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Transition to one-dimensional behavior in the optical absorption of quantum-well wires
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We calculate the optical absorption of quantum-well wires for a large variety of wire widths, taking into
account Coulomb interaction, unequal electron and hole effective masses, and continuum states. A transition
from a two-dimensional semiconductor to a one-dimensional semiconductor is observed as the wire width is
reduced. Absorption lines that are forbidden in the free-particle case appear as a result of Coulomb coupling.
By comparison of different effective-mass ratios, we rigorously show that the dominant lines are related to the
center-of-mass motion of excitons. The influence of a finite length and a finite thickness is studied. The
one-subband approximation is found to correctly describe the extreme one-dimensional limit. A comparison
with realistic dimensions, however, demonstrates the shortcoming of that approximation for quantitative pre-
dictions.[S0163-18206)03923-9

[. INTRODUCTION well wire. This, however, has yet to be demonstrated rigor-
ously.

During the past two decades, the physics of low- The goal of the present paper is to present optical spectra
dimensional semiconductors has become a vital part off quantum-well wires for various wire widths in order to
present-day research. Low-dimensional structures allow theisualize the change of dimensionality. The continuous part
study of a variety of new mechanical, optical, and transporof the spectrum and the Coulomb interaction are taken into
phenomena. In this context, one-dimensional systems hawaccount fully and no assumption about electron-hole symme-
been of particular interest for the past five years. Examplefry is made. This allows us td¢i) separate the effects of
are quantum-well wires? T-shaped quantum wirds, center-of-mass and relative motion quantizati¢in, study
V-shaped quantum wirdshulk semiconductors in magnetic the effects of the wire thickness and lengfiii,) investigate
fields® and macromolecular compounts. the size dependence of the binding energy, @dexamine

The optical properties of quantum wells are well under-the validity of the one-subband approximation.
stood theoretically. The importance of the center-of-mass
qguantization for large wire widths has been demonstrated
experimentally’ Fano resonancésjue to mixing of heavy- Il. OPTICAL SPECTRUM
hole and light-hole states, have been observed and explained
theoretically*® It can be shown that all excited states acquire
a Fano line shape due to Coulomb interacttolt and this

We use the model of a two-band semiconductor in the
effective-mass approximation with massagy, for electrons
effect can be seen on weakly allowéd and allowed® and holes, respectively. The interaction with the light is me-
excitonic transitions. diated by a dipole matrix elemept. The static screening in
The theory for quantum wires can be developed in analthe semiconductor is described by a dimensionless dielectric

ogy to quantum wells. However, difficulties are encounterectonstant, which appears asa prefactor to the vacuum per-
due to the diverging behavior of the one-dimensional bindingNittivity, &0=8.854 19<10" “As/(Vm). ~ Center-of-mass
energy and the fact that the wire width is often much Iargerand relative motions of the exciton are characterized
than the spatial extension of the exciton. Therefore, quantuly the total mass M=me+m, and the reduced
wires have been described using discrete molfeséfective =~ Mass m=mem,/(me+my). To represent the ) results,
one-dimensional potentialé® and fractal dimension§, We use excitonic units, the binding energy *Ry;me'/
Furthermore, a number of simplifying assumptions are oftert (47€0¢)*:%], and the Bohr radiug* =4meqeh?/(me)
made for rendering the theoretical treatment tractable, alof the three-dimensional exciton.
though they are not verified in real materials. For example, We assume that the constamg, my, &, andfie are
the electron and hole effective mass are assumed &4arl, known from experiments or from tables. Then, the relative
the Coulomb interaction is neglectéd. massm and the background dielectric constant determine the
If all intersubband transitions and the Coulomb interac-excitonic units Ry anda*. The remaining input parameters
tion are treated correctly, the same features as for quantuef the calculation are the effective-mass ratig/m, and the
wells can be expected: the center-of-mass quantiz&fion,homogeneous broadenirige in units of Ry*. For gallium
which has been previously observed experimentalynyd arsenide we have approximately Ry4.7 meV,
Fano resonancé<? On physical grounds one can expect aa* =120 A, andm,/m,=7. The homogeneous broadening
smooth transition from a two-dimensional semiconductor todepends on the sample quality and on the temperature. We
a one-dimensional semiconductor by narrowing a quantumassume a value dfe=0.2 Ry* throughout the paper.
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A. Transition from a quantum well to a quantum-well wire -

