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We study nonlocal thermoelectric transport properties of disordered mesoscopic systems in a four-probe
setup. In particular, we vary the coupling of two of the probes to the sample. In the limit of weak coupling, we
recover the two-probe thermoelectric transport coefficients. We find that the Onsager relations are satisfied in
the disordered region. The effect of phase-incoherent transport on the two-probe conductance and thermopower
is also studied in the limit of strong coupling of the probes.@S0163-1829~96!00920-4#

I. INTRODUCTION

The standard setup for the measurement of the transport
coefficients of mesoscopic samples is a four-probe configu-
ration. Therefore results of such experiments should be ex-
plained using a theoretical formalism suited for a four-probe
setup. Indeed, Bu¨ttiker has resolved the controversy over the
measured asymmetry of the magnetoconductance using a
similar derivation.1,2 A generalization, yielding the thermo-
electric transport of a four-probe system, is presented in Ref.
3. In such systems nonlocal effects,4 due to the phase coher-
ence of electrons across the sample, are measurable. For ex-
ample, a temperature drop between two contacts can induce a
voltage drop between two different terminals, within the
dephasing lengthLf .

When using a two-probe setup, in which the response of
the system is measured between the same contacts through
which the current is driven, one inevitably encounters a con-
tact resistance. In these systems the conductance of a scat-
tering barrier is given by the Landauer formula
G5(e2/h)(t/r ).5 However, the total conductance, which in-
cludes the contact resistance,6 is given byG5(e2/h)t.7 As
noted in Ref. 8, it is only this total conductance that can be
measured in a two-probe experimental setup. Several theo-
retical approaches have been utilized9–11 in order to rederive
the Landauer formula without including the contact resis-
tances. In addition, two different approaches were used in
order to generalize that formula and derive the thermoelectric
coefficients of the mesoscopic region in a two-probe setup:
one approach12 assumes that a local thermodynamic affinity
can be assigned to the mesoscopic region while the second
approach13 ascribes thermodynamic equilibrium properties
only to the probes and assumes a generalized Ohmic re-
sponse of the mesoscopic system to the affinities.

Here we derive the two-probe thermoelectric transport co-
efficients in a different way, by studying the specific four-
probe configuration suggested in Ref. 9. Thus we avoid the
contributions of the contacts to the transport and treat the
mesoscopic region strictly by the laws of quantum mechan-
ics. Equilibrium thermodynamic properties are ascribed only
to probes connected to the sample. The same system is used
to demonstrate the effect of phase-incoherent transport
through the disordered region, by allowing for partial ther-
malization of the tunneling electrons. This approach was

used by Bu¨ttiker1,2 for the description of zero temperature
conductance.

II. FOUR-PROBE THERMOELECTRIC TRANSPORT

Consider the general four-probe system illustrated in Fig.
1. Each probe is a reservoir~characterized by a chemical
potentialmi and a temperatureTi , i51,4! which is connected
to a disordered system by a one-dimensional~1D! single-
channel perfect lead. It is the connections between the 3D
reservoirs and the 1D leads that constitute the contacts.
Within linear-response theory14–17 the net charge and heat
currentsI i andQi leaving reservoiri can be expressed as

I i5(
jÞ i

F S e2h D t i j 1e ~m i2m j !2S p2ekB
2T

3h D t i j8 ~Ti2Tj !G ,
~1!

Qi5(
jÞ i

F2S p2ekB
2T2

3h D t i j8 1

e
~m i2m j !

1S p2kB
2T

3h D t i j ~Ti2Tj !G , ~2!

which is a generalization of the case of electrical conduc-
tance at zero temperature,1,2 as described in Ref. 3. The

