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We show that, at low temperatures, macroscopic inhomogeneities of the electron density in the interior of a
finite sample cause a reduction in the measured conductivity peak heightssxx

max compared to the universal
values previously predicted for infinite homogeneous samples. This effect is expected to occur for the conduc-
tivity peaks measured in standard experimental geometries such as the Hall bar and the Corbino disk. At the
lowest temperatures, the decrease insxx

max(T) is found to saturate at values proportional to the difference
between the adjacent plateaus insxy , with a prefactor that depends on the particular realization of disorder in
the sample. We argue that this provides a possible explanation of the ‘‘nonuniversal scaling’’ ofsxx

max observed
in a number of experiments. We also predict an enhancement of the ‘‘nonlocal’’ resistance due to the macro-
scopic inhomogeneities. We argue that, in the Hall bar with a sharp edge, the enhanced ‘‘nonlocal’’ resistance
and the size corrections to the ‘‘local’’ resistanceRxx are directly related. Using this relation, we suggest a
method by which the finite-size corrections may be eliminated fromRxx andRxy in this case.

I. INTRODUCTION

The fascinating property of the quantum Hall effect
~QHE! that initially attracted such great attention to the phe-
nomenon is the precise quantization of the Hall conductivity
sxy at certain values of the magnetic field. Most theoretical
research has focused on the properties of the electron system
inside these quantized plateaus insxy . The plateaus have
been associated with the incompressibility of the two-
dimensional~2D! electron gas, arising either from Landau
quantization, at integer filling factors, or from electron-
electron interactions, at fractional filling factors. The transi-
tion regions, wheresxy crosses over between quantized val-
ues and the longitudinal conductivitysxx experiences
maxima, have received less attention. The main factor, which
inhibits progress in this direction, is the lack of reproducible
experimental results on the interplateau regions, despite the
impressive stock of data on the QHE that has been accumu-
lated over the past decade. In addition to the fact that the
general behavior of the QHE depends on the electron density,
temperature, and disorder, samples cut from the same sub-
strate and measured at the same temperature often reveal
different dependencessxy(B) and sxx(B). This annoying
data dispersion is particularly apparent at low temperatures.1

A certain success in obtaining reproducible data has been
achieved only for the critical behavior of the width of inter-
plateau regions at low temperatures.2 However, as far as the
heights or shapes of the peaks insxx are concerned, the
general impression is that too many factors are involved to
allow any systematic conclusions.

On the other hand, there do exist a number of theoretical
works which argue that certain universal behavior of the con-
ductivity tensor must exist at low temperatures in the regions
between well-pronounced pairs of plateaus~critical regime!.
Kucera and Streda3 considered semiclassical single-electron
transport in a partially filled Landau level for a simple model
of a periodic long-range potential. They found that the maxi-

mum value ofsxx reached at half-integer filling factors does
not depend on either the magnitude of the potential or the
Landau level numberN and is equal toe2/2h. This result
was later mapped onto the fractional regime by using two
related approximations of the correlated electron state: the
dirty boson4 and the composite fermion approach.5 A differ-
ent sort of argument for both integer and fractional regime
was presented in Refs. 6 and 7. Based on the rather general
assumption that, at low temperatures, the electron system in
a critical transition region can be represented by a random
mixture of two quantum liquids with different quantized lo-
cal Hall conductivitiess2 ands1 , it was shown thatsxx and
sxy are connected by a universal relation. The peak height
sxx
max was found to be equal to one half of the difference

between the Hall conductivities of the adjacent plateaus
us22s1u/2. For the integer peaks, this result yields the value
e2/2h obtained in Ref. 3. For the fractional regime, it
matches the results of Refs. 4 and 5, after the latter are some-
what corrected to allow for the fact that the maxima of
sxx(B) of the integer peaks do not map exactly onto the
maxima ofsxx(B) for the principal series.

8 We can also refer
the reader to quantum Monte Carlo studies in Ref. 9, where
the same value, 0.5e2/h, for the integer peaks was obtained
in a simulation of single-electron scattering off short-range
impurities. Thus, while different theoretical models agree on
an expected universality of the conductivity peak heights and
even on their values, experiment offers no evidence to sup-
port this prediction.

To make the situation even more confusing, a puzzling
feature was observed in a number of experiments performed
at very low temperatures~15–40 mK!: the relative heights of
most of the conductivity peaks obtained in the fractional re-
gime were, indeed, found to scale approximately as
us22s1u, but with an absolute factor which differed from
1/2 and, moreover, varied from sample to sample.10 Such a
‘‘universality within one sample,’’ while there is none be-
tween different samples, is hard to understand. This feature
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was especially well seen in recent experiments performed in
the Corbino geometry,11 where scaling of the peak heights
was observed simultaneously for the fractional and integer
regimes, i.e., in quite different ranges of magnetic field. As a
function of temperature, the height of each peak was found
to pass through a maximum value. These maximum values
differed for different peaks, being scattered below, though
not very far from, the universal values predicted by theory.
On the low temperature side of these maxima, therefore, with
decreasing temperature the peak heights fell further below
the universal values, as has also been earlier observed in
low-mobility samples.1 At the lowest temperatures~14 mK!,
however, different peaks in a given sample converged to the
corresponding theoretical values multiplied by the same
sample-dependent factor.

In this work, we suggest an explanation of the phenom-
enon of the ‘‘nonuniversal’’ scaling of the peak heights. Our
explanation assumes that in the interior of the sample, there
exist random inhomogeneities of the electron density with a
very large correlation lengthRc. While the origin of these
inhomogeneities is unclear, we note that the existence of
such fluctuations was also a necessary assumption in recent
work,12 which proposed an explanation for another experi-
mental puzzle—the Resistivity Law, which is observed in
some samples at higher temperatures. We can only speculate
as to whether such fluctuations might result from imperfec-
tions in the doping process or from incomplete equilibration
of the electron density on sample cool down, or from both.
The fact that the experimental traces in the interplateau re-
gions often change after the sample is reheated and cooled
down again, indicates that that the latter mechanism may be
important. By whatever means they might arise, we argue
that even small fluctuations of the electron density become
crucial at low enough temperatures, where the dependence of
the conductivity tensor on the local value of the filling factor
is almost singular. In particular, we show that, due to the
finite size of the sample, the sample edge gives rise to a
positive contribution to the Corbino resistance, which is pro-
portional to 1/(s22s1). This contribution increases with de-
creasing temperature, due to the growing correlation radius
of the random clusters, which are responsible for the current
transfer. At sufficiently low temperatures, when the correla-
tion radius exceeds the sample size, the edge contribution
dominates the sample conductance. The heights of the ob-
served peaks insxx in a given sample are found to freeze at
values that differ from the corresponding ‘‘universal’’ values
in an infinite sample, by a random geometric factor that is
the same for all peaks.

By making use of a current-voltage duality that exists in
two-dimensional conductivity problems, we show how our
results may also be applied to the Hall bar geometry. We find
that macroscopic inhomogeneities have the same effect on
the measured peaks inrxx in this geometry as on the peaks in
sxx for the Corbino disk. This is in agreement with the fact
that sample-dependent scaling of the peak heights has been
observed in both geometries.10,11

It has previously been realized that density inhomogene-
ities may distort conductivity measurements in the Hall bar
geometry. In particular, for certain gated or mesa-etched sys-
tems, the boundary to a vacuum is believed to involve a
rather gradual decrease in electron density. This creates a

strip along the edge with a quantized Hall conductivity and
very low scattering, while the bulk of sample can be in a
transition region with noticeable dissipation. Such a strip can
trap a significant portion of the current, making the current
distribution in the sample inhomogeneous and affecting the
measured resistanceRxx . In the language of the edge-
transport theory, this can be reformulated as poor equilibra-
tion between the edge states and the bulk. While this model
has been successful in accounting for certain nonlocal resis-
tance measurements, the presence of a smooth edge cannot
explain the observed nonuniversal scaling of the conductivity
peak heights. Therefore, since the random bulk inhomogene-
ities are crucial for this scaling, and since the effects of a
smooth edge have been discussed before,13–15 in this work
we will focus only on the consequences of macroscopic bulk
inhomogeneities. The results we present for the Hall bar,
therefore, apply to samples with sharp edges~i.e., with the
edge width less than magnetic length!. For certain samples,
some combination of the two models may be appropriate.

As well as giving rise to ‘‘nonuniversal scaling’’ of the
peak heights at the lowest temperatures, we show that mac-
roscopic inhomogeneities in the bulk also lead to an en-
hancement of the nonlocal resistance. In fact, by developing
a general ‘‘boundary-strip’’ approach, which describes finite-
size effects in a macroscopically inhomogeneous sample, we
show that, for a sample with a sharp edge, both of these
effects are directly related. Using this relation, we propose an
experimental method by which the edge contribution in the
observed resistivity may be separated from the bulk contri-
bution, at least over the range of temperature for which the
edge contribution is not too big~at intermediateT!.

