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Peculiar properties of nonlinear response, due to a resonant enhancement of internal field are predicted for
the mesoscopic systems by means of a nonlocal theory of nonlinear response. In this theory, self-consistent
motions of the internal field and the induced polarization, which are related nonlocally with each other, are
determined by solving the equation system of Sdimger and Maxwell's equations. A study with a model of
ultrathin films consisting of one-dimensional Frenkel excitons has clarified the following points: As a result of
a self-consistent motion with the induced polarization, the internal field with a characteristic spatial distribution
associated with each quantized exciton state is enhanced at a particular resonant energy including a radiative
correction that depends on system size. This resonant enhancement of the internal field greatly strengthens the
nonlinear signal of a particular third-order process, leading to a remarkable size and energy dependence of the
nonlinear response. This effect is explicitly demonstrated for a particular type of pump-probe spectroscopy.
[S0163-182606)00723-0

[. INTRODUCTION As we discussed in the previous pap€rs;the basic con-
cept for the comprehensive understanding of the size depen-

Recently, the requirement of highly efficient optical de-dence of optical properties is “nonlocal response.” In gen-
vices in the field of optoelectronics accelerates the investigaeral, the density of induced dipole moment at some point of
tions of nonlinear optical materials. Especially, ultrasmall ora matter is determined by the electric field not only at that
low dimensional system@nesoscopic systemsuch as fine Point, but also at other points, because of the finite extension
particles, quantum welléwires, dotg, and thin films, which ~ of the wave functions of relevant states. This should be de-
confine electronic systems, and have become important ot§¢ribed as the relationship between the internal field and in-
jects of the research of nonlinear optical phenomena. At thguced dipole density in the nonlocal form, namely, one quan-
same time, through the detailed study of these systems, nelffy IS described as a functional of another qua ftyn this
fundamental aspects of the optical response of confined ele/@y: the spatial distribution of the internal field is deter-
vonic systems have aso come to our atienton. TS consstenty wih hat of ncuced poarzaton. Tous

O_ne of the mgin reasons_for the great atten_tion to th%ecomes comparaBIe to that of induced polarization, and in a
fgﬂg?f:bfﬂe;tzrgnéz sgr?:jeergcs:elsintwti)tnmi? gige()rﬂ: S;'grwtr%esoscopic system where the polarization wave is coherent

. - . ~_"irr the whole sample, the magnitude and the spatial distribu-
expectation of large nonlinearity, a lot of works have giveniion of the internal field are resonantly dependent on the
arguments on the size-dependent nonlinearity of confinedg;,q shape, and internal structure” of the samphél!

electronic systems, and most of them attribute this phenomsince this effect of the internal field should strongly affect
enon to the size dependence of the third-order nonlinear sughe resonant nonlinear response, the consideration of nonlo-
ceptibility x(*).*~° Some discussions are based on the idea ofality beyond the arguments of size enhancemeng®f is

the size enhancement of oscillator strenjthnamely, the  absolutely necessary for the consistent understanding of non-
oscillator strength increases in proportion to the system siziinear response. This is essential for the description of the
as long as the wave function of exciton is coherent in thesize dependence from microscopic to macroscopic range, but
whole sample, and this brings about size-linear enhancemeaven in the LWA regime it can be very important as men-
of x®). This argument is valid in the limited size range tioned below.

where a long-wavelength approximatighWA) is valid. In Ref. 9, we developed a nonlocal theory of nonlinear
However, it does not give a consistent description wherresponse, where the site represented linear and nonlinear sus-
LWA is not applicable, because the concept of the oscillatoreptibilities are calculated for a model systems of an ultra-
strength is based on LWA. It should also be noted that thehin film consisting of one-dimensional chains confining
separation of nonlinear polarization into “position- Frenkel excitons and then, the Maxwell equations containing
independent” susceptibility and field amplitudes, which isthese source terms are solved. Since the energy transfer and
the background of the size enhancemeny©¥, is allowed damping, which determines the extent of the coherence of
only in a LWA. electronic systems, are explicitly taken into account, and
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since the self-consistent motions of the field and inducedjuments on the resonant enhancement of internal field in an
polarization are determined in this method, the effect ofultrathin film that were given in Refs. 8,10. Then we proceed
“size, shape, and internal structure” dependence of both suge a nonlinear response, in Sec. lll, to see the effect of the
ceptibility and the internal field are automatically incorpo- strong nonlocality on the nonlinear properties of mesoscopic
rated in the final result. From a fully nonlocal calculation in systems, where a pump-probe spectroscopy is handled. In
a small size regiorfup to 20 molecule layers of CuCl thin Sec. IV, we give a detailed analysis of the structures in the
film), we obtained a clear indication of nonlocality and thecalculated nonlinear spectra, assigning the peak structures to
size dependence of internal field in the response spectrapecific transitions. The discussions and summary are given
even though the system size belongs to the LWA regionin the succeeding sections.
where the position dependence of the internal field should be
negligible. . . _ II. INTERNAL FIELD IN AN ULTRATHIN FILM

