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Peculiar properties of nonlinear response, due to a resonant enhancement of internal field are predicted for
the mesoscopic systems by means of a nonlocal theory of nonlinear response. In this theory, self-consistent
motions of the internal field and the induced polarization, which are related nonlocally with each other, are
determined by solving the equation system of Schro¨dinger and Maxwell’s equations. A study with a model of
ultrathin films consisting of one-dimensional Frenkel excitons has clarified the following points: As a result of
a self-consistent motion with the induced polarization, the internal field with a characteristic spatial distribution
associated with each quantized exciton state is enhanced at a particular resonant energy including a radiative
correction that depends on system size. This resonant enhancement of the internal field greatly strengthens the
nonlinear signal of a particular third-order process, leading to a remarkable size and energy dependence of the
nonlinear response. This effect is explicitly demonstrated for a particular type of pump-probe spectroscopy.
@S0163-1829~96!00723-0#

I. INTRODUCTION

Recently, the requirement of highly efficient optical de-
vices in the field of optoelectronics accelerates the investiga-
tions of nonlinear optical materials. Especially, ultrasmall or
low dimensional systems~mesoscopic systems! such as fine
particles, quantum wells~wires, dots!, and thin films, which
confine electronic systems, and have become important ob-
jects of the research of nonlinear optical phenomena. At the
same time, through the detailed study of these systems, new
fundamental aspects of the optical response of confined elec-
tronic systems have also come to our attention.

One of the main reasons for the great attention to the
confined electronic systems is that these materials show a
remarkable size dependence in nonlinear response. For the
expectation of large nonlinearity, a lot of works have given
arguments on the size-dependent nonlinearity of confined
electronic systems, and most of them attribute this phenom-
enon to the size dependence of the third-order nonlinear sus-
ceptibility x (3).1–6Some discussions are based on the idea of
the size enhancement of oscillator strength,1–4 namely, the
oscillator strength increases in proportion to the system size
as long as the wave function of exciton is coherent in the
whole sample, and this brings about size-linear enhancement
of x (3). This argument is valid in the limited size range
where a long-wavelength approximation~LWA ! is valid.
However, it does not give a consistent description when
LWA is not applicable, because the concept of the oscillator
strength is based on LWA. It should also be noted that the
separation of nonlinear polarization into ‘‘position-
independent’’ susceptibility and field amplitudes, which is
the background of the size enhancement ofx (3), is allowed
only in a LWA.

As we discussed in the previous papers,7–11 the basic con-
cept for the comprehensive understanding of the size depen-
dence of optical properties is ‘‘nonlocal response.’’ In gen-
eral, the density of induced dipole moment at some point of
a matter is determined by the electric field not only at that
point, but also at other points, because of the finite extension
of the wave functions of relevant states. This should be de-
scribed as the relationship between the internal field and in-
duced dipole density in the nonlocal form, namely, one quan-
tity is described as a functional of another quantity.10 In this
way, the spatial distribution of the internal field is deter-
mined consistently with that of induced polarization. Thus,
for a resonant light, the spatial variation of the internal field
becomes comparable to that of induced polarization, and in a
mesoscopic system where the polarization wave is coherent
in the whole sample, the magnitude and the spatial distribu-
tion of the internal field are resonantly dependent on the
‘‘size, shape, and internal structure’’ of the sample.8,10,11

Since this effect of the internal field should strongly affect
the resonant nonlinear response, the consideration of nonlo-
cality beyond the arguments of size enhancement ofx (3) is
absolutely necessary for the consistent understanding of non-
linear response. This is essential for the description of the
size dependence from microscopic to macroscopic range, but
even in the LWA regime it can be very important as men-
tioned below.

In Ref. 9, we developed a nonlocal theory of nonlinear
response, where the site represented linear and nonlinear sus-
ceptibilities are calculated for a model systems of an ultra-
thin film consisting of one-dimensional chains confining
Frenkel excitons and then, the Maxwell equations containing
these source terms are solved. Since the energy transfer and
damping, which determines the extent of the coherence of
electronic systems, are explicitly taken into account, and
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since the self-consistent motions of the field and induced
polarization are determined in this method, the effect of
‘‘size, shape, and internal structure’’ dependence of both sus-
ceptibility and the internal field are automatically incorpo-
rated in the final result. From a fully nonlocal calculation in
a small size region~up to 20 molecule layers of CuCl thin
film!, we obtained a clear indication of nonlocality and the
size dependence of internal field in the response spectra,
even though the system size belongs to the LWA region,
where the position dependence of the internal field should be
negligible.

On the other hand, in Refs. 8,10, we discussed peculiar
resonant behavior of the internal field that appears in the size
region where the position dependence of the internal field is
noticeable. Namely, the component with particular spatial
pattern of the internal field shows resonant size enhance-
ment. In these papers, we saw this effect in the case that
beam energy was fixed at the lowest excitonic level, where
the component of the internal field relevant to the second
excitonic level is resonantly enhanced even when the beam
energy is tuned to the lowest level. Further, in Ref. 11, we
studied the nonlinear response caused by the enhancement of
the internal field, extending the size range of the calculation
for the same model as in Ref. 9, and it has been clarified, for
the case of pump-probe spectroscopy, that a certain nonlinear
signal is remarkably strengthened because of the simulta-
neous resonances of the internal field in energy and size. We
called this effect ‘‘Nonlocality-induced double resonance in
energy and size~NIDORES!.’’

