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Thermoelectric properties of microstructures with four-probe versus two-probe setups
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We study nonlocal thermoelectric transport properties of disordered mesoscopic systems in a four-probe
setup. In particular, we vary the coupling of two of the probes to the sample. In the limit of weak coupling, we
recover the two-probe thermoelectric transport coefficients. We find that the Onsager relations are satisfied in
the disordered region. The effect of phase-incoherent transport on the two-probe conductance and thermopower
is also studied in the limit of strong coupling of the proble30163-18286)00920-4

[. INTRODUCTION used by Bitiker'? for the description of zero temperature
conductance.
The standard setup for the measurement of the transport

coefficients of mesoscopic samples is a four-probe configu- ||, FOUR-PROBE THERMOELECTRIC TRANSPORT
ration. Therefore results of such experiments should be ex- . ) .
plained using a theoretical formalism suited for a four-probe,  Consider the general four-probe system illustrated in Fig.
setup. Indeed, Btiker has resolved the controversy over the 1+ EaCh probe is a reservoicharacterized by a chemical
measured asymmetry of the magnetoconductance using Rotentialu; and a temperaturg , i =1,4) which is connected
similar derivationt2 A generalization, yielding the thermo- t© & disordered system by a one-dimensiofid) single-
electric transport of a four-probe system, is presented in refhannel perfect lead. It is the connections between the 3D

3. In such systems nonlocal effeétdue to the phase coher- reservoirs and the 1D leads that constitute the contacts.

. . . _17
ence of electrons across the sample, are measurable. For ithin linear-response thedy ™" the net charge and heat
leaving reservoii can be expressed as

ample, a temperature drop between two contacts can induce"4"Tentsli andQ;
voltage drop between two different terminals, within the

dephasing length. . =3 e_z)t” 1 (= ) — erkéT)t-’-(T-—T-)
When using a two-probe setup, in which the response of ' fZi [\ h/ e ™ 3h TP

the system is measured between the same contacts through (@h)

which the current is driven, one inevitably encounters a con-

tact resistance. In these systems the conductance of a scat- m2elgT?) 1

tering barrier is given by the Landauer formula Q=2 _<3—h)ti/j s (Hi—my)

G=(e%h)(t/r).5 However, the total conductance, which in- 7

cludes the contact resistarités given byG=(e?/h)t.” As 72K2T

noted in Ref. 8, it is only this total conductance that can be +(3—h)tij(Ti_TJ‘) : 2

measured in a two-probe experimental setup. Several theo-
retical approaches have been utiliZed in order to rederive  which is a generalization of the case of electrical conduc-

the Landauer formula without including the contact resis-tance at zero temperaturé,as described in Ref. 3. The
tances. In addition, two different approaches were used in
order to generalize that formula and derive the thermoelectric

coefficients of the mesoscopic region in a two-probe setup: lll,T; uz,Tz
one approaclf assumes that a local thermodynamic affinity
can be assigned to the mesoscopic region while the second

approacf® ascribes thermodynamic equilibrium properties

only to the probes and assumes a generalized Ohmic re- L < L

sponse of the mesoscopic system to the affinities. (0
Here we derive the two-probe thermoelectric transport co-

efficients in a different way, by studying the specific four- ’ ‘

probe configuration suggested in Ref. 9. Thus we avoid the A 2 /e

contributions of the contacts to the transport and treat the HE&T% Ly ”]:1

mesoscopic region strictly by the laws of quantum mechan- ’ ’

ics. Equilibrium thermodynamic properties are ascribed only  FiG. 1. Schematic illustration of a four-probe setup. Each per-

to probes connected to the sample. The same system is usedt lead is connected on one side to a reservoir characterized by a

to demonstrate the effect of phase-incoherent transposhemical potentiaj; and a temperatur&;, i=1,4. On the other

through the disordered region, by allowing for partial ther-side the lead is connected to the sample. The linear size of the

malization of the tunneling electrons. This approach wassampleL is less than the dephasing lendt}.
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equations were rearranged in order to indicate that the cur- l13 wile—ugle

rents are driven by the thermodynamic affinities. The cur- Qs . T,—Ta

rents are governed by the energy dependent transmission | =Lap wyle—male | 3
probabilitiest;; (E) (note that the notatioty; does not repre- Q24 2_|_ —T4

