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Scattering rates of quantum-well excitons by acoustic phonons are calculated using realistic deformation
potentials for electrons and holes in structures based on GaAs. These rates are used in order to reproduce the
exciton dynamics in a time-resolved photoluminescence experiment. Rise time and decay time of the lumines-
cence signal are studied as a function of temperature and quantum-well size. It is found that the exciton
distribution function reaches a stationary shape during the radiative recombination and shows strong deviations
from the thermal distribution. As a consequence, the decay time is slower. A discussion of the dependence of
these effects on the well width is given.@S0163-1829~96!01223-4#

I. INTRODUCTION

Energy relaxation in optical excitation processes in quan-
tum wells~QW’s! is a fundamental subject for the character-
ization of the time response of optical devices. In this frame-
work, time-resolved photoluminescence~PL! experiments
represent a reliable probe for the understanding of the micro-
scopic dynamics. Theoretical investigations have been made
to obtain a picture of the processes involved in these experi-
ments and particular attention has been devoted to the study
of the photoluminescence decay times.1–3On the other hand,
the improvement of the microstructure growing techniques
have recently allowed the study of the relaxation dynamics
of free QW excitons in good quality samples.3–6 In these
samples, the PL decay times are linearly increasing with
temperature. This result has been only qualitatively inter-
preted by the theoretical models.1–3 In particular, the experi-
ments show deviations from a linear behavior at low tem-
peratures, and slopes steeper than those theoretically
predicted at higher temperatures. An assumption common to
all theoretical models is that phonon scattering rates between
excitations at different energies are much larger than the ra-
diative recombination rates in the range of temperature con-
sidered. Under this assumption, phonon scattering is fast
enough to balance exciton recombination, and a Boltzmann-
like distribution function of the exciton population results.

In this paper, we revisit this assumption. In particular, we
want to take into account the perturbation produced by ra-
diative decay on the Boltzmann-like distribution function.
We solve rate equations for the exciton population in which
the rates of scattering of free QW excitons by acoustic
phonons and the radiative rates are calculated exactly. We
find that even when phonon scattering rates are larger than
radiative recombination rates, thermalization is not fully
achieved for all excitons. The exciton distribution function
deviates from a Boltzmann-like distribution mainly in the
radiative zone. However, only indirect observation of this
nonthermal distribution is possible, because only a tiny por-
tion of the radiative zone is probed in the experiments.

In Sec. II, we describe our model of a time-resolved PL

experiment, and we calculate the rates of phonon absorption
and emission, as well as the radiative recombination rate for
free QW excitons. The limits of validity of the model are
discussed. In Sec. III, we introduce a rate equation model to
obtain the time evolution of the exciton distribution function
in the case of resonant and nonresonant excitation. Further-
more, we discuss the dynamics obtained from the solution of
the rate equations and the corresponding time evolution of
the PL signal. An exhaustive analysis of the temperature de-
pendence of the rise time and of the decay time is given in
Sec. IV. Here, we also present a simplified model showing
how the deviations from the thermal distribution modify the
luminescence decay times. We also investigate the depen-
dence of the luminescence characteristic times on the
quantum-well width. Finally, in Sec. V, we discuss the role
of spin-flip scattering in the exciton dynamics.

