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We calculate the optical absorption of quantum-well wires for a large variety of wire widths, taking into
account Coulomb interaction, unequal electron and hole effective masses, and continuum states. A transition
from a two-dimensional semiconductor to a one-dimensional semiconductor is observed as the wire width is
reduced. Absorption lines that are forbidden in the free-particle case appear as a result of Coulomb coupling.
By comparison of different effective-mass ratios, we rigorously show that the dominant lines are related to the
center-of-mass motion of excitons. The influence of a finite length and a finite thickness is studied. The
one-subband approximation is found to correctly describe the extreme one-dimensional limit. A comparison
with realistic dimensions, however, demonstrates the shortcoming of that approximation for quantitative pre-
dictions.@S0163-1829~96!03923-9#

I. INTRODUCTION

During the past two decades, the physics of low-
dimensional semiconductors has become a vital part of
present-day research. Low-dimensional structures allow the
study of a variety of new mechanical, optical, and transport
phenomena. In this context, one-dimensional systems have
been of particular interest for the past five years. Examples
are quantum-well wires,1,2 T-shaped quantum wires,3

V-shaped quantum wires,4 bulk semiconductors in magnetic
fields,5 and macromolecular compounds.6

The optical properties of quantum wells are well under-
stood theoretically.7 The importance of the center-of-mass
quantization for large wire widths has been demonstrated
experimentally.8 Fano resonances,9 due to mixing of heavy-
hole and light-hole states, have been observed and explained
theoretically.10 It can be shown that all excited states acquire
a Fano line shape due to Coulomb interaction11–13 and this
effect can be seen on weakly allowed14,15 and allowed15

excitonic transitions.
The theory for quantum wires can be developed in anal-

ogy to quantum wells. However, difficulties are encountered
due to the diverging behavior of the one-dimensional binding
energy and the fact that the wire width is often much larger
than the spatial extension of the exciton. Therefore, quantum
wires have been described using discrete models,16 effective
one-dimensional potentials,17,18 and fractal dimensions.19

Furthermore, a number of simplifying assumptions are often
made for rendering the theoretical treatment tractable, al-
though they are not verified in real materials. For example,
the electron and hole effective mass are assumed equal,20 or
the Coulomb interaction is neglected.21

If all intersubband transitions and the Coulomb interac-
tion are treated correctly, the same features as for quantum
wells can be expected: the center-of-mass quantization,22

which has been previously observed experimentally;1 and
Fano resonances.9,20 On physical grounds one can expect a
smooth transition from a two-dimensional semiconductor to
a one-dimensional semiconductor by narrowing a quantum-

well wire. This, however, has yet to be demonstrated rigor-
ously.

The goal of the present paper is to present optical spectra
of quantum-well wires for various wire widths in order to
visualize the change of dimensionality. The continuous part
of the spectrum and the Coulomb interaction are taken into
account fully and no assumption about electron-hole symme-
try is made. This allows us to~i! separate the effects of
center-of-mass and relative motion quantization,~ii ! study
the effects of the wire thickness and length,~iii ! investigate
the size dependence of the binding energy, and~iv! examine
the validity of the one-subband approximation.

II. OPTICAL SPECTRUM

We use the model of a two-band semiconductor in the
effective-mass approximation with massesme,h for electrons
and holes, respectively. The interaction with the light is me-
diated by a dipole matrix elementm. The static screening in
the semiconductor is described by a dimensionless dielectric
constant«, which appears as a prefactor to the vacuum per-
mittivity, «058.854 19310212As/(Vm). Center-of-mass
and relative motions of the exciton are characterized
by the total mass M5me1mh and the reduced
mass m5memh /(me1mh). To represent the results,
we use excitonic units, the binding energy Ry*5 1

2me4/
@(4p«0«)

2\2#, and the Bohr radiusa*54p«0«\2/(me2)
of the three-dimensional exciton.

We assume that the constantsme , mh , «, and \e are
known from experiments or from tables. Then, the relative
massm and the background dielectric constant determine the
excitonic units Ry* anda* . The remaining input parameters
of the calculation are the effective-mass ratiomh /me and the
homogeneous broadening\e in units of Ry* . For gallium
arsenide we have approximately Ry*54.7 meV,
a*5120 Å, andmh /me57. The homogeneous broadening
depends on the sample quality and on the temperature. We
assume a value of\e50.2 Ry* throughout the paper.
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A. Transition from a quantum well to a quantum-well wire

