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I. INTRODUCTION

Advances in semiconductor fabrication have made it pos-
sible to produce multilayer two-dimensional electron sys-
tems that allow exploration of the effects of interlayer as well
as intralayer correlations. The possibilities raised by the in-
troduction of an extra degree of freedom into the standard
picture of the fractional quantum Hall effect were first exam-
ined by Halperin1 in the context of spin-unpolarized ground
states, and later by Haldane and Rezayi2 who proposed ap-
plying Halperin’s wave functions to the case where the elec-
trons possess a double valued index indicating the quantum
state of the electron in the third direction parallel to the mag-
netic field. These states have been analyzed in their spin as
well as layer index form.3 Recent experiments with
multilayer electron systems4,5 seem to suggest the existence
of incompressible states that belong to the universality class
described by Halperin’s wave functions. These systems al-
low the manipulation of two parameters that greatly influ-
ence the character of the fluids, the distance between the
effective layers of electrons, given byd, and the tunneling
between the two layers, denoted by the energy difference
between the lowest two subbands asDsas.

Motivated by the experimental observation of a transition
between two distinctn52/3 states in wide quantum wells by
Suenet al.5 and also the transition between spin-polarized
and spin-singletn52/3 states in tilted field experiments by
Eisensteinet al.,6 we have analyzed the double-layer model
with interlayer tunneling at total filling factorn52/3 using
the edge-state formalism and a finite-size numerical diago-
nalization study. In the double-layer model electrons are lo-
calized on a pair of parallel planes, between which they can
tunnel. Tunneling lowers the energy of the electrons in a
symmetric combination of states in each plane relative to the
antisymmetric state. If symmetric states are identified as
pseudospin ‘‘up’’ states, and antisymmetric states as pseu-
dospin ‘‘down’’ states, tunneling acts as a Zeeman coupling
in pseudospin space. Therefore our investigation of the
double-layer model will allow a very general picture to
emerge of two-component systems where the pseudospin can
refer either to real spin or to subband index.

We have found a rich phase diagram with three distinct
phases, separated by what we identify as first-order transi-
tions: ~1! The particle-hole conjugate of then51/3 Laughlin
state, where all the electrons are in the symmetric state of the
double layer, ~2! the pseudospin singlet analog of the
n52/3 spin-singlet state, where the electrons are divided
equally between symmetric and antisymmetric states, and~3!
a state with independentn51/3 Laughlin states in each
layer. An interesting feature is that states~1! and ~2!, while
distinct, have been identified as having the same topological
order,7 different from that of~3!. We carried out our inves-
tigation in the periodic~or toroidal! geometry, which is well
adapted to exhibit these differences. For example, the long
distance effective Chern-Simons~CS! theory of the Hall ef-
fect predicts a threefold ground-state degeneracy for states
~1! and ~2! in the periodic geometry, but a ninefold degen-
eracy for state~3!, consistent with our observation. An inter-
esting consequence of the fact that state~3! has different
topological order from states~1! and~2! is that the boundary
between state~3! and either state~1! or ~2! necessarily sup-
ports a residual neutral gapless Luttinger liquid.8 The coex-
istence of two, and possibly three, phases of quantum Hall
states atn52/3 raises many interesting questions, both ex-
perimental and theoretical.

II. EFFECTIVE THEORIES AND EDGE STATES

Rather than work with the wave functions themselves, we
can alternatively discuss the fractional quantum Hall states in
terms of the long-wavelength effective field theories describ-
ing the incompressible fluids. These low-energy effective
theories capture the long-distance correlations between the
particles, determining such universal quantities as the con-
ductance and the charge and statistics of the quasiparticles.
The Lagrangian density for the effective theory can be writ-
ten in the form

2pL5elmn@ 1
2\~al ,K]man!1eAl~q,]man!#, ~1!

where am is an n-component vector of Abelian CS gauge
fields,Am is the electromagnetic gauge field,K is a nonsin-
gular integer coupling matrix,q is an integer vector; (a,b) is
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the inner product. We note here that we use the notationq
for the charge vector rather thant as used by Wen and Zee.7

By integrating out the Chern-Simons fieldsan we can deter-
mine the Hall conductance of the above theory to be

sH5
e2

h
~q,K21q!. ~2!

The effective theory allows vortex defects of the Chern-
Simons fields, with core energies determined by short-
distance terms in the Hamiltonian which have not been in-
cluded. One can determine the charge and statistics of a
particular composite of vortices by specifying an integer val-
ued vectorl such that the composite in question is made up
of l i vortices of typei . The charge of this composite is then
given by

Q5e~q,K21l! ~3!

and the statistical phase acquired when two such composite
vortices are interchanged is given by

u

p
5~ l,K21l!. ~4!

Furthermore, it has been shown7 that the degeneracy of a
state described by the matrixK when it is defined on a two-
dimensional closed surface of genusg is given by

D5uDetK ug. ~5!

We may therefore classify an Abelian quantum Hall state by
specifying an integer valued pair$K ,q%,7 thereby determin-
ing the long-distance properties of the fluid. It is important to
note that distinct quantum Hall states are represented by
equivalence classes of$K ,q% pairs as the above properties
are invariant under SL(k,Z) basis changes

K→WKW T,

q→Wq, ~6!

whereW is an integer matrix withuDetWu51. Two frac-
tional quantum Hall states described by$K ,q% pairs that are
related by an SL(k,Z) transform belong to the same univer-
sality class and are considered topologically equivalent.

