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Photoconductance through quantum point contacts: Exact numerical results
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By utilizing the hybrid recursive Green’s function method, we study the exact numerical photoconductance
of quantum point contacts and compare it with features obtained in the analytic adiabatic regime. We find that
the main features of the photoconductance oscillations are present, but with quantum corrections. These
corrections are mainly due to deviations from the semiclassical description of wave functions. Nonadiabatic
corrections enhance the photoconductance oscillatj@®163-182806)01524-X]

[. INTRODUCTION the point contact and compared with the analytic results from
Ref. 2. The extent to which the results in Ref. 2 can be found
Recently, theoretical interest in the problem of coherenin the exact numerical calculations and their deviations will
scattering of electrons in microconstrictions of the two-be the focus of our discussion.
dimensional electron ga@DEG), due to the presence of an
external ac electromagnetic field, has revealed several inter- Il. THEORY
esting phenomena?® These results were all based on two
assumptionsi(i) the strict separation of longitudinal and  The physical setup that we have in mind is a mesoscopic
(quantized transverse electron motion, afit) the semiclas- Mmultiterminal device with ideal leads connecting the scatter-
sical nature of the longitudinal motion within each transversdng area to reservoirs. The main assumptions in the following
mode. Both of these assumptions are justified in an adiabatre that(i) we have a stationary flow ar{d) we can neglect
cally varying constrictiorf, which is believed to be close to Spontaneous emission. That is, electrons enter the scattering
the experimental situation. region, are scattered, and do not experience any spontaneous
Quantum corrections to these assumptions must includemission before they reach the reservdgestimates can be
the following. First, mixing of longitudinal and transverse found in Ref. 3. We adopt the common assumption of ne-
motion, which can be treated as elastic intermode scatteringlecting the electron-electron interaction. Thus, we have a
and allows for momentum transfer between the longitudinaPne particle picture. From the above assumptions, two im-
and the transverse direction. Second, quantum corrections g9rtant properties of the resulting scattering probabilities,
the semiclassical wave function describing longitudinal mo-T g« follow. First, 2 3T z,=1 ensures current conservation.
tion. Both these corrections increase when the geometry ofhat is, any incoming statey, is scattered out of the scat-
the microconstriction becomes more abrupt and can destrdring region with a probability of unitynote thatg in this
phenomena arising in the framework of adiabatic ideologydescription includes all possible outgoing stateSecond,
However, the experimental and numerical results show that ,Tg,=1 ensures that no outgoing state is occupied by
“adiabatic” phenomena, such as conductance quantizatiomore than one particle. That isye do not have to worry
in the point contact, are robust against these corrections. labout the Pauli exclusion principlé=or a further discussion
fact, conductance quantization may even be enhanced Hf this point, we refer to Refs. 8—10 and references therein.
nonadiabatic corrections. As was shown in Ref. 2, the phoUsually, it is more convenient to split the general index
toconductance of microconstrictions has a much richer struca/ 8 into one lead index,/j, and one mode index/n at the
ture and could, therefore, be more sensitive to quantum cogiven energy,E. We may then define the total scattering
rections to the adiabatic approximation. The influence offrom leadj to leadi asT; ;(E,E")=Zn nT(i m),m(E.E").
these corrections is what we address in this paper. We shallVe shall further assume that the electromagnetic field is es-
demonstrate that the corrections can be significant. sentially monochromatici.e., Aw<Eg/%,w). The general
Analytic solutions to coherent scattering are difficult to formula to calculate the current out of reservoitan there-
achieve, even in the relatively simple case of the quanturfiore be written in the spirit of Landauer and tBker'! as
point contact The introduction of a time dependent external (with spin degeneragy
field increases the complexity of the problem. In the case of
a static scattering potential, it has been necessary to comple- 2e (=
ment analytic results with numerical solutions. In the present li:Ff [Ni(E)fMi(E)— E 2 Ti(E
paper, we describe how to extend an already established nu- 0 ren
merical metho’ to include the effect of a time dependent
electromagnetic field. Subsequently, the method is applied to + nﬁw,E)fMj(E)}dE, (0]
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wheref ,(E) is the Fermi distribution function describing a Here,V is any static potential. We assume the time depen-

