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By utilizing the hybrid recursive Green’s function method, we study the exact numerical photoconductance
of quantum point contacts and compare it with features obtained in the analytic adiabatic regime. We find that
the main features of the photoconductance oscillations are present, but with quantum corrections. These
corrections are mainly due to deviations from the semiclassical description of wave functions. Nonadiabatic
corrections enhance the photoconductance oscillations.@S0163-1829~96!01524-X#

I. INTRODUCTION

Recently, theoretical interest in the problem of coherent
scattering of electrons in microconstrictions of the two-
dimensional electron gas~2DEG!, due to the presence of an
external ac electromagnetic field, has revealed several inter-
esting phenomena.1–3 These results were all based on two
assumptions:~i! the strict separation of longitudinal and
~quantized! transverse electron motion, and~ii ! the semiclas-
sical nature of the longitudinal motion within each transverse
mode. Both of these assumptions are justified in an adiabati-
cally varying constriction,4 which is believed to be close to
the experimental situation.

Quantum corrections to these assumptions must include
the following. First, mixing of longitudinal and transverse
motion, which can be treated as elastic intermode scattering
and allows for momentum transfer between the longitudinal
and the transverse direction. Second, quantum corrections to
the semiclassical wave function describing longitudinal mo-
tion. Both these corrections increase when the geometry of
the microconstriction becomes more abrupt and can destroy
phenomena arising in the framework of adiabatic ideology.
However, the experimental and numerical results show that
‘‘adiabatic’’ phenomena, such as conductance quantization
in the point contact, are robust against these corrections. In
fact, conductance quantization may even be enhanced by
nonadiabatic corrections. As was shown in Ref. 2, the pho-
toconductance of microconstrictions has a much richer struc-
ture and could, therefore, be more sensitive to quantum cor-
rections to the adiabatic approximation. The influence of
these corrections is what we address in this paper. We shall
demonstrate that the corrections can be significant.

Analytic solutions to coherent scattering are difficult to
achieve, even in the relatively simple case of the quantum
point contact.5 The introduction of a time dependent external
field increases the complexity of the problem. In the case of
a static scattering potential, it has been necessary to comple-
ment analytic results with numerical solutions. In the present
paper, we describe how to extend an already established nu-
merical method6,7 to include the effect of a time dependent
electromagnetic field. Subsequently, the method is applied to

the point contact and compared with the analytic results from
Ref. 2. The extent to which the results in Ref. 2 can be found
in the exact numerical calculations and their deviations will
be the focus of our discussion.

II. THEORY

The physical setup that we have in mind is a mesoscopic
multiterminal device with ideal leads connecting the scatter-
ing area to reservoirs. The main assumptions in the following
are that~i! we have a stationary flow and~ii ! we can neglect
spontaneous emission. That is, electrons enter the scattering
region, are scattered, and do not experience any spontaneous
emission before they reach the reservoirs~estimates can be
found in Ref. 3!. We adopt the common assumption of ne-
glecting the electron-electron interaction. Thus, we have a
one particle picture. From the above assumptions, two im-
portant properties of the resulting scattering probabilities,
Tba , follow. First, (bTba51 ensures current conservation.
That is, any incoming state,a, is scattered out of the scat-
tering region with a probability of unity~note thatb in this
description includes all possible outgoing states!. Second,
(aTba51 ensures that no outgoing state is occupied by
more than one particle. That is,we do not have to worry
about the Pauli exclusion principle. For a further discussion
of this point, we refer to Refs. 8–10 and references therein.
Usually, it is more convenient to split the general index
a/b into one lead index,i / j , and one mode indexm/n at the
given energy,E. We may then define the total scattering
from lead j to leadi asTi , j (E,E8)5(m,nT( i ,m),( j ,n)(E,E8).
We shall further assume that the electromagnetic field is es-
sentially monochromatic~i.e., Dv!EF /\,v). The general
formula to calculate the current out of reservoiri can there-
fore be written in the spirit of Landauer and Bu¨ttiker11 as
~with spin degeneracy!,

