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Topological phase transition in ther=2/3 quantum Hall effect
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The double-layerv=2/3 fractional quantum Hall system is studied using the edge-state formalism and
finite-size diagonalization subject to periodic boundary conditions. Transitions between three different ground
states are observed as the separation as well as the tunneling between the two layers is varied. Experimental
consequences are discusgetD163-18206)02423-X

I. INTRODUCTION We have found a rich phase diagram with three distinct
phases, separated by what we identify as first-order transi-

Advances in semiconductor fabrication have made it postions: (1) The particle-hole conjugate of the=1/3 Laughlin
sible to produce multilayer two-dimensional electron sys-state, where all the electrons are in the symmetric state of the
tems that allow exploration of the effects of interlayer as welldouble layer, (2) the pseudospin singlet analog of the
as intralayer correlations. The possibilities raised by the in¥=2/3 spin-singlet state, where the electrons are divided
troduction of an extra degree of freedom into the standar@dually between symmetric and antisymmetric states(&nd
picture of the fractional quantum Hall effect were first exam-2 State with independent=1/3 Laughlin states in each
ined by Halperifi in the context of spin-unpolarized ground 12Yer.- An interesting feature is that stafds and(2), while

states, and later by Haldane and Re2ayho proposed ap- distinct, have been identified as having the same topological

o ) g
plying Halperin’'s wave functions to the case where the elec-c.)rder’ different from that of(3). We carried out our inves-

: T ation in the periodicor toroida) geometry, which is well
trons possess a double valued index indicating the quantuﬂﬂapted to exhibit these differences. For example, the long

state of the electron in the third direction parallel to the Mag-ii- e effective Chern-Simor€S) theory of the Hall ef-

netic field. These states have been analyzed in their spin et predicts a threefold ground-state degeneracy for states

well as layer index formi. Recent experiments with ; o ; )
multilayer electron systerftS seem to suggest the existence (1) and (2) in the periodic geometry, but a ninefold degen

low the manipulation of two parameters that greatly inﬂu-b ; :
. ; etween stat€3) and either stat€l) or (2) necessarily sup-
ence the character of the fluids, the distance between trbe €) €1) or (2) y sup

. ) . orts a residual neutral gapless Luttinger lighifihe coex-
effective layers of electrons, given Ik and the tunn.ellng istence of two, and possibly three, phases of quantum Hall
between the two layers, denoted by the energy dlfferencgtates atv=2/3 raises many interesting questions, both ex-
between the lowest two subbandsg,. perimental and theoretical

Motivated by the experimental observation of a transition '
between two distinct=2/3 states in wide quantum wells by
Suenet al® and also the transition between spin-polarized

and spin-singlety=2/3 states in tilted field experiments by  Rather than work with the wave functions themselves, we
Eisensteiret al,® we have analyzed the double-layer modelcan alternatively discuss the fractional quantum Hall states in
with interlayer tunneling at total filling factor=2/3 using  terms of the long-wavelength effective field theories describ-
the edge-state formalism and a finite-size numerical diagoing the incompressible fluids. These low-energy effective
nalization study. In the double-layer model electrons are lotheories capture the long-distance correlations between the
calized on a pair of parallel planes, between which they caparticles, determining such universal quantities as the con-
tunnel. Tunneling lowers the energy of the electrons in ajuctance and the charge and statistics of the quasiparticles.

symmetric combination of states in each plane relative to thghe Lagrangian density for the effective theory can be writ-
antisymmetric state. If symmetric states are identified asen in the form

pseudospin “up” states, and antisymmetric states as pseu-

dospin “down” states, tunneling acts as a Zeeman coupling 2w L= 3h(ay Kd,a,)+eA(q,d,a,)], (1)

in pseudospin space. Therefore our investigation of the

double-layer model will allow a very general picture to wherea, is ann-component vector of Abelian CS gauge
emerge of two-component systems where the pseudospin céields, A, is the electromagnetic gauge field,is a nonsin-
refer either to real spin or to subband index. gular integer coupling matrixq is an integer vector;g,b) is

Il. EFFECTIVE THEORIES AND EDGE STATES
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the inner product. We note here that we use the notagion topological character of the coupling of orbital angular mo-
for the charge vector rather thams used by Wen and Zée. mentum to curvature we can classify the spin structure of a
By integrating out the Chern-Simons fieldswe can deter- state whose analysis would otherwise lie outside the effec-

mine the Hall conductance of the above theory to be tive theory approach.

) We can write the Halperin-Laughlin wave function appro-

e B priate for multicomponent systems in the planar geometry in
H_ 1
o= (a.K 9. @ the form
The effective theory allows vortex defects of the Chern- o 1
Simons fields, with core energies determined by short- V¥ ({z})=]] (zi—z)*"-o]] exp{—m z 2),
distance terms in the Hamiltonian which have not been in- 1<) :

cluded. One can determine the charge and statistics of a ()
particular composite of vortices by specifying an integer Va"whereoi is the pseudospin variable amﬁlz K®(a;,0) is
ued vector such that the composite in question is made Uppe symmetric matrix encoding the electron correlations. If
of I; vortices of typei. The charge of this composite is then \ye gpecialize to the double-layer system, we can identify the

given by (m;,m,,n) state with the effective theory
=e(q,K™ 1 3
B Q=e(q | ) () | o (m n e
and the statistical phase acquired when two such composite K=K"=| | )’ 9={ 4] (8

vortices are interchanged is given by

P We shall be considering two effective theories for the
—=(I,K™1. (4) system atv=2/3. The first has been identified as represent-
m ing both the pseudospin singlet state and the pseudospin po-