The paper is organized as follows. In Sec. II, we discuss
the role of macroscopic inhomogeneities in the transport
properties of an infinite QHE system in different regimes of
temperature. Finite-size effects on the low-temperature two-
terminal resistance of an inhomogeneous Corbino disk are
considered in Sec. III and in the Appendix. The boundary
impedance matrix formalism, which provides a description
of small edge contributions to the measured resistances in
any sample geometry~Corbino disk, Hall bar, etc.!, is devel-
oped in Sec. IV. The explicit form of the impedance matrix is
evaluated for a macroscopically inhomogeneous sample with
a sharp edge. The enhanced ‘‘nonlocal’’ resistance arising
from the macroscopic inhomogeneities is studied in Sec. V,
where it is also shown that this is directly related to the edge
corrections in the measured ‘‘local’’ and Hall resistances.
Section VI concludes the paper.

II. INFINITE SAMPLE

We consider an infinite sample in the presence of macro-
scopic inhomogeneities of the electron density. The local
value of the filling factor can be written as
n(r)5n1dn(r), wheren is the average filling factor, and
dn(r) is a small fluctuating component with a magnitude
dn0!/n . We assume that some impurity scattering occurs
on scales much smaller thanRc , such that the local conduc-
tivity tensor exhibits the quantum Hall effect. Specifically,
we will assume that at a critical valuenc , the Hall conduc-
tivity undergoes a sharp crossover between two quantized
values,s15e2n1 /h, ands25e2n2 /h. Here,n1 andn2 are a
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pair of adjacent values ofn at which the electron system is
incompressible,n1,nc,n2 . The diagonal conductivity
sxx(n) has a sharp peak in the crossover region, being very
small everywhere else@Fig. 1~a!#. The width of the crossover
regiondnT vanishes asT→0. We can consider this picture as
simply following from numerous experimental data on the
low-temperature quantum Hall effect in large samples.

The critical behavior of the conductivity tensor has been
studied well. The width of the crossover region vanishes as
T→0, according to

dnT;Tk,

with an exponentk, which has been argued to take the uni-
versal value 3/7.16 In the zero-temperature limit, the maxi-
mum value of the dissipative conductivity is thought to ap-
proach e2/2h in the spin-split integer quantum Hall
effect,6,7,9 and (s22s1)/2 for the fractional regime.6,7 As
explained in the Introduction, this prediction was deduced
from the hypothesis that the correlated electron state in the
vicinity of a QHE transition represents a random mixture of
two incompressible liquids with localized quasiparticles on
top. The correlation radiusRc

mic of this two-phase system was
assumed to be larger than the magnetic length (\c/eB)1/2.

To avoid confusion, we emphasize that the correlation ra-
dius of the macroscopic density fluctuationsRc , which we
consider in the present work, is assumed to be much larger
thanRc

mic , which is thus considered as a microscopic length.
The ‘‘local’’ conductivity tensorŝ(r) introduced above is
defined at scales larger thanRc

mic ~and, if effects of quantum
interference are important, larger than the phase-breaking
length!, but smaller thanRc . For our purposes, the peak
value of the local dissipative conductivity will not be impor-
tant; we shall only assume that it is either of the order of or
less than the difference in the quantized values of the Hall
conductivity, s22s1 . We believe that this assumption
agrees with existing data on the quantum Hall effect in a
strong magnetic field.

Let the magnetic field be tuned, so that the average filling
factorn is close tonc . At sufficiently low temperatures, the
crossover widthdnT becomes much less than the fluctuation
magnitudedn0 , which is small but temperature independent.
Hence, as temperature goes down, the conductivity distribu-
tion becomes strongly inhomogeneous. In most of the
sample, as illustrated in Fig. 1~a,b!, the Hall conductivity
sxy is quantized at eithers1 or s2 , and the diagonal con-
ductivity sxx is very small. Only a narrow intermediate re-
gion, within the intervalun2ncu;dnT , has a noticeable
sxx. This region is indicated by the gray color in Fig. 1~c!#.
As long asn stays within this interval, the ‘‘gray’’ region
forms an infinite percolation cluster. The latter consists of
strips of a small widthwT;RcdnT /dn0 , which join near
saddle points~critical vertices!. The characteristic size of a
cluster cell, i.e., the distance between two vertices, follows
from classical percolation theory,17

jT;Rc~dn0 /dnT!4/3. ~1!

We note that the true geometry of the percolating cluster
includes also loops and bypasses on links between vertices
not shown in Fig. 1~c!.

The evaluation of the effective conductivity tensors*
requires an understanding of how the current density is dis-
tributed in such an inhomogeneous system. The current dis-
tribution is known to be quite different in the two limiting
cases, which are reached as the relative values of the dimen-
sionless parameterswT /Rc andsxx

max/(s22s1) are varied.
Whensxx

max is very small~how small will be determined
below!, the continuity conditions force the current to flow
almost exactly along lines of constantsxy .

18,15 For an infi-
nite random system, this means that the current is concen-
trated near the percolation threshold of the functionsxy(r),
within a sparse percolation network inside the gray area
shown in Fig. 1~c!. The characteristic parameters of this new
network—the widthw and the lengthl of an elementary link
of the cluster—are determined by the value ofsxx at the
percolation level inn. They can be estimated from the self-
consistent condition that the current is able to cross the lines
of constantsxy , in order to pass from one critical saddle
point of the network to the next one, which has a slightly
different value ofsxy .

17,12We give here the final expressions
for both parameters,

w;wTS sxx

s22s1
D 3/13S Rc

wT
D 10/13, l;RcS ~s22s1!Rc

sxxwT
D 7/13.

~2!

Here inequalitiesw!wT, l@jT are implied. The net diago-
nal conductivity of the systemsxx* is determined by the ge-
ometry of an elementary link, as given bysxx* ;sxxl /w
which yields, for the maximum value ofsxx ,

FIG. 1. ~a! Local conductivity tensor componentssxx andsxy

versus the local filling factorn. ~b! Macroscopic fluctuations of the
local filling factor. ~c! Conductivity tensor distribution in inhomo-
geneous system at low temperatures. Black and white regions cor-
respond to quantized Hall regions withsxy5s1 and s2 , respec-
tively, andsxx'0. The gray color, which corresponds to the gray
strip in ~b!, shows the intermediate~nonquantized! region.
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sxx*
max; ~sxx

max!3/13~s22s1!
10/13S dn0

dnT
D 10/13. ~3!

Note that the effective conductivity decreases with increas-
ing temperature, more or less as 1/dnT , unless the tempera-
ture dependencesxx

max(T) is very sharp.
The net Hall conductivitysxy* does not depend on the

geometry of the network and simply coincides, apart from
small corrections, with the percolation threshold value
sxy(n). Hence,sxy* crosses over froms1 ands2 within the

same interval ofn, as does the local Hall conductivity,
un2ncu;dnT .

This picture is correct provided thatsxx is sufficiently
small and the gray regions are not too narrow, such that the
current can stay within these regions,w!wT . The last con-
dition can be written asT@Ts1 , with Ts1 given by the equa-
tion,

dnT~Ts1!5dn0S sxx~Ts1!

s22s1
D 3/10. ~4!

The regime exists only ifsxx is much less thans22s1 , at
temperatures at which the system can already be considered
to be macroscopically homogeneous,dnT(T);dn0 .

As the temperature is reduced belowTs1 , the current
spills out into the quantum Hall regions. In the limit
T!Ts1 , which will be mostly considered in the rest of the
paper, the currents flow predominately in the quantized Hall
regions. The details of the gray areas become unimportant
~except near the saddle points!, and they may be replaced by
sharp boundaries. This represents a particular example from
a class of ‘‘black-and-white’’ systems, which was studied in
Refs. 19, 6, and 7. Due to the continuity conditions and the
absence of scattering in the bulk, the currents in the ‘‘black’’
and ‘‘white’’ phases cannot cross the phase boundary. In-
stead, the currents have to focus at vertices to pass between
the two corners of the same color. The net conductivity ten-
sor depends on the ratio of the average currents flowing in
the two phases, which is controlled byn. At nc2n@dnT ,
all saddle points have values ofsxy close tos1 , which en-
sures good percolation in the ‘‘black’’ color, so that the white
current is relatively small andsxy* .s1 . At n2nc@dnT , we
get good percolation in ‘‘white,’’ andsxy* .s2 . A crossover
takes place within the intervaldnT , when both currents are
comparable. Since the local diagonal conductivity is small in
both quantized regions, the net conductivitysxx* is also small
when either of these phases percolates freely, and experi-
ences maximum in the crossover region. In the limit of zero
dissipation in each of the quantized Hall regions, the depen-
dence ofsxx* vs sxy* of the isotropic two-phase system is
known to be a universal function—a semicircle,7

~sxx* !21S sxy* 2
s11s2

2 D 25S s12s2

2 D 2. ~5!

In particular, the maximum value of the average conductivity
is

sxx*
max5~s22s1!/2, ~6!

independent of the details of the ‘‘gray’’ areas.