I i5
2e

h E0
`FNi~E! f m i

~E!2(
j

(
n

Ti , j~E

1n\v,E! f m j
~E!GdE, ~1!
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where f m(E) is the Fermi distribution function describing a
reservoir with chemical potentialm andNi(E) is the number
of propagating states in leadi at energyE. Note that
Ti ,i(E1n\v,E) gives the backscattering in the incident lead
i when summed overn. The summation overn is, in prin-
ciple, over all possible energiesE1n\v. In this paper, we
are in the perturbative regime and consider onlyn521, 0, 1.
In the following discussion, we will consider a two terminal
geometry with the reflection symmetry in the longitudinal
direction (x→2x, wherex is the longitudinal coordinate!.
This implies that the current from electrons with energyE
incoming from the left (L) is exactly canceled by the same
number of electrons incoming from the right (R) at energy
E, i.e., TR,L(E1n\v,E)5TL,R(E1n\v,E) @in this nota-
tion; (i , j )→(L,R)#. Without this symmetry, the current will
be induced by the ac field, even in the absence of any applied
dc voltage.1,12 By noting that NL(E)5(n@TL,L(E
1n\v,E)1TR,L(E1n\v,E)] and employing the symme-
try above, we find that the current out of the left reservoir
becomes

I i5
2e

h (
n
E
0

`

TR,L~E1n\v,E!@ f mL
~E! f mR

~E!#dE. ~2!

At zero temperature and with a small applied voltage,
eV!EF , ~2! gives the conductance

G5
2e2

h (
n

TR,L~EF1n\v,EF!, ~3!

whereEF is the Fermi energy. We have assumedmL.mR ,
so that the current goes from left to right. Since the conduc-
tance is proportional to the transmission probabilities~by a
factor 2e2/h), we shall present our results in terms of these
rather than the conductance.

There exist several numerical schemes to solve the Schro¨-
dinger equation for the case of a static potential. One such
numerical method is the recursive Green’s function
technique.13–15 It was originally designed to solve tight-
binding Hamiltonians in a channel geometry, but has later
been extended to continuous models using a hybrid
Hamiltonian.6,7 In this description, the transverse direction is
expanded in a local set of transverse ‘‘eigenfunctions,’’
while the longitudinal, unconfined direction is discretized in
a straightforward manner. The advantage of this formulation
is that it combines numerical stability~from the Green’s
function technique! with reasonable computation time~due
to use of an optimal size function space for transverse
modes!. This hybrid technique has been used to study as-
pects of the quantum point contact and the quite complex
problem of antidots in a magnetic field. Since the hybrid
model is well described in Refs. 6 and 7, we shall only out-
line how to formulate the Schro¨dinger equation in such a
way that the recursive Green’s function method is applicable.
We start by writing down the Schro¨dinger equation in the
effective mass approximation:

ı\] tC~ t !5Ĥ~ t !C~ t !5F 1

2m*
@pW 1eAW ~ t !#21VGC~ t !.

~4!

Here,V is any static potential. We assume the time depen-
dent field to be harmonic,AW (t)5AW cos(vt), we neglect the
term „eAW (t)/2m* …2, and we define

Ĥ0[
pW 2

2m*
1V ~5!

and

Â[
e

2m*
~pW •AW 1AW •pW !. ~6!

Going to the Fourier~energy! representation, we find that the
Schrödinger equation reads

~E2Ĥ0!CE5Â~CE1\v1CE2\v!, ~7!

or in matrix form,

ŜCW 50, ~8!

where

Ŝ[S • • • • •

• E1\v2Ĥ0 2Â 0 •

• 2Â E2Ĥ0 2Â •

• 0 2Â E2\v2Ĥ0 •

• • • • •

D
~9!

and

CW [S •

CE1\v

CE

CE2\v

•

D . ~10!