reservoir with chemical potential andN;(E) is the number  dent field to be harmonio§(t)=,& cos(t), we neglect the
of propagating states in lead at energyE. Note that term (e,&(t)IZm* )2, and we define
T, i(E+n%w,E) gives the backscattering in the incident lead ’

i when summed oven. The summation oven is, in prin-

ciple, over all possible energids+nfw. In this paper, we A= p? ny ()
are in the perturbative regime and consider aniy—1, 0, 1. o 2m*

In the following discussion, we will consider a two terminal

geometry with the reflection symmetry in the longitudinal and

direction x— —x, wherex is the longitudinal coordinaje

This implies that the current from electrons with enefgy R e . . . .

incoming from the left ) is exactly canceled by the same A= s (P-A+A-p). (6)

number of electrons incoming from the righR) at energy

E, i.e., Tr (E+nfiw,E)=T, r(E+nfiw,E) [in this nota-  &4ing (g the Fourietenergy representation, we find that the
tion; (i,j)—(L,R)]. Without this symmetry, the current will Schralinger equation reads

be induced by the ac field, even in the absence of any applied
dc voltage**? By noting that N_(E)=3,[T..(E

+nhw,E)+Tg (E+nhw,E)] and employing the symme- (E-Ho)Ye=A(Ye+iotVYE-10) )
try above, we find that the current out of the left reservoir )
becomes or in matrix form,
2e, (= S¥=0, ®)
|i:F§ fo Tru(E+nhw,E)[f, (E)f, (E)IAE. (2)
where
At zero temperature and with a small applied voltage,
eV<Eg, (2) gives the conductance
E+ho—H, —A 0
2¢? . . N .
G= 12 Tru(Ep+nfio,Ep), &) =| - ~A E-Ho -A
n ~ ~
0 —A E-fhw—Hj,

whereEg is the Fermi energy. We have assumed> ug, . . . . .
so that the current goes from left to right. Since the conduc- (9)
tance is proportional to the transmission probabilifleg a
factor 262/h), we shall present our results in terms of theseang
rather than the conductance.
There exist several numerical schemes to solve the Schro
dinger equation for the case of a static potential. One such
numerical method is the recursive Green’s function Vetiio
techniquet®*~*® It was originally designed to solve tight- N
binding Hamiltonians in a channel geometry, but has later
been extended to continuous models using a hybrid
Hamiltonian®’ In this description, the transverse direction is
expanded in a local set of transverse “eigenfunctions,”
while the longitudinal, unconfined direction is discretized in By representing:lo and A in the hybrid basis, we are in a
a straightforward manner. The advantage of this formulatiorposition to start calculations. Note that a static magnetic field
is that it combines numerical stabilitifrom the Green's could be included by redeﬁning]o and A. The retarded

function technique with reasonable computation timdue  Green’s functionG=(5+10)"%, is now of the form
to use of an optimal size function space for transverse

modes. This hybrid technique has been used to study as-
pects of the quantum point contact and the quite complex R R R
problem of antidots in a magnetic field. Since the hybrid * GEttwE+hio OE+hioE OE+hoE-fio
model is well described in Refs. 6 and 7, we shall only out-

i
S
m

(10

line how to formulate the Schdinger equation in such a G=| - ) CeEtho AGE’E ) CeE-to

way that the recursive Green’s function method is applicable. * GE—fiwE+io OE-fioE GE-fivE-to

We start by writing down the Schdinger equation in the ) ) ) ) )
effective mass approximation: 11)