On the other hand, in Refs. 8,10, we discussed peculiar
resonant behavior of the internal field that appears in the size In this section, we consider the magnitude and spatial
region where the position dependence of the internal field igariation of the internal field of resonant light in an ultrathin
noticeable. Namely, the component with particular spatiasemiconductor film. A theoretical description of linear re-
pattern of the internal field shows resonant size enhancesponse in a film has been done by various grdap¥and it
ment. In these papers, we saw this effect in the case thas now well established that, for a thickness much larger than
beam energy was fixed at the lowest excitonic level, wherexciton Bohr radius, only the size quantization of center-of-
the component of the internal field relevant to the secondnass(CM) motion needs to be considered. In order to make
excitonic level is resonantly enhanced even when the beam smooth continuation to the model for nonlinear processes
energy is tuned to the lowest level. Further, in Ref. 11, wdater, we will handle the problem in terms of a discrete lattice
studied the nonlinear response caused by the enhancementrabdel, which is exactly the same as those in Refs. 8 and 11.
the internal field, extending the size range of the calculatiolNamely, we consider the film consisting Mflayers in which
for the same model as in Ref. 9, and it has been clarified, fothe motion of Frenkel excitons parallel to the axis of the film
the case of pump-probe spectroscopy, that a certain nonlineare confined. We assume the amplitude of exciton is zero on
signal is remarkably strengthened because of the simultahe imaginary Oth andN+ 1)th layers, and neglect the pos-
neous resonances of the internal field in energy and size. Wable distortion of exciton wave functions near the film sur-
called this effect “Nonlocality-induced double resonance infaces. This model gives essentially the same result as that of
energy and sizéNIDORES.” continuum model based on Wannier excitons with the prop-

In the above papers, we focused on a specific aspect of trexly chosen parameter values for the transfer energy and the
problem, namely, we discussed the size dependence of theansition dipole moment per unit céfl. This treatment is
internal field and the nonlinear signal keeping the pumpuseful in the case where exciton Bohr radius is so small that
beam energy at the particular excitofinateria) level. This  the consideration of the distortion of wave functions near the
effect, however, appears in different ways according to thesurfaces is not necessary. More details of this model are
choice of a fixed parameter, since the signal intensity is @iven in Refs. 8,11. By the ABC-free theory, which is the
function of pump and probe beam frequencies and of sampleonlocal theory for the linear respon€e&’we can obtain the
size (N). Therefore, in this paper, we study the resonantexplicit expression of the internal field. The procedure of
enhancement of the internal field and resulting nonlinear reealculations is almost the same as that in Ref. 16. The main
sponse in more general way, changing a fixed parameter. difference is discreteness of the lattice in the present model,

The rest of this paper is organized as follows: Before than contrast to the continuum model in Ref. 16. The resultant
calculation of the nonlinear response, we supplement the aexpression of internal field as a function of sjtés

£=(2 cos;— 2 cosjo){£1ingyj + E;singy (N+1— )}/ sing; (N+1)
— (2 cOSl,— 2 COSIo) {£;SiN0,] + E,8iNGa(N+ 1= ) }/singy(N+ 1), (1)

where&, and&, are arbitrary constants to be determined byIn the above expressior®) and (3), b(>0) is the nearest
the boundary conditions, is defined as layer transfer energyl; the phenomenological damping con-
stant of the exciton, and

cogp=(ggt2b—hw—il")/2b, (2) qb=(w/c)\/s_, (4)
andqg, andq, are the wave numbers of the bulk polaritons A <8202
that are the roots of the dispersion relation, B= Lboz_b, (5)
c

(2 cog— 2 cogy,) (2 coxy— 2co0gy) —B=0. 3 where
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ey, the background dielectric constaat, the lattice constant,
andM the matrix element of the transition dipole moment of
the atom. Connecting the internal field with the outer fields
by means of Maxwell boundary conditions, we determine the
amplitudes of the internal field.

For the study of the spatial structure of the internal field
caused by the excitonic resonance, first, we expgndor
1<j=<N, in terms of eigenfunctions of translation@M)
motion of excitons in the film, namely,

1/2
sin

nw

N
- N+1

&=2

2
; (m Fo- "

In this expressionn corresponds to the size-quantized wave
number(see Ref. 8 and expansion coefficieft, means the
amplitude of the component related with théh quantized
exciton. Throughout the numerical calculations in this sec-
tion, we choose material parameters of thg exciton of
CuCl that is a typical single-component exciton. The values
of parameters are

w7=3202.2 meV, b=57.0 meV,

47|M|?
=5.7 meV,
Vo
£,=5.6, ay=5.4 A, (8)