By representingĤ0 and Â in the hybrid basis, we are in a
position to start calculations. Note that a static magnetic field
could be included by redefiningĤ0 and Â. The retarded
Green’s function,Ĝ[(Ŝ1ı0)21, is now of the form

Ĝ5S • • • • •

• ĜE1\v,E1\v ĜE1\v,E ĜE1\v,E2\v •

• ĜE,E1\v ĜE,E ĜE,E2\v •

• ĜE2\v,E1\v ĜE2\v,E ĜE2\v,E2\v •

• • • • •

D .

~11!

The way to proceed is to note that outside the scattering
regionÂ50, so that the surface Green’s function,Ĝ, describ-
ing the leads is that of the field-free case:
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Ĝ5S • • • • •

• ĜE1\v
0 0 0 •

• 0 ĜE
0 0 •

• 0 0 ĜE2\v
0

•

• • • • •

D . ~12!

The total Green’s function is then obtained by successive
iteration, using the Dyson equation. The resulting wave func-
tion, CW , as a response to an incoming source,CW s , is found
via the relation

CW 52ĜŜCW s . ~13!

For details at this point, we refer to the Appendix of Ref. 16.
The incoming source,CW s , is defined on the interval
(2`,2L8), where the scattering region starts at2L8 and
ends atL8. In ~13! the resulting wave function,CW , is defined
as the remainder of the total wave function,CW 1CW s . From
knowledge of the resulting wave function, the scattering
probabilities can easily be found. We project out fromCW the
amplitude for a particular outgoing modeb ~ouside the scat-
tering region!, as a result of an incoming modea in the
source term. This amplitude,Cb;a , then gives the scattering
probability

Tb,a5
ra

rb
uCb;au25

vb

va
uCb;au2, ~14!

where ra/b is the density of states andva/b is the group
velocity of modea/b.

III. THE POINT CONTACT

A. A review

Since the main goal of this paper is to discuss and extend
the results of Ref. 2, it is necessary to recapitulate some of
the main findings of Grincwajget al.2 On this background,
the contribution of the present work will become clear. The
basic physics of conductance quantization in point contacts
was immediately recognized after its discovery.17,18 Quan-
tized motion in the transverse direction of the point contact
only allows for a discrete number of modes to propagate
through the constriction and each such mode contributes
2e2/h to the conductance. The number of such quanta is
determined by the number of transverse states in the middle
of the constriction with the eigenenergy below the Fermi
energy. One way to view this dynamically is to use the adia-
batic picture. An electron enters the point contact region in a
given transverse state,n. The change of geometry is then
assumed to be so slow that the electron does not scatter into
any other transverse state,m. In the longitudinal direction
the transverse eigenenergy,En(x), will then act as a poten-
tial barrier in an effectively one-dimensional scattering prob-
lem. In the work by Grincwajget al.2 a microwave field,
propagating normal to the 2DEG, was polarized in the trans-
verse direction. In their zero field description, the wave func-
tions were of the form

C~x,y!;Fn~y;x!expS ıE
0

x

kn~x8,EF!dx8D , ~15!

where

F2
\2

2m*
]2

]y2
1V~y;x!GFn~y;x!5En~x!Fn~y;x! ~16!

and

kn~x,EF!5AEF2En~x!

\2/2m*
. ~17!

Here, V(y;x) is the confinement potential which causes a
maximum forEn(x) at x50. They further assumed that any
state was either fully transmitted@if En(0),EF# or fully
reflected@En(0).EF#. The effect of the ac field was calcu-
lated to lowest order in a perturbation expansion, and the
transitionprobabilities were found to be proportional to

U E
2`

`

Am,nexpS ıE
0

x

Dk~x8 !dx8D dxU2, ~18!

where

Dk~x!5AEF6\v2Em~x!

\2/2m*
2AEF2En~x!

\2/2m*
~19!

and

Am,n52
e«

m*v
^mu p̂yun& ~20!

is the matrix element of the interaction between the trans-
verse statesFm andFn . Grincwajget al.