We consider that a quantum wire is obtained from a quan-
tum well whose thickness is much smaller than the wire
width b, so that there is almost ideal two-dimensional con-
finement in thez direction. We assume infinitely high barri-
ers for the quantization in the lateral (y) direction, and free
motion in the wire (x) direction. The one-dimensional opti-
cal susceptibility is then given by

x~1D!~v!5
umu2
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Due to the confinement, the eigenfunctionsFl(x,ye ,yh)
vanish for yeP$0,b% or yhP$0,b%. The energy
\2p2/(2mb2) of the first subband is subtracted from the
Hamiltonian, so that the continuum always starts at
\v50. This assists us when we compare spectra for differ-
ent wire widths. The above equations have been solved nu-
merically in real space with a grid spacing of
0.08. . . 0.16a* .23

In Fig. 1 the optical absorption, Imx (1D), of a quantum-
well wire is plotted versus the excitation energy\v for
me5mh andb51 . . . 16a* . The height of the spectra is nor-
malized. Forb516a* , the spectrum is very similar to that of
a quantum well: the binding energy is about 4 Ry* , which is
the value for the two-dimensional exciton, and the con-
tinuum absorption is nearly constant in the displayed fre-
quency range. The ratio of the absorption maximum and
the onset of the continuum absorption is found to be
21.54, which is close to the ideal two-dimensional value
(16/p)(\e/ Ry* )21525.46, . . . . The loss in the excitonic
oscillator strength is due to the center-of-mass quantization,
which manifests itself as a small modulation of the spectrum
between the ground-state exciton and the continuum, and in
the continuum. The distance between the maxima and
minima increases when the wire width is reduced to
b58a* . The spectrum forb54a* shows that there are two
types of peaks involved with, alternatively, a large and a
small linewidth. Forb52a* we observe an enhancement of
the binding energy. The transitions at negative energies
\v,0 are discrete with a Lorentzian line shape, whereas for
\v.0 Fano resonances9 are formed due to the coupling of
discrete and continuous states belonging to different
subbands.20 Finally, for b51a* the continuum absorption is
constant, as it was the case for large wire widths. In contrast
to a quantum well, however, the binding energy is enhanced
and the ratio between the absorption of the continuum edge

and the exciton is smaller, as it is a characteristic feature for
transitions to lower dimensions.19

B. Influence of unequal masses for electron and hole

To explore the effects of unequal effective masses, we
now considermh /me57, which corresponds approximately
to GaAs. No significant changes are expected in the
quantum-well limit, b→`, and in the extreme one-
dimensional limit, b→0, since in both cases the optical
properties are governed by the relative motion only. The re-
sults for intermediate wire widths are shown in Fig. 2. Sur-
prisingly, forb51a* one sees an additional peak that can be
attributed to the (ne ,nh)5(1,3) transition. Since the barriers
are infinitely high, this transition is forbidden in the single-
particle picture. The origin of this transition can be explained
in the following way: all subbands with (ne2nh) mod250
and (ne2nh) mod251 are mutually coupled by the Cou-
lomb interaction. Since the first system contains the allowed
transitions (ne5nh), the Coulomb coupling results in a finite
transition probability for all transitions with
(ne2nh) mod250. This, however, does not result in dis-
crete lines but rather in Fano resonances~see inset! because
of the degeneracy with continuum states. The oscillator
strength of those weakly allowed transitions decreases for
narrower wires since the intersubband coupling decreases. It
is worth mentioning that this effect also takes place in quan-
tum wells. Therefore, weakly allowed transitions are not nec-
essarily the result of wave functions’ leakage through the
barriers, as commonly believed.

The assignment of the absorption peaks is particularly in-
teresting. In the limitb→0, the separation of subbands even-

FIG. 1. Optical absorption of quantum-well wires vs energy
\v for d50, different wire widthb516a*, 8a* , 4a* , 2a* , and
1a* , andmh5me . The heights of the lowest transitions are nor-
malized.

53 15 903TRANSITION TO ONE-DIMENSIONAL BEHAVIOR IN THE . . .



tually exceeds the exciton binding energy, and absorption
lines can be classified by the subband pair and an additional
quantum number of the even-parity one-dimensional exciton.
In contrast to quantum wells, quantum wires are usually far
from this limit because~i! the intersubband coupling of the
one-dimensional Coulomb potential is much stronger than in
two dimensions, and~ii ! for technical reasons the wire
widths cannot be made arbitrarily small. Therefore, realistic
quantum-well wires often have an intermediate thickness. In
this case, we expect two types of transitions:~a! the spatially
small excitons keep their internal structure but perform a
center-of-mass motion between the barriers.1,22 The spectral
positions of the corresponding resonances are roughly given
by EN5\2(2N21)2p2/(2Md2)24 Ry* , N51,2,3, . . . .
~b! Even if the wire width is much larger than the excitonic

Bohr radius, there is always an infinite number of excitons
with a spatial extent larger than the wire with. The relative
motion of those excitons is subject to size quantization and
their energies will accumulate at the subband edges,
En5\2n2p2/(2md2), n51,2,3, . . . .