FIG. 1. Schematic illustration of a four-probe setup. Each per-
fect lead is connected on one side to a reservoir characterized by a
chemical potentialmi and a temperatureTi , i51,4. On the other
side the lead is connected to the sample. The linear size of the
sampleL is less than the dephasing lengthLf .
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equations were rearranged in order to indicate that the cur-
rents are driven by the thermodynamic affinities. The cur-
rents are governed by the energy dependent transmission
probabilitiest i j (E) ~note that the notationt i j does not repre-
sent an amplitude; also the notationT, without a subscript,
denotes the ambient temperature!. The coefficientt i j ac-
counts for all interfering paths of an electron in the entire
system between contactsi and j while the probes at the
remaining contacts are constrained to have the same values
of m andT as the probei . We assume time-reversal symme-
try t i j (E)5t j i (E) and all calculations are done in the Som-
merfeld approximation, i.e., the transmission probabilities
and their energy derivatives are taken at the Fermi level. In
order to demonstrate in a transparent manner the nonlocal
nature of the transport coefficients we choose a specific ex-
perimental setup. Namely, we allow currents to flow only
between probes 1 and 3 and between probes 2 and 4, thereby
imposing I 152I 3 , Q152Q3 , I 252I 4 , and Q252Q4 ,
due to particle and energy conservation. This is realized ex-
perimentally by connecting probes 1–3 and 2–4 with sepa-
rate charge and heat sources. Note that, since heat is trans-
ported only by the electrons, the conditions on the electric
currents dictate the same condition on the heat currents. Ap-
plying these constraints to Eqs.~1! and ~2! enables us to
rewrite the equations so that the currents are driven only by
the experimental affinities on probes 1–3 and 2–4. These
currents will be denoted byI 13, I 24, Q13, andQ24. Perform-
ing the necessary algebra one obtains the matrix form

S I13
Q13

I 24
Q24

D 5L̂4pS m1 /e2m3 /e
T12T3

m2 /e2m4 /e
T22T4

D , ~3!

where

L̂4p5Ss13,13 b13,13 a13,24 b13,24

b̃13,13 s̃13,13 b̃13,24 ã13,24

a24,13 b24,13 s24,24 b24,24

b̃24,13 ã24,13 b̃24,24 s̃24,24

D . ~4!

L̂4p is the symmetric four-probe transport matrix in which
elements without a tilde represent charge transport coeffi-
cients, while those with a tilde represent heat transport coef-
ficients.s depicts conductance,b is the thermoelectric cou-
pling coefficient, anda is a nonlocal electrical coupling
coefficient. The first two indices indicate the probes between
which the currents flow, and the latter two indices indicate
the probes between which an affinity is applied. Thuss13,13
is the Ohmic conductance between probes 1 and 3 andb̃13,24
is the nonlocal thermoelectric coefficient which determines
the induced heat current between probes 1 and 3 due to an
electric bias between probes 2 and 4. The matrixL̂4p is com-
posed of four~232! symmetric submatrices. The diagonal
minors include the local transport coefficients, while the off-
diagonal minors are nonlocal transport coefficients. The ex-
pressions for the coefficients follow.

Top left minor:

s13,135
e2

h H ~ t121t131t14!2
t121t14

s22~p2kB
2T2/3!s82 Fs~ t121t14!2

p2kB
2T2

3
s8~ t218 1t418 !G

1
t128 1t148

s22~p2kB
2T2/3!s82 Fp2kBT

3
s8~ t121t14!2

p2kBT

3
s~ t218 1t418 !G J , ~5!

b13,135
1

T
b̃13,135

ke

h H p2kBT

3
~ t128 1t138 1t148 !2

t121t14
s22~p2kB

2T2/3!s82 Fp2kBT

3
s~ t128 1t148 !2

p2kBT

3
s8~ t211t41!G

1
t128 1t148

s22~p2kB
2T2/3!s82 Fp2kB

2T2

3
s8~ t128 1t148 !2s~ t211t41!G J , ~6!

s̃13,135S p2kB
2T

3h Ye2

hDs13,13. ~7!

Top right minor:

a13,245
e2

h H 2t121
t121t14

s22~p2kB
2T2/3!s82 Fs~ t121t32!2

p2kB
2T2

3
s8~ t218 1t238 !G2

t128 1t148

s22~p2kB
2T2/3!s82

3Fp2kBT

3
s8~ t121t32!2

p2kBT

3
s~ t218 1t238 !G J , ~8!

b13,245
1

T
b̃13,245

ke

h H 2
p2kBT

3
t128 1

t121t14
s22~p2kB

2T2/3!s82 Fp2kBT

3
s~ t128 1t328 !2

p2kBT

3
s8~ t211t23!G

2
t128 1t148

s22~p2kB
2T2/3!s82 Fp2kB

2T2

3
s8~ t128 1t328 !2s~ t211t23!G J , ~9!
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ã13,245S p2kB
2T

3h Ye2

hDa13,24. ~10!