To conclude, the long-range inhomogeneities in the infi-
nite sample do not essentially alter the conductivity peak
width. They cause the peak height insxx* to saturate at low
temperatures at the universal value~6!. If the microscopic
conductivity tensor componentssxx ,sxy , as argued in Refs.
6 and 7, also satisfy the ‘‘semicircle’’ relation~5!, then the
presence of the macroscopic inhomogeneities has no effect in
the low-temperature limit. In a finite sample, however, as we
now proceed to show,sxx* at T50 deviates drastically from
the universal value, due to the inhomogeneities.

III. FINITE-SIZE EFFECTS
IN THE CORBINO GEOMETRY

To study finite-size effects, we have to resort to a realistic
experimental setup, which means that we have to specify the
geometry of the sample and the attachment of the contacts.
Experiments are performed on the Hall bar, in the van der
Pauw method, and on the Corbino disk. Our initial choice
will be the Corbino disk, on which recent experiments in
Ref. 11 have been performed. In Sec. III, we show how to
transfer our results to the Hall bar using the current-voltage
duality. We will not discuss the van der Pauw geometry ex-
plicitly in this work.

A. Contact resistance

A Corbino disk cut from an inhomogeneous sample is
shown schematically in Fig. 2~a!. The two-terminal resis-
tance between the metal probes attached at the inner and
outer circular edges is measured. We consider an ideal con-
tact without any tunnel barriers or dielectric layers between
metal and sample, the metal boundary having a constant po-
tential. We assume, first, that the correlation radius of the
‘‘gray’’ cluster jT is much less than all sample dimensions,
r 1 ,r 2 andW[r 22r 1 . In the limit jT /W→0, the sample can
be considered to be homogeneous with the conductivity ten-
sor ŝ* . The two-terminal resistance is then given by

R05
A0

sxx*
, A05

1

2p
ln
r 2
r 1
, ~7!

where A0 is the geometric aspect ratio, which for
W!r 1 ,r 2 is close toA0.W/2pr . A finite value ofjT /W, as
we now demonstrate, leads to an increase in the two-terminal
resistance above this value~7!, due to an effective contact
contribution.

The simplest way to estimate this correction is by moni-
toring the Joule heat dissipated in the sample. At low tem-
peratures,T!Ts1 , as already discussed, the currents flow in
the ~black or white! quantized Hall regions. Since scattering
in the bulk is negligible, the currents cannot cross the phase
boundaries and, in order to pass through the sample, must
focus at vertices formed by adjacent corners of different
phases. All the energy dissipation in the system occurs in
‘‘hot spots’’ at the vertices. The vertices are of two kinds:
4-vertices in the sample interior, formed by alternating
‘‘black’’ and ‘‘white’’ corners, and 3-vertices at the boundary,
‘‘black-white-metal.’’ The above resistance~7! corresponds
to dissipation at internal vertices, as given by

Qint5I 2R0 . ~8!
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Since the metal contact boundary is at a constant potential,
the current lines have to focus at 3-vertices, in order to enter
the ~e.g., inner! contact. This causes additional dissipation at
the edge given by

Qedg
~1!5(

a
I a
2Ra ,

where I a is the current passing to the metal at the 3-vertex
a, andRa is the effective resistance of the vertex.

It turns out that focusing of the current lines occurs only
at those of the 3-vertices at which the Hall conductivity
sxy increases froms1 to s2 to the right when looking into
the sample from the metal~we call these ‘‘active’’ vertices!.

For the remaining half of the vertices,I a50. As shown in
the Appendix, the resistance of an active 3-vertex is always
given by

Ra5R3[
1

2~s22s1!
, ~9!

independent of the microscopic details of the vertex core. In
particular, the result remains valid if the phase boundary
branches when approaching the metal forming a forklike
structure, as illustrated in Fig. 2~b! in magnified view.
Branching, though not shown in Fig. 2~a!, does occur in a
random percolation cluster on scales smaller thanjT . Only
the fork vertices, with white as the rightmost color, are ac-
tive.

For a uniform pattern of white/black regions, the current
entering the contactI will be shared approximately equally
between thepr 1 /jT vertices at the edge, so that

Qedg
~1!;I 2R3

jT
pr 1

. ~10!

The total two-terminal resistanceRtot can be found from the
total Joule heat,

Qtot5I 2Rtot5Qedg
~1!1Qedg

~2!1Qint .

Using Eqs.~7!–~10!, we find

Rtot5
A0

sxx*
1S 1r 1 1

1

r 2
D jT
2p~s22s1!

. ~11!

The second term in this expression is, of course, an estimate.
In the next section, we rederive Eq.~11! rigorously for a
simple model of a periodic chessboard two-phase distribu-
tion, with jT replaced by the square size.

Thus, at the maximum ofsxx* ( n̄), the relative correction
to the peak resistance arising from the edges is of the order
of jT /W. ~We assumed here thatr 1 is not much less than
r 2 , and used the fact that, at the lowest temperatures,
sxx*

max;s22s1 .) The experimentally measured value of the
diagonal conductivitysxx

exp defined by11

sxx
exp5A0 /Rtot

is now lower than the ‘‘bulk’’ conductivitysxx* by the same
relative amount. This negative correction increases as tem-
perature is lowered, sincejT becomes larger@Eq. ~1!#. We
believe that the decrease insxx

exp that we predict from these
considerations provides a possible explanation for the obser-
vations of Rokhinsonet al.11

Note that the correction tosxx
exp may be different for dif-

ferent conductivity peaks, since the widthdnT and, hence,
the correlation lengthjT , may vary from peak to peak. This
accounts for the dispersion of tracessxx

max(T) observed for
different peaks in the integer regime, see data for two
samples by Rokhinsonet al.,11 which we reproduced here in
Fig. 3. At the lowest temperatures, however, as one can see
from the figure, all the traces converge and tend to collapse
onto one curve. The corresponding low-temperature value
can be written assxx

max5ke2/2h, where the coefficientk is
almost the same for different peaks, but is sample
dependent11 @compare Figs. 3~a! and 3~b!#. As found in the

FIG. 2. ~a! Conductivity distribution in an inhomogeneous
Corbino disk. Black and white are quantized regions as in Fig. 1~c!,
the intermediate gray region is not shown.~b! Complex ‘‘fork ver-
tex’’ from the small square in~a! shown in magnified view. The
arrows schematically show currents passing between different re-
gions by focusing at simple vertices.
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quoted work, the well-pronounced peaks in the fractional
regime have the heightk(s22s1)/2, with approximately the
samek as do the peaks obtained on the same sample in the
integer regime. This agrees with earlier data on the fractional
quantum Hall effect mostly obtained in the Hall bar
geometry,10 which show that, at the lowest temperatures,
most of the peak heights are proportional to the difference in
adjacent plateaus insxy , with a prefactor that fluctuates
from sample to sample. To understand the origin of the cu-
rious ‘‘universality within one sample,’’ let us consider the
lowest temperatures.

B. Low-temperature limit

Since the characteristic correlation radiusjT grows as the
temperature is reduced, it will eventually become of the
same order as the distance between the contactsW at some
temperatureT;Ts2 . At this point, the edge contribution to
the resistance in Eq.~11! is as large as the bulk contribution.
When temperature is decreased further,T!Ts2 , a strong in-
equality jT@W is met for any peak, so that no critical
4-vertices@shown in Fig. 2~a! for higher temperatures# fall
within the sample. The current is transported directly from
contact to contact by one or more pairs of ‘‘white’’ and
‘‘black’’ clusters connecting the contacts. Black and white
clusters of the sizeW can exist simultaneously, whilen̄ is in
the interval un2ncu&dnw , wherednw is determined from
the equation

W;RcS dn0
dnw

D 4/3. ~12!

Outside of this interval, percolation between contacts can
exist only in one phase, either in the white or in the black.
The resistance in this case is equal to that of a homogeneous
Corbino sample with no scattering inside, that is,Rtot5`,
andsxx

exp50. Hence,dnw in Eq. ~12! represents the observed
peak width.