II. MODEL OF A TIME-RESOLVED
PHOTOLUMINESCENCE EXPERIMENT

In a time-resolved PL experiment, we have three different
steps in the dynamics: the excitation of the system in which
excitons are created, the relaxation toward the lowest exciton
levels, and, finally, the radiative recombination. In this paper,
we consider the dynamics within a single excitonic band
@1s heavy hole~HH! excitons#. Actually, also other higher
levels, such as 2s, 2p, . . . the continuum of HH exciton, the
light hole, and eventually other subbands, contribute to the
relaxation dynamics depending on the excitation conditions
and temperature. In particular, the continuum of states is ex-
pected to be relevant, because of its high density of states. In
fact, the dynamics inside the exciton continuum is very fast,
as it has been experimentally well assessed.7 It has been
found that in this continuum the photoexcited carriers relax
towards a hot distribution with typical relaxation times,
which do not exceed few picoseconds. It has also been ex-
perimentally found6 that, when the sample is excited near the
light hole ~LH! exciton level, the relaxation towards the bot-
tom of HH exciton band slows down considerably. We re-
strict our discussion to QW’s narrower than 120 Å, where
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the LH level is well above the bottom of the continuum of
the HH exciton, and to excitation energies far from the LH
resonance. In this way, we can completely neglect the influ-
ence of the LH on the relaxation. In our model, the presence
of the HH continuum of states is taken into account in the
choice of the initial condition for the integration of the rate
equations, as discussed below. The exciton excited states
2s, 2p, . . . in the two-dimensional~2D! case have a small
binding energy and are close to the exciton continuum. Thus,
their role in the dynamics cannot be distinguished from the
role of the continuum. Finally, we consider here only free
excitons, and we disregard the exciton trapping due to inter-
face roughness and impurities. This assumption holds for the
good quality samples currently used in the measurements.3–6

In the case of nonresonant PL, the excitation process is
modeled assuming that the laser pulse excites high energy
levels. The hot carriers created in this way relax toward the
bottom of the exciton continuum (e-h pairs!, and the time
needed for this first relaxation is very short, as several ex-
perimental measurements have pointed out.7 We investigate
the dynamics of the system just after this first relaxation,
assuming a hot distribution of the carriers in the continuum.
The hot electrons and holes provide for the creation of exci-
tons with large in-plane wave vector, mainly through a fast
acoustic phonon emission. This process is nearly elastic at
low temperature, because the acoustic phonon energy is neg-
ligible compared to the exciton binding energy. Exciton for-
mation by emission of optical phonons may be completely
neglected when excess energies in the excitation are smaller
than the optical phonon energy. This energy is quite large in
the polar materials considered, typically 36 meV in GaAs.
Therefore, we assume that the excitons are created with a
distribution function peaked at the edge of the exciton con-
tinuum. We will consider this distribution as the initial con-
dition for the integration of the rate equations.

Excitons are created in contact with a thermal bath of
phonons at a given lattice temperature and we assume the
scattering by acoustic phonons as the only effective relax-
ation mechanism. This approximation holds for low exci-
tonic density when we can neglect the effect due to the
exciton-exciton and exciton-carrier scattering. The excitation
densitiesn that we consider in our model are thusn!aB

22 ,
andn!l22, whereaB andl, are the Bohr radius and the
screening length of the Coulomb interaction in the sample;
the upper limit densities correspond to about 1011–1012

exc/cm2. The exciton-acoustic phonon scattering originates
from the deformation potential interaction,

U~r e ,r h!5D~r e!ae2D~r h!ah , ~1!

whereD(r e) andD(r h) are the relative deformations of the
lattice induced by phonons at the points where the electron
and the hole are located, andae andah are the deformation
potentials experimentally measured. The exciton-phonon in-
teraction results from the sum of the phonon-electron and
phonon-hole interaction. For the deformation potentials, we
use the GaAs bulk valuesae5 27 eV for electrons, and
ah5 2.7 eV for holes.8,9 Equation ~1! represents only the
isotropic term, which is related to the longitudinal branch of
acoustic phonons. Since GaAs is a polar material, piezoelec-
tric scattering also occurs, but it provides a negligible con-

tribution to the exciton dynamics.10 At low temperature
(T<100 K!, we can also neglect the scattering by optical
phonons in the relaxation process, because they are not ex-
cited. The exciton-phonon Hamiltonian corresponding to the
deformation potential interaction of Eq.~1! is given by

Hexc-ph5(
qz

(
q,k,k8

G~q,qz!dk8,k1q~cq,qz2c2q,qz
† !bk8

† bk ,

~2!

