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We show that, at low temperatures, macroscopic inhomogeneities of the electron density in the interior of a
finite sample cause a reduction in the measured conductivity peak heifjfitcompared to the universal
values previously predicted for infinite homogeneous samples. This effect is expected to occur for the conduc-
tivity peaks measured in standard experimental geometries such as the Hall bar and the Corbino disk. At the
lowest temperatures, the decreased{ff’{(T) is found to saturate at values proportional to the difference
between the adjacent plateausoigy,, with a prefactor that depends on the particular realization of disorder in
the sample. We argue that this provides a possible explanation of the “nonuniversal scalifff*abserved
in a number of experiments. We also predict an enhancement of the “nonlocal” resistance due to the macro-
scopic inhomogeneities. We argue that, in the Hall bar with a sharp edge, the enhanced “nonlocal” resistance
and the size corrections to the “local” resistanRg, are directly related. Using this relation, we suggest a
method by which the finite-size corrections may be eliminated fRymand R, in this case.

[. INTRODUCTION mum value ofo,, reached at half-integer filling factors does
not depend on either the magnitude of the potential or the
The fascinating property of the quantum Hall effect Landau level numbeN and is equal tce?/2h. This result
(QHE) that initially attracted such great attention to the phe-was later mapped onto the fractional regime by using two
nomenon is the precise quantization of the Hall conductivityrelated approximations of the correlated electron state: the
oyy at certain values of the magnetic field. Most theoreticaldirty bosort and the composite fermion approatA.differ-
research has focused on the properties of the electron systemt sort of argument for both integer and fractional regime
inside these quantized plateausdn,. The plateaus have was presented in Refs. 6 and 7. Based on the rather general
been associated with the incompressibility of the two-assumption that, at low temperatures, the electron system in
dimensional(2D) electron gas, arising either from Landau a critical transition region can be represented by a random
guantization, at integer filling factors, or from electron- mixture of two quantum liquids with different quantized lo-
electron interactions, at fractional filling factors. The transi-cal Hall conductivitiesr, ando, it was shown thatr,, and
tion regions, wherer,, crosses over between quantized val-o,, are connected by a universal relation. The peak height
ues and the longitudinal conductivityr,, experiences oy, was found to be equal to one half of the difference
maxima, have received less attention. The main factor, whichetween the Hall conductivities of the adjacent plateaus
inhibits progress in this direction, is the lack of reproducible|s,— o,|/2. For the integer peaks, this result yields the value
experimental results on the interplateau regions, despite thé?/2h obtained in Ref. 3. For the fractional regime, it
impressive stock of data on the QHE that has been accumunatches the results of Refs. 4 and 5, after the latter are some-
lated over the past decade. In addition to the fact that thevhat corrected to allow for the fact that the maxima of
general behavior of the QHE depends on the electron density;, . (B) of the integer peaks do not map exactly onto the
temperature, and disorder, samples cut from the same sulraxima ofo(B) for the principal serie We can also refer
strate and measured at the same temperature often revéhé reader to quantum Monte Carlo studies in Ref. 9, where
different dependences,(B) and o,,(B). This annoying the same value, 0e8/h, for the integer peaks was obtained
data dispersion is particularly apparent at low temperaturesin a simulation of single-electron scattering off short-range
A certain success in obtaining reproducible data has beeimpurities. Thus, while different theoretical models agree on
achieved only for the critical behavior of the width of inter- an expected universality of the conductivity peak heights and
plateau regions at low temperatufeldowever, as far as the even on their values, experiment offers no evidence to sup-
heights or shapes of the peaks df, are concerned, the port this prediction.
general impression is that too many factors are involved to To make the situation even more confusing, a puzzling
allow any systematic conclusions. feature was observed in a number of experiments performed
On the other hand, there do exist a number of theoreticaht very low temperatured5—-40 mK: the relative heights of
works which argue that certain universal behavior of the conmost of the conductivity peaks obtained in the fractional re-
ductivity tensor must exist at low temperatures in the regiongime were, indeed, found to scale approximately as
between well-pronounced pairs of platedastical regime. |o,— 4|, but with an absolute factor which differed from
Kucera and Stredaconsidered semiclassical single-electron1/2 and, moreover, varied from sample to sanfl8uch a
transport in a patrtially filled Landau level for a simple model “universality within one sample,” while there is none be-
of a periodic long-range potential. They found that the maxitween different samples, is hard to understand. This feature
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was especially well seen in recent experiments performed istrip along the edge with a quantized Hall conductivity and
the Corbino geometrd}, where scaling of the peak heights very low scattering, while the bulk of sample can be in a
was observed simultaneously for the fractional and integetransition region with noticeable dissipation. Such a strip can
regimes, i.e., in quite different ranges of magnetic field. As drap a significant portion of the current, making the current
function of temperature, the height of each peak was foundlistribution in the sample inhomogeneous and affecting the
to pass through a maximum value. These maximum valuegl€asured resistancB,,. In the language of the edge-
differed for different peaks, being scattered below, thougHransport theory, this can be reformulated as poor equilibra-
not very far from, the universal values predicted by theoryfion between the edge states and the bulk. While this model
On the low temperature side of these maxima, therefore, withas been successful in accounting for certain nonlocal resis-
decreasing temperature the peak heights fell further belofp"Ce measurements, the presence of a smooth edge cannot
the universal values, as has also been earlier observed gxplain t_he observed nonu_nlversal scaling of the_conductmty
low-mobility samples. At the lowest temperaturgd4 mK), p_eak helghts._Therefor_e, since the randpm bulk inhomogene-
however, different peaks in a given sample converged to thifiés are crucial for this scaling, and since the effects of a
corresponding theoretical values multiplied by the sameéMmooth edge have been discussed beftrin this work
sample-dependent factor. we will focus_ (_)nly on the consequences of macroscopic bulk
In this work, we suggest an explanation of the phenom_lnhomogeneltles. The results we present for the_ Hall bar,
enon of the “nonuniversal” scaling of the peak heights. Ourtherefore, apply to samples with sharp edges, with the
explanation assumes that in the interior of the sample, thergdge width less than magnetic lengthor certain samples,
exist random inhomogeneities of the electron density with 20M€ combination of the two models may be appropriate.
very large correlation lengtR,. While the origin of these As well as giving rise to “nonuniversal scaling” of the
inhomogeneities is unclear, we note that the existence df€aK heights at the lowest temperatures, we show that mac-
such fluctuations was also a necessary assumption in recdfSCOPIC inhomogeneities in the bulk also lead to an en-
work,12 which proposed an explanation for another experi-hanceme”“t of the nonlo_crf}l resistance. Ir_1 fact, by.develloplng
mental puzzle—the Resistivity Law, which is observed in& 9eneral “boundary-strip” approach, which describes finite-
some samples at higher temperatures. We can only speculat€ €ffects in a macroscopically inhomogeneous sample, we
as to whether such fluctuations might result from imperfecShow that, for a sample with a sharp edge, both of these
tions in the doping process or from incomplete equilibration€ffects are directly related. Using this relation, we propose an
of the electron density on sample cool down, or from both &xPerimental method by which the edge contribution in the
The fact that the experimental traces in the interplateau re20Served resistivity may be separated from the bulk contri-
gions often change after the sample is reheated and cooldt/ion, at least over the range of temperature for which the
down again, indicates that that the latter mechanism may bgd9e contribution is not too bigat intermediatef). _
important. By whatever means they might arise, we argue The paper is orgamz_ed_as follows. I_n_ Seg. II, we discuss
that even small fluctuations of the electron density becomd€ role of macroscopic inhomogeneities in the transport
crucial at low enough temperatures, where the dependence BfoPerties of an infinite QHE system in different regimes of
the conductivity tensor on the local value of the filling factor l€Mperature. Finite-size effects on the low-temperature two-
is almost singular. In particular, we show that, due to theterml'nal resistance of an mhomogeneous_ Corbino disk are
finite size of the sample, the sample edge gives rise to §onsidered in Sec. Il and in the Appendix. The boundary
positive contribution to the Corbino resistance, which is pro/MPedance matrix formalism, which provides a description
portional to 1/¢-,— o;). This contribution increases with de- of small edge contrlbutlorjs to the measured resistances in
creasing temperature, due to the growing correlation radiu@ny Sample geometriCorbino disk, Hall bar, etg,. is devel-