Notice thatdnw does not depend on temperature and is
much larger than the value for the infinite samplednT . Since
no 4-vertices are now found in the sample, the finite value of
dnT is no longer relevant. All temperature dependence has
now disappeared from the problem and all the peaks
sxx
exp( n̄) must become identical. We suggest that this explains

why the experimental tracessxx
exp(T) in integer regime con-

verge at low temperatures.11 Recall that it was the differing
values ofdnT that caused the contact contributions to the
total resistance to vary for different peaks atT@Ts2 .

This saturation of the peak width, which we predict at low
temperatures is similar to the well-known saturation effect,
which is expected to occur in small samples when the coher-
ence lengthjc becomes comparable to the sample size.

21 The
observable difference between the two mechanisms is in the
size dependence,dnw}W2k: we predict the classical index
k53/4 instead of the 3/7, which is thought to be appropriate
for the quantum problem.20,21

We now discuss the height and possible shape of the peak.
As we shall show below, in the zero-temperature limit, the
two-terminal conductance 1/Rtot can take only quantized val-
ues

1/Rtot5M ~s22s1!, ~13!

whereM is an integer~including zero! that depends on the
specific realization of the disorder. As the average filling
fraction is varied, the value of the integerM may change,
and the peak insxx

exp(n) can display an unusual steplike de-
pendence on filling fraction, as illustrated schematically in
Figs. 4~c! and 4~d!. Although the shape of these peaks~num-
ber and position of the steps! depends on the specific real-
ization of disorder, this shape is the same, with the peak
height expressed in units ofs22s1 , for all peaks in a given
sample.

Let us fix the average filling factorn̄ somewhere within
the peak widthdnw , e.g., at the pointn5nc . We have to
distinguish two major cases depending on the random con-
figuration of a sample. Either both black and white percolate
in the radial direction, or both black and white percolate in
the azimuthal direction, as illustrated in Figs. 4~a! and 4~b!.
Together with the case in which only one phase percolates in
both directions, which we determined above as being outside
of the peak width, this exhausts all topological possibilities.
In the case of azimuthal percolation, Fig. 4~b!, the current
can barely pass between contacts, since it is not allowed to
cross the phase boundary. Hence, peaks are missing,
Rtot5`. More precisely,sxx

exp is as small as the average of
sxx in the quantized regions, and therefore rapidly vanishes
asT→0. Such behavior is observed in experiment,25 but it is
usually attributed to a ‘‘bad sample’’ or ‘‘bad contacts’’ and,
consequently, does not reach publication. In some sense, it is
correct to say this in our model as well; however, both ‘‘bad’’
and ‘‘good’’ samples belong to the same statistical ensemble
with a quite small amplitude of inhomogeneities. In the case
shown in Fig. 4~a!, when the contacts are connected by one
black and by one white region, the resistance is finite and
equal to the doubled resistance of the 3-vertex
R tot52R351/(s22s1), see Eq.~9! for the 3-vertex resis-
tance.

FIG. 3. The temperature dependence of peak values ofsxx for
different transitions between adjacent IQHE states obtained by
Rokhinsonet al. in Ref. 11. Different symbols correspond to tran-
sitions: 5–6 (,), 6–7 (L), 7–8 (d), 10–11 (3), 13–14 (n).
Some transitions are omitted by authors of Ref. 11 for sake of
clarity. The geometric aspect ratios of the samples areA50.21
~sampleA! andA50.32 ~sampleB!.
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We can easily obtain the shape of the peak insxx
exp for the

configuration in Fig. 4~a!. Let n1 andn2 be the filling factors
at the two saddle points that control the current transfer,
n22n1;dnw . Whenn is shifted down and crosses the level
of the lower saddle-pointn1 , the corresponding black bridge
becomes white, and percolation in black quits, so that the
resistanceRtot becomes infinite. This transition occurs
abruptly in n ~more precisely, within a small interval
;dnT). Similarly, for n.n2 , the white region percolates,
and the system is on a quantized Hall plateau corresponding
to n2 . The resulting ‘‘peak’’ insxx

exp represents a box of a
width n22n1 , Fig. 4~c!. The latter is of the order ofdnw and
fluctuates from sample to sample by 100%.

There may, of course, be more than one pair of black and
white regions connecting the contacts~and, hence, more
saddle points which switch!. Since all of the
3-vertices at the same edge are connected in parallel, the
inverse resistance is given by Eq.~13!, whereM is the num-
ber of pairs of connecting regions. In the degenerate case
shown in Fig. 4~b!, M50. Thus, the total conductance of the
sample is an integer multiple ofs22s1 . The number of
‘‘quanta’’ M depends on the value ofn. A typical shape of
the peak forMmax52 is shown in Fig. 4~d!. Each step in
sxx
exp results from the switch of some saddle point from a

black to a white bridge. Note that the resistance~13! does not
demonstrate regular scaling with the aspect ratio of the
sample, sinceM is just a random integer varying from
sample to sample. The probability distribution for different
M does, however, depend on the shape of the sample. For

instance, if r 22r 1;r 1 , the most probable values are
M50,1, or 2. In a very narrow ring,W!r , the most prob-
able values are close toM5C/A0@1, whereC is some nu-
merical factor. In the latter case, the resistance will seem to
scale properly with the sample dimensions, as if the sample
was homogeneous, except for the wrong numerical factor.
The quantization ofRtot will be difficult to see.

Our prediction of thelongitudinal resistance quantization
allows a comparison of our theory with the experiments of
Ref. 11. Although neither of the two samples shown in Fig. 3
reveals the saturation of the peak heights, which we expect to
occur at low enough temperature, still, we can see that the
heights of all peaks become close to each other at the lowest
temperature studied,T514 mK. Hence, we assume that satu-
ration occurs not very far below this temperature and use the
values ofsxx

exp obtained at 14 K as good approximations to
the zero-temperature values. Taking account of the aspect
ratios quoted in the caption to Fig. 3, for both samples we
obtainRtot5A0 /sxx

exp.h/e2 within an accuracy of 10%@we
averagedsxx

exp(T50) over five values for different peaks in
sampleB#. This corresponds toM51 in Eq. ~13!, which is
consistent with our prediction. Thus, at least for these data,
the ‘‘fluctuation’’ of sxx

exp between samples is simply corre-
lated with the different aspect ratios,A0 , which were used to
calculatesxx

exp5A0 /R tot .

IV. BOUNDARY-STRIP FORMALISM

So far, we have considered the simplest geometry of the
Corbino disk. Although this method can directly produce the
value of sxx for a homogeneous system, it also has some
obvious disadvantages. First, it does not allow one to mea-
sure the Hall conductivity. Second, it leaves no hope of sepa-
rating sxx

exp into the contributions arising from the bulk and
those arising from the edge. Both disadvantages stem from
the fact that only one independent experimental parameter
~the two-terminal resistance! is obtained in this method. To
permit a larger number of independent measurements, one
must consider another geometry, such as the Hall bar. As we
will show in this section, macroscopic inhomogeneities in a
finite-sized Hall bar lead to a similar decrease of the ob-
served peak heights inrxx

exp, as for the observed peak heights
of sxx

exp in the Corbino disk geometry. In Sec. V, we will
suggest a method by which this edge effect may be compen-
sated in the Hall bar geometry, at least, over the temperature
range for which this contribution is small. At the lowest tem-
peratures,T!Ts2 , as clearly follows from analysis in Sec.
III, all information on the bulk properties is lost beyond re-
covery.

For the remainder of this paper, we will, therefore, focus
on the regime of small edge corrections. In this limit, it is
possible to develop a theory in which the edge effects can be
accounted for by a ‘‘boundary strip.’’ Within this formalism,
the Corbino disk and Hall bar are thought of as homoge-
neous samples with an infinitesimally thin layer attached at
their boundaries to account for the edge effects. This bound-
ary strip is characterized by an impedance matrix, which
linearly relates the currents in the strip to the potential gra-
dients at the boundary. Effectively, the presence of this strip
changes the boundary conditions on the sample. Such an

FIG. 4. Two basic configurations of the conductivity distribution
in the Corbino disk in the saturation regime (T!Ts2) shown at
n1,n,n2 , wheren1 and n2 are filling factors of the two saddle
points.~a! Configuration with a finite two-terminal resistance. Thin
lines are the lines of equal potential.~b! Configuration with infinite
two-terminal resistance. No current passing between contacts.~c!
Predicted observed diagonal conductancesxx

exp vs average filling
factor for configuration~a!. ~d! Analogous dependence for a con-
figuration controlled by four saddle points.