In the above papers, we focused on a specific aspect of the
problem, namely, we discussed the size dependence of the
internal field and the nonlinear signal keeping the pump
beam energy at the particular excitonic~material! level. This
effect, however, appears in different ways according to the
choice of a fixed parameter, since the signal intensity is a
function of pump and probe beam frequencies and of sample
size (N). Therefore, in this paper, we study the resonant
enhancement of the internal field and resulting nonlinear re-
sponse in more general way, changing a fixed parameter.

The rest of this paper is organized as follows: Before the
calculation of the nonlinear response, we supplement the ar-

guments on the resonant enhancement of internal field in an
ultrathin film that were given in Refs. 8,10. Then we proceed
to a nonlinear response, in Sec. III, to see the effect of the
strong nonlocality on the nonlinear properties of mesoscopic
systems, where a pump-probe spectroscopy is handled. In
Sec. IV, we give a detailed analysis of the structures in the
calculated nonlinear spectra, assigning the peak structures to
specific transitions. The discussions and summary are given
in the succeeding sections.

II. INTERNAL FIELD IN AN ULTRATHIN FILM

In this section, we consider the magnitude and spatial
variation of the internal field of resonant light in an ultrathin
semiconductor film. A theoretical description of linear re-
sponse in a film has been done by various groups,12–18and it
is now well established that, for a thickness much larger than
exciton Bohr radius, only the size quantization of center-of-
mass~CM! motion needs to be considered. In order to make
a smooth continuation to the model for nonlinear processes
later, we will handle the problem in terms of a discrete lattice
model, which is exactly the same as those in Refs. 8 and 11.
Namely, we consider the film consisting ofN layers in which
the motion of Frenkel excitons parallel to the axis of the film
are confined. We assume the amplitude of exciton is zero on
the imaginary 0th and (N11)th layers, and neglect the pos-
sible distortion of exciton wave functions near the film sur-
faces. This model gives essentially the same result as that of
continuum model based on Wannier excitons with the prop-
erly chosen parameter values for the transfer energy and the
transition dipole moment per unit cell.19 This treatment is
useful in the case where exciton Bohr radius is so small that
the consideration of the distortion of wave functions near the
surfaces is not necessary. More details of this model are
given in Refs. 8,11. By the ABC-free theory, which is the
nonlocal theory for the linear response,16,20we can obtain the
explicit expression of the internal field. The procedure of
calculations is almost the same as that in Ref. 16. The main
difference is discreteness of the lattice in the present model,
in contrast to the continuum model in Ref. 16. The resultant
expression of internal field as a function of sitej is

Ej5~2 cosq122 cosq0!$Ē1sinq1 j1 Ē2sinq1~N112 j !%/sinq1~N11!

2~2 cosq222 cosq0!$Ē1sinq2 j1 Ē2sinq2~N112 j !%/sinq2~N11!, ~1!

whereĒ1 and Ē2 are arbitrary constants to be determined by
the boundary conditions,q0 is defined as

cosq05~«012b2\v2 iG!/2b, ~2!

andq1 andq2 are the wave numbers of the bulk polaritons
that are the roots of the dispersion relation,

~2 cosq22 cosqb!~2 cosq22cosq0!2B50. ~3!

In the above expressions~2! and ~3!, b(.0) is the nearest
layer transfer energy,G the phenomenological damping con-
stant of the exciton, and

qb5~v/c!A«b, ~4!

B5
DLTa0

2v2«b
bc2

, ~5!

where
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DLT5
4puM u2

a0
3 , ~6!

«b the background dielectric constant,a0 the lattice constant,
andM the matrix element of the transition dipole moment of
the atom. Connecting the internal field with the outer fields
by means of Maxwell boundary conditions, we determine the
amplitudes of the internal field.

For the study of the spatial structure of the internal field
caused by the excitonic resonance, first, we expandEj , for
1< j<N, in terms of eigenfunctions of translational~CM!
motion of excitons in the film, namely,

Ej5 (
n51

N S 2

N11D
1/2

sinS np

N11
j DFn . ~7!

In this expression,n corresponds to the size-quantized wave
number~see Ref. 8!, and expansion coefficientFn means the
amplitude of the component related with thenth quantized
exciton. Throughout the numerical calculations in this sec-
tion, we choose material parameters of theZ3 exciton of
CuCl that is a typical single-component exciton. The values
of parameters are

vT53202.2 meV, b557.0 meV,

4puM u2

v0
55.7 meV,

«b55.6, a055.4 Å, ~8!

wherevT is the energy of the bottom of the exciton band for
N→`, namely,vT5«022b.

In Fig. 1, we showuFnu2(n51, 2, and 3! as a function of
beam energy and sizeN, together with the curves indicating
the values ofuFnu2 at the lowest exciton level in each size
~the dotted lines on the surface ofuFnu2). In each case of
n, we see a specific structure of ridges and valleys. This
resonant behavior of the internal field can be understood as
another aspect of polariton interference effect, which is well
understood for a thin film~for example, see Ref. 21!. From
these pictures, we know how each component of the internal
field is enhanced with the size or energy. If we fix the beam
energy, we can see the resonant enhancement ofuFnu2 by
size. On the other hand, we find the enhancement ofuFnu2 at
the resonant energy of the response field that includes the
radiative shift, if we fix the size (N) and change the beam
energy. In Ref. 11, we discussed the size dependence of
uFnu2 when the beam energy is tuned to the lowest exciton
level, and showed the remarkable resonant enhancement at a
certain size~Fig. 2 in Ref. 11!. The cross sections along
dotted lines are nothing but the curves in Fig. 2 in Ref. 11.
The pictures of the resonant structure of each component of
the internal field shown here help us to understand the pecu-
liar spectral structure and the size dependence of the resonant
nonlinear response in the mesoscopic media, which are
shown in the following section.