2 assumed a para-
bolic transverse confinement potential which gave
Am,n;dm61,n , but, in general, transitions may take place
between any transverse states with different parity. The
evaluation of the integral in Eq.~18! was performed in the
stationary phase approximation. In this approximation, it is
assumed that most of the contribution to the integral comes
from a region near the point, whereDk(x)50. Thus, the
point of stationary phase is given by
\v56@En61(x)2En(x)#5DE(x). Since Dk(x)50, this
also implies that the direction in which the particle moves is
not altered during the transition@unlesskn(x)50#.

Grincwajg et al.2 then varied the minimum width,
W0[W(x50), of the constriction, simulating different gate
voltages. The effect of varyingW0 is to change the energy of
the transverse wave functions, and at zero field the number,
@n0# ~where@ # is the integer part!, of transverse states below
the Fermi energy essentially determines the total transmis-
sion. With parabolic transverse confinement potentialn0 is
given by

n05
EF

DE~0!
1
1

2
5
1

2 S W0

W0*
11D , ~21!

whereW0* is the width when the first mode begins to propa-
gate ~i.e., n051). For ‘‘hard walls’’ „i.e.,
Fn@y56W(x)/2#50…, we have
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n05
kFW0

p
. ~22!

It is also convenient to express the photon energy,\v, in
terms of the Fermi energy. We, therefore, define

V[
\v

EF
. ~23!

Since transitions from a transmitted state to a reflected state
cause reduced transmission~and vice versa!, the net result
found in Ref. 2 was an oscillatory behavior of thepho-
totransmission. We define this quantity as the difference be-
tween transmission probabilities with and without field. Fig-
ure 1 is a schematic drawing of the typical behavior for the
phototransmission near threshold for moden, as found by
Grincwajget al.2 In this situation, an electron in moden can
either emit a photon and enter moden21 or absorb\v and
enter moden11. The figure is divided into four regions
~labeled 1, 2, 3, and 4!, and in the following we shall com-
ment on them successively. In region 1,
En21(0).EF2\v, and no transition will contribute to the
phototransmission. In region 2,En21(0),EF2\v and now
the emission to moden21 gives a positive phototransmis-
sion. Since Grincwajget al.2 assumed that all zero field
transmission probabilities were either zero or one, the pho-
totransmission will make a jump atEn21(0)5EF2\v. At
En(0)5EF (n05n), moden becomes transparent and the
emission process will not change the phototransmission any
more. On the other hand, whenEn(0),EF and
En11(0).EF1\v ~region 3!, absorption of\v to mode
n11 gives a negative phototransmission. AtEn(0)5EF
(n05n), they therefore found a jump from positive to nega-
tive phototransmission. As W0 increases further,
En11(0),EF1\v ~region 4 in Fig. 1! and the absorption
process no longer changes the total transmission and the pho-
totransmission goes to zero again. AsW0 increases, the en-
ergy difference,DE(x) @as well asEn(x)#, between the
transverse levels decreases, and whenDE(0),\v, there are
no more stationary points. Grincwajget al.2 found that the
effect of the field should, therefore, vanish at this point. This
means that there is a cutoff value for the oscillations at

n05
EF

\v
1
1

2
5

1

V
1
1

2
~24!

for parabolic confinement. This line of argument is more
complicated for hard wall confinement, since transitions are
not restricted to the nearest modes (n61). If we consider the
value for n0 where transitions to the nearest modes should
vanish, then this is given by

n05
1

V
~11A11V!. ~25!

Note that cutoff will occur only if an increase of the gate
voltage leads to a decrease inDE(0).

B. Exact numerical results

1. Adiabatic regime

So far, we have only reviewed some of the main results of
Ref. 2 and we shall now turn to the exact calculations. In our
numerical calculations, we have considered two different
shapes,

W1~x!

W`
5H W0

~W`2W0!cos
4~px/2L !1W0

, uxu<L

1, uxu.L,
~26!

W2~x!

W`
5H 12S 12

W0

W`
D cos2Fp2 S xL D 2G , uxu<L

1, uxu.L.