1564 53I. M. RUZIN, N. R. COOPER, AND B. I. HALPERIN



approach is valid provided~i! the region along the edge re-
sponsible for the edge effects is narrow and~ii ! the edges are
homogeneous along their length. The first condition is nec-
essary since, otherwise, one has to take into account, in ad-
dition to the gradients, second and higher derivatives of the
electric potential to describe the boundary impedance. The
boundary-strip formalism may be used to calculate the cor-
rections arising from macroscopic inhomogeneities to the
conductance of samples, of any geometry, in the regime in
which these corrections are small. In the following, we will
recover the result derived above~11! that, in the Corbino
disk geometry, there is a decrease in the peak heightssxx

exp

compared to a homogeneous sample. Within the boundary-
strip formalism, this decrease in conductivity is viewed as
arising from additional drops in potential that occur across
the boundary strips at the inner and outer contacts. We will
further show that, in the Hall bar geometry, the presence of
the boundary strips causes additional currents to be trapped
at the edges of the samples, and leads to a similar decrease in
the observed values of the peak heights ofrxx

exp, as compared
to a homogeneous sample.

In physical devices, there are two main types of edge
effects that are important for transport. First, the finite-size
effects due to the macroscopic inhomogeneities of the inte-
rior of the sample, as discussed above. This type of inhomo-
geneity, if present, is equally important for the Hall bar and
the Corbino disk. Second, smooth-edge effects caused by a
gradual change in the electron density when approaching the
sample edge. One should expect the latter effect to be much
stronger in the Hall bar geometry in which electron density
at the edge is zero. In principle, the boundary-strip formalism
is rather general and can be used to account for both types of
inhomogeneities. For the macroscopic inhomogeneities, both
of the conditions outlined in the previous paragraph are sat-
isfied if the correlation radiusjT is much less then the
sample width and, in the Hall bar, the distance between the
voltage probes. Both conditions would also be satisfied for a
Hall bar with a smooth edge if the voltage probes were small
enough as not to affect the edge properties. In real devices,
however, the probes are macroscopically large and interrupt
the edge strip. Within the model of nonlocal resistance pro-
posed by McEuenet al., based on the edge-state formalism,
the contacts have a strong effect on the current distribution,
since they force equilibration between different edge
channels.13 Such a model is a clear example of a case in
which the edge is not homogeneous along its length, and for
which the boundary-strip formalism does not apply. We will,
therefore, focus only on cases for which the edge of the Hall
bar represents a sharp cut in the inhomogeneous sample, i.e.,
the characteristic width of the edge region is less than the
magnetic length. The boundary properties are then indepen-
dent of whether the edge is to vacuum~Hall bar! or to metal
~Corbino disk!. Below we will show how the conductance
properties of such an edge can be related to the parameters of
the two-phase model. First, we will derive the properties of
the boundary strip for a periodic array of the two regions,
and then we will discuss how these are modified for a ran-
dom distribution.

As we have seen in Sec. III, the corners formed at each
edge by alternating phases create an effective strip with
properties distinct from that of the interior of the sample.

While discussing the Corbino disk, the boundary strip has
been characterized by a single parameter, the contact resis-
tance. This is defined as the ratio of the voltage drop across
the stripV to the currentj'L crossing the strip, under the
condition that the electric field component along the edge
Ei is zero. In general, quite different boundary conditions
may be applied. For instance, in the standard Hall bar mea-
surement,j'50, EiÞ0. We need to develop a quantitative
description for the boundary strip, which does not depend on
specific boundary conditions and which, therefore, applies to
all geometries. We consider four variables:V, j' ,Ei , and the
additional currentI flowing along the edge in the boundary
strip. The four parameters are related by a boundary imped-
ance matrixŜ, as given by

S I

j'
D 5ŜSEi

V D , ~14!

which is analogous to the conductivity tensor in the bulk.
Due to the low symmetry of the boundary strip, all four
components ofŜ area priori independent. The whole inho-
mogeneous sample can be thought of as consisting of a ho-
mogeneous interior, with the conductivity tensor of the infi-
nite systemŝ* and with the same dimensions as the original
sample, and an infinitesimally thin boundary strip described
by the impedance matrixŜ.

We will now determine the boundary impedance matrix
for a simplified model: a periodic two-phase system in which
black and white are regularly distributed as in a chessboard,
and all vertices have identical scattering properties. Since,
for a thin boundary strip, the sample shape is not important,
we choose to study a convenient geometry, in which the
sample is a long rectangle with rows of vertices aligned par-
allel to its sides. Let the width of the sample beW5Nd,
whered is the lattice constant, andN is an integer. A section
of a long sample is shown in Fig. 5~a!. Although we are
ultimately interested in the case of largeN, the periodicity of
the problem enables us to use a system with a small number
of vertex rows@in Fig. 5~a!, N53#. Our objective is to re-
place this system by an equivalent homogeneous sample
with thin boundary strips attached, Fig. 5~b!. The system is
characterized by the electric fieldE` and the current density
j` in the interior, and the four variablesV,Ei ,I , j' describing
the boundary strip. The positive directions for the potential
dropV and for the other three variables are shown by arrows
in Fig. 5~b!. All of these currents and fields are assumed to
be uniform, representing one particular case which is suffi-
cient to evaluate matrix~14!. We will consider the fieldE`

and the current densityj` to be given as boundary condi-
tions. Even though these two vectors are related by the con-
ductivity tensor of the infinite systemŝ* , in what follows,
we are not going to use this relation, and will treatE` and
j` as independent variables.

The criteria for the equivalence of the two systems are as
follows. ~i! The field E` and the current densityj` in the
sample must be the same as the average electric field and the
average current density, which would be in the original
sample if the latter was infinite; that is, the properties of the
interior are independent of the presence of the boundaries.
~ii ! The standard continuity conditionsj'5 j y

` ,Ei5Ex
` must

be satisfied.~iii ! The total current along the sample
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I tot52I1Wjx
` ~15!

and the total potential drop across the sample

Vtot52V1WEy
` ~16!

must be the same as the corresponding quantities in the origi-
nal system.

To apply these rules, consider the current-field distribu-
tion in the original system, Fig. 5~a!. As shown in Refs. 6
and 7, each 4-vertex is characterized by the white-to-white
current I i and the black-to-black currentJi . Each arrow in
Fig. 5~a! denotes a set of current lines. When passing through
the white or black square, the current spread all over the
square, then focuses at a corner where it can pass to another
square. We remind the reader that current lines cannot cross
the boundaries between quantized regions, so that the spe-
cific distribution of these lines inside any square is irrelevant.
Each side of a square is at constant potential. The potential
drop between the two sides forming a white~or black! corner
is given by

Ui5
I i
s2

SVi5
Ji
s1

D , ~17!

whereI i (Ji) is the total current focusing at the corner. Since
the system is periodic, and average fields and currents are
taken to be uniform, the set of local currentsI i ,Ji must also
be periodic. The pair of currents at a vertex takes either of
two values,I 1 ,J1 , for odd vertices, andI 2 ,J2 , for even ver-
tices. The current crosses a sample boundary by focusing at
3-vertices, as shown in Fig. 5~a! for the cases2.s1 . This
occurs at every other 3-vertex, since current lines can focus
only if sxy experiences a steplike increase to the right when
looking from the edge into the sample~see the Appendix!.
The splitting of arrows schematically shows the splitting of
the sets of current lines. A diagram similar to Fig. 5~a! can be
drawn for the equipotential lines, except the notationsI i and
Ji must be replaced everywhere byUi andVi , respectively.

The components of the average current density in an in-
finite sample can be obtained as an average of the corre-
sponding local currents over vertices of the two types, as
given by

j x
`5

I 12I 21J11J2
2d

, ~18!

j y
`5

I 11I 22J11J2
2d

. ~19!

Analogously, for the electric field components, we have

Ex
`5

1

2d S 2
I 11I 2

s2
1
J12J2

s1
D , ~20!

Ey
`5

1

2d S I 12I 2
s2

1
J11J2

s1
D , ~21!

where we used Eqs.~17!. The total current along the sample
I tot can be evaluated by adding the local currents crossing the
vertical dashed line shown in Fig. 5~a!. The result can be
written as

I tot5Nd jx
`12I , ~22!

I5 1
4 ~ I 11I 21J12J2!, ~23!

wherej x
` is given by Eq.~18!. The total potential drop across

the sample works out to be

Vtot5NdEy
`12V, ~24!

