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We consider the charged states of certain deep defects in the narrow-gap semiconductors mercury cadmium
telluride, mercury zinc telluride, and mercury zinc selenide. We predict the values of the deep-defect energy
levels and also the formation energy of the defects. For each charged state we include the effect of relaxation.
We consider substitutional and interstitial anions and cations as well as vacancies. We use Green’s-function
techniques throughout and adapt the Haldane-Anderson model to consider the effects of different charged
states. By use of a pseudopotential we generalize the ideal vacancy model so as to be able to consider
relaxation. As always, chemical trends were predicted with considerably more accuracy than the absolute
location of the energy levels. Formation energies, involving differences, were predicted with an accuracy
similar to that of chemical trends. The more negatively charged the impurity, the higher the energy except that
the vacancy energy did not depend strongly on the charge. Typical charge-state energy shifts of defect levels
are about twice that caused by relaxation effects. Formation energies for defects in the same material and at the
same site were quite similar while the formation energy for different charged states could vary considerably. If
one considered only native defects, self-interstitials had the lowest formation energy while for antisites and
vacancies the results were similar.@S0163-1829~96!05923-1#

I. INTRODUCTION

In a previous paper we used a Green’s-function technique
to calculate the position of certain deep defects in mercury
cadmium telluride~MCT!, mercury zinc telluride~MZT!,
and mercury zinc selenide~MZS!.1 Both substitutional and
interstitial cation and anion site impurities were considered.
The effect of lattice relaxation is important and was in-
cluded. The prediction of the absolute position of the energy
levels is very difficult but we expect~based on the results in
previous papers, especially Ref. 1! that our precision was
relatively good, and so chemical trends were accurately pre-
dicted. In this paper we look at the effect of various charged
states on the location of the deep defect energies and also
predict their formation energies. Finally we use pseudopo-
tential ideas to predict formation energies and the location of
the vacancy levels including the effects of relaxation.

The use of Green’s-function techniques to calculate for-
mation energies is new. The formation energies are calcu-
lated from the difference between the binding energy of the
crystal with a ‘‘perfect’’ cluster and that with a defect clus-
ter. That is, our calculation of formation energy is based on
the difference between the binding energy of the crystal with
and without the defects, where of course the self-energy of
the defect therefore would not be included@see Eq.~4!#. This
is an approximation, but similar ideas have been used to
calculate defect formation energies.2–4 We also realize that
in a more accurate model the formation energy is a function
of chemical potential,5,6 however, in the case of narrow-gap
semiconductors, we assume this variation is small.

In Sec. II we discuss our calculation methods using
Green’s functions; in Sec. III we give results for the energy
levels for substitutional and interstitial deep defects; in Sec.
IV we give results for formation energies of substitutional
and interstitial deep defects; in Sec. V we give deep defect
and formation energies for a modified vacancy model; and

finally in Sec. VI we discuss our results and make our con-
clusions.

II. CALCULATIONAL METHODS
USING GREEN’S FUNCTIONS

For our calculations, we start with the basic ideas of Hjal-
marsonet al.7 We add the spin-orbit interaction for the II-VI
materials, following the ideas of Kobayashi, Sankey, and
Dow.8 We also adapt the idea of Lee, Dow, and Sankey9 for
different charge states and follow Haldane and Anderson10 to
calculate their effects. In addition, we adapt the work of Li
and Myles11,12 to include relaxation effects. The deep energy
levels associated with the neighborhood of the impurity are
determined self-consistently. Ansp3s* tight-binding model
for electronic band structure with the narrow-gap semicon-
ductors treated in the virtual crystal approximation was used.

The basic Green’s-function calculation has already been
completely discussed.1 In what follows, we summarize the
additional details needed for understanding the effects of dif-
ferent charge states and the special techniques used for cal-
culating formation energies. All our calculations are for
narrow-gap semiconductors.13

The charged-state splitting of a deep level in the band gap
is the difference between the ionization energy of the ‘‘nomi-
nal’’ impurity and the ionization energy of the impurity in a
charged state caused by the addition of electrons or holes.
The ionization energy of an impurity in a semiconductor is
defined as the energy required to remove an electron~or
hole! from the occupied deep level to the conduction~or
valence! band. In simplified one-electron theories, the defect
potential may not include the interaction between electrons
and hence be charged-state independent. To study charge-
state splitting, the interactions must be included in some ap-
proximation.