The resonant behavior of$F% is clearly seen also in the
distribution of the internal field in real space. The spatial
distribution of the intensity of internal fieldI j (5uEj u2) is
shown in Fig. 2 forN510, 52, 91, 401. In the case of
N552 ~91!, the spatial distribution at the lowest exciton en-

ergy is dominated byuF2u2(uF3u2), which represents the spa-
tial variation of induced polarization forn52(n53) exci-
tonic state. On the other hand, the spatial variation of the
internal field forN510 is hardly appreciable and its magni-
tude at the lowest exciton level is very small. For the large
size (N5401), the amplitude of the internal field is much
reduced by the damping and total reflection effect. Thus, we

FIG. 1. uFnu2 ~the strength of the component of the internal field
related with thenth quantized exciton!, as a function of beam en-
ergy and sizeN. ~a!, ~b!, and~c! are forn51, 2, and 3, respectively.
Dotted lines on the surface ofuFnu2 indicate the values ofuFnu2 at
the lowest exciton level in each size.G50.06 meV. The intensity of
the incident beam is taken to be unity. The other parameter values
are given in the text.
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understand that the resonant enhancement of the internal
field is a characteristic phenomenon in a limited range of
mesoscopic size.

The extent of the enhancement of the internal field greatly
depends on the value of transverse damping constant.
Smaller damping causes a larger enhancement, while larger
damping restrains the enhancement and the sharpness of the
peaks ofuFu2 is reduced as the function of energy and size
@Fig. 2~e!#. The smaller value that is taken here, 0.06 meV, is
estimated from the analysis of an experimental result for a
very good thin film of CuCl.21

As explained in Ref. 10, the resonant size enhancement of

the internal field, which we show here, is explained in a
general way in terms of the radiative correction, due to the
retarded interaction among induced polarizations. The reso-
nant energies of the response field, which we denote$Vn%,
are generally different from the corresponding material lev-
els @the eigenvalue of unperturbed system, which we denote
E1(n)] by the radiative shift and width. This radiative shift
increases as the system size increases~within LWA !. In me-
soscopic systems, the amount of the radiative shift can be
larger than the separation of the neighboring size-quantized
states that decreases as the size increases. Thus, if we fix the
beam frequencyv to E1(m) and change the size, we find a

FIG. 2. The intensity of the internal fieldI j as a function of discrete sitej and beam energy for various sizesN. ~a! N510, ~b!
N552, ~c! N591, and~d! N5401. The parameter values are the same as those in Fig. 1.~e! is the same as~b!, butG50.6 meV. Contour
line of I j and vertical lines indicating energy positions of one exciton are given on the top surface of each figure.
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resonant enhancement of the internal field characteristic to
the nth exciton state (nÞm) at the size where
Re(Vn)5E1(m) is realized.

The resonant enhancement of the internal field is equiva-
lent to the known effect of polariton interference in the re-
gime of linear response. In the nonlinear regime, however,
the effect of nonlocal response has been very poorly studied,
and therefore, we expect new types of nonlinear response for
such a typically nonlocal condition as that for the resonant
enhancement of internal field. Examples of such phenomena
are presented in the next section.

III. NONLINEAR RESPONSE IN THE PRESENCE
OF RESONANT ENHANCEMENT

OF THE INTERNAL FIELD

To show the examples of the nonlinear response in the
presence of the strong nonlocality, we calculate the pump-
induced change in the probe spectra where the pump energy
is in the excitonic resonant region. The probe beam scans the
region near the transition energy between one-exciton states
and bound two-exciton states.

In the size range we treat here, strong nonlocality appears
through the resonant enhancement of internal field. In the
previous work,9 where the cancellation problem7 was consid-
ered exactly, the size range was limited for numerical rea-
sons. Here, we extend the range by relaxing the exact treat-
ment, i.e., by omitting the less important terms inx (3). The
choice of such terms is made by the detailed evaluation of
the cancellation, as explained briefly in the next subsection.
The model and the theory, which we outline below, are ba-
sically the same as in Ref. 9.~See Ref. 9 for more details.!

A. Model and theory

As a model system, we suppose a thin film consisting of a
bundle of independent one-dimensional chains of sizeN con-
fining Frenkel excitons, which lies perpendicular to the film
surface, and both pump and probe beams are considered to
be normal incidence. The unperturbed Hamiltonian is

H05 (
j50

N11

«0aj
†aj2b(

j51

N11

~aj21
† aj1aj

†aj21!

2 d̄(
j50

N

aj
†aj11

† ajaj11 , ~9!

whereaj
† andaj are the creation and annihilation operators

of an exciton on thej th site,«0 the excitation energy of each
site,b the transfer energy, and we introduce the virtual sites
j50 andN11 on which the amplitude of exciton is sup-
posed to be zero. The lattice constant of the chain is taken to
be the unit of length. The third term, exciton-exciton inter-
action, is introduced to allow the bound two-exciton states.
We treatd̄ as a free parameter for the above-mentioned pur-
pose, though the binding energy of excitonic molecule~biex-
citon! will generally be very small in Frenkel-type excitons.
The eigenvalues and eigenfunctions of one-exciton states are

E1~n!5«022b cos~Kn!, ~10!

and

uKn&5S 2

N11D
1/2

(
j
sin~Knj !aj

†u0&, ~11!

respectively. The allowed values ofKn are

Kn5
np

N11
$n51,2,•••,N%. ~12!

To obtain two-exciton states, we expand them as

um&5(
i, j

C̄i , j
~m!aj

†ai
†u0&, ~13!

and calculate$C̄i , j
(m)% and eigenvalues$Ēm% numerically.