wherew+ is the energy of the bottom of the exciton band for
N—o, namely,wr=¢gq7—2b.
In Fig. 1, we showF,|?(n=1, 2, and 3 as a function of
beam energy and siZ¢, together with the curves indicating
the values off F,|? at the lowest exciton level in each size
(the dotted lines on the surface [#,]?). In each case of
n, we see a specific structure of ridges and valleys. This
resonant behavior of the internal field can be understood a: |F;/*
another aspect of polariton interference effect, which is well
understood for a thin filn{ffor example, see Ref. 21From
these pictures, we know how each component of the interna
field is enhanced with the size or energy. If we fix the beam
energy, we can see the resonant enhancemeti $f by
size. On the other hand, we find the enhancemefigf at
the resonant energy of the response field that includes thi
radiative shift, if we fix the sizeN) and change the beam
energy. In Ref. 11, we discussed the size dependence of FIG. 1.|F,|? (the strength of the component of the internal field
||:n|2 when the beam energy is tuned to the lowest excitortelated with thenth quantized exciton as a function of beam en-
level, and showed the remarkable resonant enhancement ag#y and siz&\. (a), (b), and(c) are forn=1, 2, and 3, respectively.
certain size(Fig. 2 in Ref. 1). The cross sections along Dotted lines on the surface ¢ | indicate the values dfF,|? at
dotted lines are nothing but the curves in Fig. 2 in Ref. 11.the I_ow_est exciton I_evel in each S|zléf 0.06 meV. The intensity of
The pictures of the resonant structure of each component 6IFe |QC|dent beam is taken to be unity. The other parameter values
the internal field shown here help us to understand the pec@€ 9\ven in the text.
liar spectral structure and the size dependence of the resonant
nonlinear response in the mesoscopic media, which arergy is dominated byF,|?(|F3|?), which represents the spa-
shown in the following section. tial variation of induced polarization fan=2(n=3) exci-
The resonant behavior ¢F} is clearly seen also in the tonic state. On the other hand, the spatial variation of the
distribution of the internal field in real space. The spatialinternal field forN=10 is hardly appreciable and its magni-
distribution of the intensity of internal fieldij(=|£j|2) is  tude at the lowest exciton level is very small. For the large
shown in Fig. 2 forN=10, 52, 91, 401. In the case of size N=401), the amplitude of the internal field is much
N =52 (91), the spatial distribution at the lowest exciton en- reduced by the damping and total reflection effect. Thus, we
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FIG. 2. The intensity of the internal fieltj as a function of discrete sitg and beam energy for various sizls (a) N=10, (b)
N=52,(c) N=91, and(d) N=401. The parameter values are the same as those in Hig).i%.the same a&), butI'=0.6 meV. Contour
line of I; and vertical lines indicating energy positions of one exciton are given on the top surface of each figure.

understand that the resonant enhancement of the interntide internal field, which we show here, is explained in a
field is a characteristic phenomenon in a limited range ofgeneral way in terms of the radiative correction, due to the
mesoscopic size. retarded interaction among induced polarizations. The reso-
The extent of the enhancement of the internal field greatlynant energies of the response field, which we defiftg},
depends on the value of transverse damping constandre generally different from the corresponding material lev-
Smaller damping causes a larger enhancement, while largeis [the eigenvalue of unperturbed system, which we denote
damping restrains the enhancement and the sharpness of tBg(n)] by the radiative shift and width. This radiative shift
peaks of|F|? is reduced as the function of energy and sizeincreases as the system size incredaéhin LWA). In me-
[Fig. 2e)]. The smaller value that is taken here, 0.06 meV, issoscopic systems, the amount of the radiative shift can be
estimated from the analysis of an experimental result for darger than the separation of the neighboring size-quantized
very good thin film of CuCf* states that decreases as the size increases. Thus, if we fix the
As explained in Ref. 10, the resonant size enhancement dfeam frequencw to E;(m) and change the size, we find a
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1/2

; sin(K,qj)a/|0), (1D

resonant enhancement of the internal field characteristic to
the nth exciton state f#m) at the size where |Kn)y=
Re(Q,)=E(m) is realized.

The resonant enhancement of the internal field is equiva-
lent to the known effect of polariton interference in the re-regpectively. The allowed values Kf, are
gime of linear response. In the nonlinear regime, however,
the effect of nonlocal response has been very poorly studied,
and therefore, we expect new types of nonlinear response for n
such a typically nonlocal condition as that for the resonant Kn= {n=1,2,--,N}. (12
enhancement of internal field. Examples of such phenomena
are presented in the next section.

N+1

To obtain two-exciton states, we expand them as
IIl. NONLINEAR RESPONSE IN THE PRESENCE
OF RESONANT ENHANCEMENT
OF THE INTERNAL FIELD —
|)=2, Ciffafal|0), (13
To show the examples of the nonlinear response in the :
presence of the strong nonlocality, we calculate the pump- o L
induced change in the probe spectra where the pump energyd caIcuIate{Ci(f-‘)} and eigenvalue$E , } numerically.
is in the excitonic resonant region. The probe beam scans the Tg calculatexas) in nonlocal form, we use the usual per-
region near the transition energy between one-exciton stat@§rbation expansion of density matrix as in Ref. 7, namely,

and bound two-exciton states. we start with a standard expression of the third-order nonlin-
In the size range we treat here, strong nonlocality appearsar polarization at sit¢ and timet:

through the resonant enhancement of internal field. In the

previous work® where the cancellation problémwas consid-

ered exactly, the size range was limited for numerical rea- (—i)3 [t ty t

sons. Here, we extend the range by relaxing the exact treat-  P{>(t)= U—f dtlf dtzJ dts

ment, i.e., by omitting the less important termsyif?). The 0 ST Ao I

choice of such terms is made by the detailed evaluation of X(IIP;(1), H (1), H' (1)1 H (t2)]), (19)

the cancellation, as explained briefly in the next subsection.