We consider that a quantum wire is obtained from a quan-
tum well whose thickness is much smaller than the wire ] b=16a"
width b, so that there is almost ideal two-dimensional con- 1 ‘; - ba
finement in thez direction. We assume infinitely high barri- = %
ers for the quantization in the laterat)(direction, and free N ‘
motion in the wire &) direction. The one-dimensional opti- 2 4 | b=8a"
cal susceptibility is then given by = |
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FIG. 1. Optical absorption of quantum-well wires vs energy

Due to the confinement, the eigenfunctiods (X,Ye,Yn) ho for d=0, different wire widthb=16a*, 8a*, 4a*, 2a*, and
vanish for y.e{0,b} or y,e{0,b}. The energy 1a*, andm,=m,. The heights of the lowest transitions are nor-
h2m?/(2mb?) of the first subband is subtracted from the malized.
Hamiltonian, so that the continuum always starts at o . .
fiw=0. This assists us when we compare spectra for differf’md th_e exciton is sm_aIIer, as it is a characteristic feature for
ent wire widths. The above equations have been solved ngransitions to lower dimensiorié.
merically in real space with a grid spacing of
0.08...0.1&6* .23 B. Influence of unequal masses for electron and hole

In Fig. 1 the optical absorption, Igi'®, of a quantum- To explore the effects of unequal effective masses, we
well wire is plotted versus the excitation energyo for  now considem,/m.=7, which corresponds approximately
me=my andb=1...1@*. The height of the spectra is nor- to GaAs. No significant changes are expected in the
malized. Foh=16a*, the spectrum is very similar to that of quantum-well limit, b—o, and in the extreme one-
a quantum well: the binding energy is about 4*Rwhich is  dimensional limit,b—0, since in both cases the optical
the value for the two-dimensional exciton, and the con-properties are governed by the relative motion only. The re-
tinuum absorption is nearly constant in the displayed fressults for intermediate wire widths are shown in Fig. 2. Sur-
quency range. The ratio of the absorption maximum angrisingly, forb=1a* one sees an additional peak that can be
the onset of the continuum absorption is found to beattributed to the i, ,n,) = (1,3) transition. Since the barriers
21.54, which is close to the ideal two-dimensional valueare infinitely high, this transition is forbidden in the single-
(16/7)(hel Ry*) 1=25.46.... Theloss in the excitonic particle picture. The origin of this transition can be explained
oscillator strength is due to the center-of-mass quantizatiorin the following way: all subbands withn{—n;,) mod2=0
which manifests itself as a small modulation of the spectrumand (.—n;,) mod2=1 are mutually coupled by the Cou-
between the ground-state exciton and the continuum, and ilomb interaction. Since the first system contains the allowed
the continuum. The distance between the maxima andansitions 6.=n;), the Coulomb coupling results in a finite
minima increases when the wire width is reduced totransition probability for all transitions  with
b=8a*. The spectrum fob=4a* shows that there are two (n,—n;,) mod2=0. This, however, does not result in dis-
types of peaks involved with, alternatively, a large and acrete lines but rather in Fano resonantsse insétbecause
small linewidth. Forb=2a* we observe an enhancement of of the degeneracy with continuum states. The oscillator
the binding energy. The transitions at negative energiestrength of those weakly allowed transitions decreases for
hw<O0 are discrete with a Lorentzian line shape, whereas fonarrower wires since the intersubband coupling decreases. It
fw>0 Fano resonancesre formed due to the coupling of is worth mentioning that this effect also takes place in quan-
discrete and continuous states belonging to differentum wells. Therefore, weakly allowed transitions are not nec-
subband$? Finally, for b=1a* the continuum absorption is essarily the result of wave functions’ leakage through the
constant, as it was the case for large wire widths. In contradtarriers, as commonly believed.
to a quantum well, however, the binding energy is enhanced The assignment of the absorption peaks is particularly in-
and the ratio between the absorption of the continuum edggresting. In the limib— 0, the separation of subbands even-
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- Bohr radius, there is always an infinite number of excitons
] with a spatial extent larger than the wire with. The relative
i motion of those excitons is subject to size quantization and
their energies will accumulate at the subband edges,
E,=#A2n?7%(2md?), n=1,2,3....