The way to proceed is to note that outside the scattering
regionA=0, so that the surface Green'’s functidh,describ-
(4) ing the leads is that of the field-free case:

oW (1) =H(t)W(t)= %[rﬂ e A2+ V[P (1).
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Fng 0 0 ‘I’(X,Y)Nfbn(y;x)ex;{|fokn(x’,EF)dx’), (15)

I'= o 12 o . (120 where
0 0o Ig.,, - B2 g2

- ﬁa—yﬁv(y;X) P (y;X)=En(X)Pp(y;x) (16)

The total Green’s function is then obtained by successivand

iteration, using the Dyson equation. The resulting wave func-

tion, ¥, as a response to an incoming sour&f’g,, is found Ky(X,Ep)= [EF—En(X) 17

via the relation m& =R h22m* -

no Here, V(y;x) is the confinement potential which causes a

¥=-GSY¥s. 13 maximum forE,(x) atx=0. They further assumed that any

. . . . state was either fully transmitteld E,(0)<Eg] or fully

For dgtaﬂs "_it this point, we rgfer o Fhe Appendix O,f Ref. 16'reflected[En(O)> Er]. The effect of the ac field was calcu-
The ‘incoming source,Ws, is defined on the interval |ateq to lowest order in a perturbation expansion, and the
(=, L"), where the scattering region starts-at" and  transition probabilities were found to be proportional to
ends aL’. In (13) the resulting wave functionV, is defined

. - = 2
as the remainder of the total wave functioh+¥. From fw fx ,
knowledge of the resulting wave function, the scattering ‘ xAm*”eXF(I oAk(X/)dX dxi . (18
probabilities can easily be found. We project out frdfrthe h
amplitude for a particular outgoing moge(ouside the scat- where
tering region, as a result of an incoming mode in the -
source term. This amplitudd/ ;.. , then gives the scattering AK(X) = \/EF—ﬁw_Em(X) \/EF_ En(x) (19)
probability h2[2m* h22m*
v and
L e (14
“opg 7 Vo U es R
Am,n: - m* o <m|py|n> (20)
where p,,,; is the density of states angl,; is the group
velocity of modea/S. is the matrix element of the interaction between the trans-
verse state®,, and®,,. Grincwajget al? assumed a para-
lIl. THE POINT CONTACT bolic transverse .confinement p(.)f[ential which gave
_ Amn~dm=1n, DUt in general, transitions may take place
A. A review between any transverse states with different parity. The

Since the main goal of this paper is to discuss and extengvaluation of the integral in Eq18) was performed in the
the results of Ref. 2, it is necessary to recapitulate some c¥tationary phase approximation. In this approximation, it is
the main findings of Grincwajgt al? On this background, assumed that most of the qontrlbutlon to the integral comes
the contribution of the present work will become clear. Theffom a region near the point, wheeek(x)=0. Thus, the
basic physics of conductance quantization in point contactB0INt of  stationary phase IS given by
was immediately recognized after its discovéfy® Quan- fiw=E[En.1(X) —Eq(x)]=AE(x). Since Ak(x)=0, this
tized motion in the transverse direction of the point contaclso implies that the direction in which the particle moves is
only allows for a discrete number of modes to propagatdot altered during the transitidunlessk,(x) = 0].
through the constriction and each such mode contributes Gfincwajg etal? then varied the minimum width,
2€?/h to the conductance. The number of such quanta i¥Vo=W(x=0), of the constriction, simulating different gate
determined by the number of transverse states in the middioltages. The effect of varying/ is to change the energy of
of the constriction with the eigenenergy below the Fermithe transverse wave functions, and at zero field the number,
energy. One way to view this dynamically is to use the adial o] (where[] is the integer payt of transverse states below
batic picture. An electron enters the point contact region in ghe Fermi energy essentially determines the total transmis-
given transverse state, The change of geometry is then Sion. With parabolic transverse confinement potentiais
assumed to be so slow that the electron does not scatter infdven by
any other transverse state. In the longitudinal direction
the transverse eigenenerdy,(x), will then act as a poten- .- Er N 1 1 %+1
tial barrier in an effectively one-dimensional scattering prob- OTAE(0) 2 2 WG
lem. In the work by Grincwajget al? a microwave field,
propagating normal to the 2DEG, was polarized in the transwhereW is the width when the first mode begins to propa-
verse direction. In their zero field description, the wave func-gate (i.e., ng=1). For “hard walls” (i.e,
tions were of the form d [y=*=W(x)/2]=0), we have