The above discussion has been limited to Abelian frac-
tional quantum Hall fluids on the plane. If we instead define
our effective theory on a sphere, there is an extra term in the
effective theory that describes the coupling of the liquid to
the curvature of the sphere. This manifests itself in a new
topological quantum number, the flux shift, which is not de-
termined by the long-distance effective theory described
above. The shift S , defined by the relation
Nf5n21Ne2S , is a manifestation of the coupling of the
orbital angular momentum properties of the state to the cur-
vature of the space. The effective theories employed in the
composite fermion approach on the plane do not distinguish
between Landau levels and spin states. As the orbital angular
momentum carried by the cyclotron motion of electrons in
the second Landau level is different from electrons in the
lowest level, the shiftS provides a way to distinguish be-
tween states that possess the same long-distance properties
but which have different spin symmetries. By utilizing the

topological character of the coupling of orbital angular mo-
mentum to curvature we can classify the spin structure of a
state whose analysis would otherwise lie outside the effec-
tive theory approach.

We can write the Halperin-Laughlin wave function appro-
priate for multicomponent systems in the planar geometry in
the form

CK~$zi%!5)
i, j

~zi2zj !
Kel~s i ,s j !)

i
expS 2

1

4l 2 UziU2D ,
~7!

wheres i is the pseudospin variable andKi j
el5Kel(s i ,s j ) is

the symmetric matrix encoding the electron correlations. If
we specialize to the double-layer system, we can identify the
(m1 ,m2 ,n) state with the effective theory

K5Kel5Sm1 n

n m2
D , q5S 11D . ~8!

We shall be considering two effective theories for the
system atn52/3. The first has been identified as represent-
ing both the pseudospin singlet state and the pseudospin po-
larized, particle-hole conjugate of a Laughlinn51/3 state.
The effective theory is given by

K5S 1 2

2 1D , q5S 11D . ~9!

The second effective theory that we will consider represents
two independentn51/3 Laughlin states

K5S 3 0

0 3D , q5S 11D . ~10!

Both effective theories potentially represent states at
n52/3. There is, however, a crucial difference between the
two theories: they possess different ground-state degenera-
cies on a nontrivial closed space, and therefore possess dif-
ferent topological order. In the remainder of this paper we
will investigate the consequences of the fact that the these
two theories have different topological order.

Let us consider the edge-state theory of the Abelian quan-
tum Hall states. The edge between Abelian Hall fluids is a
one-dimensional ‘‘Luttinger liquid,’’ which can also be char-
acterized by a$K ,q% pair, which is the same pair of the bulk
theory if the edge is between a Hall state and a nonconduct-
ing state. Generally, we may define a set of fieldsf i(x)
living on the one-dimensional compact edge of an incom-
pressible Hall sample such that they obey the equal time
commutation relations

@f i~x!,f j~x8!#5 ip@Ki jsgn~x2x8!1Li j #, ~11!

whereLi j5sgn(i2 j )(Ki j1qiqj ) is a Klein factor. The ac-
tion for the translationally invariantedge fields is given by

S5E dt~S02H0!, ~12!

where
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S052
\

4p(
i j

Ki j
21 R dx]xf i] tf j ~13!

and

H05
\

4p(
i j

Vi j R dx]xf i]xf j , ~14!

whereVi j encodes the nonuniversal interactions that deter-
mine, among other things, the velocities of the various edge
modes. For stability, we require the matrixV to be positive
definite. Let us define

fm5(
i
mif i ~15!

and

q~m!5~m,q!, ~16!

wherem is an integer valued vector. We can define a set of
composite local fields

Cm5e2 ifm, ~17!

which obey, forxÞx8,

Cm~x!Cm8~x8!5hm,m8Cm8~x8!Cm~x!, ~18!

where

hm,m85~21!q~m!q~m8!. ~19!

The winding number operator, defined as

Ni5
1

2p R dx]xf i~x! ~20!

is constrained to be integral by imposing periodic boundary
conditions on the fields

Cm~x1L !5Cm~x!. ~21!

The fields are characterized by the integer quadratic form

K~m!5~m,Km !5(
i j

miKi jmj , ~22!

which has the constraint

~21!K~m!5~21!q~m!. ~23!

If K(m) is odd, the field corresponding tom is is fermionic,
and ifK(m) is even, it is bosonic. We can define the charge
density of the edge as

r~x!5
e

2p(
i j

qiKi j
21]xf j~x!, ~24!

which has the commutation relation

@r~x!,r~x8!#5 i\sHd8~x2x8!, ~25!

where

sH5
e2

h(
i j

qiKi j
21qj . ~26!

The physical interpretation of this quantity is that it repre-
sents the change in the quantized Hall conductivity in going
from one side of the edge to the other. We can also define the
total charge operator

Q5e(
i j

Ki j
21qiNj , ~27!

which obeys the commutation relation

@Q,Cm~x!#5eq~m!Cm~x!. ~28!

The edge-state HamiltonianH0 describesn linearly inde-
pendent oscillator modes propagating with velocitiesvl ,
which can be determined from the generalized real symmet-
ric eigenvalue equation

Vul5vlK
21ul , ~29!

where the velocities are real and the eigenmodes independent
asV is positive definite. We can now state the condition on
the matrixK , which ensures a set of SU~2! generating op-
erators within the theory: If we can identify an integral vec-
tor m such that

K~m!52sm , q~m!50, ~30!

wheresm561 then we may identify an SU~2! algebra asso-
ciated with the edge fieldCm . We can define a triplet of
non-Abelian densities

sx~x!5
1

2
@Cm~x!1C2m~x!#,

sy~x!5~sm /2i !@Cm~x!2C2m~x!#,

sz~x!5
1

2
rm~x!5

1

4p
]xfm~x!, ~31!

which obey a level-1 SU~2! Kac-Moody algebra

@sa~x!,sb~x8!#5
ism
4p

d8~x2x8!1 i eabcsc~x!d~x2x8!.