Bottom right minor:

s24,245
e2

h H ~ t211t231t24!2
t121t23

s22~p2kB
2T2/3!s82 Fs~ t211t23!2

p2kB
2T2

3
s8~ t128 1t328 !G1

t128 1t238

s22~p2kB
2T2/3!s82

3Fp2kBT

3
s8~ t121t23!2

p2kBT

3
s~ t128 1t328 !G J , ~11!

b24,245
1

T
b̃24,245

ke

h H p2kBT

3
~ t218 1t238 1t248 !2

t121t23
s22~p2kB

2T2/3!s82 Fp2kBT

3
s~ t218 1t238 !2

p2kBT

3
s8~ t121t32!G

1
t128 1t238

s22~p2kB
2T2/3!s82 Fp2kB

2T2

3
s8~ t218 1t238 !2s~ t121t32!G J , ~12!

s̃24,245S p2kB
2T

3h Ye2

hDs24,24. ~13!

Bottom left minor:

a24,135a13,24, ~14!

b24,135b̃24,135b13,245b̃13,24, ~15!

ã24,135S p2kB
2T

3h Ye2

hDa24,13, ~16!

where

s5t121t141t321t34. ~17!

We note that the Onsager reciprocity relations are satisfied
and that the nonlocal coupling termsai j ,kl generalize some
zero temperature results. Indeed, when the zero temperature
limit is taken in Eqs. ~5!–~16! the T50 results are
recovered.1,2 The symmetry relations ensue from the time-
reversal invariance of the transmission coefficients. In the
case of an external magnetic fieldB threading the mesos-
copic region, the relationst i j (B)5t j i (2B) ensure that the
symmetry of the transport matrix in Eq.~4! is maintained,
provided the magnetic field is reversed in addition to the
time reversal, i.e.,

L̂~B!5L̂†~2B!, ~18!

where the dagger denotes the transposed matrix@and when
properly accounting for inverse temperature as in Eq.~6!#.

One can use Eqs.~5!–~16! to define nonlocal ther-
mopower. For example,

S13,24[2
V12V3

T22T4
U
I1350,V25V4 ,T15T3

52
b13,24

s13,13
, ~19!

whereVi[m i /e. However, as noted in Ref. 3, the nonlocal
thermopower is not symmetric with respect to interchanging
the roles of the voltage and current probes, i.e.,
Si j ,kl(B)ÞSkl,i j (2B). This follows from the dependence of

the conductances on the specific probes sustaining the trans-
port. For example, S13,24(B)ÞS24,13(2B) since
s13,13Þs24,24. Another result of the definition Eq.~19! is that
the thermoelectric coefficients are generally asymmetric in
magnetic field, i.e.,Si j ,kl(B)ÞSi j ,kl(2B), due to the asym-
metry of the transmissiont i j (B). This is a generalization of
asymmetric magnetoconductance, which is measured in four-
probe devices, as discussed in Ref. 1.

III. THE LIMIT OF TWO PROBES

The above formalism can be exploited to determine the
transport coefficients of a mesoscopic region~disregarding
the contact contribution! for a two-probe configuration. We
implement the Engquist-Anderson2,9 picture by examining
the setup in Fig. 2, which describes a 1D single-channel
system. Adopting the approach of Landauer,18 we represent
the region of disordered elastic scatters by an effective elas-
tic scattering barrier, characterized by transmission and re-
flection coefficientst andr , respectively. Probes 2 and 4 are
used to measure the induced thermodynamic potentials
which develop as a result of transport between reservoirs 1
and 3. Therefore we require

I 245Q2450, ~20!

corresponding to infinite resistance of ideal measuring de-
vices. This measurement is performed in the limit ofweak
couplingof the probes to the mesoscopic sample. The reser-
voirs are connected to the disordered region~described by a
single barrier! by perfect leads and anS matrix. Weak cou-
pling is incorporated into the equations by assigning a cou-
pling of ordere→0 to leads 2 and 4. The~333! scattering
matrices are chosen as in Ref. 19. Namely, time-reversal
symmetry and particle conservation are satisfied. We assume
the S matrices allow symmetric scattering into the two
branches leading out of reservoirs 2 and 4, and that the ma-
trix is real. The latter assumption guarantees that contacts 2
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and 4 do not alter the phase of the traversing electron so that
in the limit e→0 the system is reduced to a two-probe setup.
Such anSmatrix has the form