To calculatex (3) in nonlocal form, we use the usual per-
turbation expansion of density matrix as in Ref. 7, namely,
we start with a standard expression of the third-order nonlin-
ear polarization at sitej and timet:

Pj
~3!~ t !5

~2 i !3

v0
E

2`

t

dt1E
2`

t1
dt2E

2`

t2
dt3

3^@†@Pj~ t !,H8~ t1!#,H8~ t2!‡,H8~ t3!#&, ~14!

where the angular brackets mean a statistical average,v0 is
the volume of a unit cell,\ is taken to be unity,P(t) and
H8 are the interaction representations of the polarization op-
erator and electron-radiation interaction, respectively,

Pj~ t !5exp~ iH0t !Pjexp~2 iH0t !, ~15!

H8~ t !5exp~ iH0t !F2(
i

(
s
PiEi~s!exp~2 ivst1ḡt !G

3exp~2 iH0t !, ~16!

ḡ 501 the factor for adiabatic switching of the electron-
radiation interaction, andEi(s) the amplitude of the electric
field at site i with frequencyvs . Inserting the matrix ele-
ments of site-dependent dipole density between the ground
state and one-exciton states and between one- and two-
exciton states, which are calculated with the known wave
functions~11! and~13!, we obtainx (3) in a nonlocal form for
the arbitrary frequencies. In this calculation, we have intro-
duced the phenomenological damping constantsg for the
population decay andG for the phase decay in the usual way
as in Ref. 22. Then, among all the terms of the nonlinear
polarization, we pick up the contribution of the most~triply!
resonant terms for the pump frequencyv2 and probe fre-
quencyv1 . The third-order polarizationPj

(3) with frequency
v1 is then written in the following form:
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Pj
~3!~ t !u@ tri. res.#5

M4

v0
S 2

N11D 1/2(n sinKnj F(
m

uFm
~1!u2Fn

~1!G0~Kn ,Km ;v1!

1(
m

(
l

(
k
Fm

~1!*Fn
~1!Fk

~1!G1~Kn ,Km ,Kl ,Kk ;v1!1(
m

uFm
~2!u2Fn

~1!H0~Kn ,Km ;v1 ,v2!

1(
m

(
l

(
k
Fm

~2!*Fk
~2!Fl

~1!H1~Kn ,Km ,Kl ,Kk ;v1 ,v2!1(
m

Fm
~2!*Fn

~2!Fm
~1!H̄0~Kn ,Km ;v1 ,v2!

1(
m

(
l

(
k
Fm

~2!*Fl
~2!Fk

~1!H̄1~Kn ,Km ,Kl ,Kk ;v1 ,v2!Ge2 iv1t, ~17!

whereM is the transition dipole moment per site,G0 , G1 ,
H0 , H1 , H̄0 , and H̄1 are the functions containing energy
denominators, the explicit expressions of which are given in
Appendix B in Ref. 9 with the slightly different notations. In
the expression~17!, we define the amplitudes$F% as

Fn
~p!5S 2

N11D
1/2

(
j
sinKnjEj~p!. ~18!

Note that the amplitudes$F% are nothing but the expansion
coefficients of the internal field in~7!,23 which is easily un-
derstood if we note thatEj (p) is obtained by reciprocal Fou-
rier transformation ofFn

(p) . The polarization term in the
Maxwell equations consists of the third-order term due to
x (3) and the linear term. The latter is the sum of resonant
term

Pj
~1!~ t !5

M2

v0
S 2

N11D
1/2

(
n

sin~Knj !Fn
~1!

E1~n!2v12 iG
e2 iv1t,

~19!

and background polarization. Regarding$F% as given quan-
tities, we can solve the Maxwell equations for$Ej (p)% in the
form of cubic polynomials of$F% with four arbitrary param-
eters~two for each of$Ej (1)% and $Ej (2)%). Substitution of
this solution into~18! leads to a set of cubic equations for
$F (1)% and$F (2)%, which, together with the Maxwell bound-
ary conditions, can be solved uniquely for a given condition
of incident field. ~Because of the many unknowns
$Fn

(1) ,Fm
(2)%, this calculation needs a large amount of com-

puter work.! This unique solution fixes all the amplitudes of
the internal and external fields.

In the computation of the nonlinear polarization in this
work, we omit the terms containing the higher excitation
energy than the relevant resonant energies, while we took
account of all the levels in Ref. 9. For this treatment, a care-
ful consideration of cancellation is necessary.7 Namely, as
system size increases, the cancellation occurs between the
terms that contain ground state and two-exciton states in the
second intermediate states inx (3), and a larger number of
terms cancel for large system size. Because of this, the size
linear enhancement ofx (3) in the LWA regime tends to be
suppressed and saturated to a size-independent constant
value. Therefore, in the size region where the size enhance-
ment is no longer linear, careless omission of the contribu-
tions of the higher levels would cause a large error. Since the

extent of cancellation strongly depends on the material pa-
rameters, such as transfer energy and damping constant, we
need to carefully examine case by case in omitting the con-
tributions from the terms with higher excitation energies. We
have performed such an examination by comparing the re-
sults of two different ways of computation for the same
model as follows. In Ref. 7, we obtained the expression of
x (3) of one-dimensional Frenkel excitons, with periodic
boundary conditions, where the summation over the levels
was analytically evaluated and the closed form ofx (3) was
obtained for an arbitrary sizeN. On the other hand, we can
perform this summation partially in numerical calculation.
By comparing the numerical results in LWA of these differ-
ent treatments, we estimate the error arising from the omis-
sion of the higher levels for the relevant parameters. More
details about this examination will be published elsewhere.