The nature of the transitions can be studied by compari-
son of the spectra fam,=m;, (Fig. 1) andm,# m,, (Fig. 2)
for a fixed wire width, e.g.b=4a*. The free-particle ab-
sorption is identical in both cases since optical density of
states is independent of the effective-mass ratio and the Ry-
dberg units were defined in terms of the reduced mass. For
m,,/m,=1, the spectrum has a very regular structure and is
characterized by a sequence of consecutive small and large
peaks. Fom,/m,=7, the small peaks stay almost at their
positions, but the large ones are shifted to lower energies.
We can thus conclude that the small peaks correspond to
exciton size quantization, and that they appear just below the
subband edges that depend on the relative mass. The large
and narrow peaks originate from the center-of-mass quanti-
zation. Their energies scale according to the total mass. In
the case presented here, the separation between the large
—— E)qus and the lowest transition decreases by a factor of about
12 6 0 6 12 18 24 =, i.e., the change of the total mass as the mass ratio is

Energy (Ry*) changed fromm,,/m,=1 to m,/m,=7. The lines resulting
from the center-of-mass motion are narrower because those

FIG. 2. Optical absorption of quantum-well wires vs energy €XCitons have a small spatial extension resulting in a weaker
fiw for d=0, different wire widthb=4a*, 2a*, and 1a*, and coupling to the continuum. It is important to note that the
m,=7m,. The heights of the lowest transitions are normalized.regular appearance of the spectrum fof=m, is purely
Inset: Closeup of the dashed box in the spectrunmbferla*. accidental; for in this particular case it holds that

h2(2N—1)27%/(2Md?) =#2(N—3)?7%/ (2md?).

tually exceeds the exciton binding energy, and absorption
lines can be classified by the subband pair and an additional
guantum number of the even-parity one-dimensional exciton.
In contrast to quantum wells, quantum wires are usually far Quantum-well wires are often treated as if they were
from this limit becausei) the intersubband coupling of the based on an ideal two-dimensional semiconductor, and their
one-dimensional Coulomb potential is much stronger than ifength was infinite. Intuitively, it is plausible that those as-
two dimensions, andii) for technical reasons the wire sumptions are justified if the thickness of the underlying
widths cannot be made arbitrarily small. Therefore, realisticquantum well is much smaller than the Bohr radius of the
guantum-well wires often have an intermediate thickness. Irexciton, and the length is much larger than the Bohr radius.
this case, we expect two types of transitiof@:the spatially However, it is important to have some quantitative estimate
small excitons keep their internal structure but perform aof what can be considered as “much smaller” and “much
center-of-mass motion between the barrfetsThe spectral larger.”
positions of the corresponding resonances are roughly given First, we consider a quantum-well wire of the size:
by En=%2%(2N—1)?72/(2Md?)—4 Ry*, N=1,2,3.... lengthxwidthx thickness-ccxbxd. The optical suscepti-
(b) Even if the wire width is much larger than the excitonic bility is given by

Absorption (arb. units)

C. Influence of a finite thickness and finite length
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FIG. 3. Optical absorption of a quantum-well wire vs energy FIG. 4. Optical absorption of a quantum-well wire vs energy

fiw, for me=m,, a wire widthb=2a*, and different wire thick- 7" for d=0, b=1a", and a finite length =2a*, 4a", 8a*, 16
nessesd=0.2%*, 0.5*, 0.75*, and la*. The heights of the a*, and 32*. The heights of the lowest transitions are normalized.

lowest transitions are normalized.