of the random clusters, which are responsible for the currerfP€d in Sec. IV. The explicit form of the impedance matrix is

transfer. At sufficiently low temperatures, when the correla-€valuated for a macroscopically inhomogeneous sample with

tion radius exceeds the sample size, the edge contributich SharP edge. The enhanced *nonlocal” resistance arising

dominates the sample conductance. The heights of the offOM the macroscopic inhomogeneities is studied in Sec. V,

served peaks i, in a given sample are found to freeze at where it is also shown that this is directly related to the edge
XX

values that differ from the corresponding “universal” values COTrections in the measured “local” and Hall resistances.
in an infinite sample, by a random geometric factor that is>€ction VI concludes the paper.
the same for all peaks.
By_making use of a CL_lrr_ent-voItage duality that exists in Il INEINITE SAMPLE
two-dimensional conductivity problems, we show how our
results may also be applied to the Hall bar geometry. We find We consider an infinite sample in the presence of macro-
that macroscopic inhomogeneities have the same effect aggcopic inhomogeneities of the electron density. The local
the measured peaks jn, in this geometry as on the peaks in value of the filing factor can be written as
o for the Corbino disk. This is in agreement with the fact v(r)=v+ dv(r), wherewv is the average filling factor, and
that sample-dependent scaling of the peak heights has beém(r) is a small fluctuating component with a magnitude
observed in both geometrié% Svo</v. We assume that some impurity scattering occurs
It has previously been realized that density inhomogeneen scales much smaller th&, such that the local conduc-
ities may distort conductivity measurements in the Hall bartivity tensor exhibits the quantum Hall effect. Specifically,
geometry. In particular, for certain gated or mesa-etched sysve will assume that at a critical value., the Hall conduc-
tems, the boundary to a vacuum is believed to involve divity undergoes a sharp crossover between two quantized
rather gradual decrease in electron density. This createsalues,o;=e€?v,/h, ando,=e?v,/h. Here,v; andv, are a
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pair of adjacent values af at which the electron system is (a)
incompressible, v1<v.<wv,. The diagonal conductivity
oxx(v) has a sharp peak in the crossover region, being very &
small everywhere eldé-ig. 1(a)]. The width of the crossover &
region vy vanishes a§ — 0. We can consider this picture as
simply following from numerous experimental data on the
low-temperature quantum Hall effect in large samples.

The critical behavior of the conductivity tensor has been
studied well. The width of the crossover region vanishes as
T—0, according to (b)

02

Ory(V)

O;

5VT""TK,

with an exponeni, which has been argued to take the uni-
versal value 3/7° In the zero-temperature limit, the maxi-
mum value of the dissipative conductivity is thought to ap-
proach €%/2h in the spin-split integer quantum Hall

effect®”® and (o,— o)/2 for the fractional regimé’ As
explained in the Introduction, this prediction was deduced r
from the hypothesis that the correlated electron state in the &,

vicinity of a QHE transition represents a random mixture of

two incompressible liquids with localized quasiparticles on ki, 1. () Local conductivity tensor componends,, and Ty
top. The correlation radiug:"® of this two-phase system was versus the local filling factor. (b) Macroscopic fluctuations of the
assumed to be larger than the magnetic lengityéB)*2, local filling factor. (c) Conductivity tensor distribution in inhomo-

To avoid confusion, we emphasize that the correlation rageneous system at low temperatures. Black and white regions cor-
dius of the macroscopic density fluctuatioRs, which we  respond to quantized Hall regions with,,= o and o, respec-
consider in the present work, is assumed to be much largéively, and o,,~0. The gray color, which corresponds to the gray
thanRT™, which is thus considered as a microscopic lengthstrip in (b), shows the intermediat@onquantizefiregion.

The “local” conductivity tensoro(r) introduced above is

defined at scales larger th&{" (and, if effects of quantum The evaluation of the effective conductivity tenset
interference are important, larger than the phase-breakingquires an understanding of how the current density is dis-
length), but smaller tharR.. For our purposes, the peak tributed in such an inhomogeneous system. The current dis-
value of the local dissipative conductivity will not be impor- tribution is known to be quite different in the two limiting
tant; we shall only assume that it is either of the order of orcases, which are reached as the relative values of the dimen-
less than the difference in the quantized values of the Halsionless parameters; /R, and o}y (o,— 1) are varied.
conductivity, o,—o;. We believe that this assumption  when o> is very small(how small will be determined
agrees with existing data on the quantum Hall effect in aelow), the continuity conditions force the current to flow
strong magnetic field. almost exactly along lines of constamy, .*®*> For an infi-

Let the magnetic field be tuned, so that the average fillinthjite random system, this means that the current is concen-
factor v is close tOVC . At SUfﬁCiently low temperatures, the trated near the perco]ation threshold of the funcm(r),
crossover widthsv+ becomes much less than the fluctuationyithin a sparse percolation network inside the gray area
magnitudesvy, which is small but temperature independent.shown in Fig. 1c). The characteristic parameters of this new
Hence, as temperature goes down, the conductivity distribthetwork—the widthw and the lengtth of an elementary link
tion becomes strongly inhomogeneous. In most of thesf the cluster—are determined by the value f, at the
sample, as illustrated in Fig.(d,b), the Hall conductivity  percolation level inv. They can be estimated from the self-
oyy IS quantized at eithee; or o, and the diagonal con- consistent condition that the current is able to cross the lines
ductivity oy is very small. Only a narrow intermediate re- of constanto,,, in order to pass from one critical saddle
gion, within the interval|v—v¢[~ v, has a noticeable point of the network to the next one, which has a slightly

oxx This region is indicated by the gray color in Figell.  different value of,, .*"*2We give here the final expressions
As long asv stays within this interval, the “gray” region for both parameters,

forms an infinite percolation cluster. The latter consists of
strips of a small widthw;~R.év1/8vy, which join near

saddle pointgcritical vertice$. The characteristic size of a Ony | R\ 1013 (0,—01)Rs| 3
cluster cell, i.e., the distance between two vertices, follows W~Wr| —— We 1R '
. ) 02— 01 Wt OxxWt
from classical percolation theoty, )
£~ Rq( 8ol Svp)*2, 1

Here inequalitiesv<wy, |1>¢&7 are implied. The net diago-
We note that the true geometry of the percolating clustepal conductivity of the systero, is determined by the ge-

includes also loops and bypasses on links between verticegnetry of an elementary link, as given hyy,~ o l/w
not shown in Fig. lc). which yields, for the maximum value eaf,,,
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10/13 To conclude, the long-range inhomogeneities in the infi-
3 nite sample do not essentially alter the conductivity peak
width. They cause the peak heightdff, to saturate at low
Note that the effective conductivity decreases with increastemperatures at the universal val(®. If the microscopic
ing temperature, more or less a$if, unless the tempera- conductivity tensor components,,, oy, as argued in Refs.
ture dependence (T) is very sharp. 6 and 7, also satisfy the “semicircle” relatio@®), then the
The net Hall Conductivitya':y does not depend on the presence of the macroscopic inhomogeneities has no effect in
geometry of the network and simply coincides, apart fromthe low-temperature limit. In a finite sample, however, as we
small corrections, with the percolation threshold valuenow proceed to showry, at T=0 deviates drastically from
Ty V). Hence,g;y crosses over fronor; ando, within the  the universal value, due to the inhomogeneities.
same interval ofy, as does the local Hall conductivity,
|v—ve|~ Svr. ll. FINITE-SIZE EFFECTS
This picture is correct provided that,, is sufficiently IN THE CORBINO GEOMETRY
small and the gray regions are not too narrow, such that the
current can stay within these regionss<wy. The last con-
dition can be written a¥> Ty, , with T4, given by the equa-
tion,