B. Results

Throughout this section, we use the values in~8! for the
material parameters. Besides, we choosed̄5195.0 meV for
the attractive energy of two excitons, and 7.23104 V/m and
7.23102 V/m for the amplitudes of the incident pump and
probe beams, respectively. As for the damping constants, we
use two sets, namely, the smaller set (g,G)5(0.02,0.06)
meV and the larger set~0.2, 0.6! meV.

Since the signal intensity is functions of pump (v2) and
probe (v1) frequencies and of sample size (N), we need to
fix one of them to show the result in a 3D figure. In the
following, we show two kinds of figures, either as functions
of (v2 ,v1) or as functions of (v1 ,N). In the latter case,
v2 is chosen at the energy of eitherE1(1) or the second
lowest peak of the transmittanceT(v). As the nonlinear sig-
nal, we take the pump-induced change in the transmittance
of the probe light. As for the casev25E1(1), wepresented
a brief report in Ref. 11, and discussed the change of the
nonlinear signal with the size. In this paper, we give detailed
discussions of the nonlinear processes of respective signals
in all of the above cases. Before the detailed analysis of the
signal that will be given in the next section, we glance
through the overall behavior of the spectrum of each case.

Figure 3 shows the pump energy dependence of the non-
linear change in the transmittance spectrum of the probe
beamdT(v1) for N550. The pump energy covers the re-
gion whereuF2u2 and uF3u2 take peak values in Fig. 1~b!,
1~c!, and the probe energy is near the transition energies
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between the~size-quantized! one-exciton and biexciton lev-
els. Figures 3~a! and 3~b! are for the small and large damp-
ing, respectively. In Fig. 3~a!, we can see three main struc-
tures near the constant values 3.1684 eV@A1#, 3.1679 eV
@A2#, and 3.1672 eV@A3# of the probe beam. The peaks of
these structures are due to the enhancement ofFn , namely,
the transition by the probe beam betweenE1(n)→Ēn are
strengthened by the enhancement ofFn , where Ēn is nth
biexciton level. Among them, the remarkable enhancement
of @A2# and@A3#, which reflect the pump energy dependence
of uF2u2 and uF3u2 in Figs. 1~b!, 1~c!, should be noted. In
addition, a small peak structure@A0# is due to the two-
photon absorption satisfyingv11v25Ē1 .

By comparing Figs. 3~a! with 3~b!, we see that the mag-
nitude of peaks and their sharpness is very dependent on the
transverse damping constantG. ~A change ing affects only
the magnitude of signals and does not change the sharpness.!
The smaller valueG50.06 meV used in the present calcula-
tion corresponds to an experimental one for a very clean
sample as mentioned in the previous section. The damping
ten times as large as this value greatly reduces the magnitude
of signals and its sharpness as seen in Fig. 3~b!, and it be-
comes difficult to distinguish the peak structures of the re-
spective nonlinear processes.

The effect of the resonant enhancement of internal field
appears also in the size dependence of the pump-induced
change of the probe spectrum in a characteristic way.11 In
Fig. 4, N dependence ofdT(v1) is given forv25E1(1).
Two distinct nonlinear signals and an additional small signal
can be seen in Fig. 4~a!. We denote them as@B0#, @B1#, and
@B2# as shown in the figure. Their peak energies are
v15Ē22E1(1) for @B0#, v15Ē12E1(1) for @B1#, and
v15Ē22E1(2) for @B2#, @v25E1(1)#, at each sizeN. The
small signal@B0#, which is conspicuous aroundN550, is
due to the two-photon absorption where the total energy of
pump and probe beam is identical to the eigenenergy of the
second biexciton levelĒ2 . The signal@B1#, the size depen-
dence of which is moderate, is due to two kinds of superim-
posed nonlinear processes, namely, pump-induced absorp-
tion by biexciton where the transition betweenE1(1)
and Ē1 occurs, and two-photon absorption, where the total

energy of pump and probe beam is identical toĒ1 . On the
other hand, the strong size dependence of the signal@B2# is
notable. The maximum of the peak very much exceeds that
of signal @B1# around sizeN552. The enhancement of this

FIG. 3. Pump energy dependence of the negative value of the nonlinear change in the transmittance spectrum2dT(v) of the probe beam
for sizeN550. ~a! (g,G)5(0.02,0.06) meV,~b! (g,G)5(0.2,0.6) meV. The other parameters are given in the text. The meanings of
@An# (n50, 1, 2, and 3! are explained in the text.

FIG. 4. Size dependence of the negative value of the nonlinear
change in the transmittance spectrum2dT(v) of the probe beam
for the pump energyv25E1(1). @E1(n) is the eigenenergy of the
nth one-exciton state.# ~a! (g,G)5(0.02,0.06) meV, ~b!
(g,G)5(0.2,0.6) meV. The other parameters are given in the text.
The meaning of@Bn# (n50, 1, and 2! is explained in the text.
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nonlinear signal@B2# is due to the resonant size enhance-
ment of uF2u2, and the size dependence of@B2# clearly re-
flects that ofuF2u2 in Fig. 2 in Ref. 11. The result for the
larger damping is shown in Fig. 4~b!. The distinction be-
tween @B1# and @B2# is not very clear in this case and the
size enhancement of@B2# cannot be seen.