: (21)
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Er N 1 1 N
"re 270
for parabolic confinement. This line of argument is more
complicated for hard wall confinement, since transitions are
not restricted to the nearest modes(1). If we consider the
value forny where transitions to the nearest modes should
vanish, then this is given by

1
> (24)

Photo transmission

n (24 1

nozﬁ(l—i—\/l—i—ﬂ). (25
FIG. 1. A typical behavior of the phototransmission near thresh- . . )

old for moden as found by Grincwajgt al. in Ref. 2. Phototrans- Note that cutoff will occur oply if an increase of the gate

mission is defined as the difference in transmission with a field anioltage leads to a decreaseArt(0).

without a field.ng is the (continuou$ number of propagating states

at Ex in the narrowest part of the constriction. Both these two B. Exact numerical results

guantities have dimensionless units. The figure is divided into four 1. Adiabati .

regions, which are explained in the text. - Adiabalic regime

So far, we have only reviewed some of the main results of

keW, Ref. 2 and we shall now turn to the exact calculations. In our
No= st (22 numerical calculations, we have considered two different
shapes,
It is also convenient to express the photon energy, in W
: " 0
terms of the Fermi energy. We, therefore, define W, () . Ix|=L
= (W.,— Wy)cod(mx/2L) + W,
ho * 1, |x|>L,

Since transitions from a transmitted state to a reflected state Wa(x) 1— ( 1_%) co2 Z(iﬂ Ix|<L

L. . 2 ' =

cause reduced transmissi¢and vice versp the net result = W, 2\L (27)
found in Ref. 2 was an oscillatory behavior of tipdo- W, 1, |x|>L.

totransmissionWe define this quantity as the difference be-

tween transmission probabilities with and without field. Fig- For parabolic confinement potentials, these are defined by
ure 1 is a schematic drawing of the typical behavior for thethe requirement that==W;(x) are equipotential lines, and
phototransmission near threshold for maueas found by at np=1, we have choseW,/W.,=1/23. The parabolic
Grincwajget al? In this situation, an electron in modecan ~ confinement potentials are, therefore, given as

either emit a photon and enter mode 1 or absorbt w and 2

enter moden+ 1. The figure is divided into four regions Vi(y:x)=Eg y , (28)
(labeled 1, 2, 3, and)4and in the following we shall com- n Wi(x)°’

ment on them  successively. In region 1, .. : ; :
E._,(0)>Eg—%w, and no transition will contribute to the while the hard wall confinement potentials are given as
phototransmission. In region &,,_;(0)<Eg—#% o and now 0, |y|<Wi(x)/2

the emission to mode—1 gives a positive phototransmis- Vi(y;xX)= (29

sion. Since Grincwajget al? assumed that all zero field = ly[EWio/2.