wherebk
† (bk) is the creation~annihilation! operator of 2D

excitons with the in-plane wave vectork, andcq,qz
† (cq,qz) is

the creation~annihilation! of 3D phonons with the wave vec-
tor (q,qz) (z is the growth direction!. Translational invari-
ance along the QW plane implies the conservation of the
in-plane momentumk, as explicitly shown in Eq.~2! by the
presence of the Kroneckerd function. Thez component of
the wave vector in not conserved and a sum overqz appears
in Eq. ~2!. The termG(q,qz) contains all the parameters of
the interaction and reads

G~q,qz!5 iA\~ uqu21qz
2!1/2

2rVu
@aeI e

i ~ uqu!I e
'~qz!

2ahI h
i ~ uqu!I h

'~qz!#. ~3!

Here, r and u are the density and the longitudinal sound
velocity in GaAs, respectively, andV is the quantization vol-
ume. The termsI e(h)

i (uqu) andI e(h)
' (qz) are the superposition

integrals of the exciton envelope function with the phonon
wave function~plane wave! in the in-plane andz directions,
respectively. Using the exciton envelope function,

F~r,ze ,zh!5A 2

paB
2e

2uru/aBf e~ze! f h~zh!, ~4!

where r is the in-plane electron-hole displacement vector,
aB is the exciton Bohr radius, andf e(h)(z) are the electron
~hole! envelope functions in the growth direction, the super-
position integrals read,

I e~h!
i ~ uqu!5F11Smh~e!

2M
uquaBD 2G23/2

, ~5a!

I e~h!
' ~qz!5E dzu f e~h!~z!u2eiqzz. ~5b!

These integrals introduce cutoffs in the termG(q,qz) for
uqu.1/aB , and for qz.2p/LQW, where LQW is the QW
width. The latter cutoff originates from the electron and hole
localization in the QW region described by the envelope
functions f e(h)(z). This dependence of the cutoff in
I e(h)
' (qz) on LQW indicates that the exciton-phonon interac-
tion decreases for larger QW’s. This cutoff becomes critical
for small QW’s. In this case, the penetration in the barriers of
the exciton wave function has to be correctly included in
f e(h)(z), otherwise the scattering rates are going to be over-
estimated. The intraband transition rate for excitons scattered
by acoustic phonons is calculated by the Fermi golden rule.
For instance, we obtain, in the case of transitions involving
absorption of a phonon,
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Wk→k8
abs

5
2p

\ (
qz

u^k8u^nq,qzuHexc-phunq,qz11&uk&u2

3d@Eexc~k8!2Eexc~k!2Eph~q,qz!#. ~6!

Here, uk&, uk8& are the initial and final exciton states, and
unq,qz&, unq,qz11& are the initial and final phonon states.

Eexc(k), and Eph(q,qz)5\u(uqu21qz
2)1/2, are the exciton

and phonon energies, respectively. The rateWk→k8
abs is then

averaged over the whole phonon ensemble, which is as-
sumed to be in thermal equilibrium~phonon bath!. Since the
in-plane wave vector is conserved in the interaction, only
phonons havingq5k82k contribute to the ensemble aver-
age. The sum overqz may be performed exactly in the con-
tinuum limit, because of thed function in Eq.~6!. We finally
obtain

Wk→k8
abs

5
4p

\

Lz
2p

\

2rV

@ uk2k8u21„qz
0~u!…2#

u\uqz
0~u!u

3@aeI e
i ~ uk82ku!I e

'~qz
0!2ahI h

i ~ uk82ku!I h
'~qz

0!#2

3nph@Eexc~k8!2Eexc~k!#, ~7!

whereqz
0 is the root of the argument of thed function

qz
05F SE~k8!2E~k!

\u D 22uk2k8u2G1/2, ~8!

andnph(E) is the Bose distribution function of the phonon
population. We notice thatWk→k8

abs depends only onuku,
uk8u, and the relative angleu, because the interaction is iso-
tropic. We remark that solutions of Eq.~8! do not exist for
arbitrary values ofuku, uk8u, and u. Equation~8! defines a
phase space for the scattering process. The transitions as-
sisted by phonon emission are calculated in a similar way,
and contain a term (nph11) instead ofnph.