From an experimental point of view, it is not easy to put
v pump in resonance withE1(1), which is different from
spectral resonance position because of its radiative shift. An
easier way is to putvpump in resonance with a spectral reso-
nance$V j%. We show the size dependence of the spectra
corresponding to this case in Fig. 5. In the present model,
however, the optical structure corresponding to the lowest
exciton level is noticeable only for a very small size, and it
disappears as the size increases@Fig. 1~a!#. Then the peak
relevant to the second-exciton level takes the place of it, and
this seemingly corresponds to the lowest resonant level.
Thus, we tune the pump energy to the peak position of
uF2u2 in each size that almost corresponds to the peak posi-
tion (V2) of transmittance in the size region of consider-
ation. The three main peak structures in Fig. 5 are denoted as
@C0#, @C1#, and @C2#, as shown in the figure. Their peak
energies arev15Ē12E1(1) for @C0#, v15Ē12V2 for
@C1#, andv15Ē22V2 , for @C2#, (v25V2), at each size

N. The signal@C0# and@C1# are due to the induced absorp-
tion from E1(1) to Ē1 and the two-photon absorption,
v11v25Ē1 , respectively. The signals of these two pro-
cesses in Fig. 4 appear at the same energy position, and
cannot be distinguished, because the pump energy (v2) is
adjusted toE1(1) in that case. The large signal@C2# has
essentially the same origin as@B2# in Fig. 4. The peak value
of this signal generally increases with size, due to the in-
crease inuF2u2 @along the ridge of Fig. 1~b!#, but turns to
decrease aroundN537 ~Fig. 6!. The reason for the decrease
is the off-resonance energy,V22E1(2), in thedenominator
of x (3), which increases with the size. The result for the
larger damping is shown in Fig. 5~b!. The @C0# and @C1#
cannot be distinguished and the signal@C2# is not very con-
spicuous as compared with the other signals.

IV. ANALYSIS OF NONLINEAR SPECTRA

To understand the nonlinear processes contributing the
anomalous signals, due to the resonant enhancement of the
internal field shown in the previous section, we need to see
individual terms inP(3). In the present pump-probe spectros-
copy, main contribution comes from the two terms inP(3)

that contain two-exciton states. They appear from the fourth
term in the square brackets of~17!. The one is proportional
to

uFn
~2!u2Fm

~1!

~v11 iG2Ẽmn!~v11v212iG2Ēm!@v21 iG2E1~n!#
,

~20!

and the other is proportional to

22GuFn
~2!u2Fm

~1!

~v11 iG2Ẽmn!g$G21@E1~n!2v2#
2%
, ~21!

where

Ẽmn5Ēm2E1~n! ~22!

~Ref. 24!. The former is known as a term contributing to the
two-photon absorption, where the sum frequency of two pho-
tons (v1 andv2 in the present case! becomes identical to the
transition energy between the ground state and two-exciton

FIG. 5. Size dependence of the negative value of the nonlinear
change in the transmittance spectrum2dT(v) of the probe beam
for the pump energyv25V2 . (Vn is thenth resonant energy of the
response field.! ~a! (g,G)5(0.02,0.06) meV,~b! (g,G)5(0.2,0.6)
meV. The other parameters are given in the text. The meaning of
@Cn# (n50, 1, and 2! are explained in the text.

FIG. 6. Maximum value of peak@C2# in Fig. 5~a! for each size
(N).
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states, which contributes to signal@A0#, @B0#, @C0#, and
partly @B1#. The latter represents the pump-induced transi-
tion from the one-exciton statesuKn& to the biexciton states
um& by a probe beam. For example, the case withn51 is
well known as pump-induced absorption where the transition
from the lowest one-exciton state to the lowest biexciton
state by the probe beam is induced by the pump beam.

The anomalous nonlinear signals, due to the resonant en-
hancement of the internal field shown in the previous sec-
tion, are due to the latter process~21!. To clarify the origin of
the size and energy dependence of this process in the meso-
scopic regime, we should note the two kinds of resonances
contributing to the nonlinear response, i.e., the resonance
with material levels that are the poles of the susceptibility of
excitons, and the resonant enhancement of the response field.
As discussed in Sec. II, the latter resonance brings about the
enhancement of$F ’ s% in the numerators of~17!. Both of
them cause the enhancement of nonlinearity. In the condition
of strong nonlocality, the effect of the resonant enhancement
of uFnu2 much more often appears than those of the energy
denominators of~21!. Thus, the relative magnitudes of non-
linear signals strongly reflect those ofuFnu2. For example,
the pump-induced transitions betweenE1(n) and Ēn for
nÞ1 appear as larger nonlinear signals than that forn51
even when the pump energy is nearE1(1), asseen in Fig. 3,
4, and 5. These signals would be very small if it were not for
the resonant enhancement ofuFnu2. It should be noted that
the enhancementuFnu2 leads to the induced transition from
E1(n) to Ēn , not to Ēm(mÞn). This is because the probe
beam energyv1 is in the transparent region in the linear-
response regime. This means the dominance of the uniform
component in its spatial variation. The induced transition be-
tweenE1(n) and Ēm , due to such a uniform probe field,
requires a quasiK-selection ruleKn>Km ~Ref. 25!.

The peak structures@An# (n51, 2, 3! in Fig. 3 appear,
regardless of the pump energy, at the probe energy positions
Ēn2E1(n) corresponding to the first factor in the denomi-
nator of ~21!. On the other hand, the strong resonant en-
hancement ofuFnu2 appears in the pump energy dependen-
cies of @A2# and @A3#. The characteristic points are that
@A2# and @A3# are remarkably strengthened for the size
N;50, with their peak values greatly exceeding that of
@A1#, and that the energy positions of the pump beam where
the peak values of@An# take the maximum are shifted from
the material levelsE1(n) by their radiative shifts. The
shifted positions correspond to the resonant energy of the
response field, where the resonant enhancement ofuFnu2 oc-
curs.