transmission probabilities were either zero or one, the phoour choice of confinement potentials has the following two
totransmission will make a jump &, 1(0)=Er—%w. At  benefits. First, all overlap integrals needed to build up our
E.(0)=Eg (ng=n), moden becomes transparent and the Hamiltonian in the hybrid representation can be calculated
emission process will not change the phototransmission angnalytically. Second, these two choices represent two ex-
more. On the other hand, wherE,(0)<Er and treme cases, one with “soft” confinement and one with
En+1(0)>Er+hw (region 3, absorption ofiw to mode  “hard” confinement. This should reveal features dependent
n+1 gives a negative phototransmission. BL(0)=Eg on the specific choice of confinement potential. In this con-
(ng=n), they therefore found a jump from positive to nega-text, the difference between equidistant and nonequidistant
tive phototransmission. As W, increases further, energy levels is most important. In order to simulate differ-
E,.1(0)<Eg+7%w (region 4 in Fig. ) and the absorption ent gate voltages, we open the point contacts by increasing
process no longer changes the total transmission and the phitte values ofV,, andW, by the same amount. As far as the
totransmission goes to zero again. Y increases, the en- authors know, it is an open question what really happens to
ergy difference,AE(x) [as well asE,(x)], between the the point contact potential when the gate voltage is altered.
transverse levels decreases, and wh&f0)<#% w, there are  The shapes are indicated in the inset of Fig. 2, which shows
no more stationary points. Grincwagg al? found that the the zero field transmissions for parabolic confinement. The
effect of the field should, therefore, vanish at this point. Thisshape defined by Eq27) gives the most pronounced quan-
means that there is a cutoff value for the oscillations at  tization of transmission. In our calculations, we use a
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FIG. 2. Zero field transmissions for two different shapes of the g %% 1
point contact potential. The parabolic confinement potentials are % oz |
indicated by the insets. Shape 1 corresponds to equipotential lines g |
given by Eq.(26) and shape 2 by Edq27). g oal
-
smoothly varying field in order to avoid any interference due 2 ol
f . . . . <
to abrupt switching. The strength of the field is varied as =
E~1—sinf(mx/2L") (when|x|<L'), and in the adiabatic re- 04}
gime we use.’=2L. One interesting feature of the present
results is the values of the electric field. With the Fermi wave 02|
numberk:=1.3x10° m~!, W, in the range of 0 to 0.3 . . . . . ‘
um, and an effective massi* =0.067xm,, we obtained 03 ; » s " 5 p 7
our results with field£€=150 V/cm. This is in good agree- o

ment with what was used in Ref. 2, although one has to keep

in m"“?' t_hat a different Shaqe/\_/(x) =W0expé(2/2L2)] of the FIG. 3. Phototransmissions as a functionmngf The solid lines
constriction was used. Thus, it should be possible to observggpiay transmissions for shape 2 and the dashed lines for shape 1.
phototransmission with fields of the order 100 V/cm. Figuréthe vertical lines indicates the points beyond which the phototrans-
3(a) shows the phototransmission for the parabolic confinemjssions should be zero, according to adiabatic the@yPho-
ment potential and)=0.35 (i.e., Aw=0.3%¢), while Fig.  totransmission fofi o= 0.35x E¢ and parabolic confinement poten-
3(b) shows the phototransmission for hard walls andtial. The strength of the ac field is€=150 Vicm. (b)

0 =0.5. The first case was considered in Ref. 2. The correPhototransmission fotw=0.5x Er and hard wall confinement po-
sponding cutoff values fon, are indicated by vertical lines tential. The strength of the ac field &=200 V/cm.

in the figures.

In Ref. 2 it was assumed that the zero field transmissionwith the analytic resulf. The cutoff is not a sharp feature, but
probabilities were either zero or one. This resulted in steplikehe amplitudes of the oscillations are damped after the cutoff
oscillations. As can be seen from the figures, the finite tranvalue has been reached. For hard wall confinement the cutoff
sition region between plateaus modifies this picture. Theyiven by (25) is not so prominent as for the parabolic case,
steplike behavior of the oscillations has become morebut this should be expected from our remarks before Eg.
rounded, but it is recognizable in Fig. 3 for the shape given25). In the following discussion we therefore consider para-
by (27) and with ny<<3. If we increase the length of the bolic confinement, which seems to be the most transparent
constriction, the steplike behavior becomes clearer. In Fig. 4ituation.
we show the results of the same calculation as in Fig) 3 Let us first consider the absorption process. The transition
(shape 2 but with a constriction twice as long.e., a total amplitude from one mode to another is proportional to the
length of 0.6,m). It is clear that the point contact that shows overlap integral in Eq.(18) (in the perturbative regime
better quantization of zero field transmission also gives thevhich includes an evaluation of the integral
most pronounced steplike behavior of the phototransmission.