sent an amplitude; also the notati@in without a subscript, 24 2 4

denotes the ambient temperatur@he coefficientt;; ac- where

counts for all interfering paths of an electron in the entire 01313 B1313 1324 Piz2d

system between contactsand j while the probes at the R :513 13 01313 'Iéls 4 1324

remaining contacts are constrained to have the same values Lap= ’ ' ’ . (4)
of w andT as the probé. We assume time-reversal symme- @2413 PBaajszs 2124 PBoaza

try t;;(E)=t;;(E) and all calculations are done in the Som- E24,13 @413 ',é24,24 242

merfeld approximation, i.e., the transmission probablhtlesA4p is the symmetric four-probe transport matrix in which

and their energy derivatives are taken at the Fermi level. le'ements without a tilde represent charge transport coeffi-

order to demonstrate in a transparent manner the nonlocg ents, while those with a tilde represent heat transport coef-

hature of the transport coefficients we choose a specific icients. o depicts conductances is the thermoelectric cou-
perimental setup. Namely, we allow currents to flow only 5jing coefficient, andw is a nonlocal electrical coupling

between probes 1 and 3 and between probes 2 and 4, there@yefficient. The first two indices indicate the probes between
imposing 1= —13, Q;=—Q3, I,=—14, and Q;=—Q4,  which the currents flow, and the latter two indices indicate
due to particle and energy conservation. This is realized exte probes between which an affinity is applied. Thys s
perimentally by connecting probes 1-3 and 2—4 with sepajs the Ohmic conductance between probes 1 and 33agél,
rate charge and heat sources. Note that, since heat is trang-the nonlocal thermoelectric coefficient which determines
ported only by the electrons, the conditions on the electriche induced heat current between probes 1 and 3 due to an
currents dictate the same condition on the heat currents. Agelectric bias between probes 2 and 4. The matyixis com-
plying these constraints to Eq€l) and (2) enables us to posed of four(2X2) symmetric submatrices. The diagonal
rewrite the equations so that the currents are driven only byninors include the local transport coefficients, while the off-
the experimental affinities on probes 1-3 and 2—4. Thesdiagonal minors are nonlocal transport coefficients. The ex-
currents will be denoted bl 3, 1,4, Q13, andQ,,. Perform-  pressions for the coefficients follow.

ing the necessary algebra one obtains the matrix form Top left minor:
|
_ez t12+t14 WzkéTz et ,
013137 ) (tiottyattyy) — (7 AKET23)s 2 S(tiottis) — —3 S (t1+1s)
thottl, mkgT 2

] : ©)

, v kBT , ,
3 S (tipgtti)— 3 S(tprt+tsy)

s?— (kg T/3)s’?

l ~ ke WszT , , , t12+t14 WZkBT , , 772kBT ,
,313,13:f ’813'13:F 3 (tipttigtty) — (7212352 | 3 S(tyottis) — 3 S (tag+ta1)
t, i), L C
+ 52_ (wzkéTZ/S)S’Z 3 S (t12+ tl4) - S(t21+ t41) ) (6)
— mkET  /e?
01313 | Tap h/ 01313 (7
Top right minor:
2 21,2712 ’ ’
e t12+t14 ar kBT et , t12+t14
a'13,24:F [ t12+ 52_(7T2ké-|-2/3)sr2 S(t12+t32) - 3 S (t21+t23) - 52—(772kéT2/3)S'2
’7T2kBT , ’n'szT , ,
X 3 S (t12+ t32)_ T S(t21+t23) 1 (8)
1 ~ ke 772kBT , t12+t14 7T2kBT , , 7T2kBT ,
,313,24=$ ,313,24=F T3 tyo S (7ACT23)s2 | 3 S(tyottgy) — —3 S (tort1t29)
th,ttl, m2?k3T2