Ŝ5S c Ae/2 Ae/2

Ae/2 a b

Ae/2 b a
D ~21!

satisfying aW 5ŜbW . aW 5~a1,a2,a3! are the outgoing ampli-
tudes wherea1 is the amplitude of an electron wave function
leaving the junction~triangles in Fig. 2! towards reservoir 2
~4!. The amplitudes to leave the junction in the direction of
reservoirs 1 and 3 are denoted bya2 anda3, respectively.
The ingoing amplitudes are denoted bybi . In order to ensure
the unitarity property ofŜ, we choosea, b, andc to be

a5
1

2
~A12e21!, ~22!

b5
1

2
~A12e11!, ~23!

c52A12e, ~24!

where 0<e<1. The transport in Fig. 2 is determined by the
scattering amplitudes of an electron along its path, which is
given by threeS matrices: two@like Eq. ~21!# at contacts 2
and 4, and another one at the barrier. The barrier transmis-
sion and reflection probabilities~not amplitudes! are denoted
by t and r , respectively, and represent the elastic scattering
in the mesoscopic region. We assume that quantum oscilla-
tions in the interference pattern of the reflected electron can
be neglected. This assumption corresponds to measuring de-
vices~i.e., the contacts! with a linear sizeW of several Fermi
wavelengthslF , thereby effectively averaging~spatially!
over the phase of an electron~at the Fermi level!. This as-
sumption is valid forlF /(pW)!Aur u. In very disordered
systemsAur u→1. Accounting for single-scattering processes
~multiple scattering can be neglected in the weak-coupling
limit !, one obtains the following transmission coefficients:
t135t, t245t(e/2)2, t145t235te/2, t125t345(11r )e/2 and,
in turn, s52e ands850. Inserting these transmission coeffi-
cients into Eqs.~3!–~17! we obtain

I 2452
e2

h
r

e

2

1

e
~m12m3!1

e2

h S 11t
e

2D e

2

1

e
~m22m4!

2
ep2kB

2T

3h
t8

e

2
~T12T3!2

ep2kB
2T

3h
t8S e

2D
2

~T22T4!,

~25!

Q2452
ep2kB

2T2

3h
t8

e

2

1

e
~m12m3!

2
ep2kB

2T2

3h
t8S e

2D
2 1

e
~m22m4!2

p2kB
2T

3h
r

e

2

3~T12T3!1
p2kB

2T

3h S 11t
e

2D e

2
~T22T4!. ~26!

Using Eqs.~25! and ~26!, we can rewrite the condition Eq.
~20! in a matrix form in the following way:

ÂS m1 /e2m3 /e
T12T3

D5B̂S m2 /e2m4 /e
T22T4

D , ~27!

where

Â5S 2
e2

h
r 2

ep2kB
2T

3h
t8

2
ep2kB

2T2

3h
t8 2

p2kB
2T

3h
r
D ~28!

and

B̂5S 2
e2

h S 11t
e

2D ep2kB
2T

3h
t8

e

2

ep2kB
2T2

3h
t8

e

2
2

p2kB
2T

3h S 11t
e

2D D . ~29!

We take the limite→0 and, as expected, the currentsI 13 and
Q13 become independent of~m22m4! and (T22T4). Equa-
tion ~3! then reduces to the familiar two-probe form

S I 13Q13
D5L̂2pS m1 /e2m3 /e

T12T3
D , ~30!

where

L̂2p5S e2

h
t 2

ep2kB
2T

3h
t8

2
ep2kB

2T2

3h
t8

p2kB
2T

3h
t

D . ~31!

Combining Eqs.~27! and ~30! we can write

S I 13Q13
D5L̂2pÂ

21B̂S m2 /e2m4 /e
T22T4

D , ~32!

which relates the affinity developed across the barrier to the
currents driven between probes 1 and 3. The matrix

K̂[L̂2pÂ
21B̂ ~33!

FIG. 2. A specific four-probe configuration in which probes 1
and 3 are strongly coupled to leads to the disordered region. Probes
2 and 4 are variably coupled with a coupling strengthe. The tri-
angles represent a three-sided junction characterized by two sym-
metric ~333! Smatrices~see text!. The barrier is characterized by a
~232! matrix, the elements of which are the transmission and re-
flection coefficientst and r , respectively.