51/0
3/1 10/1
T (A 7y 7 0

To study finite-size effects, we have to resort to a realistic
experimental setup, which means that we have to specify the
geometry of the sample and the attachment of the contacts.
Experiments are performed on the Hall bar, in the van der

T Tey) | 310 Pauw method, and on the Corbino disk. Our initial choice
Sv(Ty) 5,,0(“_51) (4)  Wwill be the Corbino disk, on which recent experiments in
0~ 01 Ref. 11 have been performed. In Sec. lll, we show how to

transfer our results to the Hall bar using the current-voltage

The regime exists only ifr,, is much less thaw,— o, at : ) ;
g Y Ox 2 01 ality. We will not discuss the van der Pauw geometry ex-

temperatures at which the system can already be consider¢911I

to be macroscopically homogeneods;(T)~ Svy. plicitly in this work.
As the temperature is reduced beldw;, the current )
spills out into the quantum Hall regions. In the limit A. Contact resistance

T<Ts, which will be mostly considered in the rest of the A Corbino disk cut from an inhomogeneous sample is
paper, the currents flow predominately in the quantized Halkhown schematically in Fig.(8). The two-terminal resis-
regions. The details of the gray areas become unimportafince between the metal probes attached at the inner and
(except near the saddle poiptand they may be replaced by outer circular edges is measured. We consider an ideal con-
sharp boundaries. This represents a particular example frogact without any tunnel barriers or dielectric layers between
a class of “black-and-white” systems, which was studied inmetal and sample, the metal boundary having a constant po-
Refs. 19, 6, and 7. Due to the continuity conditions and theential. We assume, first, that the correlation radius of the
absence of Scattering in the bulk, the currents in the "blaCk"“gray" cluster &t is much less than all Samp|e dimensions,
and “white” phases cannot cross the phase boundary. Inr, r, andW=r,—r;. In the limit & /W— 0, the sample can

stead, the currents have to focus at vertices to pass betwega considered to be homogeneous with the conductivity ten-
the two corners of the same color. The net conductivity tensor g* . The two-terminal resistance is then given by

sor depends on the ratio of the average currents flowing in

the two phases, which is controlled by At v.—v>6vy, Ag 1 r,
all saddle points have values of,, close toay, which en- Ro=—, Ao:z'”a’ Y
XX

sures good percolation in the “black” color, so that the white

current is relatively small and} =o;. At v—v>dvy, we  Where A, is the geometric aspect ratio, which for
get good percolation in “white,” andrfy: o,. Acrossover W<ry,r;is close toAy=W/27r. Afinite value ofé1/W, as
takes place within the intervalyvy, when both currents are We now demonstrate, leads to an increase in the two-terminal
comparable. Since the local diagonal conductivity is small infesistance above this valu@), due to an effective contact
both quantized regions, the net conductivitf is also small ~ contribution. _ _ o .
when either of these phases percolates freely, and experi- 1he simplest way to estimate this correction is by moni-
ences maximum in the crossover region. In the limit of zeroforing the Joule heat dissipated in the sample. At low tem-
dissipation in each of the quantized Hall regions, the depenPeraturesT<Ts, , as already discussed, the currents flow in
dence ofc?, vs o, of the isotropic two-phase system is the (black or whitg quantized Hall regions. Since scattering

known to be a universal function—a semiciréle, in the bulk is negligible, the currents cannot cross the phase
boundaries and, in order to pass through the sample, must

o1+ o,\2 [oy—0,)\2 focus at vertices formed by adjacent corners of different

(O':X)Z—i—(a':y— > = > (5 phases. All the energy dissipation in the system occurs in

“hot spots” at the vertices. The vertices are of two kinds:
In particular, the maximum value of the average conductivity-vertices in the sample interior, formed by alternating
is “black” and “white” corners, and 3-vertices at the boundary,
“black-white-metal.” The above resistand@) corresponds
i M= (0, )12, (6) to dissipation at internal vertices, as given by

independent of the details of the “gray” areas. Qini=12Ry. (8)
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For the remaining half of the verticeb,=0. As shown in
the Appendix, the resistance of an active 3-vertex is always
given by

(a) metal

1
2(0—0y)’

R,=R3 9
independent of the microscopic details of the vertex core. In
particular, the result remains valid if the phase boundary
branches when approaching the metal forming a forklike
structure, as illustrated in Fig.(l® in magnified view.
Branching, though not shown in Fig(&), does occur in a
random percolation cluster on scales smaller t&an Only
the fork vertices, with white as the rightmost color, are ac-
tive.

For a uniform pattern of white/black regions, the current
entering the contadt will be shared approximately equally
between therr /& vertices at the edge, so that

&1
Qb= 1?Rs——. (10)

Tl'rl

(b)

The total two-terminal resistand®,; can be found from the
total Joule heat,

tor= | thot: Q(eh)g—'— di)g"*‘ Qint-
Using Eqgs.(7)—(10), we find

11) £

Ao
—t
M Mo 277(0'2_0'1)

Riot=— +
O-XX

(11)

The second term in this expression is, of course, an estimate.
In the next section, we rederive E@L1) rigorously for a
simple model of a periodic chessboard two-phase distribu-
tion, with &7 replaced by the square size.

Thus, at the maximum of}(v), the relative correction
to the peak resistance arising from the edges is of the order

:i \Ll of &/W. (We assumed here thaj is not much less than

r,, and used the fact that, at the lowest temperatures,
FIG. 2. (a) Conductivity distribution in an inhomogeneous oX"®~ g, — 0;1.) The experimentally measured value of the
orl_nmo dlsk_ Black and V\{hlte. are quantized regions ri\s in Rig, 1 diagonal conductlwtyrﬁip defined b):l/.l
the intermediate gray region is not showh) Complex “fork ver-

tex” from the small square ina) shown in magnified view. The exXP_ A/
. . . Oyx A0 Rtot
arrows schematically show currents passing between different re-
gions by focusing at simple vertices. is now lower than the “bulk” conductivityo’, by the same

relative amount. This negative correction increases as tem-

Since the metal contact boundary is at a constant potentigf€rature is lowered, sincgy t))(ﬁcomes largefEq. (1)]. We
the current lines have to focus at 3-vertices, in order to entepelieve that the decrease irf,” that we predict from these

the (e.g., inney contact. This causes additional dissipation atconsiderations provides a possible explanation for the obser-
the edge given by vations of Rokhinsoret al*
exp

Note that the correction teo,"” may be different for dif-
ferent conductivity peaks, since the widév; and, hence,
n_ ) the correlation lengtlt, may vary from peak to peak. This
Qedg_% laRa. accounts for the dispersion of trace§,"(T) observed for
different peaks in the integer regime, see data for two
samples by Rokhinsoet al,!* which we reproduced here in
wherel , is the current passing to the metal at the 3-vertexFig. 3. At the lowest temperatures, however, as one can see
a, andR,, is the effective resistance of the vertex. from the figure, all the traces converge and tend to collapse
It turns out that focusing of the current lines occurs onlyonto one curve. The corresponding low-temperature value
at those of the 3-vertices at which the Hall conductivity can be written asrjy“=ke?/2h, where the coefficienk is
oyy increases fromr; to o, to the right when looking into  almost the same for different peaks, but is sample
the sample from the metélve call these “active” vertices  dependerit [compare Figs. @ and 3b)]. As found in the
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Notice thatév,, does not depend on temperature and is
much larger than the value for the infinite sample;. Since
no 4-vertices are now found in the sample, the finite value of
Svt is no longer relevant. All temperature dependence has
now disappeared from the problem and all the peaks

ao¥(v) must become identical. We suggest that this explains

why the experimental tracesg(T) in integer regime con-
verge at low temperaturé$ Recall that it was the differing
values of vt that caused the contact contributions to the
total resistance to vary for different peaksTat T, .