Furthermore, it has been sholvthat the degeneracy of a larized, particle-hole conjugate of a Laughlin=1/3 state.

state described by the matrik when it is defined on a two- The effective theory is given by

dimensional closed surface of germiss given by

1 2 1
D=|DetK 9. (5) K=(2 1), q=(1)- 9

We may therefore classify an Abelian quantum Hall state b
specifying an integer valued pdiK,q},’ thereby determin-
ing the long-distance properties of the fluid. It is important to
note that distinct quantum Hall states are represented by 3 0 1
3 o}

yl’he second effective theory that we will consider represents
two independeni=1/3 Laughlin states

equivalence classes ¢K,q} pairs as the above properties

10
are invariant under Slg,Z) basis changes (19

0 3 1)
K—WKWT, Both effective theories potentially represent states at
v=2/3. There is, however, a crucial difference between the
g—Waq, (6)  two theories: they possess different ground-state degenera-
) i . cies on a nontrivial closed space, and therefore possess dif-
whereW is an integer matrix withDetW|=1. Two frac-  ferent topological order. In the remainder of this paper we
tional quantum Hall states described ¢,q} pairs that are || jnvestigate the consequences of the fact that the these
related by an SL£,Z) transform belong to the same univer- 14 theories have different topological order.
sality class and are considered topologically equivalent. Let us consider the edge-state theory of the Abelian quan-
~ The above discussion has been limited to Abelian fracyym Hall states. The edge between Abelian Hall fluids is a
tional quantum Hall fluids on the plane. If we instead defineéyne_dgimensional “Luttinger liquid,” which can also be char-

our effective theory on a sphere, there is an extra term _in thgcterized by 4K,q} pair, which is the same pair of the bulk
effective theory that describes the coupling of the liquid totheory if the edge is between a Hall state and a nonconduct-

the curvature of the sphere. This manifests itself in a NeWng state. Generally, we may define a set of fieligx)
topological quantum number, the flux shift, which is not de'living on the one-dimensional compact edge of an incom-

termined by the long-distance effective theory describecbressible Hall sample such that they obey the equal time
above. The shift /7, defined by the relation .,mmutation relations

N¢=v*1Ne—f//‘, is a manifestation of the coupling of the

orbital angular momentum properties of the state to the cur- [i(x),;(x") =i [ Kj;sgnx—x")+Ly], (11)
vature of the space. The effective theories employed in the

composite fermion approach on the plane do not distinguisivhereL;; =sgn( —j)(Kj; +q;q;) is a Klein factor. The ac-
between Landau levels and spin states. As the orbital angulaibn for thetranslationally invariantedge fields is given by
momentum carried by the cyclotron motion of electrons in

the second Landau level is different from electrons in the

lowest level, the shift”” provides a way to distinguish be- Szf dt(Sp—Ho), (12
tween states that possess the same long-distance properties

but which have different spin symmetries. By utilizing the where
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h -1
So=— E%‘z Kij %dxaxqsiatd’j (13
and
f
HO:E; Vij 3€dxf7x¢i0x¢j, (14
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The physical interpretation of this quantity is that it repre-
sents the change in the quantized Hall conductivity in going
from one side of the edge to the other. We can also define the
total charge operator

Q=e; Ki; "aiN;, (27)

whereV;; encodes the nonuniversal interactions that deterwhich obeys the commutation relation
mine, among other things, the velocities of the various edge

modes. For stability, we require the mathixto be positive
definite. Let us define

Pm= Z m; ¢ (15

and

q(m)=(m,q), (16)

wherem is an integer valued vector. We can define a set o
composite local fields

\Pm:eii(ﬁm! (17)
which obey, forx#x’,
Y (X)W (X)) = m.mr W (X)W (X), (18
where
e = (— 1 AMA™), (19
The winding number operator, defined as
1
Ni=5=  dxia(0 @)

is constrained to be integral by imposing periodic boundary

conditions on the fields

T (x+L)=F (X). (21)

The fields are characterized by the integer quadratic form

K(m)=<m,Km>=; miK;;m; (22
which has the constraint
(—DKM=(=1)am. (23

If K(m) is odd, the field corresponding to is is fermionic,

and if K(m) is even, it is bosonic. We can define the charge

density of the edge as

e _
POO= 52 GiKij (), (24
which has the commutation relation
[p(X),p(X")]=iha" & (x—X'), (25
where
e? L
oH=F; qiK;; ;- (26)

[Q¥m(x)]=eq(m)Wn(X). (28)

The edge-state Hamiltonidty, describesh linearly inde-
pendent oscillator modes propagating with velocitigs,
which can be determined from the generalized real symmet-
ric eigenvalue equation

(29

here the velocities are real and the eigenmodes independent

sV is positive definite. We can now state the condition on
the matrixK, which ensures a set of $2) generating op-
erators within the theory: If we can identify an integral vec-
tor m such that

VU)\:U)\K_:LU)\,

K(m)=2sy, q(m)=0, (30

wheres,,= =1 then we may identify an S@) algebra asso-
ciated with the edge field,,. We can define a triplet of
non-Abelian densities

1
(0= 5[ Wn(X)+ ¥ _n(X)],
)= (5 2D)[ ¥ (X)W ()],

1 1
ai(x)= Epm(x): Eax(ﬁm(x): (31

which obey a level-1 S(2) Kac-Moody algebra

iSm .
[d3(X),0P(x")]= E&'(X—X’)-I—Ieabca'c(x) S(x—x").

