
Density-functional theory of the nonlinear optical susceptibility:
Application to cubic semiconductors

Andrea Dal Corso
Institut Romand de Recherche Nume´rique en Physique des Mate´riaux (IRRMA), IN Ecublens, 1015 Lausanne, Switzerland

Francesco Mauri
Department of Physics, University of California at Berkeley, Berkeley, California 94720

and Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720

Angel Rubio
Departamento Fı´sica Teo´rica, Universidad de Valladolid, E-47011 Valladolid, Spain

~Received 24 January 1996; revised manuscript received 13 February 1996!

We present a general scheme for the computation of the time-dependent~TD! quadratic susceptibility
(x (2)) of an extended insulator obtained by applying the ‘‘2n11’’ theorem to the action functional as defined
in TD density-functional theory. The resulting expression forx (2) includes self-consistent local-field effects,
and is a simple function of the linear response of the system. We compute the staticx (2) of nine III-V and five
II-VI semiconductors using the local density approximation~LDA !, obtaining good agreement with experi-
ment. For GaP we also evaluate the TDx (2) for second-harmonic generation using TD-LDA.@S0163-
1829~96!00319-0#

I. INTRODUCTION

Nonlinear optics is a growing field of research which has
applications in many technical areas such as optoelectronics,
laser science, optical signal processing, and optical
computing.1 In these fields the description of several physical
phenomena, such as optical rectification, wave mixing, the
Kerr effect, or multiphoton absorbtion relies on the knowl-
edge of the nonlinear optical~NLO! susceptibilities. More-
over, nonlinear spectroscopy is a powerful tool to analyze
the structural and electronic properties of extended and low-
dimensional systems. In the present work we give a general
scheme to compute from first principles the time-dependent
~TD! quadratic susceptibility (x (2)) of real materials within
TD–density-functional theory~DFT!. Furthermore, we show
that the values of the staticx (2) obtained in the local density
approximation~LDA ! are in good agreement with measured
values for the cubic semiconductors. Our approach makes
feasible the computation ofx (2) in cells containing up to 100
atoms, since it requires the same numerical effort as the com-
putation of the total energy. This allows the evaluation of
x (2) for systems of technological and scientific relevance that
cannot be handled by the traditional methods, such as sur-
faces or crystals of organic molecules.

Nowadays many first-principle calculations for the
ground-state properties of materials are performed within
DFT. Even in its simplest form, namely, in the LDA for the
exchange and correlation energy, this scheme gives results
which, in many cases, are in surprisingly good agreement
with experiments. A rigorous extension of DFT to TD phe-
nomena has been proposed in Refs. 2 and 3. Although the
available approximations for the exchange and correlation
energy are less accurate in the TD domain than in the static
case, this scheme is sufficiently general to allow many pos-

sible improvements in the future. Therefore TD-DFT seems
to be a promising framework for the study of the NLO sus-
ceptibilities.

Standard quantum-mechanical perturbation theory can be
used to compute thex (2). The straightforward application of
perturbation theory leads to an expression forx (2), which
diverges for an infinite solid in the static limit. However, for
an insulator, these divergences have been shown to be
apparent.4 This kind of approach has been applied to com-
pute thex (2) from first principles. The non-self-consistent
expression forx (2) reported in Ref. 4 has been evaluated by
Huang and Ching5 using the DFT-LDA wave functions and
eigenvalues. A fully self-consistent theory of the NLO sus-
ceptibility within DFT has been proposed in a series of pa-
pers by Levine and Allan.6 Their method is feasible but al-
gebraically very involved due to the necessity of dealing
with the second-order perturbation of the wave functions and
with the apparent divergences. Their final expression is not
easy to handle and its evaluation requires summations over
the conduction band states, which are time consuming and
difficult to converge.

In a previous paper two of us7 have shown that it is con-
venient to regard the staticx (2) as a third-order derivative of
the total energy with respect to a uniform electric field. We
pointed out that this derivative can be obtained by combining
a Wannier representation of the electronic wave functions
with the ‘‘2n11’’ theorem of perturbation theory.8,9 We
also found an equivalent expression of the staticx (2) in
terms of Bloch wave functions.