This saturation of the peak width, which we predict at low
temperatures is similar to the well-known saturation effect,
which is expected to occur in small samples when the coher-

ence lengtht, becomes comparable to the sample ${ZEhe

observable difference between the two mechanisms is in the
FIG. 3. The temperature dependence of peak values pfor ~ Size dependencev,, W™ *: we predict the classical index
different transitions between adjacent IQHE states obtained by =3/4 instead of the 3/7, which is thought to be appropriate
Rokhinsonet al. in Ref. 11. Different symbols correspond to tran- for the quantum problerf’P.’21
sitions: 5-6 V), 6-7 (¢), 7-8 (@), 10-11 (X), 13-14 ). We now discuss the height and possible shape of the peak.
Some transitions are omitted by authors of Ref. 11 for sake ofAs we shall show below, in the zero-temperature limit, the

clarity. The geometric aspect ratios of the samples &r€0.21  two-terminal conductance R{,; can take only quantized val-
(sampleA) and A= 0.32 (sampleB). ues

quoted work, the well-pronounced peaks in the fractional
regime have the heighi(o>— 01)/2, with approximately the
samek as do the peaks obtained on the same sample in the
integer regime. This agrees with earlier data on the fractionavhereM is an integer(including zerg that depends on the
quantum Hall effect mostly obtained in the Hall bar specific realization of the disorder. As the average filling
geometry!® which show that, at the lowest temperatures,fraction is varied, the value of the integht may change,
most of the peak heights are proportional to the difference irand the peak i§(v) can display an unusual steplike de-
adjacent plateaus im,,, with a prefactor that fluctuates pendence on filling fraction, as illustrated schematically in
from sample to sample. To understand the origin of the cuFigs. 4c) and 4d). Although the shape of these pedksim-
rious “universality within one sample,” let us consider the ber and position of the stepslepends on the specific real-
lowest temperatures. ization of disorder, this shape is the same, with the peak
height expressed in units of,— o1, for all peaks in a given
sample.
) o ) ] Let us fix the average filling factor somewhere within
Since the qharactenstlc.corr.elatlon radgjsgrows as the  the peak widthdy,,, e.g., at the poinb=r,. We have to
temperature is reduced, it will eventually become of thegjstinguish two major cases depending on the random con-
same order as the distance between the contci some  figyration of a sample. Either both black and white percolate
temperaturel ~Ts,. At this point, the edge contribution to in the radial direction, or both black and white percolate in
the resistance in Eq11) is as large as the bulk contribution. the azimuthal direction, as illustrated in Figgagand 4b).
When temperature is decreased furtfleg Ts,, a strong in-  Together with the case in which only one phase percolates in
equality {->W is met for any peak, so that no critical hoth directions, which we determined above as being outside
4-vertices[shown in Fig. 2a) for higher temperaturédall  of the peak width, this exhausts all topological possibilities.
within the sample. The current is transported directly fromin the case of azimuthal percolation, Figb¥ the current
contact to contact by one or more pairs of “white” and can barely pass between contacts, since it is not allowed to
“black” clusters connecting the contacts. Black a_nd white cross the phase boundary_ Hence, peaks are missing,
cIusFers of the siz&V can exist simultaneously, V\_/hiheis N R,=c. More precisely,oc®® is as small as the average of
the interval|v— v¢| < ov,,, where év,, is determined from ;. ' in the quantized regions, and therefore rapidly vanishes
the equation asT—0. Such behavior is observed in experim&Huyut it is
usually attributed to a “bad sample” or “bad contacts” and,
consequently, does not reach publication. In some sense, it is
correct to say this in our model as well; however, both “bad”
and “good” samples belong to the same statistical ensemble
Outside of this interval, percolation between contacts camith a quite small amplitude of inhomogeneities. In the case
exist only in one phase, either in the white or in the black.shown in Fig. 4a), when the contacts are connected by one
The resistance in this case is equal to that of a homogeneoiack and by one white region, the resistance is finite and
Corbino sample with no scattering inside, that Rgy,=, equal to the doubled resistance of the 3-vertex
ando$P=0. Hence év,, in Eq. (12) represents the observed R ,=2R3;=1/(0,—c4), see Eq.(9) for the 3-vertex resis-
peak width. tance.

1R=M(0y—04), (13

B. Low-temperature limit

51/0 4/3

W~ RC(—

Svy

12
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instance, ifr,—r;~ry, the most probable values are
M=0,1, or 2. In a very narrow ringN<r, the most prob-
able values are close td = C/Ay>1, whereC is some nu-
merical factor. In the latter case, the resistance will seem to
scale properly with the sample dimensions, as if the sample
was homogeneous, except for the wrong numerical factor.
The quantization oR,; will be difficult to see.

Our prediction of thdongitudinal resistance quantization
allows a comparison of our theory with the experiments of
Ref. 11. Although neither of the two samples shown in Fig. 3
reveals the saturation of the peak heights, which we expect to
exp occur at low enough temperature, still, we can see that the
Oxx (c) Oux (d) heights of all peaks become close to each other at the lowest
2Ac:—0r) ] temperature studied,= 14 mK. Hence, we assume that satu-

! ‘ ration occurs not very far below this temperature and use the
o values ofo,P obtained at 14 K as good approximations to
(0:—01) ] (5:—0) ! \—— the zero-temperature values. Taking account of the aspect
\ ; T | ratios quoted in the caption to Fig. 3, for both samples we
| ' . obtain Ryy=Aq/0XP=h/e? within an accuracy of 10%we
’ ‘ ‘ averagedr(T=0) over five values for different peaks in
sampleB]. This corresponds tvM =1 in Eqg. (13), which is

FIG. 4. Two basic configurations of the conductivity distribution Cr?n?:cIStent wlth "oufr p;SpdtI)Ctlon' Thus, atl lea.St f_or tTese data,
in the Corbino disk in the saturation regim&<T,,) shown at the ulctuatlon. OF 0'yx etween. samp e_s IS Simply corre-
v, <V<w,, wherev, and v, are filling factors of the two saddle lated with the different aspect ratio&gy, which were used to

. . . . . . . . exp_
points.(a) Configuration with a finite two-terminal resistance. Thin calculateoiP=Ag /R o1

lines are the lines of equal potentiéh) Configuration with infinite
two-terminal resistance. No current passing between contagts.
Predicted observed diagonal conductam®® vs average filling IV. BOUNDARY-STRIP FORMALISM
factor for configuration(a). (d) Analogous dependence for a con-
figuration controlled by four saddle points.