(32)
We may identify the S(2) algebra generators
= fﬁchrf‘n(x), (33
which obey the commutation relations
[S?,S]=i€?PCsC. (34)

The auxiliary constrainj(m)=0 is to ensure charge neu-
trality. This hidden SR) symmetry has been noted
previously’~'! We note that larger symmetri¢specifically
SU(N) for anN-component systehmay be identified using
a similar analysis.

Let us focus specifically on the double-component sys-
tem, where the vector components denote different pseu-
dospin components. We shall work in the symmetric basis
whereq;=1 for i=1,2. Further, the diagonal elemerig
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must be odd for Fermi statistics. We therefore find that the
only effective theory that may generate an(8luedge sym- TIJ dX[t(X) ¥ y(x)+c.cl. (38)

metry is _ ) )
The operator must be bosonic and charge conserving with

m+=1 m d(m)=0 andK(m) even. The scaling dimension of this op-
Kz( ) (35) erator can be determined from the two-point function to be

m m:l 2—A(m), whereA(m) satisfies the inequality

with m even. Diagonalizing the above edge-state sys&sn A(m)= 1| K(m)]. (39)
we obtain the Hamiltonian 2

We can construct a representation of the fields such that both
fi K;; and the nonuniversal;; are diagonal
H= 4 % dx{vn[ax¢n(x)]2+Uc[ax¢c(x)]2 . N g
(UKUT);; =05 , (40)
+2Uint‘9x¢c(x)ﬁx¢n(x)}’ (36) T R
(UVUY);i=v;4, (41
where  ¢n=¢1—¢, is a neutral mode and and where o;=* 1. Since stability requireg;>0, the direction

¢:.= P11+ ¢, is a charged mode. The two modes move with : - : .
velocities that depend on the external potential, with inter-Of propagation of each mode is determineddyy Using the

! . L . transformation matriXJ we can determiné (m
mode interactions;,; mixing these two modes. It is the neu- (m)
tral edge mode that generates the(3lhalgebra where the

field 2, m(m)=24(m), (42)
P =e (41742 (37 where

corresponds to the neutral physical operation of tunneling (m=> uzlu:mm 43

one electron from one pseudospin to the other. The effective m(m) % i T e “3

theory defined by35) possesses a hidden &Y symmetry
of the bulk quantum state, in this case invariance under pse
dospin rotations. We may therefore state that a bulk quantum

Hall state may possess an @Jsymmetry if and only if the > pi(m)o;=K(m). (44
effective theory corresponding to this quantum Hall state has i

a nontrivial solutionm to the equatiorK(m)==*2. As the  one can see that if the system is maximally chiral, then the
bulk ground state is nondegenerate, apart from topologicayym rule explicitly gives us the scaling dimension of the
degeneracies that are not associated with th€B&ymme-  gperator. If it is not maximally chiral, it only gives us a
try, our states constructed in this way are (3Usinglets.  |ower bound. Therefore, from a scaling perspective a tunnel-
Whether or not a particular state is realizeq as the grounﬁ-,g operator withK (m) =0 is potentially relevant if the scal-
state depends, of course, on the underlying bulk Ham|l-ing dimensionA (m)<2. In general, the tunneling perturba-

tonian. It is important to realize thgt this symmetry is a con-tjon will be prevented from being relevant by the complex
sequence of the electron correlations rather than the U”deﬂ]nneling parametet(x) where

lying Hamiltonian. This algebra is realized in the bulk state
independently of whether or not the Hamiltonian is strictly t(x)=t(x)|exdia(x)] (45)
invariant under the symmetry. ) i

We must note that in our construction we have assumed! the clean case. In order_ for the perturbation to be relevant,
that the matrixk was non-singular. The singular case of "€ Phase factor must satisfy
K;i=m with m odd corresponds to a= 1/m state, which is _
also invariant under pseudospin rotations, but which is fully 9xt(X)=(0|dxbm|0). (48
polarized withS=N,/2. This system has been studied previ- We will assume that such a “phase locking” is generically
ously and is found to possess many interesting feafidres. possible for the edges in question. If tk¢m)=0 perturba-

The edge-state formalism is also capable of addressing th@n is relevant, the modes involved #,, become massive
question of what happens at the edge between two Abeliaand are removed from the low-energy theory. The only other
Hall states, which is physically realized when there is phas@erturbations that can be potentially relevant have
coexistence in a first-order transition between the two state$k(m)|=2 but are not mass generatifthey do form “hid-
We can form the edge state theory corresponding to thden” SU(2) symmetries as discussed previoysljherefore,
{K,q} effective by forming the direct sulK=K,;®—K, the condition for a potentially mass generating perturbation
andq=0q;9q,. We will restrict our discussion to alean is that we must identify a nontrivial integer valued vector
edge between two double-component Hall states at the samme such thatK(m)=q(m)=0. We shall take the point of
filling fraction, at least one of which possesses an(ZU view in this paper that if a mass-generating perturbation is
symmetry of the type discussed above. To address the stabpotentially relevant, the system will relax so that the insta-
ity of the edge of this system, we must consider the generdility generally occurs. This is a conjecture based upon the
nonwinding number conserving tunneling perturbation experimental observation that the only stable Abelian Hall

J:he factorsn(m) obey the sum rule
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states are those that do not permit such mass-generating 1 2 0 0 1
instabilities® If a mass-generating instability can occur, it 5 1 0 1
appears to do so.