The nature of the transitions can be studied by compari-
son of the spectra forme5mh ~Fig. 1! andmeÞmh ~Fig. 2!
for a fixed wire width, e.g.,b54a* . The free-particle ab-
sorption is identical in both cases since optical density of
states is independent of the effective-mass ratio and the Ry-
dberg units were defined in terms of the reduced mass. For
mh /me51, the spectrum has a very regular structure and is
characterized by a sequence of consecutive small and large
peaks. Formh /me57, the small peaks stay almost at their
positions, but the large ones are shifted to lower energies.
We can thus conclude that the small peaks correspond to
exciton size quantization, and that they appear just below the
subband edges that depend on the relative mass. The large
and narrow peaks originate from the center-of-mass quanti-
zation. Their energies scale according to the total mass. In
the case presented here, the separation between the large
peaks and the lowest transition decreases by a factor of about
16
7 ; i.e., the change of the total mass as the mass ratio is
changed frommh /me51 tomh /me57. The lines resulting
from the center-of-mass motion are narrower because those
excitons have a small spatial extension resulting in a weaker
coupling to the continuum. It is important to note that the
regular appearance of the spectrum formh5me is purely
accidental; for in this particular case it holds that
\2(2N21)2p2/(2Md2)5\2(N2 1

2)
2p2/(2md2).

C. Influence of a finite thickness and finite length

Quantum-well wires are often treated as if they were
based on an ideal two-dimensional semiconductor, and their
length was infinite. Intuitively, it is plausible that those as-
sumptions are justified if the thickness of the underlying
quantum well is much smaller than the Bohr radius of the
exciton, and the length is much larger than the Bohr radius.
However, it is important to have some quantitative estimate
of what can be considered as ‘‘much smaller’’ and ‘‘much
larger.’’

First, we consider a quantum-well wire of the size:
length3width3thickness5`3b3d. The optical suscepti-
bility is given by
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FIG. 2. Optical absorption of quantum-well wires vs energy
\v for d50, different wire widthb54a* , 2a* , and 1a* , and
mh57me . The heights of the lowest transitions are normalized.
Inset: Closeup of the dashed box in the spectrum forb51a* .
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Numerical results are shown in Fig. 3 forme5mh , a con-
stant widthb52a* , and different values of the thickness
d51a*, 0.75a* , 0.5a* , and 0.25a* . As the thickness is
reduced, the binding energy gradually increases, and the os-
cillator strengths of the excited main peaks (N.1) decrease,
compared to the ground state (N51). The side peaks are
hardly visible for large thicknesses, but become more pro-

nounced ifd is reduced. A comparison with Fig. 1 shows
that the assumption of a vanishing thickness is justified if
d<0.25a* . This is about the well thickness in the experi-
ment by Brunneret al.2

The effect of the length on the exciton binding energy in
molecular chains has been studied by Fujiki.6 In our theoreti-
cal approach, we assume a quantum-well wire of the size
l3b30. The optical susceptibility is obtained from
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Optical spectra of quantum-well wires with a fixed width
b51, and different lengthsl532a* , 16a* ,8a* ,4a* , and
2a* are shown in Fig. 4. The spectrum forl532a* re-
sembles that of an infinitely long wire~cf. Fig. 1!. A small
modulation shows the influence of the center-of-mass motion
along the wire direction. As the length is reduced, the dis-
tance of consecutive maxima and minima increases. Eventu-
ally, for b<4a* , clear and distinct Lorentzian resonances

are observed and a quantum dot, i.e., a zero-dimensional
structure, is formed. A comparison with GaAs parameters
shows that, in most situations, the finite length of the wire
can be disregarded.

III. BINDING ENERGY

Most of the published calculations assume that only the
lowest subband contributes to the optical spectrum,18 and it

FIG. 3. Optical absorption of a quantum-well wire vs energy
\v, for me5mh , a wire widthb52a* , and different wire thick-
nessesd50.25a* , 0.5a* , 0.75a* , and 1a* . The heights of the
lowest transitions are normalized.

FIG. 4. Optical absorption of a quantum-well wire vs energy
\v, for d50, b51a* , and a finite lengthl52a* , 4a* , 8a* , 16
a* , and 32a* . The heights of the lowest transitions are normalized.
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is important to check the validity of this approximation. In
this section, we examine the influence of this ‘‘one-subband
approximation’’ on the binding energy.

The ground state of a quantum-mechanical system, char-
acterized by the Hamiltonian Ĥ, is defined as
Eg.s.5 inf@^FuĤuF&/^FuF&#. In the presence of Coulomb
interaction, the ground-state energyEg.s. is lower than its
valueEg.s.

(0) in the absence of Coulomb interaction. The dif-
ferenceEB5Eg.s.