The model and the theory, which we outline below, are ba-

sically the same as in Ref. @ee Ref. 9 for more details. Where the angular brackets mean a statistical averages,
the volume of a unit cellf is taken to be unityP(t) and

A. Model and theory ‘H' are the interaction representations of the polarization op-

L . erator and electron-radiation interaction, respectively,
As a model system, we suppose a thin film consisting of a

bundle of independent one-dimensional chains of Kiz®n-

fining Frenkel excitons, which lies perpendicular to the film P (1) = expli Hot) Piexpl — i Hot) (15)
surface, and both pump and probe beams are considered to ) ! '

be normal incidence. The unperturbed Hamiltonian is

< <~ H(t iHot)| — 2 > P& iwt+t
=exXpQl - cils)exp —I
Ho= 120 Soaraj_bgl (ajT—laj"'aJTaj—l) (t) p(iHot) & T i(s)exp(—iwgt+ yt)
N X exp( —iHot), (16)
~02 ajal i, )

: _ o y=07 the factor for adiabatic switching of the electron-
wherea; anda; are the creation and annihilation operatorsragdiation interaction, and(s) the amplitude of the electric
of an exciton on thgth site,e, the excitation energy of each field at sitei with frequencyws. Inserting the matrix ele-
site, b the transfer energy, and we introduce the virtual sitesments of site-dependent dipole density between the ground
j=0 andN+1 on which the amplitude of exciton is sup- state and one-exciton states and between one- and two-
posed to be zero. The lattice constant of the chain is taken texciton states, which are calculated with the known wave
be the unit of length. The third term, exciton-exciton inter- functions(11) and(13), we obtainy(® in a nonlocal form for
action, is introduced to allow the bound two-exciton statesthe arbitrary frequencies. In this calculation, we have intro-
We treatd as a free parameter for the above-mentioned pureduced the phenomenological damping constaptfor the
pose, though the binding energy of excitonic moledbiex-  population decay anB for the phase decay in the usual way
citon) will generally be very small in Frenkel-type excitons. as in Ref. 22. Then, among all the terms of the nonlinear
The eigenvalues and eigenfunctions of one-exciton states aplarization, we pick up the contribution of the mastply)
resonant terms for the pump frequeney and probe fre-
E1(n)=eo—2bcogK,), (10 quencye; . The third-order polarizatioR{> with frequency
and w1 is then written in the following form:
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4

M
3
PJ( )(t)|[tri. res] = U_O

1/2

2
> sinK,j
n

N+1

2 [P IR Go(Kn Kmiw1)

+

3V

zl: Ek: Fﬁnl)*':gl)':&l)Gl(Kn,Km,&,Kk;w1)+% IFRIPFPH(Kn K o1, @)

+
3V

2' ; F(nf)*F(kZ)F}l)Hl(KnaKva|!Kk;wlaw2)+% F(nf)*FS'IZ)FE]})HO(Kn’Km;wl’wZ)

+
3

El: Ek: Fie * FIPFH (K K K Ky og,0p) [€7101, (17

whereM is the transition dipole moment per sit8y, G, extent of cancellation strongly depends on the material pa-
Ho, Hi, Ho, andH; are the functions containing energy rameters, such as transfer energy and damping constant, we
denominators, the explicit expressions of which are given irheed to carefully examine case by case in omitting the con-
Appendix B in Ref. 9 with the slightly different notations. In tributions from the terms with higher excitation energies. We

the expressioril7), we define the amplituded-} as have performed such an examination by comparing the re-
sults of two different ways of computation for the same

(o) 2 \172 S model as follows. In Ref. 7, we obtained the expression of
Fo=INT1 2 SInKnj £;(P)- (18 \® of one-dimensional Frenkel excitons, with periodic

boundary conditions, where the summation over the levels
Note that the amplitudefF} are nothing but the expansion was analytically evaluated and the closed formy®? was
coefficients of the internal field ifi7),2® which is easily un-  obtained for an arbitrary sizd. On the other hand, we can
derstood if we note thaf;(p) is obtained by reciprocal Fou- perform this summation partially in numerical calculation.
rier transformation ofFé]p). The polarization term in the By comparing the numerical results in LWA of these differ-
Maxwell equations consists of the third-order term due toent treatments, we estimate the error arising from the omis-

¥® and the linear term. The latter is the sum of resonansion of the higher levels for the relevant parameters. More
term details about this examination will be published elsewhere.

M2
PV(t)= —
Vo

2

12 i EWD
in(K,j)F _
SinCKnl )P e ot B. Results
N+1

n El(n)—wl—ir '

(19) Throughout this section, we use the valueg8nfor the
material parameters. Besides, we choésel95.0 meV for

and background polarization. Regardiff§} as given quan- the attractive energy of two excitons, and X 20* V/m and
tities, we can solve the Maxwell equations {@}(p)} inthe  7.2x10? V/m for the amplitudes of the incident pump and
form of cubic polynomials of F} with four arbitrary param-  probe beams, respectively. As for the damping constants, we
eters(two for each of{&£;(1)} and{&;(2)}). Substitution of use two sets, namely, the smaller setI{)=(0.02,0.06)
this solution into(18) leads to a set of cubic equations for meV and the larger s¢0.2, 0.6 meV.
{FM} and{F @)}, which, together with the Maxwell bound-  Since the signal intensity is functions of pum@.) and
ary conditions, can be solved uniquely for a given conditionprobe (,) frequencies and of sample sizh); we need to
of incident field. (Because of the many unknowns fix one of them to show the result in a 3D figure. In the
{FM F@), this calculation needs a large amount of com-following, we show two kinds of figures, either as functions
puter work) This unigque solution fixes all the amplitudes of of (w,,w4) or as functions of ¢,,N). In the latter case,
the internal and external fields. w, is chosen at the energy of eithEr(1) or the second