We combine Hjalmarson’s deep-level theory with
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Haldane and Anderson’s model of Coulomb effects to study
the charge-state splitting of the deep levels. The use of the
Haldane and Anderson models enables us to include many-
electron effects while retaining much of the simplicity of
Hjalmarson’s theory. This idea has been successfully utilized
by Lee, Dow, and Sankey9 to study charged-state splitting of
deep levels in Si, by Sankey and Dow14 to treat interstitials
in Si, and by Myles12 to treat substitutional impurities in
MCT. The ideas used to evaluate charged-state splitting are
fairly simple. The defect potential is assumed to depend on
the parameterUi where

Ui5b i~Eimp
i 2Ehost

i !, ~1!

whereEimp
i andEhost

i are, respectively, the defect and host
atomic orbital energies for states of symmetryi , and theb i

are empirical parameters. TheEimp
i are evaluated by the

Haldane-Anderson model.
A point defect in a tetrahedral site of a zinc-blende mate-

rials has point groupTd . A deep-level produced by such a
defect can have either nondegenerateA1 (s-like! symmetry
or triply degenerateT2 (p-like! symmetry. Since we are
dealing with II-VI semiconductors spin-orbit coupling had to
be included in the band-structure calculations that we used.
However, in the part of the Hamiltonian that describes the
defect, the effect of spin-orbit interaction is weak and can be
neglected.1 Thus for the defect, including spin only doubles
the degeneracy of each level. Thus we have twofold degen-
erateA1 levels and sixfold degenerateT2 levels. We finally
find, following the Haldane and Anderson approach,

UA1
5bA1

$@Es
01UssnA116UspnT2#2Ehost

A1 %, ~2!

UT2
5bT2

$@Ep
015UppnT212UspnA1#2Ehost

T2 %, ~3!

where the parametersEs
0 , Ep

0 , Uss, Usp , andUpp have been
determined by Sankey and Dow14 for the atoms that we con-
sider. The quantitiesnA1 andnT2 are not necessarily integers
because the atoms are embedded in a solid. They depend on
the defect potentialV and energy levelE and can be evalu-
ated in a standard way allowing for contributions from both
the valence and deep levels.9 Since they depend onE, solu-
tions for the energy levels must be obtained by iteration.
Similarly to the discussion in Sec. V the effects of lattice
relaxation are also included in this calculation.

We next discuss the formation energy. In general, the de-
fect concentration depends exponentially on and is primarily
determined by the defect formation energy. The defect for-
mation energy is the change in energy necessary to produce
the defect and is computed approximately from2

Ef5Eb~crystal with defect cluster!2Eb~perfect crystal!,
(4)

where the first term in the difference is the total~negative!
binding energy of the crystal with a defect cluster and the
second term is the total~negative! binding energy of the
crystal with a ‘‘perfect’’ cluster, i.e., a perfect crystal. In the
Green’s-function method the one-electron Schro¨dinger equa-
tion is transformed into a matrix equation with a size deter-
mined by the perturbing potential of the defect, which in turn
is determined by the size of the defect cluster. Free atom

parameters plus adjustment for the lattice define the diagonal
part of the impurity potential. The off-diagonal part is de-
fined by a constant determined by the host and the impurity
and by the host interatomic distance as well as the distance
d1 between the impurity and its nearest neighbors. The dis-
tanced1 in the relaxed state is determined by molecular dy-
namics.

Including second nearest neighbors, the clusters have a
size, for zinc blende semiconductors, of 17 atoms including
four nearest neighbors, and twelve next nearest neighbors.
The total energy of the cluster is the sum of one-electron
energies and the repulsion energy. The repulsion energy con-
tains a correction for double counting introduced by sum-
ming over the one-electron energies. Again relaxation of
neighbors and different charges are considered. The evalua-
tion of the one-electron and repulsion energies is discussed
later.

III. DEEP LEVELS FOR SUBSTITUTIONAL
AND INTERSTITIAL DEFECTS

The electronic properties of deep levels can be studied
with various degrees of sophistication. In all cases, we focus
on chemical trends in the ordering of the deep levels. In Ref.
1 we consider the effects of lattice relaxation on the deep
levels. In this paper, we further consider the effects of dif-
ferent charge states. Unless otherwise specified, we have
standardized our calculation with a band gap of 0.1 eV. The
correspondingx values are

x~MCT5Hg12xCdxTe!50.22,

x~MZT5Hg12xZnxTe!50.15,

x~MZS5Hg12xZnxSe!50.08.