, 9

3 S’ (thott30) —S(tyttyg)

P (nKET23)s'2
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_ WzkéT e?
Q13247 | T3, ) 413,24 (10
Bottom right minor:
2 21,212 ’ ’
e t12+t23 a k T t12+t23
=1 (tor+tystty) — S(ty 1) — s'(tpt+tsy) |+
024,24 h [( 21+ to3t o) SZ—(WZkéTZ/S)S’Z (trrt129) (tiptt3)) Sz—(wzk§T2/3)S'2
2kB-I— , ’772kBT , ,
X| =3 S'(tiat tog = = Sttty | 1, (11)
1 ~ ke 7TszT , , , t12+t23 ’7T2kBT , , 7T2kBT ,
,324,24:$ ,324,24:F 3 (tyr+togttyy) — S (7ACT2R)s2 | 3 S(tp1tta3) — —3 S (tiotts))
t12+ té3 TrzszTz 1oyt ’
+ - (n2KeT3)s2 | 3 8" (tyrttag) —S(tipttay) | 1, (12
- m?kET [ e?
O2424~ | T3 h| T2424 (13
|
Bottom left minor: the conductance on the specific probes sustaining the trans-
port. For example, S;3,{B)#S,,:{—B) since
(24,13 @13 24, (14 01515004 24 Another result of the definition E419) is that
- - the thermoelectric coefficients are generally asymmetric in
B24,157 B2a,15= B13,24= B13 241 (15 magnetic field, i.e.S; (B)#S;j «u(—B), due to the asym-
0 2 metry of the transmissiot; (B). This is a generalization of
~ |7 KgT e 16 asymmetric magnetoconductance, which is measured in four-
@®24137| " 3p h ) %2413 (16) probe devices, as discussed in Ref. 1.
where
Ill. THE LIMIT OF TWO PROBES
S:t12+tl4+t32+t34. (17)

The above formalism can be exploited to determine the
We note that the Onsager reciprocity relations are satisfietfansport coefficients of a mesoscopic regiaiisregarding
and that the nonlocal coupling ternag ,, generalize some the contact contributignfor a two-probe configuration. We
zero temperature results. Indeed, when the zero temperatufgplement the Engquist-Andersbh picture by examining
limit is taken in Egs. (5—(16) the T=0 results are the setup in Fig. 2, which describes & 1single-channel
recovered:? The symmetry relations ensue from the time-System. Adopting the approach of Landatfewe represent
reversal invariance of the transmission coefficients. In théhe region of disordered elastic scatters by an effective elas-
case of an external magnetic fieRl threading the mesos- tic scattering barrier, characterized by transmission and re-
copic region, the relation;(B)=t;;(—B) ensure that the flection coefficientd andr_, respectively. Probes 2 and 4 are
symmetry of the transport matrix in E¢4) is maintained, used to measure the induced thermodynamic potentials
provided the magnetic field is reversed in addition to thewhich develop as a result of transport between reservoirs 1

time reversal, i.e., and 3. Therefore we require
L(B)=L'(-B), (18) |24=Q24=0, (20

where the dagger denotes the transposed mpdrid when  corresponding to infinite resistance of ideal measuring de-
properly accounting for inverse temperature as in ®B3]. vices. This measurement is performed in the limitwedak

One can use Eqgs(5)—(16) to define nonlocal ther- couplingof the probes to the mesoscopic sample. The reser-
mopower. For example, voirs are connected to the disordered regdidescribed by a
single barrier by perfect leads and a& matrix. Weak cou-

Vi1—V3 _ Bz (19 pling is incorporated into the equations by assigning a cou-

513'2“E_T2—T4 ov.ev T._1. 01313 pling of ordere—0 to leads 2 and 4. Thé8x3) scattering
13— %2 471 3

matrices are chosen as in Ref. 19. Namely, time-reversal
whereV;= u;/e. However, as noted in Ref. 3, the nonlocal symmetry and particle conservation are satisfied. We assume
thermopower is not symmetric with respect to interchanginghe S matrices allow symmetric scattering into the two

the roles of the voltage and current probes, i.e.branches leading out of reservoirs 2 and 4, and that the ma-
Sij ki(B) # Sy,ij(—B). This follows from the dependence of trix is real. The latter assumption guarantees that contacts 2
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e €1 e?