We can apply this analysis to the edge theory at hand. K=lo o0 -3 o |+ O=|1 (49
First, let us consider the edge between two states with the 00 0 -3 1

same topological structure. The edge-state theory will be

based on th¢K,q} pair The operatotV,, with m={1,1,—1,— 1} hasK(m)=0 and
m=1 m 0 0 g(m)=0, thereby allowing two charged modes to pair off
and form a gap, leaving two neutral gapless modes in the
m m+1 0 0 low-energy effective theory. The mismatch between two dis-
K= 0 0 —(m=*=1) -m . (4D tinct quantum Hall states at the same filling fraction with
0 0 m —(m*1) different topological order implies the existence of residual
- neutral gapless excitations at the boundary.
In considering the edge between two distinct quantum
Hall states at the same filling fraction, we expect two pos-
sible scenarios. If the two states possess the same topological
structure, such as the pseudospin singlet state and the
particle-hole conjugate state, their respective edges will pair
(48) up and form gaps, leaving behind no residual gapless states.
If the two states have different topological structure, only
one set of modes will split off and form a gap. Two neutral,
gapless modes will remain in the low-energy theory, a re-

We note that the above edge has=0 as is appropriate for - sjqual side effect of the mismatch in topological order.
an edge between two Hall states with the same filling frac-

tion. In this case, we can identify the two operators of inter-
est: the operatoW ,, with m=(1,0,—1,0) and the operator
with m=(0,1,0,—1). Both these operators akgm)=0 op- The finite-size studies that we report were carried out us-
erators, which are potentially relevant and mass generatingng periodic boundary conditionsee the Appendixand 6
Interactions will tend to reduce the scaling dimension of thefunction wave functions to represent the two layers in the
two operators, but if they remain relevant we expect that theylouble-layer model, with the electrons confined to the lowest
will cause a mass gap to forfme note that generally diag- Landau level as is standard practice. Our studies were per-
onal elements of the interaction matrix reduce the scalindormed at filling fractionv=N./N,=2/3 with six electrons
dimension of the operators, while off-diagonal elements tendnd nine flux quanta. In the following, length will be mea-
to increase it, up to a maximum of-21/2|K(m)|]. It is  sured in units of, the magnetic lengtR/%/eB, and energy
straightforward to see that any edge between states with thia units of e?/4mrel. The system of electrons interacting via
sameK matrix will have two such tunneling operators with the Coulomb interaction is exactly diagonalized numerically,
K(m)=q(m)=0, which potentially cause the modes to pair with the spectrum as a function &f(see Appendixprovid-
up and form a gap, leaving no residual gapless modes in theg the fundamental information on the system. We have
low-energy theory. Let us consider a single quantum Haldiagonalized the system with the Hamiltonian given by
state where we arbitrarily choose there to be an edge in the
bulk of the state. The edge state will have the s&maatrix
structure as the edge between any two states that have the
same topological structure. Such a fictitious edge in the bulk L
cannot support gapless charged excitations, as is consistent . "
with our above analysis. Generically, we then expect that at * Ei’% (i ja|Vker lag)eiy gy o CkayClay:
the edge between two states with the same topological struc-
ture there should be no residual gapless modes. (50)
We can also consider the edge between two states witfyhere
different topological structure at the same filling fraction, as
is appropriate at the edge between the pseudospin singlet 1 e
state or the particle-hole conjugate state and the state with V()= Ame[r2+d¥(1-45, ,)]™? (5)
independenty=1/3 Laughlin states in each layer. Generi- 9
cally there is only oneK(m)=0 tunneling operator at the ande; is the layer index, which denotes in which of the two
edge between double-component states of different topologlayers the electron resides.
cal order. It is not possible for two sets of edges to pair up All calculations were performed using square boundary
and form a gap, due to the mismatch in topological structureconditions whered= /2 and|L|=|L,|. It is known that
There will always be a pair of residuakutral gapless edge incompressible states are remarkably insensitive to the par-
modes left over in the low-energy theory, with a gap forticular boundary conditions chosen, as long as the shortest
making charged excitations. As an example we shall conlength scale of the geometry is larger than the average inter-
sider the edge between two statesat2/3 possessing dif- particle spacing. While the exact details of the excitation
ferent topological order. This will be based on e, q} pair  spectrum in the system under investigation will depend on

with

N

Ill. PHASE DIAGRAM FROM FINITE-SIZE STUDIES

H=—

A
;asz (¢l it H.c)
I

2




15850 I. A. MCDONALD AND F. D. M. HALDANE 53

our choice of conditions, the qualitative conclusions con-
cerning the incompressible ground states should not.

In the following we shall use the term pseudospin to refer
to the subband layer index, with the the up spin correspond-
ing to the symmetric combination of layer states and the
down spin the antisymmetric. Tunneling acts as a Zeemar
term in the Hamiltonian, which tends to align the electron
pseudospin in the up state, or the symmetric combination of
layer states. We will vary both the tunneling, denoted in the
Hamiltonian byA¢,s, and the distance between the double-
layer planes, denoted /1, investigating both the ground  Tunneling
state and the dependence of the excited states on these p
rameters.

" Overl ap
5

A. Spin-singlet state

It was realized some time afjghat when the electron FIG. 1. Overlap of the ground state with the spin-singlet state as
correlations are of the same order as the Zeeman energyfunction ofd/I and tunneling. Tunneling is denoted in the Hamil-
associated with the spin states, it is important to consider th®nian asAs,sand is measured in units ef/4el.
spin degrees of freedom in constructing the ground state.