Our impurities are surrounded by either cations~1! or an-
ions (2). In their normal lattice positions in our compounds,
the group II elements Hg and Cd become cations and the
group VI elements Te and Se become anions. As far as low-
ering the potential energy goes, cation sites surrounded by
negative ions tend to forms-like levels ~because this keeps
negative charges as well separated as possible!. Anion sites
surrounded by positive ions tend to formp levels that spread
the negative charge out to the positive sites. Of course, co-
valent bonding and other effects can complicate this analysis.
Presumably because they are often relatively compact, cation
site s-like levels tend not to be affected appreciably by re-
laxation effects.

To understand our notation for charged states, consider
the charged state of Zn when it substitutes for Te in MCT.
Atomic zinc has a deficit of four electrons over atomic Te.
We define Zn(n) ~wheren stands for ‘‘nominal’’! as Zn with
two more electrons in the atomic state so it will be similar to
the Te22, which it replaces. Zn(n) will thus have two elec-
trons in the 4s state and two in the 4p state. In the same
notation Zn(n1) has one 4p electron and Zn(n2) will have
three. Other impurities can be discussed in a similar manner.

We present our results in Figs. 1–3. In these figures we
only consider anion site,p-like and cation sites-like levels
since the deep levels in the other two possible cases are far
from the energy gap~presumably, thes-like states on the
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anion are in the valence band, while thep-like states on the
cation produce a resonance in the conduction band!. In these
figures, the bottom of the energy gap is at 0.0 eV and the top
is at 0.1 eV. Figure 1 shows the effect of relaxation and
different charged states for two impurities. As shown,
charged-state interactions are typically about twice as impor-
tant as relaxation effects. Figure 2 shows anion sitep-like
and cation sites-like levels in MCT and anion site,p-like
levels in MZT and MZS. Our main objective has been to
discuss chemical trends and generally we ignore the Jahn-
Teller effect, which can be important in some cases. For
example, the Zn1 state of MZS in Fig. 2~d! is a triply de-
generate state with a single (4p) electron. Since this is Jahn-
Teller unstable what we would probably see experimentally
is a split-off singlet.

Some interesting observations can be made from these
figures. In the first place, the negatively charged impurities
form deep levels of higher energy than the nominal levels,
which are in turn higher than the positively charged states.
Coulomb repulsion between electrons provides a ready ex-
planation for this. Second, the energy shift of the deep levels
is a rough linear function of the charged state for a particular
impurity. Thus, the energy shift for one more or one less
electron in an impurity is about the same. For example, all
the energy shifts in going from Zn(n11) to Zn(n1) to
Zn(n) to Zn(n2) to Zn(n22) are between 0.10 and 0.12
eV. Similar energy shifts in the Mg series range from 0.07 to
0.08 eV. That is, for different impurities, the energy shift
between charged states for the same impurity should be
close. Third, the chemical trends in the ordering of deep
levels associated with different impurities for the same
charged states are essentially unchanged. For example,
Zn(n) is above Mg(n) in MCT, MZT, and MZS. Again we
expect chemical trends to be much more accurate than abso-
lute values. As noted by Chen and Sher,15 the absolute loca-
tion of the energy level may depend sensitively on the band
structure and impurity potential.

Figure 3 summarizes the results for interstitial impurities
in MCT, MZT, and MZS. Interstitial sites may have either
hexagonal or tetrahedral symmetry. For interstitials, we only
consider tetrahedral sites and name them in the same way as
for substitutional ones, for example, cation sites are sur-
rounded by negative ions. Five charged states are considered
for each impurity of interest. In the case of interstitial impu-
rities, the meaning of a nominal state is not the same as for a
substitutional impurity. Here the number of electrons on a
nominal state is the same as the number of valence electrons
of the impurity in its atomic state. For example, the intersti-
tial Zn(n) in MCT has two electrons in the 3s states and no
electrons in 4p states~rather than two in the 4p state as

FIG. 1. Deep levels for substitutional impurities in MCT show-
ing effects of relaxation and charged states~with relaxation!.

FIG. 2. Deep levels for charged states of substitutional defects:
~a! anion site in MCT,~b! cation site in MCT,~c! anion site in
MZT, ~d! anion site in MZS.
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when it substituted for Te in MCT!, so here nominal does
mean neutral. Similar discussion holds for other interstitial
impurities.