In the computation of the nonlinear polarization in this lowest peak of the transmittand@€w). As the nonlinear sig-
work, we omit the terms containing the higher excitationnal, we take the pump-induced change in the transmittance
energy than the relevant resonant energies, while we toodf the probe light. As for the case,=E (1), wepresented
account of all the levels in Ref. 9. For this treatment, a carea brief report in Ref. 11, and discussed the change of the
ful consideration of cancellation is necessamlamely, as nonlinear signal with the size. In this paper, we give detailed
system size increases, the cancellation occurs between tldéscussions of the nonlinear processes of respective signals
terms that contain ground state and two-exciton states in thia all of the above cases. Before the detailed analysis of the
second intermediate states y*), and a larger number of signal that will be given in the next section, we glance
terms cancel for large system size. Because of this, the siz@rough the overall behavior of the spectrum of each case.
linear enhancement of® in the LWA regime tends to be Figure 3 shows the pump energy dependence of the non-
suppressed and saturated to a size-independent constdinear change in the transmittance spectrum of the probe
value. Therefore, in the size region where the size enhancéeam 6T (w;) for N=50. The pump energy covers the re-
ment is no longer linear, careless omission of the contribugion where|F,|? and |F3|? take peak values in Fig.(),
tions of the higher levels would cause a large error. Since thé&(c), and the probe energy is near the transition energies
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FIG. 3. Pump energy dependence of the negative value of the nonlinear change in the transmittance sp¥cttnof the probe beam
for size N=50. (a) (y,I')=(0.02,0.06) meVb) (y,[')=(0.2,0.6) meV. The other parameters are given in the text. The meanings of
[A,] (n=0, 1, 2, and Bare explained in the text.

between thesize-quantizedone-exciton and biexciton lev- energy of pump and probe beam is identicaEtp On the

els. Figures @) and 3b) are for the small and large damp- other hand, the strong size dependence of the si@l is

ing, respectively. In Fig. @), we can see three main struc- notable. The maximum of the peak very much exceeds that
tures near the constant values 3.1684[é\{], 3.1679 eV  of signal[B,] around sizeN=>52. The enhancement of this
[A,], and 3.1672 e A3] of the probe beam. The peaks of
these structures are due to the enhanceme#ft,pfnamely,

the transition by the probe beam betweEqn(n)—E, are
strengthened by the enhancementFgf, whereE, is nth
biexciton level. Among them, the remarkable enhancement
of [A,] and[ A;], which reflect the pump energy dependence
of |F,|? and|F3|? in Figs. 4b), 1(c), should be noted. In
addition, a small peak structufe?] is due to the two-
photon absorption satisfying,; + w,=E;.

By comparing Figs. & with 3(b), we see that the mag-
nitude of peaks and their sharpness is very dependent on th
transverse damping constdnt (A change iny affects only
the magnitude of signals and does not change the sharpness
The smaller valud”=0.06 meV used in the present calcula-
tion corresponds to an experimental one for a very clean
sample as mentioned in the previous section. The damping
ten times as large as this value greatly reduces the magnitud
of signals and its sharpness as seen in Ff),3nd it be-
comes difficult to distinguish the peak structures of the re-
spective nonlinear processes.

The effect of the resonant enhancement of internal field
appears also in the size dependence of the pump-induce
change of the probe spectrum in a characteristic . ~
Fig. 4, N dependence obT(w;) is given for w,=E;(1). g 40x10-547
Two distinct nonlinear signals and an additional small signal it
can be seen in Fig.(d. We denote them d8,], [B,], and
[B,] as shown in the figure. Their peak energies are
w,=E,—E;(1) for [By], w;=E;—E(1) for [B;], and
w1=E,—E(2) for[B,], [w,=E;(1)], at each siz&l. The
small signal[Bg], which is conspicuous around=50, is
due to the two-photon absorption where the total energy of
pump a”‘,’ p“_’be beam is |dent!cal to the elger?energy of the FIG. 4. Size dependence of the negative value of the nonlinear
second biexciton leveE,. The signalB,], the size depen- change in the transmittance spectrumT(w) of the probe beam
dence of which is moderate, is due to two kinds of superim+or the pump energys,=E;(1). [E4(n) is the eigenenergy of the
posed nonlinear processes, namely, pump-induced absorgth one-exciton statg. (@ (y,I')=(0.02,0.06) meV, (b)
tion by biexciton where the transition betweds (1)  (5,I')=(0.2,0.6) meV. The other parameters are given in the text.
and E; occurs, and two-photon absorption, where the totalThe meaning of B,] (n=0, 1, and 2 is explained in the text.

@
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(b) ST~ FIG. 6. Maximum value of peakC,] in Fig. 5a) for each size

- (N).

N. The signal Cy] and[C,] are due to the induced absorp-

tion from E (1) to E; and the two-photon absorption,

w,;+w,=E;, respectively. The signals of these two pro-

cesses in Fig. 4 appear at the same energy position, and

cannot be distinguished, because the pump ene&gy (s

20 adjusted toE4(1) in that case. The large signgC,] has

essentially the same origin B,] in Fig. 4. The peak value

of this signal generally increases with size, due to the in-

crease in|F,|? [along the ridge of Fig. (b)], but turns to

decrease around =37 (Fig. 6). The reason for the decrease

is the off-resonance energf,—E;(2), in thedenominator

of x®, which increases with the size. The result for the
FIG. 5. Size dependence of the negative value of the nonlineaiarger damping is shown in Fig.(5. The [C,] and[C,]

change in the transmittance spectrundT(w) of the probe beam  ~annot be distinguished and the sigh@h] is not very con-

for the pump energw,=Q,. ({1, is thenth resonant energy of the spicuous as compared with the other signals.

response field.(a) (y,I')=(0.02,0.06) meV(b) (y,I')=(0.2,0.6)

meV. The other parameters are given in the text. The meaning of

[C,] (n=0, 1, and 2 are explained in the text.