~32!

We may identify the SU~2! algebra generators

Sa5 R dxsm
a ~x!, ~33!

which obey the commutation relations

@Sa,Sb#5 i eabcSc. ~34!

The auxiliary constraintq(m)50 is to ensure charge neu-
trality. This hidden SU~2! symmetry has been noted
previously.9–11 We note that larger symmetries@specifically
SU(N) for anN-component system# may be identified using
a similar analysis.

Let us focus specifically on the double-component sys-
tem, where the vector components denote different pseu-
dospin components. We shall work in the symmetric basis
whereqi51 for i51,2. Further, the diagonal elementsKii
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must be odd for Fermi statistics. We therefore find that the
only effective theory that may generate an SU~2! edge sym-
metry is

K5S m61 m

m m61D , ~35!

with m even. Diagonalizing the above edge-state system~35!
we obtain the Hamiltonian

H5
\

4p R dx$vn@]xfn~x!#21vc@]xfc~x!#2

12v int]xfc~x!]xfn~x!%, ~36!

where fn5f12f2 is a neutral mode and and
fc5f11f2 is a charged mode. The two modes move with
velocities that depend on the external potential, with inter-
mode interactionsv int mixing these two modes. It is the neu-
tral edge mode that generates the SU~2! algebra where the
field

Cm5e2 i ~f12f2! ~37!

corresponds to the neutral physical operation of tunneling
one electron from one pseudospin to the other. The effective
theory defined by~35! possesses a hidden SU~2! symmetry
of the bulk quantum state, in this case invariance under pseu-
dospin rotations. We may therefore state that a bulk quantum
Hall state may possess an SU~2! symmetry if and only if the
effective theory corresponding to this quantum Hall state has
a nontrivial solutionm to the equationK(m)562. As the
bulk ground state is nondegenerate, apart from topological
degeneracies that are not associated with the SU~2! symme-
try, our states constructed in this way are SU~2! singlets.
Whether or not a particular state is realized as the ground
state depends, of course, on the underlying bulk Hamil-
tonian. It is important to realize that this symmetry is a con-
sequence of the electron correlations rather than the under-
lying Hamiltonian. This algebra is realized in the bulk state
independently of whether or not the Hamiltonian is strictly
invariant under the symmetry.

We must note that in our construction we have assumed
that the matrixK was non-singular. The singular case of
Ki j5m with m odd corresponds to an51/m state, which is
also invariant under pseudospin rotations, but which is fully
polarized withS5Ne/2. This system has been studied previ-
ously and is found to possess many interesting features.12

The edge-state formalism is also capable of addressing the
question of what happens at the edge between two Abelian
Hall states, which is physically realized when there is phase
coexistence in a first-order transition between the two states.
We can form the edge state theory corresponding to the
$K ,q% effective by forming the direct sumK5K1% 2K2
and q5q1%q2 . We will restrict our discussion to aclean
edge between two double-component Hall states at the same
filling fraction, at least one of which possesses an SU~2!
symmetry of the type discussed above. To address the stabil-
ity of the edge of this system, we must consider the general
nonwinding number conserving tunneling perturbation

T5E dx@ t~x!Cm~x!1c.c.#. ~38!

The operator must be bosonic and charge conserving with
q(m)50 andK(m) even. The scaling dimension of this op-
erator can be determined from the two-point function to be
22D(m), whereD(m) satisfies the inequality

D~m!>
1

2
uK~m!u. ~39!

We can construct a representation of the fields such that both
Ki j and the nonuniversalVi j are diagonal

~UKUT! i j5s id i j , ~40!

~UVUT! i j5 v̂ id i j , ~41!

wheres i561. Since stability requiresv̂ i.0, the direction
of propagation of each mode is determined bys i . Using the
transformation matrixU we can determineD(m)

(
i

h i~m!52D~m!, ~42!

where

h i~m!5(
jk

U ji
21Uki

21mjmk . ~43!

The factorsh(m) obey the sum rule

(
i

h i~m!s i5K~m!. ~44!

One can see that if the system is maximally chiral, then the
sum rule explicitly gives us the scaling dimension of the
operator. If it is not maximally chiral, it only gives us a
lower bound. Therefore, from a scaling perspective a tunnel-
ing operator withK(m)50 is potentially relevant if the scal-
ing dimensionD(m),2. In general, the tunneling perturba-
tion will be prevented from being relevant by the complex
tunneling parametert(x) where

t~x!5ut~x!uexp@ ia~x!# ~45!

in the clean case. In order for the perturbation to be relevant,
the phase factor must satisfy

]xa~x!5^0u]xfmu0&. ~46!

We will assume that such a ‘‘phase locking’’ is generically
possible for the edges in question. If theK(m)50 perturba-
tion is relevant, the modes involved inCm become massive
and are removed from the low-energy theory. The only other
perturbations that can be potentially relevant have
uK(m)u52 but are not mass generating@they do form ‘‘hid-
den’’ SU~2! symmetries as discussed previously#. Therefore,
the condition for a potentially mass generating perturbation
is that we must identify a nontrivial integer valued vector
m such thatK(m)5q(m)50. We shall take the point of
view in this paper that if a mass-generating perturbation is
potentially relevant, the system will relax so that the insta-
bility generally occurs. This is a conjecture based upon the
experimental observation that the only stable Abelian Hall
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states are those that do not permit such mass-generating
instabilities.8 If a mass-generating instability can occur, it
appears to do so.

We can apply this analysis to the edge theory at hand.
First, let us consider the edge between two states with the
same topological structure. The edge-state theory will be
based on the$K ,q% pair

K5S m61 m 0 0

m m61 0 0

0 0 2~m61! 2m

0 0 2m 2~m61!
D , ~47!

with

q5S 111
1
D . ~48!