In the present work we show that the method of Ref. 7
applies also to TD periodic perturbations and to the self-
consistent TD-DFT functional. The TDx (2) can be regarded
as a third-order derivative of the total action. The stationary
principle for the action functional,2,3 which replaces in the
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TD case the miminum principle for the energy functional,
allows the use of the ‘‘2n11’’ theorem. As in the static case
the third-order derivative depends only on the unperturbed
wave functions and on their first-order change due to the TD
electric field. All the self-consistent contributions are in-
cluded in the formalism in a simple way. The final expres-
sion avoids perturbation sums and does not present any ap-
parent divergency. We apply our formalism to the
computation of the staticx (2) of nine III-V and five II-VI
cubic semiconductors within the LDA. For GaP we also
evaluate the TDx (2) for second-harmonic generation~SHG!
using TD-LDA.10

The rest of the paper is organized as follows: In Sec. II we
introduce the TD-DFT. In Sec. III we derive an expression
for x (2) using the ‘‘2n11’’ theorem. In Sec. IV we use the
LDA to computex (2) for cubic semiconductors. Conclusions
are given in Sec. V.

II. TIME-DEPENDENT DENSITY-FUNCTIONAL THEORY

In the Kohn–Sham~KS! formulation of DFT the ground-
state densityng(r ) of a system ofN interacting electrons in
an external potentialVext(r ) is written in terms ofN/2 single-
particle wave functions$fg%. The set$fg% minimizes the
KS energy functionalE@$f%# and the ground-state energy is
obtained asEg5E@$fg%#. A formalism similar to that of the
static case can be introduced also in the TD domain if one
restricts to Hamiltonians periodic in time and to the evolu-
tion of the system that is steady and has the same periodicity
of the Hamiltonian.11 In TD-DFT the TD steady density
ns(r ,t) of a system ofN interacting electrons in an external
TD potential Vext(r ,t), periodic in time with periodT is
expressed in terms of aN/2 TD single-particle wave function
$cs%.2,3 The set$cs% make stationary the KS action func-
tional A@$c%#, i.e.,

dA@$cs%#/d^ck~ t !u50, ~1!

and the steady action is obtained asAs5A@$cs%#. The KS
action functionalA@$c%# is defined as~atomic units are used
throughout!
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is the Hartree functional,Axc@n# is the exchange and corre-
lation functional, and
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where the 2 factor is for spin degeneracy. At this stage no
approximation for the exchange and correlation functional is
made. The stationary principle in Eq.~1! yields the TD KS
equations:13

i
]

]t
uck

s~ t !&5@HKS~ t !2ek#uck
s~ t !&, ~4!

here ek are the steady state eigenvalues,HKS(t)

52 1
2 ¹21Vext(r ,t)1VHxc@n#(r ,t) is the time-dependent

KS Hamiltonian, and VHxc@n#(r ,t)5Td(AH@n#
1Axc@n#)/dn(r ,t).

III. TIME-DEPENDENT NONLINEAR SUSCEPTIBILITY
FROM THE ‘‘2 n11’’ THEOREM

Now we consider a potential of the formVext(r ,t,a)
5Vext

0 (r )1a1e1•rcos(v1t)1a2e2•rcos(v2t)1a3e3•rcos(v3t),
wheree1 , e2 , e3 are unit vectors describing the orientation of
three TD uniform electric fields,v11v21v350, and
a5(a1 ,a2 ,a3) describes the strength of the fields. Then the
steady state wave functions$cs(a)% and actionAs(a) depend
also ona. Note that fora50 the potential is time indepen-
dent and the action coincides with the static DFT energy. By
using the Hellmann-Feynman theorem we obtain the deriva-
tive of the action with respect to the parametera1:

]As~a!

]a1
5E

0

Tdt

T
cos~v1t !E d3re1•rn

s~r ,t,a!

52e1•P
s~v1 ,a!V, ~5!

whereV is the volume of the system andPs(v1 ,a) is the
macroscopic electronic polarization per unit volume, oscillat-
ing at frequencyv1 .

12 Then the quadratic susceptibility ten-
sor, which is defined as

xe1 ;e2 ,e3
~2! ~2v1 ;v2 ,v3!5

2

V

]2Ps~v1 ,0!