Size (N)

169
gy v 3.170 60

IV. ANALYSIS OF NONLINEAR SPECTRA

To understand the nonlinear processes contributing the
nonlinear signa[B,] is due to the resonant size enhance-anomalous signals, due to the resonant enhancement of the
ment of |F,|2, and the size dependence [@,] clearly re- internal field shown in the previous section, we need to see
flects that of|F,|2 in Fig. 2 in Ref. 11. The result for the individual terms inP(). In the present pump-probe spectros-
larger damping is shown in Fig.(d). The distinction be- COpy, main contribution comes from the two termsRf)
tween[B;] and[B,] is not very clear in this case and the that contain two-exciton states. They appear from the fourth
size enhancement $B,] cannot be seen. term in the square brackets (7). The one is proportional

From an experimental point of view, it is not easy to putto
® pump IN resonance withe;(1), which is different from

i . . L. . 2
spectral resonance position because of its radiative shift. An |F51 )|2FET})
easier way is to puibp,mp in resonance with a spectral reso- (w1+iF_EMn)(w1+ 0+ 2iT—E,)[w,+iT —Ey(n)] ’
nance{{};}. We show the size dependence of the spectra (20)

corresponding to this case in Fig. 5. In the present model, _ .
however, the optical structure corresponding to the lowesgnd the other is proportional to
exciton level is noticeable only for a very small size, and it

disappears as the size increafEgy. 1(a)]. Then the peak —2I|F2 PR 21)
relevant to the second-exciton level takes the place of it, and (01+iT—E, ) W2 +[Ex(n)— w13

this seemingly corresponds to the lowest resonant level.

Thus, we tune the pump energy to the peak position ofvhere

|F,|? in each size that almost corresponds to the peak posi- ~

tion (€,) of transmittance in the size region of consider- Eun=E.—Ea(n) (22

ation. The three main peak structures in Fig. 5 are denoted gRef. 24. The former is known as a term contributing to the
[Col, [C41], and[C;], as shown in the figure. Their peak two-photon absorption, where the sum frequency of two pho-
energies arew;=E;—E;(1) for [Cy], w1=E;—Q, for  tons (w; andw, in the present cagdecomes identical to the
[C4], andw;=E»,—Q,, for [C,], (wy=(),), at each size transition energy between the ground state and two-exciton



53 NONLINEAR OPTICAL RESPONSE DUE TO RESONANT ... 15831

states, which contributes to signgh,], [Bol, [Col, and  |K,) in the induced polarization and internal field, namely, it

partly [B,]. The latter represents the pump-induced transivirtually excites the second one-exciton state selectively.

tion from the one-exciton staték ) to the biexciton states Thus, the matrix element of-2;P;&; between E;(2)

|n) by a probe beam. For example, the case withl is  and E, is enhanced, and a strong signal appears when the

well known as pump-induced absorption where the transitioprobe beam is resonant witf,,.

from the lowest one-exciton state to the lowest biexciton In the case of Fig. 5, the signgC,], the origin of which

state by the probe beam is induced by the pump beam. is the same as that §B,], stays much larger than any other
The anomalous nonlinear signals, due to the resonant esignals at every size, because the pump energy follows the

hancement of the internal field shown in the previous secpeak position of[F,/2. On the other hand, the difference

tion, are due to the latter proce@l). To clarify the origin of ~ between the pump energy and the material ldvg]2) in-

the size and energy dependence of this process in the meg¢geases as size increases, and the resonance condition with

scopic regime, we should note the two kinds of resonancekespect to the third factor in the denominator (@fl) be-

contributing to the nonlinear response, i.e., the resonancgomes weak. Because of this effect, the peak valueCef

with material levels that are the poles of the susceptibility ofurns to decrease fdi=37 through|F,|* keeps increasing.

excitons, and the resonant enhancement of the response field.

As discussed in Sec. Il, the latter resonance brings about the V. DISCUSSIONS

enhancement ofF’s} in the numerators of17). Both of

them cause the enhancement of nonlinearity. In the condition Based on a nonlocal response theory, we have discussed

of strong nonlocality, the effect of the resonant enhancemerifi® resonant enhancement of internal field in mesoscopic

of |F,|2 much more often appears than those of the energgyStems, which is a remarkable manifestation of nonlocality,

denominators of21). Thus, the relative magnitudes of non- and showed an anomalous nonlinear response, due to this
linear signals strongly reflect those [ ,|2. For example, effect with a model calculation. Though there have been
= many arguments about the nonlinear-response focused on the
resonant structure and the size dependengg®f the effect
of resonant enhancement of response field on the nonlinear
forsPectra has not been discussed so far. As we pointed out in
¢ the former paper$!!the effect of the resonant enhancement
the enhancemenE, |2 leads to the induced transition from of the internal field on the nonlinear response should not be
E,(n) to E. nottoE (m#n). This is because the probe neglected, and the no_nlocal treatment is absqlutely necessary
béam ene;]g’yul is in rltqhe transparent region in the linear- to tqke account of this e_ffect in the discussion of resonant
response regime. This means the dominance of the unifornqOnllnear response. In this paper, we have performed explicit
model calculations to show this point, and as a result, we

componentin its spatial variation. The mc_;luced transm(?n be'have revealed different properties of the nonlinear response
tweenE;(n) and E,,,, due to such a uniform probe field