Previous numerical and experimental stuﬂiléson the In Fig_ 1 we calculate the 0\/er|ap of the exact ground
v=2/3 system reveal that the ground state of the non-spinstate with Coulomb interactions with Jain’s proposed spin-
polarized system, in the limit of vanishing Zeeman energy, issinglet wave function as we vary the Hamiltonian parameters
plausibly a spin singlet. I_f we consider a_phase dlagramASas andd/l (note thatA., and tunneling are used inter-

where we vary both the interlayer separatiohi and the  .hangaply. Several points should be noted. First, the system
interlayer tunnelingAs,s, along the lined=0 the Hamil- g ey sensitive to the effects of tunneling, or equivalently, a

tonian is invariant under pseudospin rotations, allowing dnagnetic field in pseudospin space. The overlap with the

direct mapping between pseudospin and electron spin n th§3pin singlet state rapidly falls off with the introduction of
presence of the Zeeman term. We know from our previous

edge analysi§33) that theK matrix of the effective theory of even gsllght amount of _tunnellng. This W'II tgnd to make th_e
S experimental observation of the spin-singlet state in
a spin-singlet ground state must be of the form

multilayer samples extremely difficult. Second, the system is

m=+1 m 1 reasonably robust against a separation between the two lay-
_ _ ers, falling to zero atl=1.1. Thus we find significant over-
K=l m  mx1/. 9=|1] (52 _
lap between the exact ground state and the proposed spin

_ _ singlet even in regions where the Hamiltonian no longer
wherem is even. Jain and co-workéPdhave has proposed a commutes with the pseudospin algebra. The spin-singlet
wave function to describe the spin-singlet statevat2/3  character of the state is a manifestation of the electron cor-

based upon the effective theory whe#e,q} is given by relations rather than the underlying Hamiltonian.
While we expect that the numerical data give us qualita-
12 1 tive data on the transitions discussed, it should be noted that
K=l2 1/, a=|1]- (53 finite-size effects will influence the exact positioning of the

transitions in thed/I-A g, plane in relation to the thermody-

We cannot strictly interpret thi& matrix in terms of the hamic limit, and should therefore be taken with caution.
Halperin-Laughlin wave function, as thermodynamic stabil-

ity requires theK matrix for such a wave function to be _ _ _

positive definite, so we must interpret the wave function in B. Particle-hole conjugate ofv=1/3 Laughlin state

the planar geometry to be ) ) ]
The particle-hole conjugate of the standard Laughlin

v=1/3 gives us an incompressible liquid at filling fraction

¥(z,0)=]] (97— r9zj)5”i o[1 (z—7)? v=2/3, which is denoted in the effective theory by the same
= = K matrix as that of the spin-singlet staf®3). The matrix
o nature of the effective theory does not reflect the correlations
Xiﬂj exF{'Esgr(‘Ti_UJ)) between electrons of opposite pseudospin, as the particle-

hole conjugate state is pseudospin polarized, but rather re-
1 ) flects its composite nature. While to our knowledge no
Xl—i[ X~ 712 ' (54) simple wave function has been proposed for the exact
particle-hole conjugate state, a trial hierarchy wave function,
where we have denote}, =/ 9z, . This wave function is a ~ which very effectively captures the electron correlations, has
spin singlet at the correct filling fraction with the correct been developetf We may write the hierarchy=2/3 state
topological properties. as

Z;
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q’({zian}):H jdwi’dwi*/ I1 (wi*r_w}kf)zlwi’_wj’F

i'<j’

XH (Zi_Wj,)_]._[j (zi—z)
ij 1<

2) Overlap :
0s

2) , (55

1

x]] exp(——
% 21°

Wi

1

x]_i[ exp(—m

wherei’=1,... N, andi=1,... N, where the number of
holesN,=N¢/2 andN, is the number of electrons. This hi-
erarchical state is represented by the effective theory giver.

Z

by FIG. 2. Overlap of the ground state with the=2/3 Laughlin
1 1 1 particle hole conjugate state as a functiondsf and tunneling.
K={1 —2], da=|o]/. (56) Tunneling is denoted in the Hamiltonian Ag,;and is measured in
units ofe?/4rel. Note the change in perspective of this figure from

. . o . the previous figure.
which is equivalent t¢53) up to a similarity transformation.

This effective theory also possesses ar(Blhvariance. In As the spin-singlet state and the particle-hole conjugate
this case, the two pseudospin variables refer to the lowesfiate are described by the same p@air,q}, they are de-
two Landau levels in the composite fermion construction.scriped by the same effective theory on the plane and possess
Within the composite fermion approach, to obtain the singlethe same edge-state structure. While the effective theory ap-
layer particle-hole conjugate state one starts with a spinproach captures many of the long-distance properties of the
polarizedv=2 state, a gapped system, and adiabatically atfluid, it does not classify the spin of the state, which is de-
taches two flux quanta to each electron opposite to thgermined by the energy associated with the spin degree of
direction of the magnetic field that generated the2 state.  freedom. As we turn on the tunnelinky .5, we find a tran-

As the addition of two flux quanta does not affect the statissition from a region where it is energetically favorable to put
tics, our composites are still fermions. In a mean-field sensehe composite fermions in the first two spin states in the
we start with a pseudospin polarized statevat2 and de- |owest Landau level to a region where it is favorable to put
crease the field by two flux tubes per electron, arriving at them in the first two Landau levels. In both cases we have an
a pseudospin polarized state:at 2/3, which we identify as  SU(2) symmetry, in the one case between pseudospin states
the particle-hole conjugate state. We still have residual gauggnd in the other between Landau levels. It is important to
fluctuations associated with the added flux, but they shoulgotice that within the composite fermion approach the effec-
not qualitatively change the physics as we started with ajve cyclotron energy is heavily renormalized, as small varia-
gapped system. Therefore thre=2/3 polarized state can be tion in the effective field essentially makes it energetically
identified with a polarized'=2 integer quantum Hall state. favorable to place the electrons in two pseudospin-polarized
For the spin-singlet state, out starting point is a spin-Landau levels, costing cyclotron energy but saving on Zee-
unpolarizedv=2 state with the first Landau level being man energy. The composite fermion process of attaching flux
filled for both the up and down spins. We then perform thehas the effect of enhancing the ratio of the effective energy
same flux addition process as we did for the polarized statgssociated with a pseudospin flip to the effective cyclotron
to arrive at a spin-singlet=2/3 fermion state. Within this energy.