We note that the above edge hassH50 as is appropriate for
an edge between two Hall states with the same filling frac-
tion. In this case, we can identify the two operators of inter-
est: the operatorCm with m5(1,0,21,0) and the operator
with m5(0,1,0,21). Both these operators areK(m)50 op-
erators, which are potentially relevant and mass generating.
Interactions will tend to reduce the scaling dimension of the
two operators, but if they remain relevant we expect that they
will cause a mass gap to form@we note that generally diag-
onal elements of the interaction matrix reduce the scaling
dimension of the operators, while off-diagonal elements tend
to increase it, up to a maximum of 221/2uK(m)u#. It is
straightforward to see that any edge between states with the
sameK matrix will have two such tunneling operators with
K(m)5q(m)50, which potentially cause the modes to pair
up and form a gap, leaving no residual gapless modes in the
low-energy theory. Let us consider a single quantum Hall
state where we arbitrarily choose there to be an edge in the
bulk of the state. The edge state will have the sameK matrix
structure as the edge between any two states that have the
same topological structure. Such a fictitious edge in the bulk
cannot support gapless charged excitations, as is consistent
with our above analysis. Generically, we then expect that at
the edge between two states with the same topological struc-
ture there should be no residual gapless modes.

We can also consider the edge between two states with
different topological structure at the same filling fraction, as
is appropriate at the edge between the pseudospin singlet
state or the particle-hole conjugate state and the state with
independentn51/3 Laughlin states in each layer. Generi-
cally there is only oneK(m)50 tunneling operator at the
edge between double-component states of different topologi-
cal order. It is not possible for two sets of edges to pair up
and form a gap, due to the mismatch in topological structure.
There will always be a pair of residualneutralgapless edge
modes left over in the low-energy theory, with a gap for
making charged excitations. As an example we shall con-
sider the edge between two states atn52/3 possessing dif-
ferent topological order. This will be based on the$K ,q% pair

K5S 1 2 0 0

2 1 0 0

0 0 23 0

0 0 0 23
D , q5S 111

1
D . ~49!

The operatorCm with m5$1,1,21,21% hasK(m)50 and
q(m)50, thereby allowing two charged modes to pair off
and form a gap, leaving two neutral gapless modes in the
low-energy effective theory. The mismatch between two dis-
tinct quantum Hall states at the same filling fraction with
different topological order implies the existence of residual
neutral gapless excitations at the boundary.

In considering the edge between two distinct quantum
Hall states at the same filling fraction, we expect two pos-
sible scenarios. If the two states possess the same topological
structure, such as the pseudospin singlet state and the
particle-hole conjugate state, their respective edges will pair
up and form gaps, leaving behind no residual gapless states.
If the two states have different topological structure, only
one set of modes will split off and form a gap. Two neutral,
gapless modes will remain in the low-energy theory, a re-
sidual side effect of the mismatch in topological order.

III. PHASE DIAGRAM FROM FINITE-SIZE STUDIES

The finite-size studies that we report were carried out us-
ing periodic boundary conditions~see the Appendix! andd
function wave functions to represent the two layers in the
double-layer model, with the electrons confined to the lowest
Landau level as is standard practice. Our studies were per-
formed at filling fractionn5Ne /Nf52/3 with six electrons
and nine flux quanta. In the following, length will be mea-
sured in units ofl , the magnetic lengthA\/eB, and energy
in units ofe2/4pel. The system of electrons interacting via
the Coulomb interaction is exactly diagonalized numerically,
with the spectrum as a function ofk ~see Appendix! provid-
ing the fundamental information on the system. We have
diagonalized the system with the Hamiltonian given by

H52
Dsas

2 (
i

~ci ,1
† ci ,21H.c.!

1
1

2 (
i , j ,k,l

^ ia i , ja j uVukak ,la l&cia i
† cja j

† ckak
cla l,

~50!

where

V~r !5
1

4pe

e2

@r 21d2~12da i ,a j
!#1/2

~51!

anda i is the layer index, which denotes in which of the two
layers the electron resides.

All calculations were performed using square boundary
conditions whereu5p/2 anduL1u5uL2u. It is known

13 that
incompressible states are remarkably insensitive to the par-
ticular boundary conditions chosen, as long as the shortest
length scale of the geometry is larger than the average inter-
particle spacing. While the exact details of the excitation
spectrum in the system under investigation will depend on
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our choice of conditions, the qualitative conclusions con-
cerning the incompressible ground states should not.

In the following we shall use the term pseudospin to refer
to the subband layer index, with the the up spin correspond-
ing to the symmetric combination of layer states and the
down spin the antisymmetric. Tunneling acts as a Zeeman
term in the Hamiltonian, which tends to align the electron
pseudospin in the up state, or the symmetric combination of
layer states. We will vary both the tunneling, denoted in the
Hamiltonian byDsas, and the distance between the double-
layer planes, denoted byd/ l , investigating both the ground
state and the dependence of the excited states on these pa-
rameters.

A. Spin-singlet state

It was realized some time ago1 that when the electron
correlations are of the same order as the Zeeman energy
associated with the spin states, it is important to consider the
spin degrees of freedom in constructing the ground state.
Previous numerical and experimental studies6,14 on the
n52/3 system reveal that the ground state of the non-spin-
polarized system, in the limit of vanishing Zeeman energy, is
plausibly a spin singlet. If we consider a phase diagram
where we vary both the interlayer separationd/ l and the
interlayer tunnelingDsas, along the lined50 the Hamil-
tonian is invariant under pseudospin rotations, allowing a
direct mapping between pseudospin and electron spin in the
presence of the Zeeman term. We know from our previous
edge analysis~33! that theK matrix of the effective theory of
a spin-singlet ground state must be of the form

K5S m61 m

m m61D , q5S 11D , ~52!

wherem is even. Jain and co-workers15 have has proposed a
wave function to describe the spin-singlet state atn52/3
based upon the effective theory where$K ,q% is given by

K5S 1 2

2 1D , q5S 11D . ~53!