. ( solect oK = ¢ ' in the mesoscopic systems, namely, a strong resonant en-
requires a quask-selection rulek,=Kp, (_Re " 23 hancement of the nonlinear signals and a peculiar size de-
The peak structuregA,] (n=1, 2, 3 in Fig. 3 appear,

iy rPendence of them.
regardiess of the pump energy, at the probe energy positions o the clear understanding of the nonlinear response in

En—Eas(n) corresponding to the first factor in the denomi- the mesoscopic systems, we should recognize the following
nator of (21). On the other hand, the strong resonant enpoints: First, the motion of the resonant internal field is de-
hancement ofF,|> appears in the pump energy dependen-ermined self-consistently with that of the induced polariza-
cies of [A;] and [Az]. The characteristic points are that tion via a nonlocal relationship between them. Because of
[A.] and [A;] are remarkably strengthened for the sizethis, the internal field with a particular spatial pattern asso-
N~50, with their peak values greatly exceeding that ofciated with an exciton state is enhanced at the resonant fre-
[A;], and that the energy positions of the pump beam wherguency of the response field, which is shifted from the exci-
the peak values dfA,] take the maximum are shifted from ton level, due to the retarded interaction depending on the
the material levelsE,;(n) by their radiative shifts. The system size. Second, the resonant behavior of the nonlinear
shifted positions correspond to the resonant energy of theesponse in the mesoscopic systems arises not only from the
response field, where the resonant enhancemeit ¢t oc- poles of nonlinear susceptibility that are the excitation ener-
curs. gies of unperturbed material levels, but also from the reso-
The appearance of the nonlocal effect in the nonlineanant enhancement of the internal field. Namely, we should
processes can be clearly seen also in the system size depeaways consider the dependence of the two kinds of reso-
dence. In Fig. 4, the sign§B,] contains both processes of nances on the system size and structure, to consistently un-
terms(20) and(21), and both of them always go through a derstand the nonlinear response in the mesoscopic systems.
complete resonance with respect to all three factors in the Considering the above points, we naturally understand the
denominators. The notable points are the strong enhancespects due to strong nonlocality in the nonlinear response of
ment of the signalB,] at aroundN=52, and the fact that mesoscopic systems. The characteristic point of this aspect is
the maximum value of the peak is much larger than that othe strong enhancement of a particular nonlinear signal
[B1], though the energy denominator of this procé2¥) caused by the resonant enhancement of the internal field with
does not enjoy the complete resonance. At this Bize52, a particular spatial pattern. This effect appears as peculiar
pump beam that is tuned ,(1) becomes equal t8,, and  energy and size dependencies of the nonlinear spectra arising
this causes the enhancement of the spatial pattern relevantfrom the size-dependent radiative shift, which can be cor-

the pump-induced transitions betweé&n(n) and E, for
n+1 appear as larger nonlinear signals than thatnferl
even when the pump energy is négi(1), asseen in Fig. 3,
4, and 5. These signals would be very small if it were not
the resonant enhancement |&%,|2. It should be noted tha
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rectly treated by, not local, but nonlocal response theory. ear response, and we can expect this phenomenon to be a
When we see the pump energy dependen¢@gf in Fig. new source of a large nonlinearity.
3(a), we find a strong enhancement of the nonlinear signal In this paper, we compare the results for the small and
originating from the transition between timh one-exciton large values of the transverse damping, because it is essen-
state anchth biexciton state fon=2 and 3. It is shown that tially related with the visibility of the nonlocal properties. As
these signals become much larger than thamferl in the  we see in Figs. 3, 4, and 5, we must be able to observe the
case of particular sizeN=50). This pump energy depen- effects of the resonant enhancement of the internal field on
dence reflects the spectle ,(w,)|?} of the respective com- the nonlinear spectra clearly if the damping constant is as
ponents of the internal field, and cannot be understood by themall as that of a 150-nm thin film of CuCl in Ref. 21, the
analysis of the nonlinear susceptibility alone. It is also no-damping constant of which was estimated to be about 0.06
table that the pump energy giving the maximum value ofmeV in the analysis® while it is difficult to observe them
[A,] is determined by the balance of the dependencies of clearly if the damping constant is ten times larger than this
|F,|? and the energy denominator (#1). This again indi- Vvalue. The reason for this tendency is that the large damping
cates that we should consider the resonant structures of tiieduces the coherence of the wave functions of quantized
nonlinear susceptibility and the resonance of the internastates and this causes the reduction of the nonlocality. There-
field as a whole to analyze the nonlinearity appearing in thdéore, we should prepare clean samples with a small damping

response field. of exciton for the clear observation of the phenomena in
From the fact that the third-order nonlinear polarizationconsideration.
depends on the three variables, w,, and N, there are We have some problems in respect to restrictions of the