The appearance of the nonlocal effect in the nonlinear
processes can be clearly seen also in the system size depen-
dence. In Fig. 4, the signal@B1# contains both processes of
terms~20! and ~21!, and both of them always go through a
complete resonance with respect to all three factors in the
denominators. The notable points are the strong enhance-
ment of the signal@B2# at aroundN552, and the fact that
the maximum value of the peak is much larger than that of
@B1#, though the energy denominator of this process~21!
does not enjoy the complete resonance. At this sizeN552,
pump beam that is tuned toE1(1) becomes equal toV2 , and
this causes the enhancement of the spatial pattern relevant to

uK2& in the induced polarization and internal field, namely, it
virtually excites the second one-exciton state selectively.
Thus, the matrix element of2S j PjEj between E1(2)
and Ē2 is enhanced, and a strong signal appears when the
probe beam is resonant withẼ22.

In the case of Fig. 5, the signal@C2#, the origin of which
is the same as that of@B2#, stays much larger than any other
signals at every size, because the pump energy follows the
peak position ofuF2u2. On the other hand, the difference
between the pump energy and the material levelE1(2) in-
creases as size increases, and the resonance condition with
respect to the third factor in the denominator of~21! be-
comes weak. Because of this effect, the peak value of@C2#
turns to decrease forN>37 throughuF2u2 keeps increasing.

V. DISCUSSIONS

Based on a nonlocal response theory, we have discussed
the resonant enhancement of internal field in mesoscopic
systems, which is a remarkable manifestation of nonlocality,
and showed an anomalous nonlinear response, due to this
effect with a model calculation. Though there have been
many arguments about the nonlinear-response focused on the
resonant structure and the size dependence ofx (3), the effect
of resonant enhancement of response field on the nonlinear
spectra has not been discussed so far. As we pointed out in
the former papers,8,11 the effect of the resonant enhancement
of the internal field on the nonlinear response should not be
neglected, and the nonlocal treatment is absolutely necessary
to take account of this effect in the discussion of resonant
nonlinear response. In this paper, we have performed explicit
model calculations to show this point, and as a result, we
have revealed different properties of the nonlinear response
in the mesoscopic systems, namely, a strong resonant en-
hancement of the nonlinear signals and a peculiar size de-
pendence of them.

For the clear understanding of the nonlinear response in
the mesoscopic systems, we should recognize the following
points: First, the motion of the resonant internal field is de-
termined self-consistently with that of the induced polariza-
tion via a nonlocal relationship between them. Because of
this, the internal field with a particular spatial pattern asso-
ciated with an exciton state is enhanced at the resonant fre-
quency of the response field, which is shifted from the exci-
ton level, due to the retarded interaction depending on the
system size. Second, the resonant behavior of the nonlinear
response in the mesoscopic systems arises not only from the
poles of nonlinear susceptibility that are the excitation ener-
gies of unperturbed material levels, but also from the reso-
nant enhancement of the internal field. Namely, we should
always consider the dependence of the two kinds of reso-
nances on the system size and structure, to consistently un-
derstand the nonlinear response in the mesoscopic systems.

Considering the above points, we naturally understand the
aspects due to strong nonlocality in the nonlinear response of
mesoscopic systems. The characteristic point of this aspect is
the strong enhancement of a particular nonlinear signal
caused by the resonant enhancement of the internal field with
a particular spatial pattern. This effect appears as peculiar
energy and size dependencies of the nonlinear spectra arising
from the size-dependent radiative shift, which can be cor-
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rectly treated by, not local, but nonlocal response theory.
When we see the pump energy dependence of@An# in Fig.

3~a!, we find a strong enhancement of the nonlinear signal
originating from the transition between thenth one-exciton
state andnth biexciton state forn52 and 3. It is shown that
these signals become much larger than that forn51 in the
case of particular size (N550). This pump energy depen-
dence reflects the spectra$uFn(v2)u2% of the respective com-
ponents of the internal field, and cannot be understood by the
analysis of the nonlinear susceptibility alone. It is also no-
table that the pump energy giving the maximum value of
@An# is determined by the balance of thev2 dependencies of
uFnu2 and the energy denominator of~21!. This again indi-
cates that we should consider the resonant structures of the
nonlinear susceptibility and the resonance of the internal
field as a whole to analyze the nonlinearity appearing in the
response field.

From the fact that the third-order nonlinear polarization
depends on the three variablesv1 , v2 , andN, there are
several different ways to describe the behavior ofP(3) ac-
cording to the choice of a fixed variable, as shown in Figs. 3,
4, and 5. If we fix the pump energy at a material level as in
Fig. 4, we find a resonant size enhancement of the nonlinear
signal @B2#. This is because the radiative shiftE1(2)2V2
grows with the size and it exceeds the separations
E1(2)2E1(1) at a certain size (N552). Namely, at a par-
ticular size, we have a situation that the transition between
E1(2) andĒ2 is strengthened by the resonant enhancement
of the particular component of the internal field (F2), with a
spatial pattern relevant toE1(2), in spite of the fact that the
pump beam is tuned to a lower levelE1(1). A similar situ-
ation will generally occur, if we choosev25E1(n21).
Namely, at a particular size,Fn will be resonantly enhanced,
which leads to the enhancement of the probe beam transition
from E1(n) to Ēn . On the other hand, if we fix the pump
energy at a resonant pole of response field (v25V2) as in
Fig. 5, the size variation of the enhanced signal roughly fol-
lows that of the peak value of the intensity of the enhanced
internal field. Thus, the size dependence ofuFnu2 gives the
main contribution to that of the nonlinear response in this
case.