]a2]a3
, ~6!

is equal to

xe1 ;e2 ,e3
~2! ~2v1 ;v2 ,v3!52

2

V

]3As~0!

]a1]a2]a3
. ~7!

The computation of the derivatives ofAs(a) with respect
to a can be performed by using the ‘‘2n11’’ theorem,
which states that the derivatives up to order 2n11 of the
steady action depend only on the change of the orbitals up to
ordern:

]2n11As~a!

]a2n11 5P2n11S ]$cs~a!%

]a
, . . . ,

]n$cs~a!%

]an D , ~8!

whereP2n11 is a polynomial of degree 2n11 in its argu-
ments. Indeed, as shown in Refs. 7 and 8, Eq.~8! relies just
on the stationary condition, Eq.~1!. Therefore,

xe1 ;e2 ,e3
~2! ~2v1 ;v2 ,v3!52

2

V
P3S ]$cs~a!%

]a D . ~9!

The derivation of an explicit expression ofP3 for an infinite
periodic system requires particular care because the expecta-
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tion value of ther operator between Bloch states is ill de-
fined. In an insulating solid this problem can be solved fol-
lowing Ref. 7: first we apply the ‘‘2n11’’ theorem in a
Wannier representation where ther operator is well defined;
then we recast the resulting expression in a Bloch
representation.14 The final expression is

xe1 ;e2 ,e3
~2! ~2v1 ;v2 ,v3!

524(
m,n

N/2

(
s56

E
BZ

d3k
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2
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2 i ]
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2^uk,m
0 uVHxc

a2 uuk,n
0 &^uk,n
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2
4
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n0 is the unperturbed charge density,uuk,m
0 & is the periodic

part of the unperturbed Bloch eigenstate normalized on the
unit cell V, with eigenvalueek,m

0 , and uuk,m
a1 ,6& is the per-

turbed orbitals projected on the unperturbed conduction band
subspace, i.e., the solution of the linear system:

~ek,m
0 2HKS

0 6v1!uuk,m
a1 ,6&5QkS e1•r2 1VHxc

a1 D uuk,m
0 &, ~12!

with Qk512(m
N/2uuk,m

0 &^uk,m
0 u.

Note that the evaluation of Eq.~10! requires only the
knowledge of unperturbed valence wave functionsuuk,m

0 &
and of their linear variationuuk,m

a1 ,6&. Moreover, the solution
of Eq. ~12! can be obtained by minimizing a suitably defined
functional with a numerical effort similar to the computation
of the total energy.9,15,16 Thus our formulation makes the
evaluation ofx (2) in systems containing up to 100 atoms
feasible.

IV. APPLICATION TO CUBIC SEMICONDUCTORS

We have applied Eq.~10! to compute the staticx (2) of
nine III-V and five II-VI cubic semiconductors, evaluating
the exchange and correlation energy within the LDA. We do
not use any scissor operator to correct for the LDA band-gap
error, contrary to what has been done in otherab initio
calculations.5,6 Indeed the staticx (2) is a ground-state prop-
erty, which is defined as a difference of ground-state total
energies and is not related to the LDA band gap.17 We think
that improvements over LDA require a betterExc functional,
which could be ultranonlocal,18 instead of anad hoccorrec-
tion of the LDA band gap. Furthermore, our purpose here is
to give reference values for the staticx (2) which are com-
pletely consistent within LDA.

We used norm-conserving pseudopotentials and a plane-
wave kinetic energy cutoff of 24 Ry. The derivative with
respect tok which appears in Eq.~10! has been computed by
means of finite differences.7 We studied the effect ofd elec-
trons of Ga and In atoms, by performing for the compounds
containing these elements two calculations: with and without
nonlinear core corrections~NLCC!.19 For II-VI semiconduc-
tors the effect of the cationd electrons is even more
important20 and our reported values have been computed us-
ing only the NLCC. For AlP, AlAs, GaP, and GaAs we have
also verified that our results for thex (2) reproduce the LDA
values obtained in Ref. 6 if the same pseudopotentials~with-
out NLCC! and lattice constants are used.