We cannot strictly interpret thisK matrix in terms of the
Halperin-Laughlin wave function, as thermodynamic stabil-
ity requires theK matrix for such a wave function to be
positive definite, so we must interpret the wave function in
the planar geometry to be

C~zi ,s i !5)
i, j

~]zi2]zj !
ds i ,s j)

i, j
~zi2zj !

2

3)
i, j

expS i p

2
sgn~s i2s j ! D

3)
i
expS 2

1

4l 2 UziU2D , ~54!

where we have denoted]zi5]/]zi . This wave function is a
spin singlet at the correct filling fraction with the correct
topological properties.

In Fig. 1 we calculate the overlap of the exact ground
state with Coulomb interactions with Jain’s proposed spin-
singlet wave function as we vary the Hamiltonian parameters
Dsas and d/ l ~note thatDsas and tunneling are used inter-
changably!. Several points should be noted. First, the system
is very sensitive to the effects of tunneling, or equivalently, a
magnetic field in pseudospin space. The overlap with the
spin singlet state rapidly falls off with the introduction of
even a slight amount of tunneling. This will tend to make the
experimental observation of the spin-singlet state in
multilayer samples extremely difficult. Second, the system is
reasonably robust against a separation between the two lay-
ers, falling to zero atd'1.1l . Thus we find significant over-
lap between the exact ground state and the proposed spin
singlet even in regions where the Hamiltonian no longer
commutes with the pseudospin algebra. The spin-singlet
character of the state is a manifestation of the electron cor-
relations rather than the underlying Hamiltonian.

While we expect that the numerical data give us qualita-
tive data on the transitions discussed, it should be noted that
finite-size effects will influence the exact positioning of the
transitions in thed/ l -Dsas plane in relation to the thermody-
namic limit, and should therefore be taken with caution.

B. Particle-hole conjugate ofn51/3 Laughlin state

The particle-hole conjugate of the standard Laughlin
n51/3 gives us an incompressible liquid at filling fraction
n52/3, which is denoted in the effective theory by the same
K matrix as that of the spin-singlet state~53!. The matrix
nature of the effective theory does not reflect the correlations
between electrons of opposite pseudospin, as the particle-
hole conjugate state is pseudospin polarized, but rather re-
flects its composite nature. While to our knowledge no
simple wave function has been proposed for the exact
particle-hole conjugate state, a trial hierarchy wave function,
which very effectively captures the electron correlations, has
been developed.16 We may write the hierarchyn52/3 state
as

FIG. 1. Overlap of the ground state with the spin-singlet state as
a function ofd/ l and tunneling. Tunneling is denoted in the Hamil-
tonian asDsas and is measured in units ofe2/4pel.

15 850 53I. A. MCDONALD AND F. D. M. HALDANE



C~$zi ,s i%!5)
i 8

E dv i 8dv i 8
* )
i 8, j 8

~v i 8
*2v j 8

* !2uv i 82v j 8u
2

3)
i , j 8

~zi2wj8!)
i, j

~zi2zj !

3)
i 8

expS 2
1

2l 2 Uv i 8U2D
3)

i
expS 2

1

4l 2 UziU2D , ~55!

where i 851, . . . ,Nh and i51, . . . ,Ne where the number of
holesNh5Ne/2 andNe is the number of electrons. This hi-
erarchical state is represented by the effective theory given
by

K5S 1 1

1 22D , q5S 10D , ~56!

which is equivalent to~53! up to a similarity transformation.
This effective theory also possesses an SU~2! invariance. In
this case, the two pseudospin variables refer to the lowest
two Landau levels in the composite fermion construction.
Within the composite fermion approach, to obtain the single-
layer particle-hole conjugate state one starts with a spin-
polarizedn52 state, a gapped system, and adiabatically at-
taches two flux quanta to each electron opposite to the
direction of the magnetic field that generated then52 state.
As the addition of two flux quanta does not affect the statis-
tics, our composites are still fermions. In a mean-field sense,
we start with a pseudospin polarized state atn52 and de-
crease theB field by two flux tubes per electron, arriving at
a pseudospin polarized state atn52/3, which we identify as
the particle-hole conjugate state. We still have residual gauge
fluctuations associated with the added flux, but they should
not qualitatively change the physics as we started with a
gapped system. Therefore then52/3 polarized state can be
identified with a polarizedn52 integer quantum Hall state.
For the spin-singlet state, out starting point is a spin-
unpolarizedn52 state with the first Landau level being
filled for both the up and down spins. We then perform the
same flux addition process as we did for the polarized state
to arrive at a spin-singletn52/3 fermion state. Within this
approach, which state will be realized depends on the ratio of
the effective cyclotron energy to the effective Zeeman en-
ergy of the composite fermions.

In Fig. 2 we calculate the overlap of the particle-hole
conjugate state with the exact ground state as a function of
Dsas andd/ l (Dsas and tunneling being used interchangably
as in Fig.@1#!. The effect of the tunneling in the spin analogy
can be seen to be a turning on of a Zeeman energy term in
the ẑ direction. As this energy is increased, eventually all the
spins will align themselves along theẑ direction, resulting in
a spin-polarized Laughlin state with all the electrons occu-
pying a symmetric combination of the layer indices. As the
Zeeman term is turned on, the system abruptly reaches a
transition point where the overlap of the ground state with
the spin-singlet state falls to zero~Fig. 1!, while the overlap
with the Laughlin 2/3 particle-hole conjugate state jumps to
close to unity.