V5
1

4 S I 11I 2
s2

1
J12J2

s1
D , ~25!

whereEy
` is given by Eq.~21!. As we can see from condition

~iii ! @Eqs. ~15!, ~16!#, the parametersI andV introduced in
Eqs.~23! and~25! represent, by definition, the effective cur-
rent in the strip and the effective voltage drop at the strip,
respectively. Notice that the right-hand sides of Eqs.~23!,
~25! depend only onI 11I 2 andJ12J2 . Using the system of
Eqs. ~19!, ~20!, we can express these two linear combina-
tions in terms of componentsj y

` ,Ex
` . On the other hand,

from condition ~ii !, we havej y
`5 j' andEx

`5Ei . As a re-
sult, we arrive at two equations relatingI andV to j' and
Ei . This can be written in the form~14!, with matrix Ŝ given
by

FIG. 5. Diagram illustrating the boundary impedance matrix for-
malism. ~a! Chessboard model of the two-phase distribution in a
long rectangular sample. The arrows schematically show currents
passing from one~white or black! region to another by focusing at
vertices. Wide arrows show currents flowing from~to! metallic con-
tacts. ~b! Equivalent sample formed by infinitely thin boundary
strips attached to a homogeneous interior of the same width as that
of the sample in~a!.
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Ŝ5S 2
d

4
~s22s1!

1

2
~s21s1!

2
1

2
~s21s1!

1

d
~s22s1!

D . ~26!

Note that during this derivation we did not make any particu-
lar assumptions about the conductivity tensor in the bulk
ŝ* , since we did not specify components ofj` andE`.

Let us discuss possible modifications of our result for the
case in which the two-phase system is random with a corre-
lation radiusjT , Eq. ~1!. Obviously, the Hall components
S12 andS21 in Eq. ~26! will not change, since they simply
reflect the fact that black-and-white phases, in the vicinity of
the interplateau crossover, share the edge equally. Then, the
diagonal componentsS11, S22 have to be proportional to
s22s1 , since they originate from the dissipative resistance
of three vertices, Eq.~9!. The lattice periodd in the two
componentsS11, S22 has to be replaced by some average
lengths,d1 and d2 , respectively, both of the order ofjT .
One might expecta priori that d1 andd2 could differ by a
numerical factor, since directions along and across the edge
are not equivalent. However, as we show below, both lengths
are exactly equal,d15d2[d.

We will employ a duality that exists between the current
and field distributions in 2D conductors.22 Let us imagine
that the system in Fig. 5~a! ~with many rows of vertices! is
randomized, i.e., squares are distorted and vertices are not
identical. The currentsI i ,Ji and the voltage dropsUi ,Vi at
corners are no longer periodic. Although the system is fully
characterized by the discrete set of currents and voltages at
the vertices, it will be convenient for now to consider the
local current density distributionj(r) and the local electric
field E(r). Both functions satisfy the continuity conditions
that the number of current or potential lines entering and
leaving a given~black or white! square are equal. Suppose
that we have found the contact impedance matrix in this
system which, as explained above, has a form

Ŝ5S 2
d1
4

~s22s1!
1

2
~s21s1!

2
1

2
~s21s1!

1

d2
~s22s1!

D . ~27!

Let us now map our system onto a primed system with the
same geometry of the phase distribution and with the current
density and electric field,

E8~r!5@ ẑ3 j~r!#, j8~r!5@ ẑ3E~r!#. ~28!

The steady-state conditions,¹• j850,¹3E850, are obvi-
ously satisfied in the system, if they are satisfied in the origi-
nal system,¹• j50,¹3E50. As follows from Eqs.~28!, the
quantized Hall conductivities in the black and white are

sk
852rk[21/sk, k51,2. ~29!

The average componentsI ,V, j' ,Ei characterizing the
boundary strip are transformed in the same way as the com-
ponents of the local current and electric field in Eqs.~28!,
that is

V85I , Ei852 j' ,

I 852V, j'8 5Ei . ~30!

Since the geometry of the phase distribution in the primed
system does not differ from the original one, the variables
I 8, j'8 should be related toEi8 ,V8 via the same impedance
matrix Ŝ given in Eq. ~27!, exceptsk should now be re-
placed bysk8. Using Eqs.~29!, ~30!, we arrive at the relation

SEi

V D 5 P̂S I

j'
D , P̂5S 1

d2
~r12r2! 2

1

2
~r11r2!

1

2
~r11r2! 2

d1
4

~r12r2!
D .

~31!

Comparing Eqs.~14! and~31!, we see thatP̂5Ŝ21. As one
can easily check, this is only consistent with Eq.~27! if
d15d2 , which proves our assertion thatd15d2[d even for
a random system.

Thus, the presence of the edge is equivalent to a fictitious
homogeneous anisotropic strip of widthd/2;jT , with the
local resistivity tensor components,

ryx
b 52rxy

b 5~r11r2!/2, ~32!

rxx
b 52ryy

b 5~r12r2!/2. ~33!

The unusual fact that the dissipative resistivity in the direc-
tion perpendicular to the strip is negative deserves comment.
A real physical strip~or a layer if in 3D! with well-defined
geometric boundaries cannot have a negative net diagonal
resistivity in any direction, since this would contradict the
second law of thermodynamics. However, this is not the case
here: the effective contact strip in our discussion has no real
geometric boundary that could be drawn, for instance, inside
of the sample in Fig. 4~a!. The strip describes small correc-
tions to the net conducting properties of the sample which, as
a whole, has a positive dissipation.

We can now reobtain the contact resistance in the Corbino
geometry, say, that from the inner contactDR1 . Putting
Ei50, from Eqs.~14!, ~26!, we have

DR15
V

j'2pr 1
5

d

2pr 1~s22s1!
, ~34!

which coincides with the corresponding term inRtot , Eq.
~11!, if one putsd5jT .

Consider now the standard Hall bar measurement in
which the current flows parallel to the edges,j'5 j y

`50.
Relation~31! taken withd15d25d yields

Ei5
2rxx

b

d
I , V5ryx

b I , ~35!

where rxx
b and ryx

b are given by Eqs.~33! and ~32!. The
electric field in the interior is homogeneous and given by

Ex
`5Ei5rxx* j x

` , Ey
`5ryx* j x

` . ~36!

where r̂*5(ŝ* )21 is the resistivity tensor of an infinite
sample. Expressions for the experimentally measured com-
ponents of the resistivity tensor rxx

exp5WEi /I tot ,

53 1567NONUNIVERSAL BEHAVIOR OF FINITE QUANTUM HALL . . .



ryx
exp5Vtot /I tot can easily be obtained from Eqs.~15!, ~16!,

~35!, and~36!. The result has a form

1

rxx
exp5

I tot
WEi

5
1

rxx*
1

d

Wrxx
b , ~37!

ryx
exp5

Vtot

I tot
5ryx* 2

drxx*

Wrxx
b ~ryx

b 2ryx* !. ~38!

The last expression was expanded in terms of the small pa-
rameterd/W.

Thus, the presence of the edge leads to a negative correc-
tion in the measuredrxx

exp, as it did forsxx
exp in the Corbino

geometry. Moreover, ifr12r2!r1 , the relative magnitudes
of both corrections are the same provided that the Corbino
disk is narrow and has the same ratiod/W as the Hall bar. As
we have seen above, this fact is related to the current-field
duality. Physically, the negative correction tosxx

exp in the
Corbino measurement results from an additional voltage
drop at the edge, and the negative correction torxx

exp in a Hall
bar measurement results from an additional current trapped
at the edge. Our conclusion agrees with the experimental
observation that the peak heights tend to decrease at low
temperatures in both geometries.11,1 The correction to the
measured Hall conductivity changes sign in the middle of the
crossover region, whereryx5(r11r2)/2. As a result, the
characteristic width of the transition for both functions
ryx
exp(n) andrxx

exp(n) is somewhat increased by a relative fac-
tor of d/W.

When calculating the impedance matrix above, we con-
sidered the particular case in which the average current den-
sity and electric field in the interior of the equivalent sample
shown in Fig. 5~b! are homogeneous. In the following sec-
tion, we will discuss ‘‘nonlocal’’ resistance measurements for
which this is not the case. We now discuss the applicability
of the boundary-strip approach for an inhomogeneous elec-
tric field. Suppose that the electric field in the interior of the
equivalent sampleE`(r) varies with some characteristic
length l E , where l E@d. Then the four parameters of the
boundary strip entering matrix relation~14! will also depend
on the coordinate along the edgex. Let us express the cur-
rent density in the homogeneous interior in terms of the
pseudoscalarc(r), as given by

j~r!5@ ẑ3¹c~r!#, ~39!

which is always possible since¹• j50. Analogously, the
electric field can be written in terms of the electric potential
asE`(r)52¹f(r). At the boundary strip,c experiences a
step fromc1 to c2 . The current inside the stripI and the
current crossing the stripj' are given by

I5c12c2 , j'5
1

2 S dc1

dx
1
dc2

dx D . ~40!