~27!

For parabolic confinement potentials, these are defined by
the requirement thaty56Wi(x) are equipotential lines, and
at n051, we have chosenW0 /W`51/23. Theparabolic
confinement potentials are, therefore, given as

Vi~y;x!5EF

y2

Wi~x!2
, ~28!

while thehard wall confinement potentials are given as

Vi~y;x!5H 0, uyu,Wi~x!/2

`, uyu>Wi~x!/2.
~29!

Our choice of confinement potentials has the following two
benefits. First, all overlap integrals needed to build up our
Hamiltonian in the hybrid representation can be calculated
analytically. Second, these two choices represent two ex-
treme cases, one with ‘‘soft’’ confinement and one with
‘‘hard’’ confinement. This should reveal features dependent
on the specific choice of confinement potential. In this con-
text, the difference between equidistant and nonequidistant
energy levels is most important. In order to simulate differ-
ent gate voltages, we open the point contacts by increasing
the values ofW` andW0 by the same amount. As far as the
authors know, it is an open question what really happens to
the point contact potential when the gate voltage is altered.
The shapes are indicated in the inset of Fig. 2, which shows
the zero field transmissions for parabolic confinement. The
shape defined by Eq.~27! gives the most pronounced quan-
tization of transmission. In our calculations, we use a

FIG. 1. A typical behavior of the phototransmission near thresh-
old for moden as found by Grincwajget al. in Ref. 2. Phototrans-
mission is defined as the difference in transmission with a field and
without a field.n0 is the~continuous! number of propagating states
at EF in the narrowest part of the constriction. Both these two
quantities have dimensionless units. The figure is divided into four
regions, which are explained in the text.
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smoothly varying field in order to avoid any interference due
to abrupt switching. The strength of the field is varied as
E;12sin8(px/2L8) ~whenuxu,L8), and in the adiabatic re-
gime we useL852L. One interesting feature of the present
results is the values of the electric field. With the Fermi wave
number kF51.33108 m21, W0 in the range of 0 to 0.3
mm, and an effective massm*50.0673me , we obtained
our results with fieldsE.150 V/cm. This is in good agree-
ment with what was used in Ref. 2, although one has to keep
in mind that a different shape@W(x)5W0exp(x

2/2L2)# of the
constriction was used. Thus, it should be possible to observe
phototransmission with fields of the order 100 V/cm. Figure
3~a! shows the phototransmission for the parabolic confine-
ment potential andV50.35 ~i.e., \v50.35EF), while Fig.
3~b! shows the phototransmission for hard walls and
V50.5. The first case was considered in Ref. 2. The corre-
sponding cutoff values forn0 are indicated by vertical lines
in the figures.

In Ref. 2 it was assumed that the zero field transmission
probabilities were either zero or one. This resulted in steplike
oscillations. As can be seen from the figures, the finite tran-
sition region between plateaus modifies this picture. The
steplike behavior of the oscillations has become more
rounded, but it is recognizable in Fig. 3 for the shape given
by ~27! and with n0,3. If we increase the length of the
constriction, the steplike behavior becomes clearer. In Fig. 4
we show the results of the same calculation as in Fig. 3~a!
~shape 2!, but with a constriction twice as long~i.e., a total
length of 0.6mm!. It is clear that the point contact that shows
better quantization of zero field transmission also gives the
most pronounced steplike behavior of the phototransmission.
Notice that there is no steplike structure forn0,1, in con-
trast to the prediction in Ref. 18. This confirms that the main
contribution to transitions is from points of stationary phase
and not from classical turning points.19 Perhaps the most
prominent feature of the oscillations are the sharp peaks fol-
lowed by sharp dips near threshold. Although the steplike
character is modified, we see that the amplitude of the oscil-
lations increases until cutoff is reached. This increase agrees

with the analytic result.2 The cutoff is not a sharp feature, but
the amplitudes of the oscillations are damped after the cutoff
value has been reached. For hard wall confinement the cutoff
given by ~25! is not so prominent as for the parabolic case,
but this should be expected from our remarks before Eq.
~25!. In the following discussion we therefore consider para-
bolic confinement, which seems to be the most transparent
situation.