As the spin-singlet state and the particle-hole conjugate
state are described by the same pair$K ,q%, they are de-
scribed by the same effective theory on the plane and possess
the same edge-state structure. While the effective theory ap-
proach captures many of the long-distance properties of the
fluid, it does not classify the spin of the state, which is de-
termined by the energy associated with the spin degree of
freedom. As we turn on the tunnelingDsas, we find a tran-
sition from a region where it is energetically favorable to put
the composite fermions in the first two spin states in the
lowest Landau level to a region where it is favorable to put
them in the first two Landau levels. In both cases we have an
SU~2! symmetry, in the one case between pseudospin states
and in the other between Landau levels. It is important to
notice that within the composite fermion approach the effec-
tive cyclotron energy is heavily renormalized, as small varia-
tion in the effective field essentially makes it energetically
favorable to place the electrons in two pseudospin-polarized
Landau levels, costing cyclotron energy but saving on Zee-
man energy. The composite fermion process of attaching flux
has the effect of enhancing the ratio of the effective energy
associated with a pseudospin flip to the effective cyclotron
energy.

C. „3,3,0… double-layer state

At nonzerod/ l , as the Hamiltonian no longer commutes
with psuedospin rotations the ground state need not be an
eigenstate of pseudospin nor need it possess an SU~2! sym-
metry as the particle-hole conjugate state does. A proposed
effective theory for the ground state at large layer separation
d/ l is given by

K5S 3 0

0 3D , q5S 11D , ~57!

which has a direct interpretation as a (3,3,0) Halperin-
Laughlin multicomponent wave function representing inde-
pendentn51/3 Laughlin states in each layer. In Fig. 3 we
calculate the overlap of the exact ground state with the

FIG. 2. Overlap of the ground state with then52/3 Laughlin
particle hole conjugate state as a function ofd/ l and tunneling.
Tunneling is denoted in the Hamiltonian asDsasand is measured in
units ofe2/4pel. Note the change in perspective of this figure from
the previous figure.
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(3,3,0) state as a function ofDsas andd/ l ~note again that
tunneling andDsasare being used interchangably!. The tran-
sition between the (3,3,0) state and the particle-hole conju-
gate state~Fig. 2! represents a competition between minimiz-
ing the Coulomb energy between the electrons and the
tunneling energy cost of localizing the electrons on indepen-
dent planes. For any given tunnelingDsas it is possible to
find a large enoughd/ l such that it is energetically favorable
to form the independentn51/3 states in each layer, costing
in tunneling energy but gaining even more in minimizing the
electrostatic ground-state energy. Equivalently, given any in-
terlayer distance we can find a tunneling energy that will
outweigh the favorable interaction energy associated with
having the electrons as far apart as possible.

D. Phase diagram

We can identify three separate phases for then52/3 sys-
tem as a function of tunnelingDsas and the layer separation
d/ l . We calculate the phase diagram for then52/3 system in
Fig. 4 from the overlap data by matching a system with a
particular phase if the overlap of the ground state with the
characteristic state is greater than some cutoff, chosen to be
0.75 in Fig. 4. One important feature to note is the existence
of a triple point in our numerical studies atd'1.1l and
Dsas'0.01 where all three phases will be in coexistence. It is
difficult to extract the experimental parameters where such a
triple point might occur from our finite-size numerical data,
as such quantitative information will be sensitive to finite-
size effects such as geometry and particle number. We con-
jecture that the triple point where all three discussed phases
will be in coexistence will persist in the thermodynamic
limit, in the neighborhood of the physical parameters sug-
gested by our studies. The observation of such a triple point
remains an interesting experimental possibility.

IV. FINITE-SIZE STUDY OF TRANSITIONS

Whenever a system exhibits different macroscopic phases
as a function of system parameters, it is natural to ask ques-
tions about the transitions between such phases. While finite-

size studies are unable to address questions about the ther-
modynamic features of such transitions, they are able to shed
light on qualitative changes in structure that a bulk liquid
may undergo in going from one phase to another. In order to
investigate the transitions involved in our double-layer
n52/3 system, we have exactly diagonalized our finite sys-
tem using periodic boundary conditions as a function of the
system parametersDsas andd/ l . We can follow the devel-
opment of individual energy levels of the system as these
parameters are varied by identifying the quantum numbers of
the state in question such as parity under reflection and the
translational quantum numberk and noting that under adia-
batic perturbation the energy levels should be smooth and
connected in our finite system. In the following figures we
plot the energy levels of the system as a function of either
Dsasandd/ l , at each step subtracting off the average energy
of the system in order eliminate background energies of the
system. The energy levels that are relevant to each transition
are connected for emphasis during their development.

When using periodic boundary conditions it is important
to note that each eigenstate has a generic degeneracy associ-
ated with center-of-mass translations given byq if the filling
fraction isn5p/q. The formalism used to classify states~see
the Appendix! extracts this degeneracy explicitly. Since we
are always working at fixed filling fraction, this degeneracy
will be unimportant.

A. Variation of d/ l at Dsas50

In Fig. 5, the variation of the energy levels as a function
of d/ l for Dsas50 is shown, with the average energy at each
d/ l subtracted off. The transition being witnessed is from the
spin-singlet phase to the (3,3,0) phase asd/ l is increased. At
small values ofd/ l the ground state is well represented by
Jain’s spin-singlet state, with a well-defined energy gap to all
excitations indicative of an incompressible phase.

