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Statistics of anyon gas and the factorizable property of thermodynamic quantities
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The statistical distribution function of anyon is used to find the eighth viral coefficient in the high-
temperature limit and the equation of state in the low-temperature limit. The perturbative results indicate that
the thermodynamic quantitie®(«), of the free anyon gas may be factorized in the terms characteristic of the
ideal Bose @¢=0) and fermion ¢=1) gases, i.eQ(a)=aQ(1)+ (1— a)Q(0). It is shown that the factor-
izable property of the thermodynamic quantities, to all orders, can be established from the property of the
equivalence between the anyon statistics and statistics in a system with boson-fermion transmutation, which
was found by us in a recent pagé¥. H. Huang, Phys. Rev. B1, 3729(1995]. [S0163-18206)05023-0

I. INTRODUCTION where

Anyons are the quantum objects which obey fractional WO ML+W(]¥=¢, (=ele Wikl (2
statistics and exist in two dimensioh$.In recent years, it . . -
was realized that anyons may be regarded as the quasipal"ﬁ':‘d «a is the fraction statistical parameter. The above rela-
cles in the fractional quantized Hall effetdlt has also been tions recover the familiar Bose and fermion distributions,

ul . » _ 3 .
proposed that anyons may play an important role in high_resp_ectlvely, witha=0 and 1. W& had also derived the
temperature superconductifig/, The thermodynamic behay- relations
2mh% N
l—exp — , (2.3

ior of anyon gas has been studied by several techniques, 2rh2 N
o —+In =
boson®° The viral coefficient of free anyon has also been KT~ mkgT V mksT V

calculated-*?

Most studies have been done in the context of many-body vm (=
quantum mechanics. In recent paper¥Wu and others had PV=E= m?fo de en(e). (2.4
derived the occupation-number distribution function of the
anyon gas to formulate the theory of quantum statistical meWe now use the above relations to perform the high-
chanics, with the help of the idea of fractional exclusiontemperature and low-temperature expansion of equation of
statistics'® In that paper:> Wu also obtained the second viral state through the standard manipulatidhs.
coefficient and found that the ‘“statistical interaction” may
be attractive or repulsive, depending on the statistical param- A. High-temperature expansion
eter.

In this paper, we will use the statistical distribution func- !N the Boltzmann limit;>1, and thusw(¢)>1, we can
tion of anyon to evaluate the eighth viral coefficient in the YS€(2-2) to find the high-temperature expansion of function
high-temperature limit and the equation of state in the low-V(¢)- Then, substituting th&V(£) into (2.1), we have
temperature limit. From the calculated results we see that, to )
the order of perturbation, the thermodynamic quantities of n(¢)= 1+(1_2a)i+ 2-9a+9a
N anyon gas, denoted a3y(«), can be factorized in the { & 27°
terms characteristic of the ideal Bosa=0) and fermion 2 3
(a=1) gases, i.e.Qy(a)=aQy(1)+(1— a)Qn(0). Fur- y 3220t ABar - 300
thermore, with the help of the boson-fermion transmutation 3¢
f‘interpretation” of. anyon stat_istics, which was found .by us 24— 2500+ 87502 — 125003+ 6254
in a recent pape. it is interesting to see that the factorizable +

including a perturbative expansion about fernfidh or M

. . 5
property can be established to all orders of perturbation. 24¢
. 10— 137a+ 67522 — 153>+ 1620* — 648a°
Il. HIGH-TEMPERATURE AND LOW-TEMPERATURE 10°
EXPANSION
+.. (2.5

Using the Haldane’s fraction exclusion statistiesthe

statistical distribution function derived in Refs. 13 and 14 isNote that we only present the perturbative formngg) to
the order of~® in the above relation; however, the calcula-

tion presented in the following is the result of the perturba-
tion to the order off~°. Substituting the high-temperature

n(e)= expansion of exp{/kgT), with the help of(2.3), into (2.5
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and performing the integration efin (2.4), the viral expan- B. Low-temperature expansion

sion of the equation of state becomes For the boson gasy=0, we have

% N [ _Vm (= 1
PV=NkgT 1+; b a(a)| 22 PV=gaiz), decgemmer—1
2 Vm % 1
1 1\ N 1[N _ 2
_ o e A T DA = 2(kBT)dex
=NkgT| 1+ 5| @ Z)V)\ +36(V)\ ) 2t 0 1 1
1—exp(—A2N/V)
1 (N V1 N\ N)® )
_ \2 —\2 \2 vm T
3600 vV ) o1 680(V)\ Ol gA ) ! = 53 (keT)?| - +0(e MWY) |. 2.9
(2.6

If a#0, then through the standard procedfiree have

where the thermal wavelengit= (272/mkgT) 2, vm (=
Note that Setf had calculated the viral coefficiebt, in ~ PV= ﬁzf dee
: 7hJ)o
the context of many-body quantum mechanics. He suspects,
but has not completely proven, that all the higher-order viral vm
coefficientb,(«) =b,(0)+ O(«?) for all |>4. On the other