In Table I we report the values of thex (2) of the III-V
cubic semiconductors computed without the NLCC at the
corresponding theoretical lattice constant (a0), also reported
in the table. In Table II we report the values of thex (2) of the
Ga and In III-V compounds and for the IV-VI cubic semi-
conductors computed with the NLCC at the corresponding
theoreticala0 . Note that in the Ga and the In compounds the
use of NLCC influences the results forx (2). Thus it is nec-
essary to use at least the NLCC to obtain the correct LDA
values forx (2) in the compounds containing these elements.

In Tables I and II we also show the direct band gap at the
G point, EG , and the static dielectric constant«` computed
at the theoreticala0 . Known experimental values fora0 ,

TABLE I. LDA nonlinear susceptibilities (x (2)) of III-V cubic
semiconductors computed without nonlinear core corrections. We
report also the theoretical lattice constant (a0), the direct gap at the
G point (EG), and the dielectric constant («`). Experimental values
are given in parentheses. All computations are performed with 28
specialk points except for InAs and InSb for which we used 60
specialk points.

a0 ~a.u.! EG ~eV! «` x (2) ~pm/V!

AlP 10.19~10.33! 3.5 ~3.6! 8.2 ~7.5! 39 ~—!

AlAs 10.56 ~10.69! 2.2 ~3.1! 9.3 ~8.2! 64 ~—!

AlSb 11.46~11.58! 1.9 ~2.3! 11.4 ~11.3! 146 ~98!
GaP 10.01~10.28! 2.8 ~2.9! 9.8 ~9.0! 68 ~74!
GaAs 10.40~10.68! 1.3 ~1.5! 11.9 ~10.9! 158 ~166!
GaSb 11.25~11.49! 0.8 ~0.8! 15.6 ~14.4! 433 ~838!
InP 10.84~11.09! 1.5 ~1.4! 9.5 ~9.6! 105 ~287!
InAs 11.06~11.45! 0.7 ~0.4! 11.5 ~12.2! 191 ~838!
InSb 11.88~12.23! 0.6 ~0.2! 14.0 ~15.7! 407 ~1120!

15 640 53ANDREA DAL CORSO, FRANCESCO MAURI, AND ANGEL RUBIO



EG , and«` are reported in parentheses. Note thatEG com-
puted at the theoreticala0 is closer to the experimental val-
ues than the ones computed at the experimentala0 . Well
established experimental data forx (2) do not exist since the
values reported by different authors may differ by more than
a factor of 2. Moreover, in some cases only data obtained at
frequencies close to the absorbtion edge are available. There-
fore we refer the readers to Refs. 21 and 22 for a complete
review of the experimental results. Just to give an indicative
value, we show in parentheses the experimental results from
Ref. 21 that correspond to measurements done at the smallest
frequencies. For GaP, GaAs, and CdSe we have taken the
values from Ref. 22 obtained after an appropriate rescaling
of the experimental data. In the case of InAs we cannot com-
putex (2) and«` when we use NLCC, since within LDA the
system is a metal. For all other compounds the computed
x (2) obtained with NLCC are in the range of variation of the
available experimental data.21,22

As a second application we compute the TDx (2) for SHG

of GaP. For this calculation we used the TD-LDA. In the TD
case the use of LDA is less justified since, in contrast to the
exact TD-DFT, it does not describe correctly the position of
the absorption edge.3 We note that this is a limitation of the
approximation toAxc used here, andnot of Eq. ~10! itself. In
Table III we reportx (2)(2v;v,v) computed as a function of
v in the nonabsorbing regime computed with NLCC. We
obtain good agreement with the experimental measurements,
which are taken from Refs. 22 and 6.

V. CONCLUSION

In conclusion, we have presented a consistent theory for
the computation of the static and dynamic nonlinear optical
susceptibilities within DFT. To this purpose we have applied
the ‘‘2n11’’ theorem to the TD-DFT action functional. We
have presented applications for 14 cubic semiconductors.
Our results show that LDA reproduces the experimental
static nonlinear susceptibilities in these compounds without
using any scissor operator, provided that the computations
are performed at the theoretical lattice constant and NLCC
are included for Ga, In, Zn, and Cd atoms.
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