t US consider a mesoscopic “device” consisting of a
through these devices goes on via quantum superpositioqlu.antum well(dqt), coupled to two separate.ele_ctron reser-
between the states in adjacent wells. It is thus quite obviou oIrs. The density of states in the TEServoIrs IS very high
that nondiagonal density matrix elements would appear i contl'nuunj. The dot, however, contains only |solateq levels.
the equations of motion. These terms have no classical counlve first demo.r.lsyrate how to achieve the red“F“O’? of a
terparts, and therefore the classical rate equations have to ny-body Schr«hnger equgtlon to the rate quat!on in the
modified. A plausible modification of master equations f0r5|mplest exam_ple, Fig. 1, with only one leved,, |nS|de.the
some particular cases of the resonance tunneling througPt: We aiso ignore the Coulomb electron-electron interac-
double-dot structures has been proposed by NaZasv. ion inside the well and the spin degrees o_f freedom. Hence,
more general case, though without account of Coulomb inpr_“_y one electron may occupy the_well. With th_e stand sim-
teraction, has been considered in Ref. 10, where modifieﬁg'cat'ons’ the tunneling Hamiltonian of the entire system in
rate equations have been proposed by using an analogy to tH& Occupation number representation is
optical Bloch equationst However, no microscopic deriva-
tion of the modified rate equations has been presented yet. 3= Eala+E,ala;+ >, E,ala,
In this paper, we derive the rate equations for a general [ r
case of resonant transport through mesoscopic systems, start-
ing with the many-body Schdinger equation, with special +> O(afay+ala)+> Q. (ala;+ala,).
attention being paid to the Coulomb blockade and coherent [ r
guantum mechanical effects. Our main goals are, first, to 2.1
substantiate and generalize the previously suggested rate
equations and second, to determine the region of validity oHere, the subscripts andr enumerate correspondingly the
the rate equations for the description of quantum transport ifvery densglevels in the left(emittey and right(collectop
general. Also, we believe that the microscopic derivation ofreservoirs. For simplicity, we restrict ourselves to the zero
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™S (E+E —Ep)by, (E)— /by (E)— > Q/byy(E)=0,
I!
(2.40
(E+E+E—E;—En)by (E)— Q) by, (E)+ Qby (E)

_2 Qr"E;II’rr'(E)zoa (2.49

Equations(2.4) can be substantially simplified. Let us re-
. place the amplitudé in the term=Qb of each of the equa-
FIG. 1. Resonant transport through a single quantum well StrUcCtions by its expression obtained from the subsequent equa-
ture. tion. For example, substituﬁzﬂ(E) from Eq.(2.4b into Eq.

. . (2.43. We obtain
temperature case. All the levels in the emitter and the collec-

tor are initially filled with electrons up to the Fermi energy -
Er andEF, respectively. This situation will be treated as the by, (E)=i.
“vacuum” state|0). 2.5
This vacuum state is unstable; the Hamiltonian Eq1) '
requires it to decay exponentially to a continuum state havSince the states in the reservoirs are very deosetinuun,
ing the forma}a,|0) with an electron in the levef; and a  ©One can replace the sums oveandr by integrals, for in-
hole in the emitter continuum. These continuum states arétance,=— [p (E))dE,, where p (E)) is the density of
also unstable and decay to statda,|0), having a particle in ~ States in the emitter. Then the first sum in E25) becomes
the collector continuum as well as a hole in the emitter con@n integral, which can be split into a sum of the singular and
tinuum, and no electron in the level,. The latter, in turn, pr!nC|paLI value parts. The singular part 2y.|elds
are decaying into the statega’a,a, |0) and so on. The ~1O(Ee+E—E)I'/2, wherel'\ =2mp (E1)|Q (E)|" is
evolution of the whole system is described by the many_the levelE, partlrlj_ll width, dRue_to couplln_g to the emitter. Let
particle wave function, which is represented as us assume thdg>E;>Ef, i.e., the bias is large and the
energy level is deeply inside the band. In this case, the inte-
gration overE, variables can be extended tox. As a
[W(1))=|bo(t)+ 2 by(taja+2 by (t)afa result, the-function can be replaced by one, and the prin-
[ Ir cipal part is merely included into redefinition of the energy
E1. Also, the second suitintegra) in Eq. (2.5) proves to be
+ 2 b1||'r(t)aia;ra|a|'+“‘ 0y, (2.2 negligibly small. Indeed, let us repladg, —b(E, ,E, ,E),
<1 r and assume weak energy dependenc€laén E;y. Then
one finds from Eqs(2.4) that the poles of the integrand in

whereb(t) are the time-dependent probability amplitudes forth€ Ei(E;) variable are on one side of the integration con-

finding the system in the corresponding states describeffur. and, therefore, this term vanishes. _
above with the initial conditiorby(0)=1, and all the other Applying analogous considerations to the other equations

b(0)’s arezeros. Substituting Eq2.2) into the Schidinger of the_ system(2.4), we finally arrive to the following set of
equationi|W(t))="H|W¥(t)), results in an infinite set of equations:

coupled linear differential equations for the amplitudes E+iT. /2)ba(E) =i 26
b(t). Applying the Laplace transform (E+IT/2)bo(E) =1, (269

~ 0,Q,
bo(E)— >, =——

Qf
E-2 r E+E—E;