At large values ofd/ l the ground state is given by a three-
fold degenerate multiplet of states, each being ak50 eigen-

FIG. 3. Overlap of the ground state with the (3,3,0) state as a
function of d/ l and tunneling. Tunneling is denoted in the Hamil-
tonian asDsas and is measured in units ofe2/4pel. Note the
change in perspective of this figure from the previous two figures.

FIG. 4. Phase diagram ofn52/3 system as a function ofDsas

andd/ l . Dsas is measured in units ofe2/4pel.
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state that in the thermodynamic limit becomes rotationally
invariant. There is again a well-defined energy gap between
the ground-state multiplet and all excited states. There is a
slight splitting of the degeneracy due to finite-size effects but
this feature will disappear as the size of the system is in-
creased.

The key feature to note is the change in ground-state de-
generacy in going from the spin-singlet state to the (3,3,0)
state. Such a change is to be expected from our effective
theory considerations. As noted previously the degeneracy of
a state given by the effective theory with the pair$K ,q% on a
torus is given byuDetKu. The spin-singlet state must then
have an overall degeneracy of three while the (3,3,0) state
has a degeneracy of nine. As mentioned above our formalism
extracts a threefold center-of-mass degeneracy generic to
states atn52/3, leaving us with a residual threefold degen-
eracy for the (3,3,0) state and a nondegenerate spin-singlet
state, consistent with our numerical data.

Another point to be noted is that one of the energy levels
coming down in the (3,3,0) state triplet has the same sym-
metry as the spin-singlet state, resulting in an energy level
repulsion as they cross. As the transition point approaches,
the triplet of states comes down, crossing with the spin-
singlet state.

It is interesting to note that even in considering bulk tran-
sitions, as we are in our finite-size studies, the systems dis-
play a residual side effect from the topological mismatch
between the two states in coexistence. In our edge-state
analysis we found that at the edge between the spin-singlet
and (3,3,0) state there will be residual neutral gapless modes
due to the difference in topological structure, while in our
bulk finite-size studies we find a change in ground-state de-
generacy. Both features are generic and stable against pertur-
bation, indicative of the true topological character of the in-
compressible fluids.

B. Variation of Dsas at d/ l50

In Fig. 6 we investigate the energy-level structure by fix-
ing d/ l50 and varyingDsas. We are witnessing the transi-

tion from the spin-singlet ground state to the particle-hole
conjugate state as a function of the Zeeman energy associ-
ated with the pseudospin degree of freedom. The system
quickly undergoes a transition from the spin-singlet state to
the particle-hole conjugate state indicated by a simple level
crossing. The spin-singlet state is extremely sensitive to the
effects of the effective magnetic field, rapidly finding it en-
ergetically favorable to place the composite fermions in the
second Landau level rather than the first spin-reversed Lan-
dau level.

As the two phases possess the same topological structure
they also possess the ground-state degeneracy. They do,
however, have different pseudospin symmetries, allowing
the energy levels to cross without repulsion. Such an energy-
level crossing will become a first-order transition in the ther-
modynamic limit.

C. Variation of Dsas at d52.0l

In Fig. 7 we investigate the energy structure atd52.0l as
we vary Dsas. We are seeing the transition from the
(3,3,0) state to the particle-hole conjugate state as we turn up
the tunneling. The transition is qualitatively the same as the
spin singlet to (3,3,0) transition, with a degeneracy transition
due to the topological mismatch between the two states.
Again we see a level crossing driven by variation in the
sample parameters, where two states involved in the crossing
mix and cause energy-level repulsion. This transition is par-
ticularly relevant as experimental evidence supporting such a
phase transition already exists.5 The experiments of Suen
et al.5 were performed using a single wide quantum well
geometry, making quantitative comparison with our ideal-
ized double-layer calculations difficult.17

V. NATURE OF THE TRANSITIONS

We believe that the transitions seen in our finite-size stud-
ies represent first-order phase transitions in the thermody-

FIG. 5. Variation in energy levels asd/ l is varied atDsas50.
FIG. 6. Variation in energy levels asDsas is varied atd/ l50.

Dsas is measured in units ofe2/4pel.
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namic limit at low temperatures in a clean system. Tradition-
ally, one uses broken symmetries and their associated order
parameters to classify and organize many-body systems, of-
ten allowing the construction of low-energy effective theo-
ries based on these order parameters, which capture the es-
sence of the correlated states as well as predicting effects that
are not accessible in a microscopic approach. The effective
theories employed in the description of the fractional quan-
tum Hall effect are not based on an order parameter derived
from a broken symmetry. Rather, these effective theories em-
body a type of order called topological order, which is stable
against perturbation and manifests itself in such properties as
the ground-state degeneracy when the system is defined on a
topologically nontrivial closed space. We therefore do not
consider the fractional quantum Hall states to be broken
symmetry states.

As the fractional quantum Hall states are not broken sym-
metry states, they cannot undergo the usual second-order
phase transition where the order parameter goes smoothly to
zero in the vicinity of a transition point, and is zero on the
other side of the transition. It would appear that due to the
fact that the order embodied by the fractional quantum Hall
states is discrete and topological in origin that it would be
impossible to go smoothly from one state to another with
different topological order as a function of system param-
eters in a clean system. Let us consider a point in thed/ l -
Dsas plane where either then52/3 spin-singlet state or the
particle-hole conjugate state is in coexistence with the
(3,3,0) state. From our edge-state analysis we know that
when two phases having different topological order are in
coexistence there will be at least one pair of residual neutral
gapless modes at the boundary between phases. The finite
energy of these modes will localize the boundary between
the two phases, forcing the transition to occur by nucleation,
resulting in a first-order phase transition. If two states have
different topological order, there is no way to go smoothly
from one state to another due to the discrete nature of topo-
logical order.