el el
=——r == (ug—pz)+— |1+t =| == (uo—
2 fr g l24 h r2e(’ul M3) hlitts 2e(,U«2 Ha)
1 3
S e < 2 ewzkéT € e’ITzkéT €\?
——gp U3 (Ti=To) = —5—t'[5] (To=To),
3h 2 3h 2
2 4 (25
FIG. 2. A specific four-probe configuration in which probes 1 ew2k§T2 el

and 3 are strongly coupled to leads to the disordered region. Probes Q4= —

—3n t’ >e (m1—m3)
2 and 4 are variably coupled with a coupling strengthThe tri-

angles represent a three-sided junction characterized by two sym- ewzkéTz e\21 wzkéT €
metric(3X3) S matrices(see text. The barrier is characterized by a -t (—) — (o= pa)— —— T =
(2Xx2) matrix, the elements of which are the transmission and re- 3h 2] e 3h 2
flection coefficients andr, respectively. 77_2k§-|— e\ e

X(T1=T3)+—=— |1+t =| = (T,—T,). (26
and 4 do not alter the phase of the traversing electron so that 3h 2] 2

in the limit EHQ the system is reduced to a two-probe setupUSing Egs.(25) and (26), we can rewrite the condition Eq.
Such anS matrix has the form (20) in a matrix form in the following way:

c ez \el2 A(,ulle—,u@/e o (male—pgle -
S=| Jel2 a b (21) T,—Ts T,=T, )’
Jel2 b a where
satisfying a=SB. a=(ay,a,,a5) are the outgoing ampli- e? em’k3T ,
tudes wherey, is the amplitude of an electron wave function ) “h' ~ T 3h t
leaving the junctior(triangles in Fig. 2 towards reservoir 2 A= 2122 012 (28
(4). The amplitudes to leave the junction in the direction of &7 keT t - kg T r
reservoirs 1 and 3 are denoted by and a5, respectively. 3h 3h
The ingoing amplitudes are denoted By. In order to ensure
the unitarity property o5, we choose, b, andc to be and
1 _e2 Lt € em?k3T €
a==(Jl—e—1), (22) . h 2 3 ' 2
2 B= (29)
em’k3T? € m2kET ( . e)
3h 2 3h 2
b=%(\/l—e+l), (23
We take the limite—0 and, as expected, the currehfgsand
Q.3 become independent df,—w,) and (T,—T,). Equa-
c=—+1—¢, (24) tion (3) then reduces to the familiar two-probe form
where G<e<1. The transport in Fig. 2 is determined by the l13) ~ [mile—usle
scattering amplitudes of an electron along its path, which is Qua) 2P\ T—T3 )0 (30
given by threeS matrices: twqlike Eq. (21)] at contacts 2
and 4, and another one at the barrier. The barrier transmidhere
sion and reflection probabilitigmot amplitudesare denoted ) 212
by t andr, respectively, and represent the elastic scattering e_t _ &7 kgT /
in the mesoscopic region. We assume that quantum oscilla- N h 3h
tions in the interference pattern of the reflected electron can L2p= em2k2T2 m2K2T : 3D
be neglected. This assumption corresponds to measuring de- S~ Y B ¢
vices(i.e., the contacswith a linear sizeW of several Fermi 3h 3h
wavelengths\g, thereby effectively averagingspatially o ;
over the phase of an electrdat the Fermi level This as- Combining Eqs(27) and (30) we can write
sumption is valid forAg/(7W)<< \/m In very disordered i)~ o a[pale—pugle
. . . _ -1 2 Ma
systemsy/|r|— 1. Accounting for single-scattering processes (Q13) =LA B T,-T, |’ (32

(multiple scattering can be neglected in the weak-coupling

limit), one obtains the following transmission coefficients:which relates the affinity developed across the barrier to the
tia=t, ty=1(€/2)? ty;=t,s=tel2, t;,=t3,=(1+r)e/2 and, currents driven between probes 1 and 3. The matrix

in turn, s=2¢ ands’=0. Inserting these transmission coeffi- A

cients into Eqs(3)—(17) we obtain K=L,A 'B (33



15 860

defines the transport coefficients of the barrier in the inter-

pretation of Ref. 9. Inserting Eq$28), (29), and (31) into
Eq. (33) yields the coefficients