¥ E+E-E,

(E+E—E +iTr/2)by(E)—Qbo(E)=0, (2.6

5('5>=f0 eF'b(t)dt 2.3 (E+E,—E,+il' /2)b, (E)—Q,by(E)=0, (2.60

and taking account of the initial conditions, we transform the (E+E By =By~ B HiTe/2) by o (B) = by (B)
linear differential equations fob(t) into an infinite set of +QIBI,r(E)=O, (2.60
algebraic equations for the amplitude&E),

= e = . where Tr=2mpr(E,)|Qr(E;)|? is the level E; partial
Ebo(E) E. by (B)=1, (2.43 width, due to coupling to the collector.
Now we introduce the density matrix of the “device.”
The Fock space of the quantum well consists of only two
E+E—Eby(E)=Qbo(E) =S Q.b.(E)=0, (2.4 possible states, namelja) — the level E; is empty, and
( 1~ E)bu(E)~ €libo(E) Er: o (E) (249 |b) — the levelE, is occupied. In this basis, the diagonal
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elements of the density matrix of the “deviced,, and it into a differential equation for the density-matrix element
app, give the probabilities of the resonant level being emptyo(}), Eq. (2.7b. The only difference with the previous ex-
or occupied, respectively. In our notation, these probabilitiesimple is an appearance of the ‘“cross terms,” like

are represented as follows: SOby(E)Q, b (E'). Yet, these terms vanish after the in-
tegration oveiE, ), just as the second term in EQ.5). The
a= Do 2+ X [br (D2 + X by (D[4 r_e(?g of the (Slgebra remains the same, so one obtains
Lr I<l’,r<r’ oy (1) =T 05 (t) —royy (t). Finally, we arrive at the fol-
Oy D @ lowing infinite system of the chain equations for the diagonal
~%aaT%a™ aa ’ .73 elementsg{?Y and o}, of the density matrix,
Ubbzzl: by ()24 2 [byyr(1)]? o () =—TLoQ(t), (2.123
<1’ r
, ahp () =T o3 (t)~Trapi (1), (2.12h
+ ,2” ’|b1II’I”rr’(t)| e
=it TR =-T o@(O)+Trad(), (2129
=o+ o+ a2+ (2.7b
(1) Wty — (1)
where the index in o{™ denotes the number of electrons in b (V) =T1L05a (0 =Tropp (1), (2.129
the collector. The currenif(t) flowing through the system is
[(t)=eNg(t), whereNg(t) is the number of electrons accu-
mulated in the collector, i.e., Summing up these equations, one easily obtains differential
equations for the total probabiliiesr,,==,0() and
Ng(t) = 2 o (t) + oM (D)]. 2.9  opp=2n0l):
Tag=—1 +I , 2.13
The density submatrix elements are directly related to the Taa LTaa " R7bb (2133
amplitudesb(E) through the inverse Laplace transform, 0op=""L02a—T'rOpp (2.13b
dEdE ~ —~ [ ' initi iti
M (t) | 2 f 2 B (E)B* ... (E") which should be supplemented with the initial conditions
’ Taa(0)=1, 0opp(0)=0. (2.14
X el(E' B, (2.9

. . Using Egs.(2.8) and(2.12), we obtain the total current
By means of this equation, one can transform Egs) for

the amplitudes(E) into differential equations directly for [(1)=eNa(t)=elf o Q1)+ oD (1) + @ (t)+ - -
the probabilitieScr(“)(t). Consider, for instance, the term ® R =€l Rl obp (1) + opp () + 0w (D+]
o D(t)=3 2, Eq. (2.7H. Multiplying Eg. (2.6 by =elgopp(t). (2.15

b’l‘,(E ) and then subtractlng the complex conjugated equas

hus, the current(t) is directly proportional to the charge
tion with the interchang&«—E’, we obtain © y prop g

density in the well. Solving Eqs(2.13 and substituting

dE d ) opp(t) into Eq. (2.15, we obtain(for t—o) the standard
f = (E'— E_er)E b1|(E)b (E')ei<E’*E>t formula for the dc resonant current,
r.r
dE dE - - . l/e= —— 2.1
—f 12 2|m2I Q,by(E)b} (E")eE ~Bt=0, I +Tg (216

Notice that, whereas the time behavior of the currg)
(2.10 N " )
depends on the initial condition, the stationary current

One can easily deduce from Eg.9) that the first integral in | =] (t—=), Eq.(2.16, does not.
Eq. (2.10 equals—i[o{Q(t) +Tro{P(t)]. Next, substitut- Equations(2.13, derived from the many-body Schro
ing dinger equation, coincide with the classical rate equations in
- the sequential picture for the resonant tunneling, obtained
~ Qbo(E) using nonequilibrium quantum statistical mechanics
by (E)= E+E—E;+ilg/2 (2.13 techniqué’. In contrast, our approach starts directly from the

_ _ many-body Schidinger equation and will be straightfor-
from Eg. (2.6b into the second integral of Eq2.10, and  \ardly extended to more complicated situations. Note, how-
replacing=,— [ p_(E|)dE,, one can perform thg, integra-  ever, that the method can be applied only when the reso-
tion in the integral, thus obtainingl o{)(t). Ultimately,  nance energy is inside the band, didr<EL—ER. If the
Eq. (2.10 readso{)) (1) =T o{Q(t) ~T'ra{P(t). We can go  resonance is near the edge of the band, but the width of the
on with this algebra for all the other amplitudbét). For  resonance is much smaller than the bandwidth, our method
instance, the above procedure applied to @o6d converts  still can be applied, but only to the stationary case: ).
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Yet, the time-dependent Sciimger equation cannot be re-
duced to the rate equatio®.13, and therefore this case is
not a subject of this paper.