In the transition between two states that possess the same
topological order there is no such mismatch. If we consider
the interface between two such states, such as the spin-
singlet state and the particle-hole conjugate state, we expect
that the two pairs of edge modes will pair up and form a gap,
leaving no residual gapless modes. In a clean system the two
states have different pseudospin symmetries, as the particle-
hole conjugate state is spin polarized while the spin singlet
state is a true pseudospin singlet. This difference is reflected
in the flux-number shift of the two states on the sphere:
S 50 for the particle-hole conjugate state andS 51 for the
spin singlet. The transition can then go by a simple level
crossing, resulting in a first-order transition in the thermody-
namic limit.

There exists the possibility that there might be some in-
termediate state that exists between the two principal states
undergoing the transition. This case is really a two-step pro-
cess rather than a direct transition: Hall state to intermediate
state, and then intermediate state to Hall state. In principle,
the intermediate state could be incompressible, but we can
then apply the same arguments used above to show that the
two principal states undergoing the transition cannot be con-
nected smoothly. While this scenario is an experimental pos-
sibility, in then52/3 system no evidence exists for this type
of intermediate transition. As such, we conjecture that all the
transitions involved in then52/3 system will be first order.

VI. CONCLUSIONS

In conclusion, we have examined the structure of the
phase diagram of then52/3 double-layer electron system as
a function of d/ l , the distance between the layers, and
Dsas, the tunneling parameter for the system. A phase dia-
gram consisting of three different phases, each belonging to
a different, distinct universality class, was calculated. A
triple point is conjectured where all three phases are stable.
A gapless, neutral Luttinger liquid structure is predicted at
the interface between either the spin-singlet state or the
particle-hole conjugate state and the (3,3,0) state. At the in-
terface between the spin-singlet state and the particle-hole
conjugate state no residual gapless modes are expected. It is
conjectured that there should be first-order transitions be-
tween all three phases, indicated by distinct level crossings
in the finite system energy levels.
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APPENDIX: PERIODIC BOUNDARY CONDITIONS

We wish to impose generalized boundary conditions by
requiring that all physical quantities be invariant under trans-
lation of any particle by the set of translations
Lmn5mL11nL2 such that

uL13L2u52pNfl
2, ~A1!

FIG. 7. Variation in energy levels asDsas is varied at
d/ l52.0. Dsas is measured in units ofe2/4pel.
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whereNf is the number of flux quanta. We impose the gen-
eral boundary conditions on the wave function for any par-
ticle i :

t i~Lmn!uC&5~hmn!
NfeiF0•LmnuC&, ~A2!

wherehmn5(21)(m1n1mn) and we will chooseF050 as
our boundary condition. The operatorst(a) are the transla-
tion operators in the presence of a magnetic field,19 which
obey the noncommutative algebra

t~a!t~a8!5t~a1a8!eia3a8/2l2. ~A3!

We shall denote the two-dimensional coordinate as
a5ax1 iay and ā5ax2 iay .

In the periodic geometry, Halperin’s extension of Laugh-
lin’s wave function, suitable for double-layer systems, can be
written as

C~m1 ,m2 ,n!@zi ,zi8#5Cc.m.@Z,Z8#C rel
~m1 ,m2 ,n!

@zi ,zi8#,
~A4!

where

C rel
~m1 ,m2 ,n!

@zi ,zi8#5)
i, j

@f~zi2zj !#
m1)

i, j
@f~zi82zj8!#m2

3)
i , j

@f~zi2zj8!#n. ~A5!

Z5( izi , Z85( iz8, and the unprimed coordinates refer to
electrons in the first layer while the primed refer to electrons
in the second. This wave function is denoted (m1 ,m2 ,n).
The basic building block that we have built our wave func-
tion from is the quasiperiodic functionf(z), which can be
written as

f~z!5w~z!expF2S z* z
4Nfl

2D G , ~A6!

where

w~z!5expS z2

4Nfl
2DQ1~kzut! ~A7!

and Q1(uut) is the odd elliptic Q function,
Lmn5k21(m1nt), and t5(L2 /L1)e

iu, where
L1•L25uL1uuL2ucosu. We have used the symmetric gauge
A5(B/2)r3 ẑ in expressing the functionf. We constrain
m1 andm2 to be odd for Fermi statistics. Note that in writing
the wave function in this form we have expressed the corre-
lations between the electrons but for notational simplicity
suppressed the pseudospin part of the wave function, which
would properly antisymmetrize the overall wave function.
This form of the double-layer wave functions has been dis-
cussed previously.18

We consider a system of electrons confined to two paral-
lel planes subject to periodic boundary conditions confined
to the lowest Landau level. The symmetry analysis of this
system, as introduced by Haldane,19 allows us to construct a
Hilbert space that extracts the center-of-mass degeneracy as
well as providing a correct classification of states allowing
comparison with studies performed in other geometries. We
can therefore classify the eigenstates of a translationally in-
variant Hamiltonian obeying@H,T(a)#50 by the quantum
numberk defined to be

TS Lmn

N̄
D uC&5~hmn!

pqexpS i k•Lmn

N̄
D uC&, ~A8!

where Ne5N̄p and Nf5N̄q, allowing us to write
n5Ne /Nf5p/q. In the thermodynamic limit the states
characterized byk50 become rotationally invariant, imply-
ing that the signature of an incompressible quantum Hall
state is ak50 ground state with an energy gap to all excited
states. As the operator~65! commutes with the center-of-
mass operatorT(Lmn /Nf)5) i t i(Lmn/Nf) each eigenstate
has aq-fold degeneracy associated with the action of the
center-of-mass operator.
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