Notice that there is no steplike structure foy<<1, in con- w X
trast to the prediction in Ref. 18. This confirms that the main f exp( lf Ak(X')dX')dX, (30)
contribution to transitions is from points of stationary phase o 0

and not from classical turning point3.Perhaps the most .

. . with
prominent feature of the oscillations are the sharp peaks fol-
lowed by sharp dips near threshold. Although the steplike
character is modified, we see that the amplitude of the oscil- AK(X)= \/Ep+hw— Ensa(X) \/E,:— En(X) (31)

lations increases until cutoff is reached. This increase agrees h2[2m* h2[2m*
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[We, e 001*=[WE (x)|?

0.3
ol +2Re[\1rgF(x)*<x|G°(EF)A
=] ~ A A A~
g ot . X GUEr+hw)AGYER)S|V)]. (34
g
% 0 UHU' /\ | Clearly, the correction term irf34) is rather difficult to
B o1l r V/ evaluate, especially since it is phase sensitive. On the other
% hand, we know that this correction must compensate any
= 02y 1 transition toEg + 4w, and the correction amplitude is essen-

tially given by overlap integrals such #30).

o3y It is interesting that the cutoff leads to a damping of the
04| 1 oscillations so that they eventually die out. In an experiment,
one would therefore obtain some information about what
05 p 5 3 " 5 6 7 happens with the self-consistent potential near the point con-
o tact. If altering the gate voltage merely means to change a

local offset potential near the point contact, no damping of
FIG. 4. Phototransmission for parabolic confinement potentialthe oscillations will be seen. It should, therefore, be possible
The calculations are performed under the same conditions as in Fi¢Q See to what extent the gate voltage influences the width of
2(a) (shape 2 but with a length which is twice as lon§.e.,  the constriction.
L—2L).
2. Nonadiabatic regime
At stationary pointsAk(x) =0, and we get the main contri-  As mentioned in the previous subsection, the analytic
bution to the overlap integral near this point. Whenwork in Ref. 2 was based on the adiabatic approximation.
AE(x=0)<fw, there are no stationary points, but nearThe adiabatic approximation assumes that the variation of

thresholdEg=E,(0) and we can approximat@l) as geometry is so slow that it does not cause intermode scatter-
ing. That is, if an electron enters the scattering region in a
hwh—E(0) given r_node, it_wiII continue within this mode throughout the
Ak(x)=Akq= \/W, (32 scattering regior(at zero ac fieldd The scattering problem

then becomes one-dimensional with a scattering potential
given by thex-dependent eigenenergk,,(x), of that par-
In order to have a reasonable transition amplitude, we imticular mode. In Ref. 6, the effect of strong nonadiabaticity
pose the condition thalkel <, wherel is the typical  on transport through a quantum point contact in zero ac field
length of the inner region in the point contact. Substitutingwas studied. It was found that the effect of mode mixing was
AE(0)(ng—1/2)=Ef and iw=QEg, this results in the o enhance the quantization of the conductance. This was
condition that found to be caused by the existence of a longitudinal persis-
tence length] ~W,, the origin of which is the uncertainty

1 1 1 1 relation, AXAk~1. The net effect was that the exact wave
N<——F—2t5=55715- (33)  function experiences a smoother constriction than the one
T 2 QO 2 .
0O—| — defined by geometry alone.
Kel One would expect that some nonadiabatic effects will also