Ill. COULOMB BLOCKADE

et pL(E1)QA(E))dE,
E+E-E focE+E|+E|,—2E1—U

2
prR<E>Q<E>dE B.E0. @3
E

E+E —E

Now we extend the approach of Sec. Il to include theSinceE,~E,, the singular parts of the integrals (8.3) are,
effects of Coulomb interaction. Consider again the quantumiespectlvely, i®O(EF+E—E;+U)T'|/2 and—i®(E+E,
well in Fig. 1, taking into account the spin degrees of free-— ER)I'r/2, where

dom (s). In this case, the tunneling Hamiltonid@.1) be-
comes

— T T T
H_IZ Elalsals+z Elalsals+z Erarsars
,S S r,s

T T T T
+ IZ Ql(alsals+ a-1sals) + E Qr(arsals+ alsars)
,S r,s

+ UaIsalsaJlr,f sal,—sa (3-1)
wheres= *+1/2, andU is the Coulomb repulsion energy.
Writing down the many-body wave functiof (t)), in
the occupation number representation, just as in (B®),
and then substituting it into the Scliiager equation

i|\if(t)>=H|‘lf(t)), we find a system of coupled equations

for the amplitude(t)

E%(E)—Z Qb (E)+b,(E)]=i, (3.29

(E+E—Eby(E)—Qbo(E)— 2 /by 1 (E)
II

_2 Qr’BIr(E):O’ (3.2b

(E+E—E)by (E)— Qb (E)— X Q. [by(E)
|!
+b,,,(E)]=0, (3.29

(E+E +E;,—2E;—U)b ;1.(E)— Qb (E)— Qb (E)

—2 Q[0 (E)+byy(E)]=0, (3.2

In order to shorten the notations, we eliminated the index
of the levelE; in the amplitudes, so thatbm) (t) de-
notes the probability amplitude for finding one electron in-
side the well with spin up(down), and the amplitude
'BH ~(t) is the probability amplitude for finding two elec-
trons inside the well.

Equations(3.2) can be simplified by using the same pro-

FL(R): ZWPL(R)(E1)|QL(R)(E1)|2,

T (ry=27pLr)(E1+U)|QLr)(Es+ U)|2-( )
3.4

Here, p_ (g is the spin up or spin down density of states in
the emitter(collectoy, p_ry=pL(r)1 =PL(r), - AS in the pre-
vious section, we assume the resonance level to be deeply
inside the bandER<E;<EE . If, in addition, E;+ U<EE,
the 6-function in the singular parts of the integrals (B.3
can be replaced by one. In the opposite c&ser USEE,
the corresponding singular part is zero.

Proceeding this way with the other equations of the sys-
tem (3.2), we finally obtain

(E+iT)bo(E) =i, (3.59

(E+E—E +iT[12+iTg/2)b; (E)— Qbo(E) =0,
(3.5b

(E+E—E +iT )b, (E)—Q,by(E)=0, (3.59
(E+E+E)—2E;—U+iTR)b,  (E)— Qb /(E)
+Q,.by(E)=0, (3.50

Equations(3.5) can be transformed into equations for the
density matrix of the “device” by using the method of the
previous section. Since the algebra remains essentially the
same, we give only the final equations for the diagonal
density-matrix elementso{J(t), ofii(t), ofp (), and

o"(t). These are the probabilities of findir@ no elec-
trons inside the well{b) one electron with spin updown)
inside the well, andc) two electrons inside the well, respec-
tively. The indexn denotes the number of electrons accumu-
lated in the collector. We obtain

o =—2T o)+ Troty V+Trop} Y, (368
b =— (T +TR oy + Loy +Trolt Y, (3.6b
opy = — (D +TRiopy +T ol +Thalt ¥, (3.60

o= 2T a4 T ol + T ol . (360

cedure as described in the previous section. For instance, Bihese rate equations look like a generalization of the rate

substltutlngb,r from Eq. (3.20 andb, , from Eq. (3.20
into Eg. (3.2b, and neglecting the “cross terms” on the

equations(2.12), if one allows the well to be occupied by
two electrons. The Coulomb repulsion leads merely to a

grounds of the same arguments as in the analysis of Egnodification of the corresponding ratés—I"', due to in-

(2.5), we obtain

crease of the two-electron energy.
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Summing up the partial probabilities we obtain for the
total probabilities, o(t)==,0("(t), the following equa-
tions:

0aa=— 20 045t Tropp + TROp, (38.79

dbbT:_(FI,_+FR)‘TbbT+FL0'aa+F},?UCCv (3.7b

oppy=—(F[+TR)opp + T oaat TRoee,  (3.70
FIG. 2. Resonant transport through a double-well structure.
(-T :_21-”0' +F,O—bb +F’0’bb y (370)
° RPce T LTbbT T LTbhL possible, we begin with the case of no spin degrees of free-
and for the current dom and no Coulomb interaction. The tunneling Hamiltonian
for this system is

I(t)=2, n[o!™(t)]=elr[ opp (1) + app (t
(=2, n[o'™(0)]=el ] g (1) + Top (1)) HeS Ealat Eralagt Exalant S Eala
[ r

+2el Lo (t). (3.9
. . +Qo(ajas+ajay) + 2 Qi(afa+aja)
Equations(3.7), (3.8) can be solved most easily for a dc, I
I =I(t—). In this caseg=0, and Eqs(3.79—(3.70d turn
into the system of linear algebraic equations. One also finds +> O (ala,+ala,), (4.2
from Eq. (3.7) that 04+ 0pp;+ opp +0cc=1. The latter r
implies that dc does not depend on the initial conditions