53 15 859THERMOELECTRIC PROPERTIES OF MICROSTRUCTURES . . .



defines the transport coefficients of the barrier in the inter-
pretation of Ref. 9. Inserting Eqs.~28!, ~29!, and ~31! into
Eq. ~33! yields the coefficients

K115

e2

h F rt1 p2

3
~kBT!2t82G

r 22
p2

3
~kBT!2t82

, ~34!

K1252

kBe

h

p2

3
~kBT!t8

r 22
p2

3
~kBT!2t82

, ~35!

K215TK12, ~36!

K225

p2

3

kB
2T

h F rt1 p2

3
~kBT!2t82G

r 22
p2

3
~kBT!2t82

. ~37!

Note thatK̂ satisfies the Onsager relation@Eq. ~36!#. Neglect-
ing terms including (kBT)

2t82 with respect to terms includ-
ing r ,t we obtain

K115
e2

h

t

r
, ~38!

K215TK1252
p2

3

~kBT!2e

h S tr D 8
, ~39!

K225
p2

3

kB
2T

h

t

r
. ~40!

Equations~38!–~40! are identical to the expressions obtained
in Ref. 13. In that paper these coefficients were obtained for
a two-probe system in similar limits. Namely, it was as-
sumed that the Sommerfeld approximation is valid. In addi-
tion, (kBT)

2t82 terms were neglected with respect to terms
quadratic inr ,t. Comparing Eqs.~38!–~40! to the results of
Ref. 12, we find that the expressions forK11, K12, andK22
are identical in the Sommerfeld approximation. However, in
that paper the Onsager relations were not satisfied for the
mesoscopic region, since it was found that
K215TK121const. In our theory, those relations are satis-
fied. We believe this happened because we were careful to
ascribe thermodynamic properties and parameters~e.g., tem-
perature, chemical potential! only to equilibrium physical
systems, such as a macroscopic probe, and not to parts of the
mesoscopic physical system.

The thermopower of the barrier is defined as

Sb[2
K12

K11

and in the above limits this becomes

Sb5
p2

3

kB
2T

e S ln t

12t D 8
, ~41!

as we obtained in Refs. 12 and 13.

IV. THE EFFECT OF INCOHERENT TRANSPORT

The simplified system analyzed in Sec. III can be used to
demonstrate the effect of partial phase incoherence on the
transport. This is seen by calculating the transport coeffi-
cients in the limit of strong coupling, i.e.,e→1. Electrons
driven between probes 1 and 3 have a probability of 1/2 to
enter the reservoirs at each of the contacts 2 and 4, due to our
choice of theS matrix in Eq. ~21!. The electron waves en-
tering reservoirs 2 and 4 thermalize and lose phase coher-
ence. Since probes 2 and 4 are measurement contacts,
I 245Q2450. This ensures that the thermalized part is rein-
jected into the system and recombines with the wave that
proceeded ballistically. Thus electrons traversing the sample
lose partial phase coherence. As before, we neglect quantum
oscillations and multiple scattering. The transmission coeffi-
cients corresponding to Fig. 2 are obtained as before in terms
of the scattering matrix elements to givet135t245t/4,
t145t235t/8, t125t345(1/21r /8) and, in turn,s55/4 and
s850. The partial loss of phase coherence is reflected in
coefficientst145t23 and t125t34 which do not include the
amplitude of an electron injected from reservoirs 2 and 4.
Inserting the coefficients into Eqs.~3!, the currents driven
between probes 1 and 3 become

I 135
e2

h S t41
5

16D 1

e
~m12m3!2

e2

h S r81
3

16D 1

e
~m22m4!

2
ep2kB

2T

3h

t8

4
~T12T3!2

ep2kB
2T

3h

t8

8
~T22T4!, ~42!

Q1352
ep2kB

2T2

3h

t8

4

1

e
~m12m3!2

ep2kB
2T2

3h

t8

8

1

e

3~m22m4!1
p2kB

2T

3h S t41
5

16D ~T12T3!

2
p2kB

2T

3h S r81
3

16D ~T22T4!. ~43!

Rewriting Eqs.~27!–~29! in the limit e51, we can express
I 13 andQ13 as a function of the affinity between probes 1 and
3. Neglecting, for simplicity, (kBT)

2t82 terms, we obtain
@see Eq.~30!#

L11
e515

75175t112t2

1001160t164t2
L11

e50, ~44!

L21
e515TL12

e515
75130t112t2

1001160t164t2
L12

e50, ~45!