Inspecting these figures, one sees that the deep levels
formed by interstitial impurities with different charged states
have similar properties to the substitutional cases. Again, the
deep-level energy values are roughly a linear function of the
charge, the negatively charged states have higher energy than
neutral or positively charged levels, and the chemical trends
of the ordering of the deep levels associated with different
impurities for the same charged state are essentially pre-
served. However, charge-state splitting tends to be a little
larger for interstitial impurities than substitutional ones. The
neighboring ions are closer for the interstitial case.

The charged-state splitting as a function of alloy compo-
sition (x) has also been studied. Table I gives the results for

charged-state splitting of anion site,p-like deep levels for Zn
and Mg in MCT forx50.2, 0.3, and 0.5.DE is the charged-
state splitting. The splittings are of order 0.1 eV for different
x and tend to vary only slightly withx. The results for three
different degrees of sophistication of computation have been
shown in Fig. 1 for the substitutional impurities Zn and Mg
in MCT. As mentioned, one can see from the figure that the
effects of charged-state splitting on deep levels are larger by
about a factor of two than the effects of lattice relaxation.
Our calculation shows this to be true for all defects of inter-
est. In general, the effects of charge-state splitting can be
comparable to the energy gap. Thus again we see the abso-
lute location of the deep defect level is much more difficult
to predict than chemical trends.

FIG. 2. ~Continued!. FIG. 3. Deep levels for charged states of interstitial impurities:
~a! MCT, ~b! MZT, and ~c! MZS.
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IV. FORMATION ENERGY FOR SUBSTITUTIONAL
AND INTERSTITIAL DEEP LEVELS

Our calculations borrow semiempirical band structure re-
sults and use Green’s functions derived from these bands
structures. The use of the tight-binding Green’s function is
certainly not new but the application of these Green’s func-
tions to the calculation of formation energies is new, to the
best of our knowledge. Since the formation energy involves
a difference of energies, it should have the same level of
accuracy as the Green’s function prediction of chemical
trends for deep defect levels.

We continue to use the definition of the formation energy
as the difference between the binding energy of the crystal
with and without defects, as expressed by Eq.~4! and
related2 comments. The bonds at the cluster edges are
coupled to the infinite host crystal. For the cluster without
the defect, we keep the same values of tight-binding param-
eters as in the infinite host crystal. For the cluster with the
defect, the defect potential matrix will be included. In this

approach the surfacelike states associated with the cluster
boundary are eliminated. This is the same idea as we have
used to calculate the deep levels in our previous work.1

The total energy of a cluster with or without a defect can
be modeled by

Etot5Eel1Er , ~5!

whereEel is the sum of the one-electron energies in the oc-
cupied states, andEr is the repulsive energy due to electron-
electron ion-ion repulsion and contains a correction for
double counting contained inEel. Eel can be computed as
follows:

Eel5E
2`

EF
Er~E!dE, ~6!

whereEF is the Fermi energy andr(E) is the electronic
density of states given by

r~E!52
1

p
Im TrG~E!, ~7!

whereG(E) is the Green’s-function matrix.Er can be com-
puted using Harrison’s16 overlap interaction model for a pair
potential in which

Er5A8/d4, ~8!

whereA8 is a proportionality constant, andd is the defect
bond length. The constantA8 can be determined from the
equilibrium position of an atom in a perfect crystal. A de-
tailed discussion has already been given by us and we sum-
marize it below.1 The total force on an atom due to the sur-
rounding atoms in a certain direction can be modeled as

Fx5Fx
a1Fx

r , ~9!

whereFx
a andFx

r represent the attractive and repulsive parts
of the force. For the host crystal in the absence of the impu-
rity, each atom is fixed in its equilibrium position for the
perfect crystal so thatFx50 and Fx

a52Fx
r . Since

Fx
r52]Er /]x, for x along the bond direction

TABLE I. Comparison of charge-state splittings forx50.2, 0.3, and 0.5 in MCT.