Finally, we obtain Wherea{yz,al,z are creation and annihilation operators for an

electron in the first or the second well, respectively. All the
2T T (T | +TR) other notations are taken from Sec. Il. The many-body wave

l/e= - - - (3.9 function describing this system can be written in the occupa-
I\ I +20 e+ Trl'g tion number representation as
If E;<Ep<E;+U, one finds from Eq.(3.3 that V= b+ bubatatS b.(ha'a
I'l =0, so that the state with two electrons inside the well is W)=/ bo® Z u(tas ; r(ara

not available. In this case, one obtains from E9) for the
de, +2 by(t)aja+ > bia(H)ajalaa,
e iile 3.1 | "
®T2r +Tx (3.10 .
I . . . . + ’ pEee . 42
It is interesting to note that this result is different from Eq. ,;,;J burr(Daarad 10) 4.2
(2.1, although in both cases only one electron can occupy o ) o ) ]
the well. However, if the Coulomb repulsion effect is small, Substituting Eq(4.2) into the Shrainger equation with the
i.e.,T! x=T g, Eq.(3.9 does produce the same result asHamiltonian(4.1) and performing the Laplace transform, we
Eq. (2.16), provided the density of states is doubled due toobtain an infinite set of the coupled equations for the ampli-
the spin degrees of freedom. tudesb(t):
One can also consider the case when the Fermi level in

the right reservoiER, lies above the resonance lew&|, but EbO(E)_Z by (E) =1, (4.33
below E;+ U, so thatl's=0, Eq. (3.3). Then the resonant _ _ -
transitions of electrons from the left to the right reservoirs(E+Ei—E1)by(E) = Qbo(E) — Qoby (E) =0, (4.30
can go only through the state with two electrons inside the - - -
well. Using Eq.(3.9), one finds for the dc, (E+E —Ep)by(E)—Qoby(E)— X Qibyy (E)
II
2T’ -
l/e= Tiary (3.13 —Z Q,b,(E)=0, (4.30

which coincides with the result found by Glazman and - - -
Matveev? (E+E+E; —E;—E2)big/(E) = Qyby (E) + by (E)

IV. DOUBLE-WELL STRUCTURE -> Q,by(E)=0, (4.30

r

A. Noninteracting electrons

Now we turn to the coherent case of resonant tunneling.
Let us consider the coupled-well structure, shown in Fig. 2Using exactly the same procedure as in the previous sections,
We assume that both levels, , are inside the band, i.e., Eg. (2.5, we transform Eqgs(4.3) into the following set of
ER<E,,E,<EF. In order to make our derivation as clear as equations:
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(E+ITL2b(E)=1, (443 S (B~ BBy (EBL(E) - S 0,55 (E)Bu(E)
(E+E —Epby(E)~Qbo(E)— Qobn(E)=0, (4.4 B
—bo(E)b}(E")]- QOZ [b%(E")by(E)
(E+E;—E,+il/2+iTr/2)by(E) — Qoby (E) =
(4.49 —by(E)b}(E")]=0. (4.6

After applying the inverse Laplace transform, Ef.9), the
first term in this equation becomesi o{Q)(t). Next, substi-

+Q/b,,,(E)=0, (4.49  tuting

(E+E+E;—E;—E,+iT/2)byy(E)— Q,/by(E)

Qbg(E) + Qb (E)
E+E _E,

by(E)= (4.7)

The amplitudes(t) determine the density submatrix of
the systema(J”) in the corresponding Fock spag¢al — th
levelsE, , are empty(b) — the levelE; is occupiedc) —

from Eq.(4.4b into the second term of E¢4.6), and replac-
ing the sum by an integral ové;, we reduce this term to

the levelE, is occupied(d) — both levelsE, , are occupied; i\ bO(E)b (E). After the inverse Laplace transform it be-

(0)
the indexn denotes the number of electrons in the collector.©0MeS _ 'FLU a(t). Notice that the “cross term,”

The matrix elements of the density matrix of the “device” (o bgby , does not contribute to the integral over,
can be written as since the poles of the integrand in tBg variable lie on one

side of the integration contoufcf. the second term
of Eq. (2.5]. The third term of Eq.(4.6) turns out to be
Taa= 2, o W=|bo(t)|?+ D, by (1)|2 Q[ O(t)— D)1, after the inverse Laplace transform.
n hr Finally, we obtain a differential equation for the density sub-
matrix elemenis{%),

+ 2 by (B (4.53
1<l r<r d0t)=T e Q+iQg(cQ— 2. 4.9
In contrast to the rate equations of the previous sections, the
— (n)— 2
‘Tbb_E ‘Tb%—E by (D] +| ; [baye()]? diagonal matrix element, is coupled with the off-diagonal
= density-matrix elementr,.
The corresponding differential equation fet,. can be
24 ... c
+|<|,§r<r, (D e (B, (4.5 easily obtained by multiplying Eq4.4b by b3,(E’) with
' the subsequent subtraction of the complex conjugated Eqg.
(4.49, multiplied by by, . Afterwords, by integrating over

:; O-E:T:)EZI Iby(D)]2+ 2 by (1)]2 E,, we obtain
<1’ r
(0) — (0) 1 (0)
O-b |(E2 1)0'b +|Qo(0'bb g ) _(FL+FR)0-b .
> b P+, @5 i o 4.9
I<I’<|"r<r’