approach, which state will be realized depends on the ratio of

the effective cyclotron energy to the effective Zeeman en- C. (3,3,0 double-layer state

ergy of the composite fermions. o
In Fig. 2 we calculate the overlap of the particle-hole At nonzerod/l, as the Hamiltonian no longer commutes

conjugate state with the exact ground state as a function d¥ith psuedospin rotations the ground state need not be an
Ag,candd/l (A,cand tunneling being used interchangably €igenstate of pseudospin nor need it possess d@)3ym-

as in Fig.[1]). The effect of the tunneling in the spin analogy Melry as the particle-hole conjugate state does. A proposed
can be seen to be a turning on of a Zeeman energy term ffective theory for the ground state at large layer separation

the direction. As this energy is increased, eventually all the?/! 1S given by

spins will align themselves along tizedirection, resulting in 3 0 1
a spin-polarized Laughlin state with all the electrons occu- K = _ (57)
pying a symmetric combination of the layer indices. As the =lo 3/ 97{1)

Zeeman term is turned on, the system abruptly reaches a

transition point where the overlap of the ground state withwhich has a direct interpretation as a (3,3,0) Halperin-
the spin-singlet state falls to zetBig. 1), while the overlap Laughlin multicomponent wave function representing inde-
with the Laughlin 2/3 particle-hole conjugate state jumps topendenty=1/3 Laughlin states in each layer. In Fig. 3 we

close to unity. calculate the overlap of the exact ground state with the
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FIG. 3. Overlap of the ground state with the (3,3,0) state as a (8.3,0) State
function of d/I and tunneling. Tunneling is denoted in the Hamil- i Spin-Singlet State :
tonian asAg,s and is measured in units @?/4mel. Note the ) S L R S S
change in perspective of this figure from the previous two figures. 0 05 o 1 2
(3,3,0) state as a function d,; andd/l (note again that FIG. 4. Phase diagram of=2/3 system as a function @,

tunneling andA ¢, are being used interchangaplffhe tran-  andd/l. Ag,gis measured in units &?/4mel.
sition between the (3,3,0) state and the particle-hole conju-
gate statéFig. 2) represents a competition between minimiz- size studies are unable to address questions about the ther-
ing the Coulomb energy between the electrons and thenodynamic features of such transitions, they are able to shed
tunneling energy cost of localizing the electrons on indepentight on qualitative changes in structure that a bulk liquid
dent planes. For any given tunnelidg,,; it is possible to  may undergo in going from one phase to another. In order to
find a large enougl/I such that it is energetically favorable investigate the transitions involved in our double-layer
to form the independent=1/3 states in each layer, costing »=2/3 system, we have exactly diagonalized our finite sys-
in tunneling energy but gaining even more in minimizing thetem using periodic boundary conditions as a function of the
electrostatic ground-state energy. Equivalently, given any insystem parameters,, andd/l. We can follow the devel-
terlayer distance we can find a tunneling energy that willopment of individual energy levels of the system as these
outweigh the favorable interaction energy associated witlparameters are varied by identifying the quantum numbers of
having the electrons as far apart as possible. the state in question such as parity under reflection and the
translational quantum numbé&rand noting that under adia-
batic perturbation the energy levels should be smooth and
connected in our finite system. In the following figures we
We can identify three separate phases forithe2/3 sys-  plot the energy levels of the system as a function of either
tem as a function of tunnelind,s and the layer separation A_. andd/I, at each step subtracting off the average energy
d/I. We calculate the phase diagram for the2/3 systemin  of the system in order eliminate background energies of the
Fig. 4 from the overlap data by matching a system with asystem. The energy levels that are relevant to each transition
particular phase if the overlap of the ground state with thegre connected for emphasis during their development.
characteristic state is greater than some cutoff, chosen to be when using periodic boundary conditions it is important
0.75 in Fig. 4. One important feature to note is the existencgy note that each eigenstate has a generic degeneracy associ-
of a triple point in our numerical studies at~1.1 and  ated with center-of-mass translations givendpif the filling
As,¢~0.01 where all three phases will be in coexistence. It iSraction isy= p/qg. The formalism used to classify statege
difficult to extract the experimental parameters where such ghe Appendix extracts this degeneracy explicitly. Since we

triple point might occur from our finite-size numerical data, are always working at fixed filling fraction, this degeneracy
as such quantitative information will be sensitive to finite- wj|| be unimportant.

size effects such as geometry and particle number. We con-

jecture that the triple point where all three discussed phases o

will be in coexistence will persist in the thermodynamic A. Variation of d/l at As,=0

limit, in the neighborhood of the physical parameters sug- In Fig. 5, the variation of the energy levels as a function

gested by our studies. The observation of such a triple poindf d/I for A;,=0 is shown, with the average energy at each

remains an interesting experimental possibility. d/ subtracted off. The transition being witnessed is from the

spin-singlet phase to the (3,3,0) phaselésis increased. At

small values ofd/l the ground state is well represented by

Jain’s spin-singlet state, with a well-defined energy gap to all
Whenever a system exhibits different macroscopic phasesxcitations indicative of an incompressible phase.

as a function of system parameters, it is natural to ask ques- At large values ofl/l the ground state is given by a three-

tions about the transitions between such phases. While finitdold degenerate multiplet of states, each beirg=e0 eigen-