In the QW, a 2D exciton with in-plane wave vectork
interacts with photons having the same in plane wave vector,
but with all possible values ofkz . Thus we have a density of
states for the radiative decay,1

r~ uku,v!5(
kz

dSE~k!2\
c

n
Auku21kz

2D
5

Lz
2p

n

\c

2k0

Ak022uku2
Q~k02uku!, ~9!

wherek0 is nvexc/c, andn is the refraction index. The func-
tion Q(k) is the Heaviside function. We remark that the
radiative recombination occurs only for states withuku,k0 .
This defines the radiative zone. The radiative recombination
rate for transverse excitons with a givenk is calculated by
the Fermi golden rule, using the exciton-photon interaction
Hamiltonian,1 and reads

Gk
T5

2p

n

e2

m0c

f xy
S

k0
kz
, ~10!

where f xy /S is the oscillator strength per unit surface for
transverse excitons, andkz5Ak022uku2. For longitudinal ex-
citons a factorkz /k0 replacesk0 /kz in Eq. ~10!.

III. EVOLUTION OF THE DISTRIBUTION FUNCTION

The rate equations for the populationnk at a given in-
planek, using the scattering ratesWk→k8 and the radiative
recombination rateGk calculated in the previous section,
read

ṅk5(
k8

Wk8→knk8~nk11!2(
k8

Wk→k8nk~nk811!2Gknk .

~11!

The terms (nk11) are related to the bosonic character of
excitons, and correspond to stimulated emission and absorp-
tion processes in the dynamics. However, at low exciton den-
sities, whennk!1, their contribution is negligible. We aver-
age the recombination rate in the whole radiative region in
order to eliminate the infrared divergence ofGk . We obtain

^Gk
T&5

2G0

Dkrad
E
rad

k0
kz
dk54G0 , ~12a!

^Gk
L&5

2G0

Dkrad
E
rad

kz
k0
dk5

4

3
G0 , ~12b!

whereG05(pe2/nm0c)( f xy /S), Dkrad is the area of the ra-
diative zone in thek space, andL andT indicate longitudinal
and transverse excitons, respectively. Assuming an initial
isotropic distribution and taking into account thatWk→k8 de-
pends only onuku, uk8u, and the angleu between them, one
readily sees that the distribution remains isotropic for all
times. All the exciton parameters as Bohr radius, binding
energies, oscillator strengths, masses etc., are taken from
theoretical calculations.11 We solve the Eq.~11! by direct
numerical integration, using a grid of 800uku points in the
region from 0 up to 20k0 . We recall that exciton dissocia-
tion process has been neglected in our model. We study
the dynamics of a realistic QW system of GaAs with
Ga0.6Al 0.4As barriers and QW width of 40 Å . We also use
me50.067m0 for the electron mass, andmh50.18m0 for the
heavy hole (m0 is the free electron mass!. In this system, the
averaged radiative lifetimes are 4 ps and 12 ps for transverse
and longitudinal excitons, respectively. In order to give a
rough estimation of the characteristic times coming into play
in the phonon scattering, we calculate the total rate of ab-
sorption for the excitons atk50. We obtain a typical absorp-
tion rateRabs5gT, with g54 meV/K. This compares well
with degenerate four wave mixing and photoluminescence
linewidth measurements.12–14 Larger absorption rates are
found for excitons withkÞ0, because of additional phonon
emission processes and because of a wider scattering phase
space. Once all the ratesWk→k8 , G0 , and the initial distri-
bution nk(0) are known, the rate equations can be numeri-
cally integrated to obtain the time dependence ofnk . The
luminescence signal is easily extracted, because it is propor-
tional to the total number of photons emitted in the whole
solid angle per unit time,

IPL~ t !} (
uku<k0

Gknk~ t !. ~13!