Eventually, we arrive to the following set of equations for
(n)-

g
Udd:; o= by (1)]?
<1’
o=-T oW+Trel" 1, (4.103
+ , ,,2,,, . |blz|/|//|///rr/(t)|2+“', (450) ]
1<’ <I"<I%.r<r oW=T oW+Trely V+iQy(all) — ), (4.10b
Z ohy= 2 byu(Dby (D) + X by (t)b3y, (1) o= —Trol) —T' Lol —iQo(apy — alh), (4.100
I<I’,r
oo (4.50 o=—TraW+T o, (4.100
Now we transform Eqs(4.4) into differential equations ) (M _ )y n)
for oM(t). Consider, for instance, the term obe =i(Ex—En)opy +iQo(opp — ot (FL+FR()"bCC)'e)
4.1

o ®=3|by(t)|?, Eq.(4.5b, where the amplitudeb,, are
determined by Eq.(4.4b. Multiplying Eq. (4.4b by  Using Eqs(4.10, we can find the charge accumulated in the
~’1‘,(E’) and subtracting the complex conjugate equationcollector, Ng(t), and subsequently, the total current,
with E—~E’, we find eN(t), as given by
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) ) ) ] ) In the case of large Coulomb repulsion, some of electron
I()/e=N(t)=2, n[oll(D)+aph (D) + () +aly(1)] states of the device are outside the béhe Coulomb block-

" ade. As a result, the number of the equations is reduced.

=T oe(t) + ogq(t)]. (4.1 Consider, for instance, the situation where the Coulomb in-

teractionU of two electrons in the same well so large that

As in the previous examples, the current is proportional toEl ,+USEL, but the Coulomb repulsion of two electrons in
the total probability of finding an electron in the well adja- ..; P —
P Y 9 J different wells,U, is much smaller, so thaE1,2+U<Ek.

cent to the right reservoir. The off-diagonal elements of theThen the state of two electrons in the same well is not avail-

density matrix do not appear in E@.117). ; :
y bR .19 able, but two electrons can occupy different wells. In this

Summing up oven in Egs.(4.10, we obtain the system ) . ; :
of differential equations for the density-matrix elements ofcase the rate equations for the corresponding density-matrix
elements of the device are

the device,
Taa=—T L 0aat TrOce, (4.123 0aa= 2T L0aa+ TR(0ce T 0cc)), (4.143
Top=T 0aat TrOqa+1Qo(Tpe—0ep), (4120 oot =I'Laat TR(0aar 0 aar) +1Q0(Tocr O-C(ZT-.)]'.4D
Tee” _F_RU“_FLU“_ olbemoe), (120 L 2T Geer— 1 Qo(0he— oepy)s (4140
| 04q= —['rOgat FLUCC,l (4.120 et =~ o+ Lo 4.149
ohe=1(Ea—Ep)opct1Qo(0pp—0cc) — 2 (FL+FR)(Z?,26 o = (Ep— Ex) e +1 Qo 0p; — 7ocr)
[Egs. (4.12] resemble the optical Bloch equatioisNote — %(21“L+1“R)gbq, (4.14¢

that the coupling with the reservoirs produces purely nega- _ _
tive contribution into thenondiagonalmatrix element's dy- where I'[ g =2mp (g)(E1+U)|Qy(r)(E1+U)|?. Here, to
namic equation, Eq(4.12¢, thus causing damping of this be brief, we wrote only the equations for the “spin up”

matrix element. component of the density matrix. The same equations are
Equations(4.129—(4.12¢ are solved most easily for the obtained for the “spin down” components of the density
stationary current, | =1(t—®). Using o.,+op,+o.  Matrix. The total current is

+ 0g4q=1, we obtain ,
l/le=Tgr(oce;+0cc)) T Ur(Tgdrt + Tadr + Tadp 1+ Fday))-

03 (4.15

Q§+FLFR/4+ T\ Ip/(I' +Tg)? It is quite clear that the “spin up” and ‘“spin down”

(4.13 components of the density matrix are equal, i.e.,
wheree=E,—E;. This result was obtained earlier in Refs. oy, = oy, =0y, the same holding forre., o439 cOmpo-
12,13 in the framework of one-electron approach, and in Refnents. Therefore, Eq$4.14 and (4.15 can be rewritten as
14 by using rate equations written in the eigenstate basis of

Tk
T +Tg

l/e=

the double-well Hamiltoniar* 0aa=— 2l L0gat 2TRoc, (4.163
B. Coulomb blockade 0pp=TL0aat 2T R0 gq+i1Qo(0pc— ocp), (416D
The extension of the rate equatiof#s12 for the case of =T T i) _ 4.16
spin and Coulomb interaction is done exactly in the same Tee ROce L%cc o Toe = 0cp), (4.160
way as in Sec. lll. Here, also, the rate equations for the

device density matrix are obtained only 6y ,+ U inside or T4a=~TRO4at Lo, (4.169

outside the band, but not close to the band edges. . ] L )

(ER<E, -+ U<EL or E, ,+ U>EL). Eventually we arrive b= (Ea=E1)0nc+iQo(0bp=0cc) = 7 (2I'(+'r) e,
at the rate equations of type E4.12), but with the number (4.168
of the available states of the device changed due to addgng

tional (spin) degrees of freedom and Coulomb blockade re-

strictions. The Coulomb repulsion manifests itself also in a l/e=2lgoc+ 4T Royq.- (4.17
modification of the transition amplitud€ and the rates
I'’s, Eq.(3.4). Using 045+ 20p+ 20+ 4044= 1, we obtain for the dc
2T\ T} 0%,
le=| s T T — (4.18
2I' +T'g LI A0 PptTRl'g/4 I\ I'g -, 2I'Tg

+ -
O (2T +TR)? 2 € (2[[+Tg)?
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where e=E,—E,. Notice that the curren{4.18 differs (E+iT/2)by=i, (5.39
from that given by Eq.(4.13 even for I'|=T", and
I'k=Tg, despite the fact that in both cases only one electron (E+E — E1+il“m/2)hbilI —QIEOZO, (5.3b

can occupy each of the wells.