Deep levels

Impurity

~anion site,p-like! DE

x50.2 x50.3 x50.5 x50.2 x50.3 x50.5

Zn(n22) 3.3Eg 3.3Eg 3.4Eg 0.12 0.11 0.11
Zn(n2) 2.1Eg 2.2Eg 2.3Eg 0.12 0.13 0.13
Zn(n) 0.9Eg 0.9Eg 1.0Eg

Zn(n1) 20.2Eg 20.2Eg 20.1Eg 0.11 0.11 0.11
Zn(n11) 21.2Eg 21.1Eg 21.0Eg 0.10 0.09 0.09
Mg(n22) 2.1Eg 2.1Eg 2.2Eg 0.08 0.08 0.09
Mg(n2) 1.3Eg 1.3Eg 1.3Eg 0.08 0.08 0.07
Mg(n) 0.5Eg 0.5Eg 0.6Eg

Mg(n1) 20.2Eg 20.2Eg 20.1Eg 0.07 0.07 0.07
Mg(n11) 20.9Eg 20.9Eg 20.8Eg 0.07 0.07 0.07

FIG. 3. ~Continued!.
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Fx
r5

4A8

d5
. ~10!

If we assumeFx5A/d5 and useFx50 in equilibrium to
determineA, thenA85A/4. Admittedly, this procedure is
somewhat arbitrary and certainly has not been justified rig-
orously. All we are really doing is fitting the force to an
inverse fifth-order power law.

In Figs. 4 and 5 the formation energies of substitutional
impurities in MCT, MZT, and MZS are evaluated. All anion
site impurities arep-like and all cation sites ares-like. The
same holds true in Fig. 6, where the formation energy of
interstitial impurities in the same materials is considered. All
results include relaxation. Several observations can be made
for the substitutional case. The formation energies for the
same material on the same site~cation or anion! can be quite
similar. In MCT the formation energies of several nominal

impurities in eV are Zn(n) ~2.8!, Mg(n) ~2.7!, Cd(n) ~2.85!,
and Hg(n) ~2.84!. The formation energy for different
charged states of impurities can vary fairly widely. In MCT:
Zn(n1) ~2.73!, Zn(n2) ~2.9!, and Cd(n1) ~2.82!, Cd
(n2) ~2.87!. We also notice that for a given impurity, the
formation energy of a negative impurity is larger than a posi-
tive one. This is basically due to the repulsive force between
electrons. For the formation energies of interstitials in Fig. 6
a similar discussion to that of substitutional impurities can be
made. In addition the results tend to be more widely spread,
presumably because of the closer neighbors.

V. FORMATION AND DEEP-LEVEL ENERGIES
FOR VACANCIES

In a previous study of vacancies in MCT, MZT, and MZS
we used the ideal vacancy model in which we assumed that
the vacancy was formed by removing an atom from the crys-
tal while leaving all other atoms in the same position. In the
Green’s-function method, this model is implemented by set-
ting the atomic orbital energy of a vacancy equal to infinity.
The deep levels formed in the ideal vacancy model can be
easily calculated as the model does not require~or allow! the
inclusion of lattice relaxation.

In this paper, we introduce a modified vacancy model that
allows consideration of lattice distortion in an efficient and
direct way. This is accomplished by changing the assump-
tions concerning the atomic orbital energy of a vacancy. Fol-
lowing Bernholc, Liparo, and Pantelides17 and Baraff and
Schluter18 we assume the atomic orbital energy equals the
negative of the bulk ‘‘atomic’’ pseudopotential of the re-
moved host atom~instead of infinity!. Bernholc, Liparo, and

FIG. 4. Formation energies for charged states of anion site,
p-like substitutional impurities:~a! MCT, ~b! MZT, and ~c! MZS.

FIG. 5. Formation energies for charged states of cation site,
s-like substitutional impurities:~a! MCT and ~b! MZT.
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Pantelides17 have computed the defect potential of a vacancy
in Si from this pseudopotential model. They found that the
difference between results for a self-consistent model and the
pseudopotential model was less than 1%.

Using the nearest-neighbor approximation, the form of the
defect potential of a vacancy can be written as

V5( Vi5( u iao&Uaa
i ^ iaou1S i j u iao&a i^ jcdu, ~11!

whereo refers to the defect location,a andc refer to anion
and cation sites,i and j refer to symmetric types~theA1 and
T2 states!, andd locates the neighbors.

In this form, the vacancy is at an anion site (a). The
matrix form ofVi is thus

Vi5F Uaa
i a i a i a i a i

a i

a i

a i

a i

G , ~12!

with

a i52ci~dI
222dH

22!, ~13!

wheredI is the distance between the center of the vacancy
and the nearest neighbors anddH is the distance between
neighboring atoms in the perfect host crystal. In the ideal
modelUaa is set to infinity anda is thus negligible. In the
pseudopotential,Uaa is the quantity set equal to the negative
of the bulk ‘‘atomic’’ pseudopotential of the removed host
atom.