(b)

Vi Vs v ViVa Vi V¢V

So far, we have considered the simplest geometry of the
Corbino disk. Although this method can directly produce the
value of o, for a homogeneous system, it also has some

We can easily obtain the shape of the peak{if for the  obvious disadvantages. First, it does not allow one to mea-
configuration in Fig. 4). Let v, andv, be the filling factors  sure the Hall conductivity. Second, it leaves no hope of sepa-
at the two saddle points that control the current transferrating 3" into the contributions arising from the bulk and
v,— v~ 6v,,. Whenv is shifted down and crosses the level those arising from the edge. Both disadvantages stem from
of the lower saddle-point, , the corresponding black bridge the fact that only one independent experimental parameter
becomes white, and percolation in black quits, so that th€the two-terminal resistangés obtained in this method. To
resistance Ry, becomes infinite. This transition occurs permit a larger number of independent measurements, one
abruptly in v (more precisely, within a small interval must consider another geometry, such as the Hall bar. As we
~ évy). Similarly, for v>v,, the white region percolates, will show in this section, macroscopic inhomogeneities in a
and the system is on a quantized Hall plateau correspondinfinite-sized Hall bar lead to a similar decrease of the ob-
to v,. The resulting “peak” inogy" represents a box of a served peak heights it’, as for the observed peak heights
width v,— v,, Fig. 4(c). The latter is of the order afv,, and  of o%," in the Corbino disk geometry. In Sec. V, we will
fluctuates from sample to sample by 100%. suggest a method by which this edge effect may be compen-

There may, of course, be more than one pair of black andated in the Hall bar geometry, at least, over the temperature
white regions connecting the contadand, hence, more range for which this contribution is small. At the lowest tem-
saddle points which switgh Since all of the peraturesT<T,,, as clearly follows from analysis in Sec.
3-vertices at the same edge are connected in parallel, thé, all information on the bulk properties is lost beyond re-
inverse resistance is given by H43), whereM is the num-  covery.
ber of pairs of connecting regions. In the degenerate case For the remainder of this paper, we will, therefore, focus
shown in Fig. 4b), M=0. Thus, the total conductance of the on the regime of small edge corrections. In this limit, it is
sample is an integer multiple af,—o;. The number of possible to develop a theory in which the edge effects can be
“gquanta” M depends on the value of A typical shape of accounted for by a “boundary strip.” Within this formalism,
the peak forM,,=2 is shown in Fig. &l). Each step in the Corbino disk and Hall bar are thought of as homoge-
oy results from the switch of some saddle point from aneous samples with an infinitesimally thin layer attached at
black to a white bridge. Note that the resistant® does not their boundaries to account for the edge effects. This bound-
demonstrate regular scaling with the aspect ratio of thery strip is characterized by an impedance matrix, which
sample, sinceM is just a random integer varying from linearly relates the currents in the strip to the potential gra-
sample to sample. The probability distribution for different dients at the boundary. Effectively, the presence of this strip
M does, however, depend on the shape of the sample. Fehanges the boundary conditions on the sample. Such an
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approach is valid provided) the region along the edge re- While discussing the Corbino disk, the boundary strip has
sponsible for the edge effects is narrow dinfithe edges are been characterized by a single parameter, the contact resis-
homogeneous along their length. The first condition is nectance. This is defined as the ratio of the voltage drop across
essary since, otherwise, one has to take into account, in athe stripV to the currentj, L crossing the strip, under the
dition to the gradients, second and higher derivatives of th€ondition that the electric field component along the edge
electric potential to describe the boundary impedance. ThEj is zero. In general, quite different boundary conditions
boundary-strip formalism may be used to calculate the cormay be applied. For instance, in the standard Hall bar mea-
rections arising from macroscopic inhomogeneities to theurementj, =0, E;#0. We need to develop a quantitative
conductance of samples, of any geometry, in the regime idlescription for the boundary strip, which does not depend on
which these corrections are small. In the following, we will specific boundary conditions and which, therefore, applies to
recover the result derived abov#l) that, in the Corbino all geometries. We consider four variabl®sj, ,E;, and the

disk geometry, there is a decrease in the peak heigfifs adqmonal current flowing along the edge in the boun_dary
compared to a homogeneous sample. Within the boundanyirip- The four parameters are related by a boundary imped-
strip formalism, this decrease in conductivity is viewed asance matrix, as given by
arising from additional drops in potential that occur across

the boundary strips at the inner and outer contacts. We will ' _3 E
further show that, in the Hall bar geometry, the presence of v
the boundary strips causes additional currents to be trapped . , | . ,
at the edges of the samples, and leads to a similar decrease/fffich is analogous to the conductivity tensor in the bulk.
the observed values of the peak heightp@f, as compared PUe 10 the low symmetry of the boundary strip, all four

to a homogeneous sample. components o, area priori independent. The vthle inho-

In physical devices, there are two main types of edgdogeneous sample can be thought of as consisting of a ho-
effects that are important for transport. First, the finite-sizgN0geneous interior, with the conductivity tensor of the infi-
effects due to the macroscopic inhomogeneities of the intelite Systems™ and with the same dimensions as the original
rior of the sample, as discussed above. This type of inhomos@mple, and an infinitesimally thin boundary strip described
geneity, if present, is equally important for the Hall bar andby the impedance matriX.
the Corbino disk. Second, smooth-edge effects caused by a We will now determine the boundary impedance matrix
gradual change in the electron density when approaching tHer a simplified model: a periodic two-phase system in which
sample edge. One should expect the latter effect to be mudplack and white are regularly distributed as in a chessboard,
stronger in the Hall bar geometry in which electron densityand all vertices have identical scattering properties. Since,
at the edge is zero. In principle, the boundary-strip formalisnfor a thin boundary strip, the sample shape is not important,
is rather general and can be used to account for both types ¥fe choose to study a convenient geometry, in which the
inhomogeneities. For the macroscopic inhomogeneities, both@mple is a long rectangle with rows of vertices aligned par-
of the conditions outlined in the previous paragraph are satllel to its sides. Let the width of the sample We=Nd,
isfied if the correlation radiust; is much less then the Whered is the lattice constant, ard is an integer. A section
sample width and, in the Hall bar, the distance between th€f & long sample is shown in Fig.(&. Although we are
voltage probes. Both conditions would also be satisfied for altimately interested in the case of larye the periodicity of
Hall bar with a smooth edge if the voltage probes were smalthe problem enables us to use a system with a small number
enough as not to affect the edge properties. In real device§f vertex rows[in Fig. 5a), N=3]. Our objective is to re-
however, the probes are macroscopically large and interrugtlace this system by an equivalent homogeneous sample
the edge strip. Within the model of nonlocal resistance proWith thin boundary strips attached, Figlbh The system is
posed by McEuert al, based on the edge-state formalism, Characterized by the electric fiekf” and the current density
the contacts have a strong effect on the current distributiord, in the interior, and the four variablésE,1,j, describing
since they force equilibration between different edgethe boundary strip. The positive directions for the potential
channels® Such a model is a clear example of a case indropV and for the other three variables are shown by arrows
which the edge is not homogeneous along its length, and fdp Fig. 5(b). All of these currents and fields are assumed to
which the boundary-strip formalism does not apply. We will, be uniform, representing one particular case which is suffi-
therefore, focus only on cases for which the edge of the Halfient to evaluate matrix14). We will consider the fielde™
bar represents a sharp cut in the inhomogeneous sample, i.and the current density” to be given as boundary condi-
the characteristic width of the edge region is less than th&éons. Even though these two vectors are related by the con-
magnetic length. The boundary properties are then indeperiuctivity tensor of the infinite systera™, in what follows,
dent of whether the edge is to vacuihtall ban or to metal ~we are not going to use this relation, and will trét and
(Corbino disk. Below we will show how the conductance |~ as independent variables.
properties of such an edge can be related to the parameters of The criteria for the equivalence of the two systems are as
the two-phase model. First, we will derive the properties offollows. (i) The fieldE.. and the current density, in the
the boundary strip for a periodic array of the two regions,sample must be the same as the average electric field and the
and then we will discuss how these are modified for a ranaverage current density, which would be in the original
dom distribution. sample if the latter was infinite; that is, the properties of the

As we have seen in Sec. lll, the corners formed at eacknterior are independent of the presence of the boundaries.
edge by alternating phases create an effective strip witkii) The standard continuity conditions =j, ,E =E; must
properties distinct from that of the interior of the sample.be satisfied(iii) The total current along the sample

(14)

i
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wherel; (J;) is the total current focusing at the corner. Since
the system is periodic, and average fields and currents are
taken to be uniform, the set of local curreh{sJ; must also

be periodic. The pair of currents at a vertex takes either of
two values|,,J;, for odd vertices, antl,,J,, for even ver-
tices. The current crosses a sample boundary by focusing at
3-vertices, as shown in Fig(& for the caser,> 0. This
occurs at every other 3-vertex, since current lines can focus
only if oy, experiences a steplike increase to the right when
looking from the edge into the samp(see the Appendjx

The splitting of arrows schematically shows the splitting of
the sets of current lines. A diagram similar to Figa)xcan be
drawn for the equipotential lines, except the notatibnsnd

J; must be replaced everywhere by andV;, respectively.