It is interesting to compare our result with that of Stoof (g EI_Ea_E2+iFL/Z)EZIQ_thEll_QOB3|a:OI
and Nazaro¥ for the case of strong Coulomb repulsion be- (5.30
tween two electrons in different well&¢ ,+ U>Ek), where
only one electron can be found inside the system. It corre- (E+E,—E,— E3+iFL/2+iFR/Z)BBIa_QOBZIaZOv

sponds tol'| =0. In this case, the dc current given by Eq. (5.30
(4.18 is - - -
5 (E+E+E —Ei—Eo—Ey)baa o= Qyrboy o+ Qb
I/e= i (4.19 5
O Q22 T2l ) + T+ & ' ~ Qobaai =0, (.39

This result is slightly different from that obtained by Stoof (E+E+E) —E;—E3—E +iTi/2+iTr/2)Dyg) 0
and Nazaroby the factor two in front ofl"| ). The differ- - - -

ence stems from the account of spin components in the rate = Qb= Qb3+ Qbgr =0, (5.3
equations, which has not been done in Ref. 15.

V. INELASTIC PROCESSES wherel'j,=2mp,| QP2 is the partial width of the levelE,

As an example of a system with coherent tunneling acdue to phonon emission ang}, is the density of phonon
companied by inelastic scattering, let us consider thetates. ) ) _ )
coupled-dot structure shown in Fig. 3. In this system, a reso- The density matrix elements of the device is
nant current flows due to inelastic transition from the upperi;(t) ==,a{’(t), wherec{(t), are related to the ampli-
to the lower level in the left well. For simplicity, we restrict tudesb(E) via Eq.(2.9). All possible states electron states of
ourselves to noninteracting spinless electrons. The Coulomtine device are shown in Fig. 4. Using the previous section
interaction and the spin effects can be accounted for pregrocedure fordiagonal matrix elements, we obtain master
cisely in the same way as in the previous sections, namelyquations analogous to E¢t.12), in which transitions be-
by allowing for states with doubly occupied levékxclud-  tween isolated levelg, and E; take place through the cou-
ing states violating Coulomb restrictionand modifying  pling with nondiagonal matrix elements. These equations

transition amplitudes and inelastic rates. have the appearance of the optical Bloch equaltfarow-
The tunneling Hamiltonian of the system has the follow-ever, the master equation for timondiagonalmatrix ele-
ing structure: ment, o¢, contains an additional term. Therefore, we

present the derivation of the master equations for “coher-
ences” o.; and o4 in some detail. Consider, for example,
the nondiagonal density submatrix elements!%
=31 obaa()b34(1) and oY=/ by oDy, (1)-
+>, E;ala +Qo(alag+ala)+ > Q(afa;+ala)  The differential equation for{Y(t) can be obtained by mul-

' ! tiplying Eq. (5.30 by b, ,(E’), with subsequent subtraction

e ot ; ; of the complex conjugated Eq(5.3d, multiplied by

+§a: Q, (azalca+a1azca)+2 Q(arastaza). b, (E). Then using Eq(2.9), we obtain

H=>, Ejala +Eala; +Ejaba,+Esalas+ >, EPclc,
| a

(5. Ted =1(Es—Ex) oy +1Q0( o — ol
Here, the subscriptr enumerates the states in the phonon

bath andﬂzh is the corresponding coupling. The many-
particle time-dependent wave function of the system is

—i@r +rypey. (5.4

[P ()= bo(t)"'zl b1|(t>a1a.+|2 bal()abac

T~

\
+|E by (tajacl+ X b (t)alalaa ¢l B o
@ 1<1",a
Q0 _€3,,, L
R
+ 2 b13|ra(t)alaga|a|/cz+“' |O> (52) \
1<l a
< \

Repeating the procedure of the previous sections, we find the

fOHOW'ng..SEt of equations for the Laplace transformed am- FIG. 3. Resonant transport through a double-well structure in

plitudes,b(E): the presence of inelastic process.
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@)

(h)

FIG. 4. All possible electron states of the device, shown in Fig.

3: () —all the levelsE; , sare empty(b) — the upper levelE, , is
occupied;(c) — the lower level,E,, is occupied;d) — the level
E; is occupiedje) — the levelsE; andE, are occupied(f) — the
levels E; and E; are occupiedfg) — the levelsE, and E; are
occupied;(h) — all the levelskE, , ;are occupied.

SimiIarIy,~muItipIying Eqg. (5.3 by B;al,a(E’) and Eg.

(5.3f) by byy/.(E), we find the differential equation for
(0)

Oef (t)v

o) =i(Es—Ex) o +iQo(0gd — ai?)
— 3T+ TR0 —iA, (5.5
where
A= l; dEdzE’[bw., (E")Q by 0(E)
— bl (BN QD11 o(E) =D o E) Y B o(E)
+bayro(E) Y, (E)]e!E BN, (5.6

Substituting the amplitudeglz,, from Eq. (5.3¢ and
bl3”, from Eq. (5.3f) into Eq.(5.6), and replacing the sum
over I(l') by the -corresponding integral, we find
—iA=T o, It implies that the nondiagonal density ma-
trix o given by Eq.(5.5), is coupled witho 4 via a single-
electron transition from the emitter to the left well. Such a
term does not appear in the Bloch equations, which deal wit
two-level systems.