In Figs. 1~a! and~b!, we show the solutionnk(t) of Eq. ~11!
at different times after the nonresonant excitation as a func-
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tion of k. The initial exciton population created with an ex-
cess energy cools down by emission of phonons. In this first
part of the evolution, shown in Fig. 1~a!, the total number of
excitons in the radiative zone increases and the PL intensity,
shown in Fig. 2, correspondingly rises. The exciton distribu-
tion subsequently tries to thermalize to the lattice tempera-
ture, but the coupling with photons drains the excitons away
from the radiative zone, preventing full thermalization of the
excitonic population. We see indeed that the exciton distri-
bution is depleted in the radiative region. Afterwards, the
population maintains a stationary shape and rigidly decreases
in time, as shown in Fig. 1~b!, so that it may be parametrized

as nk(t)5 f k
statNtot(t). The total population, the radiative

population, and the PL intensity, therefore, decay with the
same characteristic timetD . This decay time may be calcu-
lated by summing Eq.~11! over k,

2
Ṅtot

Ntot
5

1

tD
5

( uku<k0
Gknk

(knk
5 (

uku<k0
f k
statGk . ~14!

We observe thattD depends on the fraction of excitons in
the radiative region only.

When the sample is resonantly excited, we have an initial
exciton population peaked atk50. A different profile of the
PL signal, with respect to the nonresonant case is thus pro-
duced, as shown in Fig. 3. In this case the PL shows two
decay times. The initial decay timet1 corresponds to the
recombination of excitons before the stationarity of the nor-
malized distribution function is reached. This first time is
related to both the radiative recombination rateG0 and the
phonon scattering rate from the initial exciton state to all the
other exciton states. It, therefore, shows a weak temperature
dependence. The second decay time appears after about 30
ps, when the same stationary distribution as in the nonreso-
nant excitation case is reached. This decay timet2 is, there-
fore, the same as in the nonresonant excitation case,tD . The
presence of the two characteristic decay times in the case of
resonant excitation has been observed experimentally by De-
veaudet al.15 The main limitation of our model consists in
the assumption that the optically excited states lose their co-
herence in a time much shorter than the relaxation time of
the exciton population. Actually, this assumption is well jus-
tified in the case of nonresonant excitation, where the relax-
ation of the hot carriers destroy the coherence. However, it
does not hold in the case of direct excitation of the excitons.
Thus, our model provides only a partial understanding of the
evolution in this resonant case. Several measurements have
been performed in the quasiresonant excitation regime6,15 ~a
few meV above the bottom of the HH exciton band!. We
remark that our model does not cover this regime.

IV. TEMPERATURE DEPENDENCE
OF THE CHARACTERISTIC TIMES

We show, in Fig. 4, the temperature dependence of the
rise time in the case of nonresonant excitation. Energy relax-

FIG. 1. Time evolution of the exciton populationnk atT550 K.
The QW width is 40 Å .~a! Evolution up to 200 ps.~b! Evolution
after 250 ps.

FIG. 2. Photoluminescence signal as a function of time for non-
resonant excitation. Same parameters as in Fig. 1. The rise time of
the signal is indicated bytR .

FIG. 3. Photoluminescence signal as a function of time for reso-
nant excitation of thek50 excitons. The temperature is 10 K.
t154 ps andt25240 ps are the two decay times introduced in the
text.
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ation of the initial exciton distribution is provided by the
phonon emission process. Therefore, the rise time shortens
with increasing temperature, because larger phonon densities
at higher temperatures produce faster exciton cooling. A
comparison of the temperature dependence of the rise time
with experimental data provides a significant test for the re-
liability of the calculated phonon scattering rates. Measure-
ments of the rise time in good quality samples have been
reported by many groups,4–6,16and compare reasonably well
to the values found in the present calculation for excitation
energy far from the LH exciton level. We have verified that
the shape of the initial distribution function modifies the dy-
namics. In particular, the value of the rise time is directly
related to the position of the maximum of this initial distri-
bution. Furthermore, we have found that the computed rise
times are very sensitive to the values of the parameters ap-
pearing in the exciton-phonon interaction. In particular, a
small change in the absolute values of the deformation po-
tentials changes the rise times considerably. We recall that
the relative deformation potential~i.e., ae2ah) can be mea-
sured directly by applying hydrostatic pressure on the
samples,8 but for the absolute valuesae , andah , only indi-
rect measurements9 or theoretical estimations are available.17