D. Phase diagram

IV. FINITE-SIZE STUDY OF TRANSITIONS
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FIG. 5. Variation in energy levels a¥| is varied atA.,.~=0. L . .
oy sas FIG. 6. Variation in energy levels as, is varied atd/l=0.
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state that in the thermodynamic limit becomes rotationally®sas 'S measured in units /4 mel.

invariant. There is again a well-defined energy gap between . )
the ground-state multiplet and all excited states. There is §0n from the spin-singlet ground state to the particle-hole
slight splitting of the degeneracy due to finite-size effects bufoniugate state as a function of the Zeeman energy associ-
this feature will disappear as the size of the system is in&t€d with the pseudospin degree of freedom. The system
creased. quickly undergoes a transition from the spin-singlet state to

The key feature to note is the change in ground-state gdhe pgrticle-hole _con_jugate state_ indicated by a si_mple level
generacy in going from the spin-singlet state to the (3,3,0F70SSINg. The spm—_smglet statg is extrem(_aly sgns_mvg to the
state. Such a change is to be expected from our effectiveffects of the effective magnetic field, rapidly finding it en-
theory considerations. As noted previously the degeneracy &rgetically favorable to place the composne.fermlons in the
a state given by the effective theory with the pét, g} on a second Landau level rather than the first spin-reversed Lan-
torus is given by|Det<|. The spin-singlet state must then dau level. _
have an overall degeneracy of three while the (3,3,0) stat As the two phases possess the same topological structure
has a degeneracy of nine. As mentioned above our formalisfiyi€y also possess the ground-state degeneracy. They do,
extracts a threefold center-of-mass degeneracy generic fWwever, have different pseudospin symmetries, allowing
states atv=2/3, leaving us with a residual threefold degen-t € energy_levels to cross W'thom repulsion. _S_uch an energy-
eracy for the (3,3,0) state and a nondegenerate spin-singllﬁvel crossing WI|| become a first-order transition in the ther-
state, consistent with our numerical data. modynamic limit.

Another point to be noted is that one of the energy levels
coming down in the (3,3,0) state triplet has the same sym- C. Variation of Ag,qat d=2.0
metry as the spin-singlet state, resulting in an energy level In Fig. 7 we investigate the energy structuralat2.0 as
repulsion as they cross. As the transition point approache%e ) :

. . X ~We vary Ag,s. We are seeing the transition from the
tsri]r?gréltpls?;tgf states comes down, crossing with the Spln(3,3,0) state to the particle-hole conjugate state as we turn up
It is interesting to note that even in considering bulk tran_the tunneling. The transition is qualitatively the same as the

sitions, as we are in our finite-size studies, the systems digP™" singletto (3,3,0) transition, with a degeneracy transition

play a residual side effect from the topological mismatchdue to the topological mismatch between the two states.

between the two states in coexistence. In our edge-staf%gain we see a level crossing driven by variation in the

; S92 " sample parameters, where two states involved in the crossing
analysis we found that at the edge between the spin-singlét. . . L

: . Mmix and cause energy-level repulsion. This transition is par-
and (3,3,0) state there will be residual neutral gapless modt?s

A . - T icularly relevant as experimental evidence supporting such a
due to the difference in topological structure, while in our y P bp 9

bulk finite-size studies we find a change in ground-state dephase transition already exiStsThe experiments of Suen

generacy. Both features are generic and stable against pert ét_a|.5 were performed using a single wide quantum wel
bation, indicative of the true topological character of the in 'ﬂeometry, making guantitative comparison with our ideal-

: . “ized double-layer calculations difficuf.
compressible fluids.
B. Variation of A cat d/I=0 V. NATURE OF THE TRANSITIONS

In Fig. 6 we investigate the energy-level structure by fix- We believe that the transitions seen in our finite-size stud-
ing d/1=0 and varyingA.,s. We are witnessing the transi- ies represent first-order phase transitions in the thermody-
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In the transition between two states that possess the same
topological order there is no such mismatch. If we consider
the interface between two such states, such as the spin-
singlet state and the particle-hole conjugate state, we expect
that the two pairs of edge modes will pair up and form a gap,
leaving no residual gapless modes. In a clean system the two
states have different pseudospin symmetries, as the particle-
hole conjugate state is spin polarized while the spin singlet
state is a true pseudospin singlet. This difference is reflected
in the flux-number shift of the two states on the sphere:
=0 for the particle-hole conjugate state and=1 for the
spin singlet. The transition can then go by a simple level
crossing, resulting in a first-order transition in the thermody-
| ] namic limit.

015 7 There exists the possibility that there might be some in-
I termediate state that exists between the two principal states
undergoing the transition. This case is really a two-step pro-
oo cess rather than a direct transition: Hall state to intermediate
0 008 o1 015 state, and then intermediate state to Hall state. In principle,
the intermediate state could be incompressible, but we can
o ) . then apply the same arguments used above to show that the

FIG. 7. Variation in energy levels af\s,s is varied at o principal states undergoing the transition cannot be con-
d/1=2.0. A,sis measured in units a#/4mel. nected smoothly. While this scenario is an experimental pos-
sibility, in the v=2/3 system no evidence exists for this type
gf intermediate transition. As such, we conjecture that all the
ansitions involved in the-=2/3 system will be first order.