Summing up oven in the rate equations for the density
submatrixa{[’(t), we obtain the set of rate equations for the
density-matrix of the device

0aa= ~T'L0aat TrRO4q, (5.79

opb=TL0aa= Tinoppt+ ROt (5.7b
Occ=linoppt1Q(ocg—04c) +Mrogg— T Lo, (5.709
04g= —TrOga+1Q(0gc—0ca) ~TLoga,  (5.70

Oee=T L 0ccti1Q(0ei— 010) + TrOp, (5.7¢9
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o11=TL04ga—Trot+iQ(oe— ) —Tinogs, (5.7

0gg=Linott—Trogg—I'Logg, (5.79
b’thFLagg—FRUhh, (5.7h
0cg=1(E3—Ep) 0eqtiQ(0cc— 0qq) —L22T +T'R)0cq,
(5.70)
0ei=1(E3—Ep)0eiti1Q(0ee o) = U2AT i+ TR) s
+T' o¢q, (5.7)

and the resonant current flowing through this system is
I/e:FR[Udd+O'ff+O'gg+(Thh].

VI. GENERAL CASE

Now utilizing the results obtained in the previous sec-
tions, we can write the rate equations for the general case.
These equations describing the time evolution of the density
matrix o,,(t) of the device are as follows:

Oaa=|I E Qab(a'ab_0'ba)_0'aaE o
b(+#a) d(#a)

+ Z el c—as (6.19
c(#a)
Oap=1(Ep—Eg)oap
2 Tap Qyrp— 2 Qaa’o'a’b>
b’ (#b) a'(#a)
1
Ta| > Ta gt 2 Thog
d(#a) d(#b)
2 2 Ua'b’(ra’—>a+rb’—>b)- (61b)
a’b’+#ab

where(},,, denote the couplings between nonorthogonal iso-
lated states, as, for instance, between the levels in adjacent
wells, andoy,,= a},. The widthI",_,, is the probability per

unit time for the system to make a transition from the state
|a) to the statdb) of the device, due to the tunneling tor

from) the reservoirs, or due to interaction with the phonon
bath or any other interaction, generated by a continuum state
medium. Notice that Eq6.13 for diagonal elements has a
classical rate equation form, except for the first term. This
term describes transitions between isolated states through the
coupling with nondiagonal terms. Therefore, it is responsible
for coherent(quantum effects in the transport.

The nondiagonal matrix elements are described by Eq.
(6.1b, which resembles the corresponding Bloch equation,
supplemented with an additional term. The latter appears
whenever aone-electrontransition converts the staf@’)
into |a) andthe statgb’) into |b). The positive sign of the
additional term calls forth a suspicion that E§.1b might
have unbounded solutions. This is not the case, however,
since any positive contribution from the additional term in
the equation fowr,;, has its negative counterpart in the equa-
tion for o,, Which corresponds to the conversion
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(a'b’)—(ab) and originates from the third term in the rhs density-matrix elements in the rate equations, just as in a
of Eq. (6.1b. Moreover, the negative contributions, corre- transition between two isolated states, E@sl).
sponding to the conversionsalf)—(a’b) and (@b) As an example of the application of E@.1) in the case
—(ab’) have no positive counterparts. Therefore, the cou-of strong Coulomb blockade, we consider the system shown
pling with continuum leads to negative total balance, andn Fig. 5. The wells may represent two coupled dots. An
hence, to the damping of nondiagonal matrix elements.  electron tunnels from the emitter to the first well, and then to
The current through the mesoscopic device is the timéhe second well into the upper levEl. After that, it can
derivative of the total charge accumulated in the collectoreither relax inelastically into the lower levEk due to inter-
We find that the current is totally determined through theaction with the phonon bath, and then tunnel into the collec-
diagonalelements of the density matrix of the device by thetor, or tunnel out directly into the collector. HerE;, and
following relation: I, are the partial widths of the upper levet,, due to
coupling to the phonon reservoir and the collector, respec-
tively, andl'y is the width of the leveE, due to coupling to
the collector. Let us assume that the Coulomb blockade pre-
. ) . vents the system from being occupied by two electrons, even
where|c) are the occupied states in the well adjacent to then different wells. Then there are four possible states of the
collector, and“g:) is the partial width of the state), due to device(a) — all the levelsE, , ; are empty;(b) — the level
tunneling to the collector. E, is occupied;(c) — the levelE, is occupied;(d) — the
Although the nondiagonal density-matrix elements do nolevel E; is occupied. It is clear that the density-matrix ele-
enter explicitly in Eq.(6.2), they are coupled with diagonal ments for an electron with spin up and spin down inside the
matrix elements in the rate equatiofite first term in  system are equalfyy = Ty, = Tpp, and the same holds for

(613], and therefore influence the resonant current. ThQ)-CC ando-dd_ Hence, Eqs(ﬁl) can be written in this case as
coupling with nondiagonal elements always appears in the

rate equation, yvh_enever a carrier jumps from one to another Oaa=— 20 02+ 2T hocc+ 2T ROGqs (6.39
isolatedstates inside the device. In the absence of such tran-
sition as, for instance, in resonant tunneling through a single
well, the diagonal and nondiagonal matrix elements are de-
coupled and the evolution of diagonal density-matrix ele-
ments is described by thdassicalrate equation.