We have considered, in our calculation, several values for
the deformation potentials. We have found that the results on
the quasithermalization of the exciton states still hold, and
the values of the decay times do not change in an appreciable
way.

In Fig. 5, we give the temperature dependence of the de-
cay times for transverse excitons. The corresponding depen-
dence resulting from the assumption of full thermalization is
also shown. The decay times are underestimated by the full
thermalization picture, but the thermal slope is recovered at
high temperatures, as indicated by the guideline in Fig. 5.
This behavior can be explained by considering the role of the
deviations from the thermal distribution. In fact, we observe
that the stationary shapef k

stat differs from the thermal distri-
bution mainly in the radiative region. This means, according
to Eq. ~14!, that recombination rates obtained by averaging
over the distributionf k

stat become smaller. We show in Fig. 6
two stationary distribution functions at different tempera-
tures. The deviations are smaller at higher temperature, but
do not vanish. Let us discuss in detail the role of these de-
viations. We write the populationnk as

nk5Ntot~ t ! f k
stat5Ntotf k

02dnk , ~15!

where f k
0 is the Boltzmann distribution anddnk represents

the deviations. We have(kdnk50, because distribution
functions are normalized. Using the detailed balance prin-
ciple,

Wk8→k f k
02Wk→k8f k8

0
50, ~16!

holding for allk andk8, and inserting Eq.~15! into Eq.~11!,
we obtain

FIG. 4. Temperature dependence of the rise timetR for nonreso-
nant excitation.

FIG. 5. Temperature dependence of the photoluminescence de-
cay timetD for a QW of 40 Å . The dashed line represents the full
thermalization case. The dot-dashed line is a guideline parallel to
the previous one.

FIG. 6. Normalized exciton distribution functionsf k
stat, for two

different temperatures, 700 ps after the excitation. The dashed lines
show the thermal distributions corresponding to the same tempera-
tures.
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ṅk52(
k8

Wk8→kdnk81(
k8

Wk→k8dnk2Gknk . ~17!

In deducing Eq.~17! from Eq. ~11!, we have assumed
nk!1 and we have neglected all the (nk11) terms. We now
introduce a simplified model in order to analyze the role of
the deviations from the thermal distribution. For this pur-
pose, we define two effective levels, which represent the to-
tality of radiative and nonradiative excitons, respectively.
We will indicate the quantities related to the radiative and
nonradiative regions with indexesR and NR, respectively.
We first consider the behavior of the total nonradiative popu-
lationNNR(t). Summing Eq.~17! over ukNRu in the nonradi-
ative zone, we obtain

ṄNR~ t !5(
kNR

(
k8R

~2Wk8R→kNR
dnk8R1WkNR→k8RdnkNR!.

~18!

Clearly, the scattering inside the nonradiative zone does not
modify NNR(t). Therefore, in Eq.~18!, we consider only
exchanges between nonradiative and radiative zones. We de-
fine the total exchange rates as

WR→NR~k8R!5(
kNR

Wk8R→kNR
, ~19!

WNR→R~kNR!5(
k8R

Wk NR→k8R. ~20!

These rates are flat functions ofk, where the deviationdnk
are large. We rewrite Eq.~18! as

ṄNR~ t !52WdNR , ~21!

where we have defined dNR5(kR
dnkR5

2dNNR52(kNR
dnkNR andW5WR→NR1WNR→R . Analo-

gously, by summing Eq.~11! over the radiative states, we
obtain

ṄR~ t !5WdNR2GNR . ~22!

