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The statistical distribution function of anyon is used to find the eighth viral coefficient in the high-
temperature limit and the equation of state in the low-temperature limit. The perturbative results indicate that
the thermodynamic quantities,Q(a), of the free anyon gas may be factorized in the terms characteristic of the
ideal Bose (a50) and fermion (a51) gases, i.e.,Q(a)5aQ(1)1(12a)Q(0). It is shown that the factor-
izable property of the thermodynamic quantities, to all orders, can be established from the property of the
equivalence between the anyon statistics and statistics in a system with boson-fermion transmutation, which
was found by us in a recent paper@W. H. Huang, Phys. Rev. E51, 3729~1995!#. @S0163-1829~96!05023-0#

I. INTRODUCTION

Anyons are the quantum objects which obey fractional
statistics and exist in two dimensions.1,2 In recent years, it
was realized that anyons may be regarded as the quasiparti-
cles in the fractional quantized Hall effect.3,4 It has also been
proposed that anyons may play an important role in high-
temperature superconducting.5–7 The thermodynamic behav-
ior of anyon gas has been studied by several techniques,
including a perturbative expansion about fermion6–8 or
boson.9,10 The viral coefficient of free anyon has also been
calculated.11,12

Most studies have been done in the context of many-body
quantum mechanics. In recent papers,13,14Wu and others had
derived the occupation-number distribution function of the
anyon gas to formulate the theory of quantum statistical me-
chanics, with the help of the idea of fractional exclusion
statistics.15 In that paper,13Wu also obtained the second viral
coefficient and found that the ‘‘statistical interaction’’ may
be attractive or repulsive, depending on the statistical param-
eter.

In this paper, we will use the statistical distribution func-
tion of anyon to evaluate the eighth viral coefficient in the
high-temperature limit and the equation of state in the low-
temperature limit. From the calculated results we see that, to
the order of perturbation, the thermodynamic quantities of
N anyon gas, denoted asQN(a), can be factorized in the
terms characteristic of the ideal Bose (a50) and fermion
(a51) gases, i.e.,QN(a)5aQN(1)1(12a)QN(0). Fur-
thermore, with the help of the boson-fermion transmutation
‘‘interpretation’’ of anyon statistics, which was found by us
in a recent paper,14 it is interesting to see that the factorizable
property can be established to all orders of perturbation.

II. HIGH-TEMPERATURE AND LOW-TEMPERATURE
EXPANSION

Using the Haldane’s fraction exclusion statistics,15 the
statistical distribution function derived in Refs. 13 and 14 is

n~e!5
1

W~z!1a
, ~2.1!

where

W~z!a@11W~z!#~12a!5z, z[e~e2m!/kBG, ~2.2!

anda is the fraction statistical parameter. The above rela-
tions recover the familiar Bose and fermion distributions,
respectively, witha50 and 1. Wu13 had also derived the
relations
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We now use the above relations to perform the high-
temperature and low-temperature expansion of equation of
state through the standard manipulations.16

A. High-temperature expansion

In the Boltzmann limitz@1, and thusW(z)@1, we can
use~2.2! to find the high-temperature expansion of function
W(z). Then, substituting theW(z) into ~2.1!, we have
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1•••. ~2.5!

Note that we only present the perturbative form ofn(e) to
the order ofz26 in the above relation; however, the calcula-
tion presented in the following is the result of the perturba-
tion to the order ofz29. Substituting the high-temperature
expansion of exp(m/kBT), with the help of~2.3!, into ~2.5!
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and performing the integration ofe in ~2.4!, the viral expan-
sion of the equation of state becomes
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`
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2

1

3600SNV l2D 41 1

211 680SNV l2D 61OSNV l2D 8G ,
~2.6!

where the thermal wavelengthl5(2p\2/mkBT)
1/2.

Note that Sen12 had calculated the viral coefficientb4 in
the context of many-body quantum mechanics. He suspects,
but has not completely proven, that all the higher-order viral
coefficientbl(a)5bl(0)1O(a2) for all l.4. On the other
hand, we have calculated the viral coefficientb7 in ~2.7! in
the context of quantum statistical mechanics and it is consis-
tent with Sen’s conjecture. Note also that, recently, Murthy
and Shanker17 have shown that in the Haldane fraction sta-
tistics, the fraction statistical parameter is completely deter-
mined by the high-temperature limit of the second viral co-
efficient. Our result is consistent with their conclusion.