Hence, the distinction between isolated and continuum ,
states becomes very essential in the description of quantum 04d= ~I'roggt Tinoec, (6.30
transport. At first sight, it may seem that in a real situation
such a distinction can hardly be carried out, since there are . . . 1.
no pure isolated states. For instance, a single-electron statebe= (B2~ E1) obct1Q0(00p = 0c0) = 5 (T'r+ I'in) e,
inside the device is always coupled with the continuum states (6.30
of phonons. However, the corresponding density of states L
would display peaks in energy dependence, and they can ba(,pd the dd, Eq.(6.2), is given by
considered as isolated states. Indeed, if we have written l/e=20 '+ 20.T 6.4)
equations like Eqgs(2.5), (3.3), etc., for such a system, the Tect RT “9dd! R+ '
contribution from these peaks in the integrals over conUsingo,,+20p,+20..+2044=1, Egs.(6.3) can be easily
tinuum states would generate a coupling with nondiagonasolved fort—«, yielding for the dc

(=€ g OTHR, (6.2

Tob=1Q0(0pc— 0ch) + 'L 0aa, (6.3b

b'cc: —iQo(opc— Ucb)_(réﬁ'rin)gcc’ (6.39

2I' '
T+ Tk

05

l/e= . 6.
QZ2FinFL+FinFR+4FLFR+FRF’R ' Tg 2I' ' ©.9

! +€2 !
0 (I‘in""rR)2 2 (Fin+rR)2

This result shows a very peculiar dependence of the dc of theimple case of the resonant tunneling through a double-well
inelastic widthI";,. One could expect, at least fblx~T'g, structure, Eq(4.19. One finds that— 0 whenl'g— . This
that the current should increase wHepgrows. However, as phenomenon can be understood by analyzing(&d.b for
follows from Eq.(6.3), the current —0 forI';,— (cf. with  nondiagonal density-matrix elements. In contrast with the
another example in Ref. 10In fact, such an unexpected rate equation for diagonal matrix elements, Eg.18, the
behavior of the dc would always take place in the presenceoupling with continuum states always leads to damping of
of coherent transitions between isolated states in carrienondiagonal matrix elements. Since the transport through
transport. For instance, it can be traced even in a moré&olated states goes only via nondiagonal density-matrix ele-
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equations cannot be derived. Yet, the method still can be
used for a dc. However, when the bias is less than the level
width, the continuum states of the reservoir cannot be inte-
grated out in the manner of Sec. Il, and our method cannot
be applied.

We have compared some of our results with results that
were obtained earlier in the literature. For example, for the
resonant tunneling through a single dot, we obtained the
same result as Glazman and Matvédn. the case of reso-
nant tunneling through double-dot structure, we found
simple analytical expression for a dc under a condition of
FIG. 5. Resonant transport through a double-well structure irptrong Coulomb repulsion inside the dots, when no more

the presence of inelastic process with strong Coulomb blockadd1an One electron can occupy the dots. The obtained expres-
effects. sion is very close to that found in Refs. 9 and 15 in a phe-

nomenological rate equation approach.
ments, Eq.(6.1a, the total current would always decrease Of course, the quantum transport in multidot structures
with the growth of the corresponding partial widths. can be treated by different methods, which are not necessar-
ily the rate equations. For instance, the multidimensional
Landauer approach has been used to study the resistance
VII. SUMMARY resonances in multiple-dot structurésHowever, charging
effects have not been included. In fact, their account is rather
In this paper, we have studied quantum transport in meeomplicated in the framework of Landauer approach. Also
soscopic system&uantum dotscontaining a finite number the nonequilibrium Green’s function methi8dhas been used
of isolated quantum states. Starting with the many-particleo study multibarrier resonant tunneling, again without
wave function in the occupation number representation, andharging effectd® The charging can be taken into account
integrating out the continuum states, we have found theia direct diagonalization of the multidot Hamiltonian. It has
equations of motion for the density submatrix of the systembeen done for double-d§tand multiple-dot* systems by
These equations have a form of the magtate equations assuming weak coupling to the leads. Yet, this treatment is
for diagonal density-matrix element. But in addition, nondi- mainly numerical, and the inelastic scattering is accounted
agonal density-matrix elements, responsible for transitionfor phenomenologically. In contrast, the quantum rate equa-
between isolated quantum states, appear in these equatiotisns method allows in many cases the analytical treatment
If, however, these transitions are generated by a continuurof the problem. It also proves to be technically much simpler
states medium, the diagonal and nondiagonal density-matrithan the other approaches. An even more important advan-
elements become decoupled, and the quantum transport tigge of our treatment is that the effects of charging, inelastic
described by classical rate equations. scattering, and coupling with the leads are included from the
It follows from our derivation that the reduction of many- very beginning.
body Schrdinger equation to the modified rate equations for ~As an application of our equations, we considered a more
density submatrix of the device can be performed only if twocomplicated case of the resonant tunneling in a coupled-dot
conditions are met: first, the energy states of the systersystem, where the inelastic process takes place in the course
which carry the resonant transport must be inside the biasf transport. It was found that the resonant current decreases
EE—ER; second, the width of these states is much smallewith the growth of the inelastic width. We found that this
than the bias. If the second condition is satisfied, but theacnomalous behavior always emerges whenever coherent
resonant levels of the device are close to band edges, our rdt@nsitions are accompanied by inelastic processes.
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