2 2
- rt+?(kBT)2t’2}

h
K= Vi , (34
rz—ﬂ-—(k T)2t72
3 \Ke
kBe 7T k T ,
h 3 ket
Kip=— 2 ) (39
rZ_W_(k T)2t12
3 B
K21=TKyz, (36)
w2 k3§ w?
- _ 2412
3 h rt+ 3 (kgT)“t }
K= 2 (37)

T
r2_ ? (kBT)Zt/Z

Note thatk satisfies the Onsager relatifigq. (36)]. Neglect-
ing terms including kgT)?%t’?2
ing r,t we obtain

et
u=h (39
w2 (kgT)%e [t
Ko1=TKyp=— 3 h R (39
2 k2T
=3 T 40

Equationq38)—(40) are identical to the expressions obtained
in Ref. 13. In that paper these coefficients were obtained for
a two-probe system in similar limits. Namely, it was as-
sumed that the Sommerfeld approximation is valid. In addi- T
tion, (kgT)?t’? terms were neglected with respect to terms
guadratic inr,t. Comparing Eqs(38)—(40) to the results of

Ref. 12, we find that the expressions 1, K5, andK,,

are identical in the Sommerfeld approximation. However, in
that paper the Onsager relations were not satisfied for th

with respect to terms includ-
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IV. THE EFFECT OF INCOHERENT TRANSPORT

The simplified system analyzed in Sec. Ill can be used to
demonstrate the effect of partial phase incoherence on the
transport. This is seen by calculating the transport coeffi-
cients in the limit of strong coupling, i.ee—1. Electrons
driven between probes 1 and 3 have a probability of 1/2 to
enter the reservoirs at each of the contacts 2 and 4, due to our
choice of theS matrix in Eq.(21). The electron waves en-
tering reservoirs 2 and 4 thermalize and lose phase coher-
ence. Since probes 2 and 4 are measurement contacts,
I,,=Q,,=0. This ensures that the thermalized part is rein-
jected into the system and recombines with the wave that
proceeded ballistically. Thus electrons traversing the sample
lose partial phase coherence. As before, we neglect quantum
oscillations and multiple scattering. The transmission coeffi-
cients corresponding to Fig. 2 are obtained as before in terms
of the scattering matrix elements to givgz=t,,=t/4,
t14=1,3=1/8, t,=t3,=(1/2+r/8) and, in turn,s=5/4 and
s’=0. The partial loss of phase coherence is reflected in
coefficientst,=t,5 and t;,=t5, which do not include the
amplitude of an electron injected from reservoirs 2 and 4.
Inserting the coefficients into Eq$3), the currents driven
between probes 1 and 3 become

e? t 5\ 1
l13=+ h 4 16 (Ml m3)— (o= pa)
em?k3T t’ th
em’k3T2t' 1 em’k3T2t' 1
ng:_—Sh ZE(#l_Ms,)_—:gh gg
m2k3T [t L5
X (o= pa)+ —p— | 7t 1/ (T1=Ta)
wzkgT 3

Rewriting EQs.(27)—(29) in the limit e=1, we can express

I ;3andQq3 as a function of the affinity between probes 1 and
3. Neglecting, for simplicity, kzT)%t’? terms, we obtain
fSee Eq.(30)]

mesoscopic  region, since it was found that
K,1=TKj,+const. In our theory, those relations are satis- 2
fied. We believe this happened because we were careful to Le-l= 7o+ 1 L €0 (44)
ascribe thermodynamic properties and parameétegs, tem- 1100+ 160t+ 642 "1
perature, chemical potentjabnly to equilibrium physical
systems, such as a macroscopic probe, and not to parts of the 75+300+12%
mesoscopic physical system. L5, =TL; =2~ L1z (45)
The thermopower of the barrier is defined as 100+16Q+64t
_ Ko _,  T5HT7RH12A
T Ky L2 = To0rTa0 s aa 22 - (46)
1 100+ 16C + 64t
and in the above limits this becomes -
The coefficientsL;; represent the measurable transport be-
72 k2 t \’ tween probes 1 and 3, i.e., they include the contribution of
=3 & |In 1—_,[) : (41)  the contactsL {~° denotes the two-probe matrix element in
Eq. (31). In Fig. 3 we plot the ratiol §7Y/L$7%=G*=?

as we obtained in Refs. 12 and 13.