Analogously,V andEi are given by

V5f12f2 , Ei52
1

2 S df1

dx
1
df2

dx D , ~41!

wheref1 andf2 are the potentials at the outer and inner
sides of the strip, respectively. Thus, the current across the

strip is defined as the average of the currents crossing the
inner and the outer sides of the strip. Since the current along
the stripI depends, in the general case, on the coordinatex,
the two currents may be different. Similarly,Ei is the aver-
age of the parallel components of the electric field at the two
sides of the strip. Such a choice of the definitions ofEi and
j' ensures that all parameters entering the relation~14! are
expressed via first derivatives of functionsc or f: I andV
are discrete derivatives~differences! in y, and j' andEi are
continuous derivatives inx. As a result, the matrix relation
~14! represents the correct description of the conducting
properties of the edge to first order in the small parameter
d/ l E . To increase the accuracy to second order, one would
have to write a matrix relation, which also includes second
derivatives of c and f, such as dc1 /dx2dc2 /dx,
d2c1 /dx

21d2c2 /dx
2, etc. In this and the following sec-

tions, we restrict ourselves to first-order effects ind/ l E . We
note that the aforementioned equivalence between the effec-
tive boundary strip and a homogeneous strip with a resistiv-
ity tensorr̂b is also only correct to first-order in this param-
eter.

V. COMPENSATING THE FINITE-SIZE EFFECT:
‘‘NONLOCAL’’ RESISTANCE

The objective of a standard QHE transport experiment
performed on a large sample is to extract the bulk conduc-
tivity tensorŝ* characterizing an infinite system. As we have
argued above, at low temperatures comparable toTs2 , finite-
size effects become noticeable. It would be very useful to
devise a method by which these edge contributions could be
separated from the measured resistances. In this section, we
show how this may be achieved in systems for which the
boundary-strip formalism of Sec. IV applies: that is, for
samples with a sharp edge and for which the edge effects are
not too large.

As shown in the previous section, at temperatures which
are not too low, the edge effect can be described by a matrix
Ŝ ~or P̂5Ŝ21) which, for the two-phase model with a sharp
edge, contains a single unknown parameter—the average
lengthd;jT . In order to determine this parameter, one ad-
ditional measurement beyond the standard measurements of
Rxx andRxy in the Hall bar geometry is required. In what
follows, we suggest a way in whichd may be extracted from
a measurement of the enhanced ‘‘nonlocal’’ resistance.13,23

Unlike the standard Hall bar measurement, for which the
current passes along the sample, in a ‘‘nonlocal’’ measure-
ment, the current is forced to cross the sample between
probes 1 and 2 on opposite long sides of the sample, Fig.
5~b!. The ‘‘nonlocal’’ resistance is determined from the po-
tential difference between a second pair of probes 3 and 4,
Rnloc5V34/I 12. In a homogeneous sample, as follows from
standard electrostatic considerations,Rnloc should decay with
the distance between the current and voltage probes,L, as
given by the series

Rnloc5rxx* ~C1e
2pL/W1C2e

23pL/W1••• !, ~42!

whereC1;C2;1 are numerical coefficients determined by
the shape of the contacts. AtL*W, the resistance is domi-
nated by the first exponential in this series. As found in Ref.
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23, the experimental value ofRnloc observed at low tempera-
tures is much larger than that predicted by Eq.~42!. This
effect clearly indicates the existence of currents localized
near the edge, in addition to the current passing in the inte-
rior of the sample.

The most common explanation for the enhanced ‘‘nonlo-
cal’’ effect invokes the presence of a smooth edge to the
sample, at which the electron density vanishes slowly. This
would lead to the appearance of one or more quantized Hall
strip~s! at the edge, within which the scattering can be very
small, even when the bulk of the sample is in the region of
the peak inrxx . The low-dissipative strip can trap a notice-
able portion of the current in the sample.6 In the edge-state
transport language, this can be formulated as a poor equili-
bration between different edge channels: those at the edge of
the sample and those in the bulk.13,24It is also possible for an
enhanced ‘‘nonlocal’’ effect to arise, even when the edge is
abrupt, as a result of the random macroscopic inhomogene-
ities, which we have discussed in previous sections. As we
have seen above, the effective boundary-strip traps an addi-
tional currentI along the edge, which causes a decrease in
the observedRxx . As we will show in this section, the same
edge current causes an enhanced ‘‘nonlocal’’ effect, which
can be thought of as an effective increase in the sample
width.

We present a simple quantitative theory, which allows one
to relate the corrections inRxx to the enhancement in
Rnloc. Since our derivation is based on the phenomenological
boundary-strip description, this approach is rather general
and can be used for a class of the edge models. Moreover,
although the edge properties are described by the four com-
ponents of the matrixr̂b, which are expected to depend on a
specific edge model, the relation between the corrections in
Rxx and the enhancement inRnloc turns out to be universal in
the sense that it does not include any of these components.
The edge corrections to the measured Hall resistanceRyx can
be found from the nonlocal effect in the same manner. In this
case, however, one has to know the componentryx

b of the
boundary-strip matrix.

We begin by deriving the current and potential distribu-
tions for a nonlocal measurement on the effective sample
shown in Fig. 5~b!. To do so, it is convenient to express the
current density in terms of a pseudoscalarc(r), as defined
by Eq. ~39!. Correspondingly, the currents inside and across
the strip are given by Eq.~40!. The distributionc(r) in the
interior of the sample satisfies the Laplace equation

¹2c50, ~43!

which follows from the conditions¹3E50, rxx* Þ0. In ad-
dition, the parallel component of the electric field in the in-
terior Ex and the electric field in the stripEi must match, as
given by

Ex~y52W/2!5Ei , Ex5rxx* j x2ryx* j y ,

Ei5rxx
b 2I /d2ryx

b j' , ~44!

where the matrixr̂b is defined in Eqs.~32!, ~33!. Using Eqs.
~39!, ~40!, the last condition can be written as

2

d
rxx
b ~c12c2!2

ryx
b

2

dc1

dx
1S ryx* 2

ryx
b

2 D ]c2

]x
1rxx*

]c2

]y
50,

~45!

where all partial derivatives are evaluated at the lower edge
in Fig. 5~b!, y52W/2. The matching condition for the up-
per edge is analogous.

The solution of Eqs.~43!, ~45! depends onc1(x), i.e., on
the conditions on the outer boundary of the sample, which
are set in the experiment. Let us assume that, in the ‘‘nonlo-
cal’’ resistance measurements, the currentI 12 enters and
leaves the sample at small contacts 1 and 2, which are posi-
tioned atx50, Fig. 5~a!. Then we havec15I 12/2 at x.0
andc152I 12/2 atx,0, with a step atx50. We will restrict
ourselves to findingc(r) far from the current probes,
x@W. In the limit x→`, all currents vanish so that
c2→c1 . We will look for an asymptotic solution of Eqs.
~43!, ~45! in the form

c~r!5I 12/21Ccos~ky!e2kx, ~46!

which is symmetric abouty50 and satisfies Eq.~43!. Sub-
stituting this anzatz anddc1 /dx50 into ~45!, we obtain the
following equation for the decrementk,

tanS kW2 D5
2rxx

b

kdrxx*
1

ryx* 2ryx
b /2

rxx*
. ~47!

We have to choose the smallest solution of this last equa-
tion, which tends top/W asd/W→0. To first order ind/W,
we obtain

k5
p

Weff
, Weff5W1d

rxx*

rxx
b . ~48!

Clearly, the voltage between probes 3, 4 decays with the
distanceL in the same exponential way as the current den-
sity, such thatR nloc}exp(2pL/Weff). Thus, as far as nonlo-
cal resistance measurements are concerned, macroscopic in-
homogeneities make the sample effectively wider. In the
region of the peak inrxx* (n) , whererxx* ;rxx

b , the effective
width increases by of order the correlation radiusjT .

Notice that the formula~37! for the measured diagonal
resistivity can now be rewritten as

rxx* 5rxx
expWeff

W
, ~49!

which means that effect of inhomogeneities on the ‘‘local’’
resistance can be thought of as the same increase in the
sample width:Rxx5rxx

expL/W5rxx* L/Weff . This immediately
gives a simple method by which the edge contribution to
r̂exp can be eliminated to first order ind/W. First one must
measure the ‘‘nonlocal’’ resistanceRnloc with two pairs of
voltage probes situated at different distancesL1 ,L2 ~larger
thanW! from the current probes. The effective width can be
calculated as

Weff5p~L22L1!ln
21FRnloc~L1!