We have noticed that in the two-dimensional space the
energy of boson gas or fermion gas is given by13

E5NkBT(
1

`
Bl

~ l11!! SNV l2D l ~boson gas!, ~2.7a!

E5NkBT(
1

`

~21! l
Bl

~ l11!! SNV l2D l ~ fermion gas!,

~2.7b!

whereBl are the Bernoulli number withB051, B152 1
2,

B25
1
6, andB2l1150, for l>1. This indicates that, to the

order that we have calculated, there has been an interestingly
factorizable property,

E~a!5aE~1!1~12a!E~0!. ~2.8!

We will, in the next section, show that the factorizable
property of the thermodynamic quantity, to all orders, can be
easily established from the property of the equivalence be-
tween the anyon statistics and statistics in a system with
boson-fermion transmutation.~The equivalent property was
proven in our previous paper.14! As the factorizable property
does not depend on the temperature, it may thus also be
found in the low-temperature expansion of the equation of
state, which will be calculated in Sec. II B. Note also that
because the viral expansion for the free boson and fermion
gases only differ in the second coefficient, as expressed in
~2.6!, the factorization formula thus leads to a property that
only the second viral coefficient can depend on the fraction
statistical parametera, the result shown by Murthy and
Shanker.17

B. Low-temperature expansion

For the boson gas,a50, we have
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If aÞ0, then through the standard procedure16 we have
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The integration of the second term in the above equation can
be shown to be zero by the following observation:
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Comparing the above relation with the low-temperature limit
of ~2.3!, we see that the integration in the above equation is
zero.

It is unfortunate that we do not yet have an ability to show
that the integration in the third term of~2.10! does not de-
pend on the fractional statistical parametera. However, for
the special cases includinga51, 1

2,
1
3,

1
4, and cases with

smalla the analytic function ofW(ex) can be obtained and
value of integration isp2/6 for these cases. Combining the
results ofaÞ0 with the boson case,a50, we see that the
factorization formula~2.8! can also be used in these cases.

III. FACTORIZATION AND BOSON-FERMION
TRANSMUTATION

In this section, we will show that the thermodynamic
quantity, such as energy, heat capacity, and entropy, etc., can
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be expressed in the factorized form. The derivation is very
simple and is only based on the property of the equivalence
between the anyon statistics and statistics in a system with
boson-fermion transmutation.

In our recent paper,14 we have shown that, for a system
with an a fraction of fermion and a (12a) fraction of bo-
son, once the transmutation between the boson and fermion
is allowed, the system will have a statistical distribution
function just like that of free anyon.

It is easy to see that the system with boson-fermion trans-
mutation can also be regarded as the ensemble average of the
M systems, which are classified as the fermion case and the
boson case. In the fermion case, there areaM systems and
each one hasN fermion gas existing in the volumeV and has
the pressureP. In the boson case, there are (12a)M sys-
tems and each one hasN boson gas existing in the volume
V and has the pressureP. Therefore, the ensemble average
for the thermodynamic quantityQN(a) of the system with
the boson-fermion transmutation, and thus the anyon system,
can be factorized as

QN~a!5aQN~1!1~12a!QN~0!. ~3.1!

This completes our proof.
It has many simplifications during the investigation of the

thermodynamic behavior of anyon gas, once the factorized
formula has been set up. The reason for this is that if we try
to calculate the thermodynamic quantities of anyon from the
anyon distribution function, then the nonanalytic function
W(z) in ~2.2!, which can only be solved analytically in the
general case, will make it difficult to study. On the other
hand, if we use the factorized formula to calculate the ther-
modynamic behaviors of anyon, then the known function
W(z) in the boson and fermion cases will make it easy to
study.

Finally, it shall be mentioned that Murthy and Shankar18

had also found the factorizable property in an anyon system.
They investigated the Calogero-Sutherland model and found
that this model obeys the statistical distribution function de-
rived by Wu.13,14 The factorizability of the anyon partition
they found is crucially based on the special energy spectrum
in the Caloger-Sutherland model. On the other hand, in our
proof, we do not rely on any property of the anyon system
and this means that the factorizable property of the anyon
gas is a very general property.
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