/G<=9 as a function of the barrier transmissibriNote that in
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T the point contacts and the sample, one can realize the limits
T e—0 and e=1 and measure the transport through a disor-

ER dered region between fixed probesalizing probes 1 and)3

In order to justify the neglect of quantum oscillations the

contacts must be several Fermi wavelengths wide. The trans-

] missiont can be obtained from the two-probe conductance

3 measuremente=0). Note that in order to compare to theo-

] retical predictions the structure of tf&matrix might need

0

o bl [

& 0 02 04 to.s“ﬁs' adjustment in order to correctly represent the experimental
> setup. In future work we will study the explicit effect of total
4 phase incoherence across the sample by choosing nonreflect-

ing S matrices for the splitters.
- An experimental realization of a four-probe system is pre-
dicted to exhibit nonlocal thermopowgEg. (19)]. Heating
probes 1 and 3 will produce a measurable temperature gra-
dient and will induce an electric potential drop between the
other two terminals.
I S P R SN In the above analysis we neglected quantum oscillations
0 02 o0 o8 k resulting from electron interference at the measurement
probes 2 and 4. We also disregarded multiple-scattering pro-
FIG. 3. A numerical calculation of Eq47) demonstrating the cesses in the mesoscopic region. These processes are rel-
effect of partial dephasing in reservoirs 2 and 4 on the two-probevant in the strong-coupling limit and can be incorporated in
thermopower of the system of Fig. 2. The inset demonstrates ththe model, yielding corrections to the above results. An exact
effect on the electrical conductanfeq. (44)]. quantum-mechanical treatment has been given for similar
systems in Refs. 20 and 21 in the case of zero temperature.
addition to loss of phase coherence the splitters at reservoilgs z result one obtains phase-sensitive Ohmic voltages
2 and 4 partially reflect the incident electron wave function.yhich depend on the distance of these probes from the scat-
This is a result of our choice d& matrices which are con- terer. By expanding the work reported here, we expect to
strained to ensure perfect transmission in the lieit0. The  optain phase-sensitive thermoelectric voltages which can be
combined effect is to reduce the electrical and heat conduGneasuyred using point-contact probes.
tances. _ _ The calculations in this paper were performed in the Som-
~ The thermopowerS=—L,JL,, in the strong-coupling merfeld approximation. Therefore the results are valid in the
limit satisfies the relation case that the transmission coefficients depend smoothly on
2 energy. Equation$38)—(41) and (44)—(47) are valid when
. 25+10t+4t _ . : 2012 ; ;
e 50, (47) terms including kgT)“t'“ are disregarded with respect to
25+ 250+ 4t terms quadratic it and r. This approximation is usually
The partial loss of phase coherence and splitter reflection agccurate for the following reason. In Ref. 22 the quantity
to lower the thermopower, as illustrated in Fig. 3. The reduc- Lol
tion of conductanc&<~* and thermopowes~*, compared A= 1272t (48)
to the weak-coupling limit, is enhanced s 1. This could Ll 2o

be attributed to the dephasing mechanism becoming MOrg g defined for a two-probe systemis related to the effi-

dominant, as more of the electron wave traverses the barrie&enCy of the thermoelectric effect and in many cases satis-

Note that the results of this section are valid only when muljag A<1 . It is easy to show that in the Sommerfeld approxi-
tiple scattering between the barrier and contacts 2 and 4 cgfjation

be neglected. We expect the correction due to this effect to
be largest in the limit of —1 andt—0. 2 (t')z

A= (koT)?

thereby ensuring that iA<1 the condition kgTt')2<t? is
In this paper we considered specific configurations ofsatisfied.

multiprobe systems in which one can define a nonlocal ther-
moelectric response. It should be possible to realize such a
system experimentally. In particular, we expect that the ef-

fect of partial phase incoherence in a system like the one in Partial support for this work was provided by the Israel

Fig. 2 can be measured. Reservoirs 2 and 4 represent poirfscience Foundation, Grant Number 593/95, and the US-
contact measurement probes. Tuning the distance betwedsrael Binational Science Foundation.
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