The bulk pseudopotential of an atom can be written19

Ups~r !5(
G

@SS~G!US~G!1 iSA~G!UA~G!#eiG–r,

~14!

whereUS andUA are called symmetric and antisymmetric
form factors and theS’s ~structure factors! can be found
from

SS~G!5cosG•T, ~15a!

SA~G!5sinG•T, ~15b!

whereG is the reciprocal lattice vector andT5a~18,
1
8,

1
8) with

a the length of a side of the unit cube. Examples of the
evaluation ofUps with empirical parameters for important
US(G),UA(G) are given by Li.19 The pseudopotential is
fairly slowly varying with r and we evaluate only forr50.
Based on the pseudopotential model, we have computed the
lattice distribution of vacancies in MCT, MZT, and MZS.
The results are shown in Table II. Table III gives our result
for the formation energy of vacancies in MCT, MZT, and
MZS.

All vacancies are cation site, since no anion site deep-
level vacancies have been predicted by us. We found very
little dependence of formation energy on charged state for
vacancies. Consequently, we only report results for the neu-
tral case. If we focus on native defects~antisite, self-
interstitial, and vacancy! we find the self-interstitials usually
have the lowest formation energy while the formation ener-
gies for antisites and vacancies are almost the same. For

FIG. 6. Formation energies for several neutral and charged
states of interstitial impurities:~a! cation site,s-like levels in MCT,
~b! cation site,s-like levels in MZT, and~c! neutral anion site,
p-like levels in several semiconductors.

TABLE II. Lattice relaxation of vacancies in MCT, MZT, and
MZS.

Percent of
System dH(A) dI(A) Dx5dI2dH relaxation

MCT 2.8 3.02 0.22 7.6
MZT 2.74 2.45 20.29 11.1
MZS 2.62 2.56 20.06 2.3
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example, in the case of MZT at a cation site Zn(n) has a
formation energy of 1.38 eV while antisite Te(n) is 4.14 eV
and the vacancy is 3.81 eV.

Finally, for completeness we show in Table IV the deep
levels we predict using the pseudopotential model for vacan-
cies in MCT, MZT,and MZS, and compare them to results
for the ideal vacancy model. Again, we only consider vacan-
cies at the cation site. For MCT and MZT the pseudopoten-
tial results are higher. In MZS the results are the same for
both models due to pinning. Lattice relaxation has been in-
cluded in calculating the formation energy but not in calcu-
lating the levels, as its effect is usually small.

VI. DISCUSSION

We have considered the charged states of deep effects in
the narrow-gap semiconductors MCT, MZT, and MZS. We
have predicted the deep-defect energy levels and formation
energies for charged states of substitutional, interstitial, and
vacancy defects. We have included the effect of relaxation of
neighbors. The use of a Green’s function to calculate forma-
tion energies is new as in the use of the pseudopotential
method to generalize the ideal vacancy model so relaxation
can be considered. We expect that the chemical trends and
formation energies were predicted more accurately than the
absolute location of the energy levels. There is relatively
little experimentation upon which to base this expectation.
Comparison to experiment for the defect levels themselves
has already been made.1 We have not been able to find any

well-identified formation energies that allow unambiguous
experimental comparison to our calculations. However, com-
parison to some results of Sheret al.20 seems to indicate at
least a qualitative correctness for our results.

Typical of our own results are the following.~a! The
charge-state energy-level shifts of the defect levels were
about twice as large as relaxation effects.~b! The more nega-
tively charged the impurity the higher the energy because of
Coulomb repulsion.~c! The energy shift of the deep substi-
tutional levels is a rough linear function of the charge state
for a particular impurity.~d! Chemical trends in the ordering
of deep levels associated with different impurities for the
same charged state are essentially unchanged.~e! Charge
state splitting for interstitial impurities tends to be a little
larger than for substitutional ones.~f! Charge-state splitting
for substitutional impurities may be of order 0.1 eV and vary
only slightly with alloy concentrationx. ~g! Formation ener-
gies for the same material on the same site can be quite
similar. ~h! The formation energies for different charged
states can vary widely.~i! The formation energy for a nega-
tive impurity is larger than a positive one.~j! Defect and
formation energies for vacancies are predicted not to be
heavily dependent on the charged state.~k! Relaxation can
appreciably affect the deep levels in vacancies.~l! For native
defects, self-interstitials had the lowest formation energy
while antisites and vacancies had similar formation energies.
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