1
W T+ o

J,ud 1 1
o la atalWeE P

=5 32
hand, we have calculated the viral coefficidntin (2.7) in 2mh
the context of quantum statistical mechanics and it is consis- w 1
tent with Sen’s conjecture. Note also that, recently, Murthy +f de GW[e“*/‘)“‘BT]nL -
and Shankéf have shown that in the Haldane fraction sta- ©
tistics, the fraction statistical parameter is completely deter- V2rh? [ a\ (N\2 Vmu w
mined by the high-temperature limit of the second viral co- = (—) (—) + —z(kBT)f dX|
efficient. Our result is consistent with their conclusion. m 2J\V 2mh 0 W(e") +a
We have noticed that in the two-dimen?:g)bnal space the 1 vm w 1
energy of boson gas or fermion gas is give — + Zf _—
o g gas 15 GVemby ataWe )| zanztkel) ], dXX{W(eX)wLa
E=NK Ti By E)\Z | (boson gas (2.73 +— |+ O(e V), (2.10
B +1\Vv ' a+ a?IW(e )

The integration of the second term in the above equation can
be shown to be zero by the following observation:

* |
E=NkBT§ (—1)'(I+B|1)| (g)\z) (fermion gas,

2.7b N= vm de !
@79 ~2mh?)o " WS P+ a
where B, are the Bernoulli number witlB,=1, B;=—3, vm u

Vm 0
B,=4%, andB,,,=0, for I=1. This indicates that, to the = W—-F W(kBT)f dx
order that we have calculated, there has been an interestingly mhe @ em 0
factorizable property, 1

ata?W(e ™)

W(eX) + a

+O(e NNy, .11

E(a)=aE(1)+(1-a)E(0). (2.9 ) i ) o
Comparing the above relation with the low-temperature limit

- . ) of (2.3), we see that the integration in the above equation is
We will, in the next section, show that the factorizable .

property of the thermodynamic quantity, to all orders, can be y js ynfortunate that we do not yet have an ability to show
easily established from the property of the equivalence beg,4; the integration in the third term ¢2.10 does not de-

tween the anyon statistics and statistics in a system withyo\y o the fractional statistical parameterHowever, for
boson-fermion transmutatioiThe equivalent property was 101

; . ) the special cases including=1, 3, 3, 1, and cases with
proven in our previous papéf) As the factorizable property small « the analytic function ofN/(e”) can be obtained and

?oesd n.ottr:je?endt on thettemperaturg, it rfntiy thus ?ISO t?Jalue of integration isT?/6 for these cases. Combining the
ound in the low-temperature expansion of theé equation Ofqq ;5 of4+0 with the boson casey=0, we see that the

state, which W.'” be calcu.lated in Sec. 11 B. Note also th"?‘tfactorization formula2.8) can also be used in these cases.
because the viral expansion for the free boson and fermion

gases only differ in the second coefficient, as expressed in
(2.6), the factorization formula thus leads to a property that
only the second viral coefficient can depend on the fraction
statistical parameterr, the result shown by Murthy and In this section, we will show that the thermodynamic
Shanker’ quantity, such as energy, heat capacity, and entropy, etc., can

lll. FACTORIZATION AND BOSON-FERMION
TRANSMUTATION
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be expressed in the factorized form. The derivation is veryThis completes our proof.
simple and is only based on the property of the equivalence It has many simplifications during the investigation of the
between the anyon statistics and statistics in a system witthermodynamic behavior of anyon gas, once the factorized
boson-fermion transmutation. formula has been set up. The reason for this is that if we try
In our recent pape¥ we have shown that, for a system to calculate the thermodynamic quantities of anyon from the
with an « fraction of fermion and a (% «) fraction of bo-  anyon distribution function, then the nonanalytic function
son, once the transmutation between the boson and fermidf(¢) in (2.2), which can only be solved analytically in the
is allowed, the system will have a statistical distributiongeneral case, will make it difficult to study. On the other
function just like that of free anyon. hand, if we use the factorized formula to calculate the ther-
It is easy to see that the system with boson-fermion transmodynamic behaviors of anyon, then the known function
mutation can also be regarded as the ensemble average of £¢) in the boson and fermion cases will make it easy to
M systems, which are classified as the fermion case and ti&udy.
boson case. In the fermion case, there @k systems and Finally, it shall be mentioned that Murthy and ShariRar
each one habl fermion gas existing in the voluméand has  had also found the factorizable property in an anyon system.
the pressurd®. In the boson case, there are{&)M sys-  They investigated the Calogero-Sutherland model and found
tems and each one hasboson gas existing in the volume that this model obeys the statistical distribution function de-
V and has the pressufe Therefore, the ensemble averagefived by Wu:®'* The factorizability of the anyon partition
for the thermodynamic quantit®(«) of the system with they found is crucially based on the special energy spectrum

the boson-fermion transmutation, and thus the anyon systerii) the Caloger-Sutherland model. On the other hand, in our
can be factorized as proof, we do not rely on any property of the anyon system

and this means that the factorizable property of the anyon

Qn(a)=aQn(1)+(1— a)Qn(0). (3. gas is a very general property.
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