(0)2E g.s. is called the exciton binding energy.
Since Ĥ was chosen such thatEg.s.

(0)50, it holds that
EB52E g.s..

Let jW andhW denote the coordinates in the direction of free
motion and confinement, respectively. The one-subband ap-
proximation is characterized by a trial function
F8(jW ,hW e ,hW h)5w8(jW )we1

(0)(hW e)wh1
(0)(hW h), wherewe,h1

(0) are the
ground-state eigenfunctions of the individual motion of elec-
tron and hole in the confinement directions. This is done with
the understanding that, lowering the size in the confinement
direction, the distance to the higher subband increases, and
their influence becomes less important. The remaining eigen-
value problem forw8 leads to a binding energyEB8<EB .

A. Quantum well and quantum dot

Based on the fact that the two-dimensional Coulomb po-
tential has a finite binding energy, it can be shown easily that
the binding energyEB is smaller than the two-dimensional
value 4 Ry* and that the valueEB8 from the one-subband
approximation approaches 4 Ry* as the well thicknessd is
reduced. SinceEB8<EB , it follows that both functions are
asymptotically equal ford→0.

The behavior is different for zero-dimensional structures.
As an example, we consider a flat, square quantum dot.24 It is
described by Eq.~6! with l5b, whereb is the length of the
side. Since in the absence of Coulomb interaction the ground
state is isolated and nondegenerate, the ground-state energy,
including Coulomb interaction, can be expressed by a pertur-
bation series:
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FromVpqrsp8q8r 8s8}1/b it follows that the second contribu-
tion to Eg.s. is independent ofb. Hence, the asymptotic be-
havior of the binding energy isEB;EB81c, wherec is a
positive constant. This result is rather general and follows
from the discrete nature of the spectrum and from the scaling
behavior of the zeroth-order energies and the Coulomb ma-
trix elements with the characteristic length of the quantum
dot.25,26

Figure 5 shows the binding energyEB ~solid line! and the
result of the one-subband approximation~dashed line! for
a quantum well with thicknessd and a flat, square quantum
dot with widthb. As the best case, we choseme5mh , which
underestimates the binding energy. For quantum wells~top!
the binding energy starts at the three-dimensional Ry* for
infinite thickness and approaches the ideal two-dimensional
value 4 Ry* as the thicknessd approaches zero. The one-
subband approximation leads to accurate results for
d<1a* . For the quantum dot~bottom!, the approximate

FIG. 5. Comparison of exact binding energies~solid line! with
the result of the one-subband approximation~dashed line! for a
quantum well~top! and a flat, square quantum dot~bottom!. The
parameter is the thicknessd for quantum wells and the length of the
sideb for quantum dots.
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binding energy EB85V1111 11115ae2/(4\«0«b);
a54.7588. . . never approaches the true binding energy but
differs fromEB by a constant, asb goes to zero.

B. Quantum-well wires

Apparently, the arguments used in the last subsection can-
not be applied to one-dimensional structures; neither is the
binding energy of the one-dimensional Coulomb potential
finite, nor is the density of states completely discrete. There-
fore, we calculate numerically the binding energy from Eq.
~2!, and the one-subband approximation corresponds to the
ansatz

F8~x,ye ,yh!5w8~x!A2/bsinS pye
b DA2/bsinS pyh

b D .

In Fig. 5, the dependence of the binding energy of a
quantum-well wire~solid line! is compared with the one-
subband approximation~dashed line!. Equal masses for elec-
tron and hole are assumed. The binding energy starts at the
two-dimensional value 4 Ry* and goes to infinity as the wire
width b approaches zero. The increase is sublinear with
1/b, and eventually the approximate result converges to-
wards the exact one~inset!. However, the convergence is
much worse than for quantum wells. The end of the abscissa
corresponds to 6 nm for GaAs, whereas the lowest experi-
mental values obtained inT-shaped wires are between 7 and
12.5 nm.3 This demonstrates that the one-subband approxi-
mation cannot be applied to realistic structures.

IV. SUMMARY

In summary, we have demonstrated the dimensionality
transition in quantum-well wires from a two- to a one-
dimensional semiconductor. Due to the Coulomb coupling of
different subband pairs, forbidden transitions can become
optically active. The structure of the absorption spectrum of
quantum well wires, which can be explained in terms of
center-of-mass and size quantization, varies considerably
with the mass ratio between electrons and holes.

The model of a perfectly flat quantum wire was found to
accurately describe the physical properties for a wire width
lower than, or equal to, 0.25a* . A transition to a zero-
dimensional structure can be observed if the length of the
wire is reduced.

In contrast to quantum dots, the one-subband approxima-
tion yields a binding energy that slowly converges towards
the exact one as the wire width is reduced. However, the
convergence is much slower than for quantum wells, and is
of no practical use for realistic wire widths.
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