Let us first consider the absorption process. The transition
amplitude from one mode to another is proportional to the
overlap integral in Eq.~18! ~in the perturbative regime!,
which includes an evaluation of the integral

E
2`

`

expS ıE
0

x

Dk~x8!dx8D dx, ~30!

with

Dk~x!5AEF1\v2En11~x!

\2/2m*
2AEF2En~x!

\2/2m*
. ~31!

FIG. 2. Zero field transmissions for two different shapes of the
point contact potential. The parabolic confinement potentials are
indicated by the insets. Shape 1 corresponds to equipotential lines
given by Eq.~26! and shape 2 by Eq.~27!.

FIG. 3. Phototransmissions as a function ofn0 . The solid lines
display transmissions for shape 2 and the dashed lines for shape 1.
The vertical lines indicates the points beyond which the phototrans-
missions should be zero, according to adiabatic theory.~a! Pho-
totransmission for\v50.353EF and parabolic confinement poten-
tial. The strength of the ac field isE5150 V/cm. ~b!
Phototransmission for\v50.53EF and hard wall confinement po-
tential. The strength of the ac field isE5200 V/cm.
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At stationary points,Dk(x)50, and we get the main contri-
bution to the overlap integral near this point. When
DE(x50),\v, there are no stationary points, but near
thresholdEF.En(0) and we can approximate~31! as

Dk~x!.Dk05A\vD2E~0!

\2/2m*
. ~32!

In order to have a reasonable transition amplitude, we im-
pose the condition thatDk0l,p, where l is the typical
length of the inner region in the point contact. Substituting
DE(0)(n021/2)5EF and \v5VEF , this results in the
condition that

n0,
1

V2S p

kFl
D 2 1

1

2
[

1

V8
1
1

2
. ~33!

The above argument was for an absorption process, and now
@in contrast to the situation whenDE(0).\v# the effect of
absorption is to enhance transmission. This follows since
moden11 is more transparent than moden @EF.En(0),
while EF1\v.En11(0)#. From ~33!, we see that damping
is more efficient for long constrictions. For an emission pro-
cess, the situation is slightly different. Following the same
argumentation as above, we find thatDk(x) becomes imagi-
nary @sinceEF2\v,En21(0) whenEF.En(0)#, and that
the overlap integral~30! is ;@12exp(2kl)#/k, where
k5Dk0 . In this case, transmission will decrease, but here
the effect is larger for long constrictions. We can notice these
two effects by comparing Figs. 3~a! and 4. While the relative
height of the peaks decreases whenL→2L, the amplitude of
the dips increases. We would like to stress that the above
results are only approximate and do not take into account
any virtual processes which gives contributions to
Tb,a(EF ,EF) in the same order (;E2). From a perturbation
expansion of~13!, we find

uCEF ,EF
~x!u25uCEF

0 ~x!u2

12Re@CEF
0 ~x!* ^xuĜ0~EF!Â

3Ĝ0~EF6\v!ÂĜ0~EF!ŜuCs&#. ~34!

Clearly, the correction term in~34! is rather difficult to
evaluate, especially since it is phase sensitive. On the other
hand, we know that this correction must compensate any
transition toEF6\v, and the correction amplitude is essen-
tially given by overlap integrals such as~30!.

It is interesting that the cutoff leads to a damping of the
oscillations so that they eventually die out. In an experiment,
one would therefore obtain some information about what
happens with the self-consistent potential near the point con-
tact. If altering the gate voltage merely means to change a
local offset potential near the point contact, no damping of
the oscillations will be seen. It should, therefore, be possible
to see to what extent the gate voltage influences the width of
the constriction.