The large nonlinear signals discussed in this paper are due
to the simultaneous occurrence of the resonances with the
poles of nonlinear susceptibility and response field. This may
be regarded as double resonance in analogy with the case of
ENDOR ~electron nucleus double resonance!.26 The param-
eters (v1 ,v2 ,N) in our case would correspond to the micro-
wave (vmw), radio wave frequencies (v rf) andg value~s! in
ENDOR. Signal intensities are functions of these parameters,
and along a given cross section in this parameter space~e.g.,
N5const org5const), a doubly resonant condition for the
remaining parameters (v1 ,v2 ;vmw,v rf) leads to a large sig-
nal. In our previous papers,10,11we argued the condition for
the cross sectionv25E1(1). In this case, we realize the
resonant enhancement by choosing appropriate size (N) and
energy (v1). Considering also that the enhancement of
uFnu2 is a characteristic effect in the nonlocal system, we
called the large signal~s! NIDORES ~nonlocality-induced
double resonance in energy and size!. This is a remarkable
manifestation of the nonlocal nature appearing in the nonlin-

ear response, and we can expect this phenomenon to be a
new source of a large nonlinearity.

In this paper, we compare the results for the small and
large values of the transverse damping, because it is essen-
tially related with the visibility of the nonlocal properties. As
we see in Figs. 3, 4, and 5, we must be able to observe the
effects of the resonant enhancement of the internal field on
the nonlinear spectra clearly if the damping constant is as
small as that of a 150-nm thin film of CuCl in Ref. 21, the
damping constant of which was estimated to be about 0.06
meV in the analysis,13 while it is difficult to observe them
clearly if the damping constant is ten times larger than this
value. The reason for this tendency is that the large damping
reduces the coherence of the wave functions of quantized
states and this causes the reduction of the nonlocality. There-
fore, we should prepare clean samples with a small damping
of exciton for the clear observation of the phenomena in
consideration.

We have some problems in respect to restrictions of the
present models for the linear and the nonlinear calculations.
In the calculation of the linear response, we use the model of
discrete lattice for the center-of-mass motion, and the inter-
nal degree of freedom of exciton is not considered. This
model well reproduces the spectra of excitons with small
Bohr radius. CuCl is a typical example of where the present
model is applicable. For excitons with a large Bohr radius,
the distortion of the wave function near the surfaces should
be taken into account, which changes the quantization
condition,13 though the essence of the resonant enhancement
of the internal field should not be different. In the nonlinear
calculation, we use a special model, namely, the one-
dimensional Frenkel excitons, where the transfer effect along
the direction parallel to the surface is neglected. This treat-
ment changes the level structure of the two-exciton states,
which affects the cancellation problem.7 Therefore, if we
consider nonlinear processes involving scattering two-
exciton states, a further examination of cancellation is nec-
essary. However, if we consider nonlinear processes in the
size region where the cancellation effect is not so serious, the
present treatment of the cancellation problem mentioned in
Sec. III is enough, and the behavior of the NIDORES effect
is essentially unchanged by the use of the simplified model.

The resonant size enhancement of the internal field is ex-
pected to be a general effect in mesoscopic systems, regard-
less of the dimension of the confinement, but how it affects
the enhancement of nonlinear signals should depend on ma-
terial and specific processes to be considered. Therefore, the
study of the resonant nonlinear response of the various types
of confinements of the electronic systems, materials, and
measurements in the presence of this effect would be neces-
sary to obtain the comprehensive understanding of the non-
linear response of the nonlocal systems. Furthermore, such
studies should also be interesting from an applicational view-
point, because the resonant enhancement of internal field can
be a guiding principle for finding large optical nonlinearity.

In the present stage, there has been no experimental report
indicating the proposed phenomena in this paper, probably
because the preparation of the size-controlled samples with
good quality would not be easy. But the experimental veri-
fication of NIDORES is very much desired for the further
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advance of this field, because it is one of the most character-
istic manifestations of nonlocality in mesoscopic systems.

VI. SUMMARY

We have calculated the linear and nonlinear response of
ultrathin film confining Frenkel excitons by means of a non-
local method, and the following points are clarified. As a
result of the self-consistent motion of internal field and in-
duced polarization, which are related in a nonlocal way with
each other, the internal field of a resonant light has a spatial
distribution of a mesoscopic scale. At each resonance, shifted
from an unperturbed exciton level by a radiative correction, a
specific component of the internal field is enhanced. This
effect is specific to nonlocal response, and cannot be derived
from either the local response theory or a LWA of nonlocal
theory.

The resonant enhancement of the internal field causes a
different type of nonlinear response in mesoscopic systems.
Namely, a nonlinear signal of a particular third-order process
is much strengthened, due to the resonant enhancement of a
particular component of the internal field at a resonant en-
ergy of a response fieldVn . Because of it, the resonant

structure of nonlinear spectra becomes quite different from
those expected from the resonant structure of the nonlinear
susceptibility in LWA alone. As an example, we have shown
a case where the transition by probe beam between thenth
one-exciton stateE1(n) and nth biexciton stateĒn is
strengthened by the resonant enhancement of the internal
field of the pump beam with a spatial pattern relevant to
E1(n).

This large enhancement of the nonlinear signal can be
regarded as due to the simultaneous occurrence of two reso-
nances, one with sample size and another with material ex-
citation energy. Thus, we propose to call this effect
nonlocality-induced double resonance with energy and size
as a source of large nonlinearity.
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