nounced ifd is reduced. A comparison with Fig. 1 shows
Numerical results are shown in Fig. 3 for,=m;,, a con- that the assumption of a vanishing thickness is justified if
stant widthb=2a*, and different values of the thickness d<0.25a*. This is about the well thickness in the experi-
d=1a*, 0.75a*, 0.5*, and 0.2%*. As the thickness is Ment by Brunneet al?
reduced, the binding energy gradually increases, and the os- The effect of the length on the exciton binding energy in
cillator strengths of the excited main peaké*1) decrease, Molecular chains has been studied by Fdjiki.our theoreti-
compared to the ground statdl£1). The side peaks are cal approach, we assume a quantum-well wire of the size
hardly visible for large thicknesses, but become more prolxXbXx0. The optical susceptibility is obtained from

|
|/-L|2 1 | | b b q))\(X,X’y,y)q);(X/,X/'y/’y/)
(1D) _ = ’ '
X () gg | JodXJodX jo dyfo dy ; E,—fi(w+tie) ' ®)

where

% 9> K% 9> k% 9* K2 9% hPm®  hPm? e?

X D@y (Xe 1 Xn Ve Yn) =ExPL(Xe Xn,Ye Yh)s  Xe:Xne[0,1]; Ye,yne[0,b]. (6)

Optical spectra of quantum-well wires with a fixed width are observed and a quantum dot, i.e., a zero-dimensional
b=1, and different length$=32a*, 16a*,8a*,4a*, and  Structure, is formed. A comparison with GaAs parameters
2a* are shown in Fig. 4. The spectrum fbe32a* re- shows th_at, in most situations, the finite length of the wire

sembles that of an infinitely long wiref. Fig. 1). A small ~ can be disregarded.

modulation shows the influence of the center-of-mass motion
along the wire direction. As the length is reduced, the dis-
tance of consecutive maxima and minima increases. Eventu- Most of the published calculations assume that only the
ally, for b<4a*, clear and distinct Lorentzian resonanceslowest subband contributes to the optical specttfiemnd it

Ill. BINDING ENERGY
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is important to check the validity of this approximation. In 4
this section, we examine the influence of this “one-subband
approximation” on the binding energy.

The ground state of a quantum-mechanical system, char-
acterized by the HamiltonianH, is defined as
Egs= Inf[(®|H|®)/(®|D)]. In the presence of Coulomb
interaction, the ground-state energy,s is lower than its
value E{%) in the absence of Coulomb interaction. The dif-
ferenceEg=E{2—E 4 is called the exciton binding energy.
Since H was chosen such thaE{}=0, it holds that

3 quantum well

Eg=—Egs. 0.0 05 1.0 0.5 0.0
Egs . .

Let £ and  denote the coordinates in the direction of free @™ d@)
motion and confinement, respectively. The one-subband ap-
proximation is characterized by a trial function 20
D' (76, 7)= ¢ (£) 0 (16) 2 (1), Wheree%), are the 6l
ground-state eigenfunctions of the individual motion of elec- | quantum dot g
tron and hole in the confinement directions. This is done with ~ 12k g
the understanding that, lowering the size in the confinement g |
direction, the distance to the higher subband increases, and ;m sk el
their influence becomes less important. The remaining eigen- |
value problem forp’ leads to a binding energyg<Eg. 4 e

0 [~ ] A ] ; ! ,
A. Quantum well and quantum dot 0.0 05 1.0 15 20
Based on the fact that the two-dimensional Coulomb po- @™

tential has a finite binding energy, it can be shown easily that
the binding energyEg is smaller than the two-dimensional ~ FIG. 5. Comparison of exact binding energieslid line) with
value 4 Ry and that the valu€j from the one-subband the result of the one-subband approximati@ashed ling for a
approximation approaches 4 Rys the well thicknesd is ~ quantum well(top) and a flat, square quantum ddottom. The
reduced. Sinc&EL<E- . it follows that both functions are p_arameter is the thicknesdsfor quantum wells and the length of the
. B B sideb for quantum dots.

asymptotically equal fod—0.