L22
e515

75175t112t2

1001160t164t2
L22

e50. ~46!

The coefficientsLi j represent the measurable transport be-
tween probes 1 and 3, i.e., they include the contribution of
the contacts.L i j

e50 denotes the two-probe matrix element in
Eq. ~31!. In Fig. 3 we plot the ratioL 11

e51/L 11
e50[Ge51

/Ge50 as a function of the barrier transmissiont. Note that in
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addition to loss of phase coherence the splitters at reservoirs
2 and 4 partially reflect the incident electron wave function.
This is a result of our choice ofS matrices which are con-
strained to ensure perfect transmission in the limite→0. The
combined effect is to reduce the electrical and heat conduc-
tances.

The thermopowerS52L12/L11 in the strong-coupling
limit satisfies the relation

Se515
25110t14t2

25125t14t2
Se50. ~47!

The partial loss of phase coherence and splitter reflection act
to lower the thermopower, as illustrated in Fig. 3. The reduc-
tion of conductanceGe51 and thermopowerSe51, compared
to the weak-coupling limit, is enhanced ast→1. This could
be attributed to the dephasing mechanism becoming more
dominant, as more of the electron wave traverses the barrier.
Note that the results of this section are valid only when mul-
tiple scattering between the barrier and contacts 2 and 4 can
be neglected. We expect the correction due to this effect to
be largest in the limit oft→1 andt→0.

V. CONCLUSION

In this paper we considered specific configurations of
multiprobe systems in which one can define a nonlocal ther-
moelectric response. It should be possible to realize such a
system experimentally. In particular, we expect that the ef-
fect of partial phase incoherence in a system like the one in
Fig. 2 can be measured. Reservoirs 2 and 4 represent point-
contact measurement probes. Tuning the distance between

the point contacts and the sample, one can realize the limits
e→0 and e51 and measure the transport through a disor-
dered region between fixed probes~realizing probes 1 and 3!.
In order to justify the neglect of quantum oscillations the
contacts must be several Fermi wavelengths wide. The trans-
mission t can be obtained from the two-probe conductance
measurement~e50!. Note that in order to compare to theo-
retical predictions the structure of theS matrix might need
adjustment in order to correctly represent the experimental
setup. In future work we will study the explicit effect of total
phase incoherence across the sample by choosing nonreflect-
ing Smatrices for the splitters.

An experimental realization of a four-probe system is pre-
dicted to exhibit nonlocal thermopower@Eq. ~19!#. Heating
probes 1 and 3 will produce a measurable temperature gra-
dient and will induce an electric potential drop between the
other two terminals.

In the above analysis we neglected quantum oscillations
resulting from electron interference at the measurement
probes 2 and 4. We also disregarded multiple-scattering pro-
cesses in the mesoscopic region. These processes are rel-
evant in the strong-coupling limit and can be incorporated in
the model, yielding corrections to the above results. An exact
quantum-mechanical treatment has been given for similar
systems in Refs. 20 and 21 in the case of zero temperature.
As a result one obtains phase-sensitive Ohmic voltages
which depend on the distance of these probes from the scat-
terer. By expanding the work reported here, we expect to
obtain phase-sensitive thermoelectric voltages which can be
measured using point-contact probes.

The calculations in this paper were performed in the Som-
merfeld approximation. Therefore the results are valid in the
case that the transmission coefficients depend smoothly on
energy. Equations~38!–~41! and ~44!–~47! are valid when
terms including (kBT)

2t82 are disregarded with respect to
terms quadratic int and r . This approximation is usually
accurate for the following reason. In Ref. 22 the quantity

D[
L12L21

L11L22
~48!

was defined for a two-probe system.D is related to the effi-
ciency of the thermoelectric effect and in many cases satis-
fiesD!1. It is easy to show that in the Sommerfeld approxi-
mation

D5
p2

3
~kBT!2S t8t D

2

,

thereby ensuring that ifD!1 the condition (kBTt8)
2!t2 is

satisfied.
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FIG. 3. A numerical calculation of Eq.~47! demonstrating the
effect of partial dephasing in reservoirs 2 and 4 on the two-probe
thermopower of the system of Fig. 2. The inset demonstrates the
effect on the electrical conductance@Eq. ~44!#.
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1M. Büttiker, Phys. Rev. Lett.57, 1761~1986!.
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