show up in the phototransmission of a point contact. Since
The above argument was for an absorption process, and noWe main contribution to the overlap integravhich deter-
[in contrast to the situation whehE(0)>%w] the effect of mines the transition probabilitycomes from the region
absorption is to enhance transmission. This follows sincaround the stationary point, the transition probability is
moden+1 is more transparent than mode[Er=E,(0), strongly dependent on how long the region (@jpproxi-
while Er+Aw>E,,,(0)]. From(33), we see that damping mately stationary phase is. In essence, this means that the
is more efficient for long constrictions. For an emission pro-amplitudes of oscillations for the phototransmission becomes
cess, the situation is slightly different. Following the samesmaller the more rapidly the geometry varies. Therefore, one
argumentation as above, we find tlidt(x) becomes imagi- can expect that calculations of phototransmission using the
nary [sinceEr—Aw<E,_1(0) whenEg=E,(0)], and that adiabatic approximation would give a smaller amplitude of
the overlap integral(30) is ~[1—exp(—«l)])/x, where oscillations than the exact calculations. Figure 5 shows an
k=AKg. In this case, transmission will decrease, but hereexample. The shape of the point contact is indicated in the
the effect is larger for long constrictions. We can notice thesénset of the figure. Here, we have us@d=0.35 and hard
two effects by comparing Figs(& and 4. While the relative wall boundaries. The calculations seem to confirm our pic-
height of the peaks decreases when 2L, the amplitude of ture. The strength of the ac field is 100 V/cm. For parabolic
the dips increases. We would like to stress that the aboveonfinement, this effect is harder to see. This is mainly due
results are only approximate and do not take into accounto tunneling through the constriction walls, which washes out
any virtual processes which gives contributions tothe quantization of transmission. However, enhancement of
Tg,o(Eg,Ef) in the same order~ £2). From a perturbation the exact calculated phototransmission with respect to the
expansion of13), we find adiabatic approximation can be seen already near the adia-
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~ FIG. 5. Phototransmissions for a hard wall confinement poten-  FIG. 6. Phototransmissions for parabolic confinement potential
tial in the nonadiabatic regime. The solid line displays phototransin the adiabatic regime. The solid line displays phototransmission
mission for the exact calculations, while the dashed line indicatesor the exact calculations, while the dashed line indicates pho-
phototransmission using the adiabatic approximation. The shape @btransmission using the adiabatic approximatice, without elas-
the point contact is shape[Eq. (26)] and is indicated in the inset. tic intermode scattering

The strength of the ac field =100 V/cm.
ior is not present. It is interesting to note that in Ref. 21

batic regime as in the previous subsection. Figure 6 shows photon-induced voltage was observed at zero source/drain
comparison between exact and adiabatic calculations undeurrent. This indicates that the point contact configuration
the same conditions as for Fig(a with shape 2. used was not completely symmetric. This asymmetry could
be due to impurity potentials in the vicinity of the constric-
tion region. To conclude this section, we summarize the ex-
. »1  perimental condition necessary to observe the effects de-
In two experiments by Wyset al”™ and Jansseat al, scribed in this paper. The point contact potential should be
the eﬁgct of far-infrared radiation on transport through quansymmetric. This may be a limitation if one wishes to study
tum point contacts was measured. In the experiment by Jagge siepjike oscillations, which requires a rather long contact
ssenet al,“~ unpolarized radiation was used and 2t0h|s alsoregion without any severe impurity potential within its
seems to be the case for the experiment by V&ysd.,""but  qighhorhood. In the adiabatic regime, we used a typical
is not explicitly stated. Thus, our calculations cannot COM1ength of 150 nm in the inner region of the point contact. The
pletely describe these experiments. Wgsal. were inspired  gjactric field should be of the order 100 V/em within the
by the work of Feng and Hl and were looking for steplike 2DEG, and we remind the reader that our calculations were
oscillations of the photoconductance. Instead, they found 0gj5ne with a linear polarized field in the transverse direction.

cillations without any steplike character. This was inter-gq, fyrther details of experimental realization, we refer to
preted as a result of bolometric effe¢t®ating of the 2DEG  pats 20 and 21.

rather than photon-assisted transport. Janssteal?! dis-

cussed this point and the conclusion was that heating effects ACKNOWLEDGMENTS
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