The behavior is different for zero-dimensional structures,
As an example, we consider a flat, square quantuni‘dots parsp'g’r’s’
described by Eq(6) with | =b, whereb is the length of the ) ) ) )
side. Since in the absence of Coulomb interaction the ground  _ (0)%
state is isolated and nondegenerate, the ground-state energy, Jo derO dXhJo dyefo AYnPpars(Xe Xn Ye.Yn)
including Coulomb interaction, can be expressed by a pertur-
bation series: e

4meoe\(Xe—Xp) 2+ (Ye— Yn)?

2

(0)
Egs=~Vuuiur Z Z a0 X® i (Xe Xn Ve Yn)-

1111
1 FromVqspqrrsr* 1/ it follows that the second contribu-
_) tion to E4 5 is independent ob. Hence, the asymptotic be-
b/’ havior of the binding energy i€Eg~Eg+c, wherec is a
positive constant. This result is rather general and follows
where from the discrete nature of the spectrum and from the scaling
behavior of the zeroth-order energies and the Coulomb ma-
© (p—1)27% (q—1)%7% (r—1)272 trix 2%I2e6ments with the characteristic length of the quantum
PaST  omb? | 2mppZ | 2mgb? dot.™ . .
€ h € Figure 5 shows the binding enery (solid line) and the
(s—1)%m? result of the one-subband approximatitfeshed ling for
Thbz’ a quantum well with thicknesd and a flat, square quantum
dot with widthb. As the best case, we chasg=m;,, which
underestimates the binding energy. For quantum wsig)
0 . [ PTXe [ ATXp the binding energy starts at the three-dimensional Ryr
q)gq)fs(xe'xh’ye’yh): 2/bsm( b >\/2_/bsm( b ) infinite thickness and approaches the ideal two-dimensional
value 4 Ry as the thicknessl approaches zero. The one-
STFYh) subband approximation leads to accurate results for

) 2/bsm(T ’ d<1la*. For the quantum dotbottom, the approximate

+0

rmye

X 2/bsm( b



those resulting from the one-subband approximatiashed ling

'S

range of 1b.

binding energy Ep=Vi111 111= @€%/(4hegeb);
a=4.7588. . . never approaches the true binding energy b
differs from Eg by a constant, ab goes to zero.
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10 In Fig. 5, the dependence of the binding energy of a
e guantum-well wire(solid line) is compared with the one-
P subband approximatiofdashed ling Equal masses for elec-
e tron and hole are assumed. The binding energy starts at the
e two-dimensional value 4 Ryand goes to infinity as the wire
. width b approaches zero. The increase is sublinear with
. 1/b, and eventually the approximate result converges to-
. wards the exact on@nse). However, the convergence is
g much worse than for quantum wells. The end of the abscissa
6 ’ corresponds to 6 nm for GaAs, whereas the lowest experi-
; mental values obtained ilkshaped wires are between 7 and
. 12.5 nm® This demonstrates that the one-subband approxi-
/ mation cannot be applied to realistic structures.

IV. SUMMARY

In summary, we have demonstrated the dimensionality
transition in quantum-well wires from a two- to a one-
dimensional semiconductor. Due to the Coulomb coupling of
different subband pairs, forbidden transitions can become
optically active. The structure of the absorption spectrum of
3 guantum well wires, which can be explained in terms of
00 o5 10 15 20 center-of-mass and size quantization, varies considerably

“ 1 with the mass ratio between electrons and holes.

b (a ™) The model of a perfectly flat quantum wire was found to
accurately describe the physical properties for a wire width
lower than, or equal to, 0.23. A transition to a zero-
dimensional structure can be observed if the length of the
wire is reduced.

In contrast to quantum dots, the one-subband approxima-
tion yields a binding energy that slowly converges towards
the exact one as the wire width is reduced. However, the

onvergence is much slower than for quantum wells, and is
of no practical use for realistic wire widths.

FIG. 6. Comparison of exact binding energisslid line) with

the inverse wire width b/ Inset: The same function for a larger

B. Quantum-well wires
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