several different ways to describe the behavioP6) ac-  present models for the linear and the nonlinear calculations.
cording to the choice of a fixed variable, as shown in Figs. 3|n the calculation of the linear response, we use the model of
4, and 5. If we fix the pump energy at a material level as indiscrete lattice for the center-of-mass motion, and the inter-
Fig. 4, we find a resonant size enhancement of the nonlinearal degree of freedom of exciton is not considered. This
signal[B,]. This is because the radiative shift(2)—Q, model well reproduces the spectra of excitons with small
grows with the size and it exceeds the separation®ohr radius. CuCl is a typical example of where the present
E1(2)—E4(1) at a certain sizeN=52). Namely, at a par- model is applicable. For excitons with a large Bohr radius,
ticular size, we have a situation that the transition betweethe distortion of the wave function near the surfaces should
E;(2) andE; is strengthened by the resonant enhancemertie taken into account, which changes the quantization
of the particular component of the internal field,), with a  condition’® though the essence of the resonant enhancement
spatial pattern relevant #,(2), in spite of the fact that the  of the internal field should not be different. In the nonlinear
pump beam is tuned to a lower levé}(1). A similar situ-  calculation, we use a special model, namely, the one-
ation will generally occur, if we choose,=E;(n—1).  dimensional Frenkel excitons, where the transfer effect along
Namely, at a particular siz&;, will be resonantly enhanced, the direction parallel to the surface is neglected. This treat-
which leads to the enhancement of the probe beam transitiofent changes the level structure of the two-exciton states,
from Ey(n) to E,. On the other hand, if we fix the pump which affects the cancellation probleriTherefore, if we
energy at a resonant pole of response field<(),) as in  consider nonlinear processes involving scattering two-
Fig. 5, the size variation of the enhanced signal roughly fol-exciton states, a further examination of cancellation is nec-
lows that of the peak value of the intensity of the enhance@ssary. However, if we consider nonlinear processes in the
internal field. Thus, the size dependence|f|? gives the  size region where the cancellation effect is not so serious, the
main contribution to that of the nonlinear response in thispresent treatment of the cancellation problem mentioned in
case. Sec. lll is enough, and the behavior of the NIDORES effect
The large nonlinear signals discussed in this paper are due essentially unchanged by the use of the simplified model.
to the simultaneous occurrence of the resonances with the The resonant size enhancement of the internal field is ex-
poles of nonlinear susceptibility and response field. This mayected to be a general effect in mesoscopic systems, regard-
be regarded as double resonance in analogy with the case leks of the dimension of the confinement, but how it affects
ENDOR (electron nucleus double resonan€eThe param-  the enhancement of nonlinear signals should depend on ma-
eters @, ,w;,N) in our case would correspond to the micro- terial and specific processes to be considered. Therefore, the
wave (), radio wave frequenciesus) andg valugs) in  study of the resonant nonlinear response of the various types
ENDOR. Signal intensities are functions of these parametersf confinements of the electronic systems, materials, and
and along a given cross section in this parameter s@gge  measurements in the presence of this effect would be neces-
N=const org=const), a doubly resonant condition for the sary to obtain the comprehensive understanding of the non-
remaining parameterso ,w»; o, @) leads to a large sig- linear response of the nonlocal systems. Furthermore, such
nal. In our previous paperS;* we argued the condition for studies should also be interesting from an applicational view-
the cross sectiom,=E;(1). In this case, we realize the point, because the resonant enhancement of internal field can
resonant enhancement by choosing appropriate 8ieaid  be a guiding principle for finding large optical nonlinearity.
energy ;). Considering also that the enhancement of Inthe present stage, there has been no experimental report
|F,|2 is a characteristic effect in the nonlocal system, weindicating the proposed phenomena in this paper, probably
called the large sign@) NIDORES (nonlocality-induced because the preparation of the size-controlled samples with
double resonance in energy and $iZEhis is a remarkable good quality would not be easy. But the experimental veri-
manifestation of the nonlocal nature appearing in the nonlinfication of NIDORES is very much desired for the further
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advance of this field, because it is one of the most charactestructure of nonlinear spectra becomes quite different from
istic manifestations of nonlocality in mesoscopic systems. those expected from the resonant structure of the nonlinear
susceptibility in LWA alone. As an example, we have shown
VI. SUMMARY a case where the transition by probe beam betweemtthe
gne-exciton stateE;(n) and nth biexciton stateE, is

We have calculated the linear and nonlinear response Qiyangthened by the resonant enhancement of the internal

ultrathin film confining Frenkel excitons by means of a NoN-fiald of the pump beam with a spatial pattern relevant to
local method, and the following points are clarified. As aEl(n).

result of the self-consistent motion of internal field and in-
duced polarization, which are related in a nonlocal way with
each other, the internal field of a resonant light has a spati
distribution of a mesoscopic scale. At each resonance, shifte
from an unperturbed exciton level by a radiative correction, g,
specific component of the internal field is enhanced. Thi
effect is specific to nonlocal response, and cannot be derive
from either the local response theory or a LWA of nonlocal
theory.
The resonant enhancement of the internal field causes a

different type of nonlinear response in mesoscopic systems. The authors are grateful to Dr. Y. Ohfuti for his useful
Namely, a nonlinear signal of a particular third-order processliscussions. This work was supported in part by Grants-in-
is much strengthened, due to the resonant enhancement ofddd for Scientific Research for Priority Areas “Mutual quan-
particular component of the internal field at a resonant entum manipulation of radiation field and matter” from the
ergy of a response field),. Because of it, the resonant Ministry of Education, Science, Sports and Culture of Japan.

This large enhancement of the nonlinear signal can be
regarded as due to the simultaneous occurrence of two reso-
nces, one with sample size and another with material ex-
tation energy. Thus, we propose to call this effect
onlocality-induced double resonance with energy and size
a source of large nonlinearity.
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