The components of the average current density in an in-
finite sample can be obtained as an average of the corre-
sponding local currents over vertices of the two types, as
given by

(a)

d/ZT

dr

S PRt PRI AU B
w Ix= 2d ’

(18

|1+|2_J1+\]2
Iy= 2d '

Analogously, for the electric field components, we have

Emzi _|1+|2+J1_J2
x 2d (o) g1 ’

(19

(20

FIG. 5. Diagram illustrating the boundary impedance matrix for-
malism. (3) Chessboard model of the two-phase distribution in a o 1 (li=ly Ji+Jp
long rectangular sample. The arrows schematically show currents Ey “2d T
passing from onéwhite or black region to another by focusing at
vertices. Wide arrows show currents flowing fréto) metallic con-  Where we used Eqgl17). The total current along the sample
tacts. (b) Equivalent sample formed by infinitely thin boundary |t Can be evaluated by adding the local currents crossing the
strips attached to a homogeneous interior of the same width as thaertical dashed line shown in Fig(d&. The result can be

: (21)

02 01

of the sample ira). written as
lior= 21 _}_ij (15) Itot:Ndjf'i_ZI , (22
and the total potential drop across the sample I=3(11+1,+3,—Jy), (23
Vo= 2V+WE;° (16) wherej; is given by Eq(18). The total potential drop across

_ o _the sample works out to be
must be the same as the corresponding quantities in the origi-

nal system. Vior=NdE;+2V, (24
To apply these rules, consider the current-field distribu-

tion in the original system, Fig.(8). As shown in Refs. 6 114+, J1—J,

and 7, each 4-vertex is characterized by the white-to-white ) oy + ol ) (25

currentl; and the black-to-black curredd. Each arrow in
Fig. 5(a) denotes a set of current lines. When passing throughwhereEi,c is given by Eq(21). As we can see from condition
the white or black square, the current spread all over théiii) [Egs.(15), (16)], the parameters andV introduced in
square, then focuses at a corner where it can pass to anotHegs.(23) and(25) represent, by definition, the effective cur-
square. We remind the reader that current lines cannot crosent in the strip and the effective voltage drop at the strip,
the boundaries between quantized regions, so that the speespectively. Notice that the right-hand sides of E®S),
cific distribution of these lines inside any square is irrelevant(25) depend only on;+1, andJ;—J,. Using the system of
Each side of a square is at constant potential. The potenti&gs. (19), (20), we can express these two linear combina-
drop between the two sides forming a white black corner  tions in terms of componentjajc ,E; . On the other hand,
is given by from condition i), we havej;=j, andE;=E;. As a re-

sult, we arrive at two equations relatimgandV to j, and
, (17) E; . This can be written in the forrfl4), with matrix> given

by
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V=1, Ef=-j,,
I'=-V, jl=E. (30)

N[ -

_Z(UZ_‘Tl) (ot oy)

> 1 ' (29 Since the geometry of the phase distribution in the primed
502t o) Glop—oy) system does not differ from the original one, the variables
I”,ji should be related t&,V' via the same impedance
Note that during this derivation we did not make any particu-matrix 3 given in Eq.(27), exceptoy should now be re-
lar assumptions about the conductivity tensor in the bulkpjaced byo. Using Eqs(29), (30), we arrive at the relation
o*, since we did not specify componentsj6fandE”.
Let us discuss possible modifications of our result for the 1 1
case in which the two-phase system is random with a corre- B\ .| R d—z(P1—Pz) ~5(pP1tp2)
lation radiusér, Eq. (1). Obviously, the Hall components ( ):P<_ ) =
31, and 3,4 in Eq. (26) will not change, since they simply Ju E( tp,) - ﬁ( — )
reflect the fact that black-and-white phases, in the vicinity of 2\P1T P2 4 P17 P2
the interplateau crossover, share the edge equally. Then, the (32)

diagonal c.:omponent§,'11., 2, have to be .proportlongl to Comparing Egs(14) and(31), we see thaP=3"1. As one
o,— gy, since they originate from the dissipative resistance

. : X ; can easily check, this is only consistent with ER7) if
of three vertices, Eq(9). The lattice periodd in the two d,=d,, which proves our assertion that=d,=d even for
componentsy, 11, 3, has to be replaced by some average

. a random system.
Iengths_,dl and d, re_sp_ectlvely, both of the or.der . Thus, the presence of the edge is equivalent to a fictitious
One might expect priori thatd, andd, could differ by a homogeneous anisotropic strip of widthi2~ &+, with the
numerical factor, since directions along and across the ed m

Y8cal resistivity tensor components
are not equivalent. However, as we show below, both lengths y P '

are exactly equall;=d,=d. b =—pP =(pi+py)I2 (32
We will employ a duality that exists between the current P Py iPabe
and field distributions in 2D conductof$.Let us imagine ng:—Psy:(Pl_Pz)/z- (33)

that the system in Fig.(8) (with many rows of verticesis

randomized, i.e., squares are distorted and vertices are ndhe unusual fact that the dissipative resistivity in the direc-
identical. The currents; ,J; and the voltage drops,;,V; at  tion perpendicular to the strip is negative deserves comment.
corners are no longer periodic. Although the system is fullyA real physical striplor a layer if in 3D with well-defined
characterized by the discrete set of currents and voltages geometric boundaries cannot have a negative net diagonal
the vertices, it will be convenient for now to consider theresistivity in any direction, since this would contradict the
local current density distributiof(r) and the local electric second law of thermodynamics. However, this is not the case
field E(r). Both functions satisfy the continuity conditions here: the effective contact strip in our discussion has no real
that the number of current or potential lines entering andJeéometric boundary that could be drawn, for instance, inside
leaving a given(black or whit¢ square are equal. Suppose Of the sample in Fig. @). The strip describes small correc-
that we have found the contact impedance matrix in thigions to the net conducting properties of the sample which, as

system which, as explained above, has a form a whole, has a positive dissipation.
We can now reobtain the contact resistance in the Corbino
d; 1 geometry, say, that from the inner contatR;. Putting
- Z("Z—‘Tl) E(UZJ”TI) E =0, from Eqs.(14), (26), we have
2= (27) Y, d

AR, (34)

1 = =
_5(02+Ul) d_z(o-Z_O-l) jJ_27Trl 27Tr1(0'2_0'1)’

hich coincides with the corresponding term Ry, EQq.

1), if one putsd=¢.

Consider now the standard Hall bar measurement in
which the current flows parallel to the edgej§,=j°y"=0.