Equation~21! shows that a transfer of excitons from the non-
radiative to the radiative region is generated by the deviation
dNR . In the stationary regime, all the excitons decay with
the same characteristic time, thus

ṄR

NR
5
ṄNR

NNR
5
Ṅtot

Ntot
, ~23!

and, recalling thatNtot5NR1NNR, we obtain from Eqs.~21!
and ~22!,

G
NR

Ntot
5G2W

dNR

NR
. ~24!

Summing Eq.~15! over the radiative region, we write

NR5(
kR

nk5aNtot2dNR , ~25!

where a5(kR
f k
0512e2E1 /(kBT), and E15(\k0)

2/(2M ).
Introducing Eq.~25! into Eq. ~24!, we finally obtain

aGS 12
dNR

aNtot
D5G2W

dNR

aNtot
S 12

dNR

aNtot
D 21

. ~26!

For W(T)@G, we obtain from Eq. ~26! that
dNR /(aNtot)!1. In this case, the full thermalization limit is
reached. This limit holds for high temperatures, because
W(T) is an increasing function of temperature. In this limit,
to the first order indNR /(aNtot) in Eq. ~26!, we obtain

dNR

aNtot
.

G

W
. ~27!

We calculate the temperature dependence ofW(T) from Eqs.
~19! and ~20!, and we findW(T)5gT, with g54 meV/K.
For transverse excitons in a QW of 40 Å with^Gk

T&5185
meV, the conditiondNR /(aNT)!1 holds forT@ 50 K. In
this limit

tD~T!5FGE1

kBT
S 12

G

WD G21

.
kBT

GE1
1

kB
gE1

, ~28!

where we have useda.E1 /(kBT), which holds for T@ 1
K. At high temperature,tD(T) increases with a slope
(kB)/(4G0E1)5 3.0 ps/K for transverse excitons as pre-
dicted in the full thermalization limit. In addition, we find an
offsetkB /(gE1)5 150 ps. Comparison of this latter result to
the calculatedtD(T) given in Fig. 5 shows that our simpli-
fied model slightly underestimates this offset. This fact may
be due to the assumption of ak independentW(k). Concern-
ing comparison of the calculated value of the offset of
tD(T), it should be kept in mind that trapping of excitons at
interfaces of real samples contributes to the observed offset.2

The deviations from a thermal distribution are found also
in the case of continuous wave~cw! nonresonant excitation
luminescence. The shape of the distribution function, which
is stationary in this case, is very similar to thef k

stat shown in
Fig. 6. We therefore remark that, also in this cw case, evi-
dence of this departure from the thermal distribution can
only be indirectly deduced.

Finally, we study the characteristic times of the PL as a
function of the well width. We show in Fig. 7 the depen-
dence of both decay and rise times on the QW width. These
times increase with the well width. For decay times, this is
mainly due to the reduction of the oscillator strengthf xy /S

FIG. 7. Quantum-well width dependence of decay and rise
times. The temperature is 30 K.
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@see Eq.~10!#, due to the less effective exciton confinement.
The behavior of the rise times is related to the well width
dependence of the cutoff in the exciton-phonon interaction,
as discussed in Sec. II. In fact, the superposition integral
I e(h)
' (qz) of the phonon wave function with the exciton en-
velope function in the growth direction is a decreasing func-
tion of the well width. This behavior of the rise time as a
function of the well width has been experimentally
observed.18 However, in Ref. 18, the temperatures are too
large to be addressed by our model. Experiments at lower
temperatures are, therefore, needed in order to have an inde-
pendent check of the parameters used in the exciton-phonon
interaction.

V. THE ROLE OF THE SPIN

Up to now, we have only considered the dynamics of
transverse excitons. Actually, there are four HH exciton lev-
els: one longitudinal, and one transverse, which correspond
to theG5 representation of theTd point group, and two dark
excitons, the states of which belong to the representation
G1 andG2 . The dark excitons do not couple with the light.
We have not extended our model in order to take into ac-
count the scattering between these levels. We only make here
some considerations about the role of this scattering on the
overall dynamics of excitons.