Rnloc~L2!
G . ~50!
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Combined with a knowledge of the geometric sample width
W, this can then be substituted in Eq.~49! to obtainrxx* .
~Since precise measurements of the geometric width of the
sampleW may present some difficulties in experiment, one
may determine it in the same way asWeff , but atB50 when
weak inhomogeneities are not important.! Using the same
method, we can extract the bulk value of the Hall resistivity
ryx* from observed Hall resistanceRyx5ryx

exp. From Eqs.
~48!, ~38!, we get

ryx* 5ryx
exp1~ryx

exp2ryx
b !SWeff

W
21D . ~51!

It is worth emphasizing that when deriving expressions
~49!–~51!, we did not use any particular values for the com-
ponents of the boundary-strip matrixr̂b. This means that the
method of compensating the edge effect that we have just
suggested is rather general and is not restricted to the black-
and-white regime,T!Ts1 , studied in Secs. III and IV. For
instance, the method can be applied just as well at higher
temperatures,T*Ts1 , when a significant part of the current
is carried by the intermediate ‘‘gray’’ region in Fig. 1~c!. This
seems to be the case in experimental data shown in Fig. 3 at
high temperatures whensxx

exp decreases with increasingT.
Relation~49! used to compensate the edge effect in the di-
agonal resistivity is quite universal in the sense that it does
not depend on any components of the boundary-strip matrix.
In order to exclude the edge effect from the Hall resistivity
using Eq.~51!, one has to know the specific value ofryx

b .
We note, however, that the valueryx

b 5(r11r2)/2 is more
general than its derivation based on the black-and-white
model that we gave in Sec. IV. It merely reflects the symme-
try of the local Hall resistivity distributionryx(r) with re-
spect to (r11r2)/2, which is conserved as long as the
sample is effectively very inhomogeneous, i.e.,dnT!dn0 .

We emphasize again that this method applies only to first
order in d/W. It yields a partial compensation of the edge
effect atT*Ts2 , and is useless atT!Ts2 when all measured
parameters have already saturated in temperature.

Our conclusions are easy to test experimentally. If the
underlying model is appropriate in a particular sample, the
application of this method should produce a wide range in
the temperature dependence ofsxx

max(T) within which the
diagramssxx vs sxy are close to the ‘‘universal semicircle.’’
In other words, by compensating the edge effects, the
maxima in temperature like those shown in Fig. 3 can be
broadened and brought much closer to 0.5e2/h. At the low-
est temperatures, when the finite-size effects dominate the
transport properties~the ‘‘saturation’’ regime!, the method
eventually breaks down and no universality can be retrieved.
In fact, such a behavior close to the universal prediction was
already observed, without any special methods, in the integer
regime in the temperature rangesT5(0.522) K @Ref. 1~a!#,
andT5(224) K ~Ref. 25!. In these low-mobility samples,
the high-temperature decrease of the peak heights starts late
when the size effects are already small.

VI. CONCLUSIONS

We have shown that low-temperature measurements of
the quantum Hall effect in inter-plateau regions are very sen-

sitive to even weak macroscopic density inhomogeneities in
the sample. The inhomogeneities may result in strong finite-
size effects even in samples which, from a conventional
point of view, are very large. This may be a reason why the
predicted universal behavior of the transition regions in an
infinite macroscopically homogeneous system is so hard to
observe experimentally. Within our model of macroscopic
inhomogeneities, we were able to account for both the de-
crease of the conductivity peak heights at low temperatures
and the curious ‘‘nonuniversal’’ scaling of the peak heights
revealed in some samples. In the low-temperature limit, the
experimentally observed peaks insxx in the Corbino geom-
etry are shown to saturate at values proportional to the dif-
ferences between adjacent plateaus insxy . ~Analogously, the
peaks inrxx observed in the Hall bar should be proportional
to differences inrxy .) The proportionality factor depends on
the specific realization of disorder and fluctuates strongly
between samples. The model also predicts unusual peak
shapes, which show quantized plateaus in thelongitudinal
conductivity. The experimental peak heights obtained in Ref.
11 at the lowest temperatures are consistent with this quan-
tization.

Finally, we also showed that for a Hall bar with a sharp
edge, there exist simple relations between the enhanced non-
local resistance and the size corrections inRxx andRxy when
these corrections are small. These relations can be used to
separate the edge effects from the bulk tensor components
rxx* andrxy* .
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APPENDIX: EFFECTIVE RESISTANCE
OF A FORK VERTEX

In this appendix, we calculate the effective resistanceR3
of a fork vertex, a relatively simple example of which is
shown in Fig. 2~b!. The current distribution in the vertex is
shown by the arrows that denote beams of current lines. The
beams split and focus at ‘‘simple’’ 3-vertices and 4-vertices,
which form the fork vertex.~Recall that, since the longitudi-
nal conductivity is assumed to be vanishingly small in black
and white regions, the current lines cannot cross the border
between phases or the metal boundary other then at these
simple vertices.! The effective resistanceR3 can be found
from the net Joule heatQ5R3I

2, whereI is the net current
entering the metal contact. Although the problem would ap-
pear quite complex, it turns out that the dissipated heat does
not depend on the specific structure of the vertex. We will
now show this from very general arguments.

Let us draw an imaginary circle@the dashed line in Fig.
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2~b!# enclosing all of the structure of the vertex. Consider the
total currentsI 1 , I 2 , and I crossing this circle in the black,
white, and metallic areas, respectively. From the current con-
tinuity condition, I5I 22I 1 , and from the condition that
electric potentials at points 1, 3 of the metal boundary must
be equal,I 1 /s15I 2 /s2 , we find

I 15
s1

s22s1
I , I 25

s2

s22s1
I , ~A1!

that is, only one of the three currents is an independent quan-
tity.

The total Joule heat inside of the circle is determined by
the general expression

Q5E E~r!j~r!d2r , ~A2!

whereE(r) and j(r) are the local electric field and the local
current density, respectively, at pointr inside of the circle.
Since ¹• j50,¹3E50, we can expressj in terms of the
pseudoscalarc, andE in terms of the electric potentialf, as
given by

j~r!5@ ẑ3¹c~r!#, E~r!52¹f~r!. ~A3!

In this notation, the three currentsI ,I 1 ,I 2 can be written as

I5c12c3 , I 15c22c1 , I 25c22c3 . ~A4!

Substituting Eqs.~A3! into ~A2!, changing order in the
mixed product, and integrating by parts, we get

Q52E c~¹f•dl!, ~A5!

where the integral is taken along the closed circle in Fig.
2~b!. The circle can be broken into three segments: 3-2, 2-1,
and 1-3. Within each of the segments, we have
¹f5(1/s i)¹c, where the Hall conductivitys i is equal to
s2 ,s1 , and` ~metal!, respectively. Integration within sepa-
rate segments yields

Q52
1

2s2
~c2

22c3
2!2

1

2s1
~c1

22c2
2!. ~A6!

Using Eqs.~A1! and ~A4!, we obtain, finally,

Q5
I 2

2~s22s1!
[R3I

2, ~A7!

which yields the formula~9! quoted in the main text.
Note, that if the colors in Fig. 2~b! are interchanged,

which corresponds to interchangings2 ands1 in Eq. ~A7!,
the Joule heat will be negative~recall that we assume
s2.s1 everywhere in the paper!. Since this would contra-
dict the second law of thermodynamics, for such a vertex, all
currents must be zero. Hence, only the vertices for which the
rightmost color, as shown in Fig. 2~b!, is white, can be ‘‘ac-
tive’’ ~can participate in the current transfer!.

To illustrate our result~9!, consider the simplest~without
branching! example of a 3-vertex presented by a corner of a
rectangular homogeneous conductor with the Hall conductiv-
ity s2 . Two metallic probes are attached at the bottom and at
the top of the rectangle, the sample on the left and on the
right bordering to vacuum,s150. If s2.0, the current will
leave and enter metallic probes focusing at the lower left and
the upper right corners of the sample, which represent the
active 3-vertices. The two-terminal resistance of such a
sample is equal, as is easy to see, to the inverse Hall con-
ductivity 1/s2 . This amounts to the effective resistance
R351/2s2 per each active 3-vertex, in agreement with Eq.
~9!.

As is easy to check, the same rule of selection of active
vertices applies if the metal in Fig. 2~b! is replaced by a
vacuum, as is appropriate for a Hall bar with an abrupt edge
~Sec. IV!. In contrast to the edge-to-metal discussed above,
we now have zero current out of the edge,I50, and a non-
zero voltage differenceV5f32f1 . The expression for the
Joule heatQ can be obtained in almost the same manner as
Eq. ~A5!, except it is now convenient to use, instead of Eq.
~A9!, an equivalent formula

Q5E f~¹c•dl!. ~A8!

The final answer has the form

Q5
V2

2~s1
212s2

21!
, ~A9!

which has the same sign as the right-hand side of Eq.~A7!.
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