Let us now map our system onto a primed system with th
same geometry of the phase distribution and with the curre
density and electric field,

E'(N=[2xj(n], | (N=[2XE(r)]. (28)  Relation(31) taken withd; =d,=d yields
The steady-state condition¥,-j'=0VXE'=0, are obvi- 2p°,
ously satisfied in the system, if they are satisfied in the origi- E=—y 1 V=pbl, (35

nal systemV -j=0,V X E=0. As follows from Eqs(28), the
quantized Hall conductivities in the black and white are  where p®, and psx are given by Eqgs(33) and (32). The

, electric field in the interior is homogeneous and given by

o =—p=—1loy,, k=1,2. (29 . Y N

The average components,V,j, ,E; characterizing the i AEX BImPodxr By =pypdx 39
boundary strip are transformed in the same way as the conwhere p* =(o*) ! is the resistivity tensor of an infinite
ponents of the local current and electric field in E(9), sample. Expressions for the experimentally measured com-
that is ponents of the resistivity tensorpyP=WE /Iy,
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Py =Viai!l o Can easily be obtained from Eq45), (16),  strip is defined as the average of the currents crossing the

(35), and(36). The result has a form inner and the outer sides of the strip. Since the current along
the stripl depends, in the general case, on the coordirate
1 e 1 N d 3 the two currents may be different. Similarl is the aver-
PP WE, o* T WpP. (37) age of the parallel components of the electric field at the two
pXX | pXX pXX . . . . ula
sides of the strip. Such a choice of the definitionsEEpfand
Vot dp¥, j. ensures that all parameters entering the relatiagh are
iipzl— = pyx— Vpr—(ng— Py (38)  expressed via first derivatives of functiosisor ¢: | andV
tot XX

are discrete derivativeglifferencegin y, andj, andE; are
The last expression was expanded in terms of the small pgontinuous derivatives i®. As a result, the matrix relation
rameterd/W. (14) represents the correct description of the conducting
Thus, the presence of the edge leads to a negative correproperties of the edge to first order in the small parameter
tion in the measure@$?, as it did foroSy” in the Corbino  d/lg. To increase the accuracy to second order, one would
geometry. Moreover, ip;— p,<p;, the relative magnitudes have to write a matrix relation, which also includes second
of both corrections are the same provided that the Corbin@erivatives of ¢ and ¢, such asdy;/dx—dy,/dX,
disk is narrow and has the same rafiéV as the Hall bar. As ~ d¢1/dx*+d?y,/dx?, etc. In this and the following sec-
we have seen above, this fact is related to the current-fieltions, we restrict ourselves to first-order effectslite . We
duality. Physically, the negative correction t° in the ~ note that the aforementioned equivalence between the effec-
Corbino measurement results from an additional voltagdive boundary strip and a homogeneous strip with a resistiv-
drop at the edge, and the negative correctiop@Bin a Hall ity tensorp® is also only correct to first-order in this param-
bar measurement results from an additional current trappe@ter:
at the edge. Our conclusion agrees with the experimental
observation that the peak heights tend to decrease at low V. COMPENSATING THE FINITE-SIZE EFFECT:

temperatures in both geometri¢s. The correction to the “NONLOCAL’ RESISTANCE
measured Hall conductivity changes sign in the middle of the o )
crossover region, wherp,,=(p;+p,)/2. As a result, the The objective of a standard QHE transport experiment

characteristic width of the transition for both functions Performed on a large sample is to extract the bulk conduc-

- ~ - o
pg);p(;) andp®®(v) is somewhat increased by a relative fac- tivity tensorg™ characterizing an infinite system. As we have
tor of d/W argued above, at low temperatures comparable, o finite-

size effects become noticeable. It would be very useful to
ﬁl_evise a method by which these edge contributions could be
separated from the measured resistances. In this section, we
show how this may be achieved in systems for which the
boundary-strip formalism of Sec. IV applies: that is, for
amples with a sharp edge and for which the edge effects are
ot too large.

When calculating the impedance matrix above, we con
sidered the particular case in which the average current de
sity and electric field in the interior of the equivalent sample
shown in Fig. b) are homogeneous. In the following sec-
tion, we will discuss “nonlocal” resistance measurements for
which this is not the case. We now discuss the applicabilityS

of the boundary-strip approach for an inhomogeneous eled’ . . . .
y-Sip app g As shown in the previous section, at temperatures which

tric field. Suppose that the electric field in the interior of the X :
equivalent sampleE*(r) varies with some characteristic are not too I(l)W' the edge effect can be descnbeq by a matrix
length |, wherelz>d. Then the four parameters of the > (OF P=2"") which, for the two-phase model with a sharp
boundary strip entering matrix relatig@4) will also depend ©d9€, contains a single unknown parameter—the average

on the coordinate along the edge Let us express the cur- 1€ngthd~¢&r. In order to determine this parameter, one ad-
rent density in the homogeneous interior in terms of theditional measurement beyond the standard measurements of

pseudoscalag(r), as given by Ryx and Ry, in the Hall bar geometry is required. In what
follows, we suggest a way in whiahmay be extracted from
i(N=[2x V], (399 a measurement of the enhanced “nonlocal” resistarica.

S _ ) ) Unlike the standard Hall bar measurement, for which the
Wh'Ch. IS always poss!ble §|nc§.1=0. AnaIOQOl.JS'y’ the. current passes along the sample, in a “nonlocal” measure-
electric field can be written in terms of the electric potential ent the current is forced to cross the sample between

asE"(r)=—V¢(r). At the boundary stripjs experiences a propes 1 and 2 on opposite long sides of the sample, Fig.
step fromy;, to 4. The current inside the striband the 5 The “nonlocal” resistance is determined from the po-
current crossing the strip are given by tential difference between a second pair of probes 3 and 4,
Riioc=Va4/l 15. In @ homogeneous sample, as follows from

l=¢y—thy, |, :E(% + % ) (400  standard electrostatic consideratioRg,. should decay with
2\ dx = dx the distance between the current and voltage prabess
Analogously,V andE are given by given by the series
1(d¢; doy Ruioc= pix(C18” ™ W+ Coe 3™ W), (42)
V=d1=¢2, B==3| 5" ax ) (41

whereC,~C,~1 are numerical coefficients determined by
where ¢; and ¢, are the potentials at the outer and innerthe shape of the contacts. A=W, the resistance is domi-
sides of the strip, respectively. Thus, the current across theated by the first exponential in this series. As found in Ref.
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23, the experimental value &,c Observed at low tempera- 2 p_‘y’X dgn [, p_)’jx a_¢2+ L W

tures is much larger than that predicted by E4@). This gl ¥ = 5 G TPy S o TP ay O
effect clearly indicates the existence of currents localized (45)
near the edge, in addition to the current passing in the inte-

rior of the sample. where all partial derivatives are evaluated at the lower edge

The most common explanation for the enhanced “nonlo-n Fig. 5b), y=—W/2. The matching condition for the up-
cal” effect invokes the presence of a smooth edge to theper edge is analogous.
sample, at which the electron density vanishes slowly. This The solution of Eqs(43), (45) depends on4(x), i.e., on
would lead to the appearance of one or more quantized Hathe conditions on the outer boundary of the sample, which
strip(s) at the edge, within which the scattering can be veryare set in the experiment. Let us assume that, in the “nonlo-
small, even when the bulk of the sample is in the region ofcal” resistance measurements, the currégt enters and
the peak inp,,. The low-dissipative strip can trap a notice- leaves the sample at small contacts 1 and 2, which are posi-
able portion of the current in the samflén the edge-state tioned atx=0, Fig. 5a). Then we havay,;=1,,/2 atx>0
transport language, this can be formulated as a poor equiland ;= —1,,/2 atx<0, with a step ak=0. We will restrict
bration between different edge channels: those at the edge ofirselves to findingy(r) far from the current probes,
the sample and those in the bdfié*1t is also possible foran x>W. In the limit x—o, all currents vanish so that
enhanced “nonlocal” effect to arise, even when the edge isy,— ;. We will look for an asymptotic solution of Egs.
abrupt, as a result of the random macroscopic inhomogené43), (45) in the form
ities, which we have discussed in previous sections. As we
have seen above, the effective boundary-strip traps an addi- P(r)=1,2+ Ccos(ky)e * (46)
tional currentl along the edge, which causes a decrease in _ o
the observe®,,. As we will show in this section, the same Which is symmetric abouy=0 and satisfies Eq43). Sub-
edge current causes an enhanced “nonlocal” effect, whict§tituting this anzatz andy; /dx=0 into (45), we obtain the
can be thought of as an effective increase in the samplfollowing equation for the decremekt
width. b . b
We present a simple quantitative theory, which allows one tar( kW) _ 2pxx Py Pyx2
to relate the corrections iR, to the enhancement in kdp}, oy,
Rnhoc- Since our derivation is based on the phenomenological
boundary-strip description, this approach is rather general We have to choose the smallest solution of this last equa-
and can be used for a class of the edge models. Moreovaion, which tends tar/W asd/W— 0. To first order ind/W,
although the edge properties are described by the four conyye obtain
ponents of the matrix®, which are expected to depend on a

2

(47)

specific edge model, the relation between the corrections in T Pl
Ry, and the enhancement R}, turns out to be universal in k=W " Wer=W+d—5-. (48)
€ XX

the sense that it does not include any of these components.