0.05

o
o
&

Energy (e°/4mel)

S
T
!

namic limit at low temperatures in a clean system. Tradition
ally, one uses broken symmetries and their associated ord
parameters to classify and organize many-body systems, of"-
ten allowing the construction of low-energy effective theo-
ries based on these order parameters, which capture the es- VI. CONCLUSIONS
sence of the correlated states as well as predicting effects that
are not accessible in a microscopic approach. The effective In conclusion, we have examined the structure of the
theories employed in the description of the fractional quanphase diagram of the=2/3 double-layer electron system as
tum Hall effect are not based on an order parameter derived function of d/I, the distance between the layers, and
from a broken symmetry. Rather, these effective theories emAg,s, the tunneling parameter for the system. A phase dia-
body a type of order called topological order, which is stablegram consisting of three different phases, each belonging to
against perturbation and manifests itself in such properties e different, distinct universality class, was calculated. A
the ground-state degeneracy when the system is defined oririple point is conjectured where all three phases are stable.
topologically nontrivial closed space. We therefore do notA gapless, neutral Luttinger liquid structure is predicted at
consider the fractional quantum Hall states to be brokerihe interface between either the spin-singlet state or the
symmetry states. particle-hole conjugate state and the (3,3,0) state. At the in-
As the fractional quantum Hall states are not broken symterface between the spin-singlet state and the particle-hole
metry states, they cannot undergo the usual second-ordepnjugate state no residual gapless modes are expected. It is
phase transition where the order parameter goes smoothly t®njectured that there should be first-order transitions be-
zero in the vicinity of a transition point, and is zero on thetween all three phases, indicated by distinct level crossings
other side of the transition. It would appear that due to thdn the finite system energy levels.
fact that the order embodied by the fractional quantum Hall
states is discrete and topological in origin that it would be
impossible to go smoothly from one state to another with ACKNOWLEDGMENTS

different topological order as a function of system param- e wish to acknowledge valuable discussions with M.
eters in a clean system. Let us consider a point indHe  Shayegan, M. Cole, and C. Nayak. I.A.M. would like to
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(3,3,0) state. From our edge-state analysis we know that

when two phases having different topological order are in

coexistence there will be at least one pair of residual neutral APPENDIX: PERIODIC BOUNDARY CONDITIONS
gapless modes at the boundary between phases. The finite
?hnee:\?v)cl) BL;ZZ? fcr?r(c)::jnzs tr\:\g”trgr?:iltlizoi ttro]eosglljjrngsrr):uglee t;\;;i'?equiring that all physi_cal quantities be invariant under trans-

M ! " tation of any particle by the set of translations

resulting in a first-order phase transition. If two states havei_ —mL.+nL- such that

different topological order, there is no way to go smoothly —™" 1 2
from one state to another due to the discrete nature of topo-
logical order. ILiXLol=2mNyl?, (A1)

We wish to impose generalized boundary conditions by
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whereN,, is the number of flux quanta. We impose the gen- 72
eral boundary conditions on the wave function for any par- w(z)=exp 7572 01(x2|7) (A7)
ticle i: ¢
_ _ N o iDL and Oi(ul7) is the odd elliptic ® function,
(L) W) = (7mp) "0 P ), (A2) Lyn=x_*(m+n7), and 7=(L,/L,)e'"’, where
where 7,p=(—1)M*"*MY and we will choose®,=0 as Ll-L2=|L1|LL2|coa9. We have used the symmetric gauge
our boundary condition. The operatdi®) are the transla- A=(B/2)rXxz in expressing the functiop. We constrain
tion operators in the presence of a magnetic fiéldhich  m; andm, to be odd for Fermi statistics. Note that in writing

obey the noncommutative algebra the wave function in this form we have expressed the corre-
o, lations between the electrons but for notational simplicity
t(a)t(a’)=t(at+a’)e'@*a/2", (A3)  suppressed the pseudospin part of the wave function, which

would properly antisymmetrize the overall wave function.
SThis form of the double-layer wave functions has been dis-
cussed previousl?
We consider a system of electrons confined to two paral-
planes subject to periodic boundary conditions confined
to the lowest Landau level. The symmetry analysis of this
WMz 2 =W, 17,2 W "2 V7 7], system, as introduced by Haldalegllows us to construct a
(A4) Hilbert space that extracts the center-of-mass degeneracy as
well as providing a correct classification of states allowing
comparison with studies performed in other geometries. We
can therefore classify the eigenstates of a translationally in-
PimemeNiz 2 =11 [¢(z—2z)1™]] [p(z/ —2))]™ variant Hamiltonian obeyingH,T(a)]=0 by the quantum
1< < numberk defined to be

We shall denote the two-dimensional coordinate a
a=a,+ia, anda=ax—iay.

In the periodic geometry, Halperin's extension of Laugh-
lin’s wave function, suitable for double-layer systems, can bqel
written as

where

XH [d(z—2z))]". (A5) .

Lﬂ‘)l*lf>=(n )p‘*exp(ik'b“”)l‘w (A8)
N mn N ’

Z=%,z;, Z'=2%,;2', and the unprimed coordinates refer to o L

electrons in the first layer while the primed refer to electronsvhere N,=Np and N,=Ng, allowing us to write

in the second. This wave function is denotad;(m,,n). v=Ng/Ny4=p/q. In the thermodynamic limit the states
The basic building block that we have built our wave func-characterized bk=0 become rotationally invariant, imply-
tion from is the quasiperiodic function(z), which can be ing that the signature of an incompressible quantum Hall

written as state is &=0 ground state with an energy gap to all excited
%7 states. As the operatd65) commutes with the center-of-
¢(z)=w(z)ex;{—(wﬂ, (AB6) mass operatoil (L ,/Ng4)=1Iit{(Lnh/Ny) each eigenstate
b has aq-fold degeneracy associated with the action of the
where center-of-mass operator.
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