2. Nonadiabatic regime

As mentioned in the previous subsection, the analytic
work in Ref. 2 was based on the adiabatic approximation.
The adiabatic approximation assumes that the variation of
geometry is so slow that it does not cause intermode scatter-
ing. That is, if an electron enters the scattering region in a
given mode, it will continue within this mode throughout the
scattering region~at zero ac field!. The scattering problem
then becomes one-dimensional with a scattering potential
given by thex-dependent eigenenergy,En(x), of that par-
ticular mode. In Ref. 6, the effect of strong nonadiabaticity
on transport through a quantum point contact in zero ac field
was studied. It was found that the effect of mode mixing was
to enhance the quantization of the conductance. This was
found to be caused by the existence of a longitudinal persis-
tence length,l;W0 , the origin of which is the uncertainty
relation,DxDk;1. The net effect was that the exact wave
function experiences a smoother constriction than the one
defined by geometry alone.

One would expect that some nonadiabatic effects will also
show up in the phototransmission of a point contact. Since
the main contribution to the overlap integral~which deter-
mines the transition probability! comes from the region
around the stationary point, the transition probability is
strongly dependent on how long the region of~approxi-
mately! stationary phase is. In essence, this means that the
amplitudes of oscillations for the phototransmission becomes
smaller the more rapidly the geometry varies. Therefore, one
can expect that calculations of phototransmission using the
adiabatic approximation would give a smaller amplitude of
oscillations than the exact calculations. Figure 5 shows an
example. The shape of the point contact is indicated in the
inset of the figure. Here, we have usedV50.35 and hard
wall boundaries. The calculations seem to confirm our pic-
ture. The strength of the ac field is 100 V/cm. For parabolic
confinement, this effect is harder to see. This is mainly due
to tunneling through the constriction walls, which washes out
the quantization of transmission. However, enhancement of
the exact calculated phototransmission with respect to the
adiabatic approximation can be seen already near the adia-

FIG. 4. Phototransmission for parabolic confinement potential.
The calculations are performed under the same conditions as in Fig.
2~a! ~shape 2!, but with a length which is twice as long~i.e.,
L→2L).
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batic regime as in the previous subsection. Figure 6 shows a
comparison between exact and adiabatic calculations under
the same conditions as for Fig. 3~a! with shape 2.

C. Comments on two experiments

In two experiments by Wysset al.20 and Janssenet al.,21

the effect of far-infrared radiation on transport through quan-
tum point contacts was measured. In the experiment by Jan-
ssenet al.,21 unpolarized radiation was used and this also
seems to be the case for the experiment by Wysset al.,20 but
is not explicitly stated. Thus, our calculations cannot com-
pletely describe these experiments. Wysset al.were inspired
by the work of Feng and Hu19 and were looking for steplike
oscillations of the photoconductance. Instead, they found os-
cillations without any steplike character. This was inter-
preted as a result of bolometric effects~heating of the 2DEG!
rather than photon-assisted transport. Janssenet al.21 dis-
cussed this point and the conclusion was that heating effects
are too small and cannot be responsible for the observed
photoconductance. From our Figs. 2 and 3, one can see that
the quantization of transmission must be very good in order
to observe the steplike behavior of photoconductance. By
looking at the zero field conductance curves from these two
experiments, it is therefore no suprise that a steplike behav-

ior is not present. It is interesting to note that in Ref. 21
photon-induced voltage was observed at zero source/drain
current. This indicates that the point contact configuration
used was not completely symmetric. This asymmetry could
be due to impurity potentials in the vicinity of the constric-
tion region. To conclude this section, we summarize the ex-
perimental condition necessary to observe the effects de-
scribed in this paper. The point contact potential should be
symmetric. This may be a limitation if one wishes to study
the steplike oscillations, which requires a rather long contact
region without any severe impurity potential within its
neighborhood. In the adiabatic regime, we used a typical
length of 150 nm in the inner region of the point contact. The
electric field should be of the order 100 V/cm within the
2DEG, and we remind the reader that our calculations were
done with a linear polarized field in the transverse direction.
For further details of experimental realization, we refer to
Refs. 20 and 21.
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