The first possibility is that scattering between the four
levels is absent, or at least it is much slower than phonon
scattering and recombination characteristic times. It follows
from this assumption that in the dynamics we have four par-
allel channels, and the PL signal results from the sum of the
PL produced by longitudinal and transverse excitons. There-
fore one expects to observe, for sufficiently large times, a
sum of two exponential decays in the signal. Furthermore,
the total PL signal depends on the ratio of longitudinal to
transverse excitons created at the beginning. The two decay
times as a function of the temperature corresponding to lon-
gitudinal and transverse excitons are reported in Fig. 8~a!.

The second possibility is that the scattering rates between
the optically active excitons and the dark excitons are negli-
gible, and the scattering rate between the two optically active
states is faster than the radiative recombination rates. As a
consequence, the populations of longitudinal and transverse
excitons are equal. Therefore, the averaged radiative recom-
bination rate is

^G&5
^Gk

L&1^Gk
T&

2
. ~29!

We show in Fig. 8~b! the decay timetD(T) corresponding to
this assumption.

The last possibility is that a fast scattering involves all the
four levels. In this case, we also need a scattering mechanism
between optically active excitons (J56 1! and dark exci-
tons (J56 2!. This could be provided by a spin flip of the
electron as in the D’yakonov-Perel19 or Elliott-Yafet20

mechanism, or by spin flip of the hole.21 Inserting into the
rate equation the averaged radiative rate over the four levels,

^G&5
^Gk

L&1^Gk
T&

4
, ~30!

we calculate the corresponding dynamics in this case. Re-
sults are shown again in Fig. 8~b!. Fitting procedures from
polarized resonant PL experiments give some estimations of
the typical relaxation rates between the spin levels. Vinattieri
et al.22 have shown that, for a QW of 150 Å at 12 K, the
scattering time between optical states is 70 ps, the hole spin-
flip time is 100 ps, while the electron spin-flip time ranges
between 300 ps and 3 ns. These values suggest that the first
possibility in our discussion is presumably the most reliable.
Theoretical models for the understanding of the relaxation
mechanisms and the estimation of these times have been
proposed by Maialleet al.23 However, an essential improve-
ment to these theories is necessary in order to include explic-
itly the interaction with the phonons, and to produce quanti-
tative results in a full analysis of the relaxation processes
similar to the one proposed in this paper.

VI. CONCLUSIONS

We have shown that, in the free exciton dynamics in
QW’s, there is a competition between the phonon scattering
and radiative recombination. This led us to relax the hypoth-
esis of a thermal distribution for excitons while they are re-
combining. A rate equation model has been introduced,
where scattering by acoustic phonons has been taken into
account. A depletion of the radiative zone resulted from our
calculation. A signature of this depletion can be observed in

FIG. 8. Temperature dependence oftD for a QW of 50 Å cor-
responding to the following cases.~a! no scattering between differ-
ent exciton spin levels: transverse excitons~squares!, and longitu-
dinal excitons~circles!; ~b! fast scattering rate between the two
optically active states~triangles!, fast scattering rates between all
the four exciton spin levels~diamonds!.
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the temperature dependence of the PL decay times in good
quality samples, where only free excitons are created. In par-
ticular, we have predicted a finite PL decay time at low tem-
perature, which is much larger than the intrinsic one, and a
linear increase at higher temperature with the same slope as
in the limit of full thermalization, but with an offset which is
typically 200 ps for a QW of 40 Å . The results are very
sensitive to the physical parameters used in the calculation
like the deformation potentials and the masses of the carriers.
Detailed comparison with the experimental measurements of
the characteristic times would result in an assessment of the
values to be used. We have also indicated that spin relaxation
has a fundamental role in the PL dynamics, because two

radiative and two dark states exist. We have produced typical
results expected in limit situations of very slow or very fast
spin relaxation. The inclusion of intermediate cases is part of
future research.
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