The edge corrections to the measured Hall resist&)cean .
be found from the nonlocal effect in the same manner. In this Clearly, the voltage between probes 3, 4 decays with the

h has to K th tof th distancel in the same exponential way as the current den-
case, however, one has 1o know the compor;é/’r;g ot the sity, such thaR ,,ccexp(—7L/\W.g). Thus, as far as nonlo-
boundary-strip matrix.

. o ) ... cal resistance measurements are concerned, macroscopic in-
We begin by deriving the current and potential distribu-

tions for a nonlocal measurement on the effective Samplgomogeneities make the sample effectively wider. In the
At g ; ion of th k ipk wherep’,~p®,, the effectiv
shown in Fig. %b). To do so, it is convenient to express the egion of the peak iy (v) , Wherepi— pyy, the effective

current density in terms of a pseudoscaldr), as defined width increases by of order the correlation radiys

Y . P L Notice that the formulg37) for the measured diagonal
by Eq.(39). Correspondingly, the currents inside and aCross . .crivity can now be rewritten as
the strip are given by Eq40). The distributiong(r) in the y

interior of the sample satisfies the Laplace equation W
* _ exp eff (49)
Pxx= Pxx W’

V=0, (43

. N . which means that effect of inhomogeneities on the “local”
which follows from the condition§ XE=0, p,#0.Inad-  resistance can be thought of as the same increase in the
dition, the parallel component of the electric field in the in- sample widthR, = pSPL/W= p*,L/W,;. This immediately

terior E, and the electric field in the strig must match, as gives a simple method by which the edge contribution to

given by p®® can be eliminated to first order a/W. First one must
measure the “nonlocal” resistand®, . with two pairs of
Exy=—WI2)=E|, E =pxxix—Pyxy: voltage probes situated at different distantgsL, (larger
thanW) from the current probes. The effective width can be
E|\=p§x2|/d—p$Xh ' (44) calculated as
b ¢ H H Rnloc(l-l)
where the matrix” is defined in Eqs(32), (33). Using Egs. Wog= m(Lo— Ly)In ™Y === |, (50)
(39), (40), the last condition can be written as Rniod L 2)
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Combined with a knowledge of the geometric sample widthsitive to even weak macroscopic density inhomogeneities in
W, this can then be substituted in E@9) to obtain p}, . the sample. The inhomogeneities may result in strong finite-
(Since precise measurements of the geometric width of theize effects even in samples which, from a conventional
sampleW may present some difficulties in experiment, onepoint of view, are very large. This may be a reason why the
may determine it in the same way &, but atB=0 when  predicted universal behavior of the transition regions in an
weak inhomogeneities are not importaritlsing the same infinite macroscopically homogeneous system is so hard to
method, we can extract the bulk value of the Hall resistivityobserve experimentally. Within our model of macroscopic
P;x from observed Hall resistancRy= pgip_ From Egs. inhomogeneities, we were able to account for both the de-
(48), (38), we get crease of the conductivity peak heights at low temperatures
and the curious “nonuniversal” scaling of the peak heights
% _ expL, exp_ b off revealed in some samples. In the low-temperature limit, the
Pyx=Pyx T (Pyx—Pyx) W 1. (5D experimentally observed peaks dn, in the Corbino geom-
etry are shown to saturate at values proportional to the dif-
It is worth emphasizing that when deriving expressionsferences between adjacent plateaus,ip. (Analogously, the
(49—(51), we did not use any particular values for the com-peaks inp,, observed in the Hall bar should be proportional
ponents of the boundary-strip mat@R. This means that the to differences inpyy -) The proportionality factor depends on
method of compensating the edge effect that we have jughe specific realization of disorder and fluctuates strongly
suggested is rather general and is not restricted to the blacketween samples. The model also predicts unusual peak
and-white regimeT<T,,, studied in Secs. Ill and IV. For shapes, which show quantized plateaus in ltregitudinal
instance, the method can be applied just as well at highetonductivity. The experimental peak heights obtained in Ref.
temperaturesT = Ty, , when a significant part of the current 11 at the lowest temperatures are consistent with this quan-
is carried by the intermediate “gray” region in Fig(d). This  tization.
seems to be the case in experimental data shown in Fig. 3 at Finally, we also showed that for a Hall bar with a sharp
high temperatures wheaty” decreases with increasirip ~ edge, there exist simple relations between the enhanced non-
Relation (49) used to compensate the edge effect in the dilocal resistance and the size correction&jn andR,, when
agonal resistivity is quite universal in the sense that it doet¢hese corrections are small. These relations can be used to
not depend on any components of the boundary-strip matrixéeparate the edge effects from the bulk tensor components
In order to exclude the edge effect from the Hall resistivity pxy andp;‘y.
using Eq.(51), one has to know the specific value pﬁx.
We note, however, that the valmgx=(pl+p2)/2 is more ACKNOWLEDGMENTS
general than its derivation based on the black-and-white
model that we gave in Sec. IV. It merely reflects the symme- We are thankful to C. W. J. Beenakker, D. B. Chklovskii,
try of the local Hall resistivity distributiorp,,(r) with re- V. J. Goldman, L. P. Rokhinson, and S. H. Simon for stimu-
spect to p;+p,)/2, which is conserved as long as the lating discussions. We appreciate help from V. J. Goldman,
sample is effectively very inhomogeneous, i&u;<dvg. L. P. Rokhinson, and B. Su, who provided us with unpub-
We emphasize again that this method applies only to firsished experimental data. One of UsM.R.) expresses his
order ind/W. It yields a partial compensation of the edge gratitude to the Lorentz Institute in Leiden, Netherlands, for
effect atT=T,,, and is useless dt<T,, when all measured hospitality. This work was partially supported by DMR
parameters have already saturated in temperature. Grant No. DMR-94-16910, DOE Grant No. DE-FGO03-
Our conclusions are easy to test experimentally. If theB8BER45378, ONR Grant No. N00014-90-J-1829, and by the

underlying model is appropriate in a particular sample, thédVATO Science Fellowship Programme.

application of this method should produce a wide range in

the temperature dependence (ﬁTXa)YT) within which the APPENDIX: EFFECTIVE RESISTANCE

diagramsoy, Vs o, are close to the “universal semicircle.” OF A FORK VERTEX

In other words, by compensating the edge effects, the

maxima in temperature like those shown in Fig. 3 can be In this appendix, we calculate the effective resistaRge

broadened and brought much closer toeB/B. At the low-  ©Of a fork vertex, a relatively simple example of which is

est temperatures, when the finite-size effects dominate thghown in Fig. 2b). The current distribution in the vertex is

transport propertiesthe “saturation” regime, the method shown by the arrows that denote beams of current lines. The

eventually breaks down and no universality can be retrieved?@ams split and focus at “simple” 3-vertices and 4-vertices,

In fact, such a behavior close to the universal prediction wa¥hich form the fork vertex(Recall that, since the longitudi-

already observed, without any special methods, in the integdtal conductivity is assumed to be vanishingly small in black

regime in the temperature ranges (0.5—2) K [Ref. 1(a)], and white regions, the current lines cannot cross the border

andT=(2—-4) K (Ref. 25. In these low-mobility samples, Petween phases or the metal boundary other then at these

the high-temperature decrease of the peak heights starts Iaiénple vertices. The effective resistancR; can be found

when the size effects are already small. from the net Joule he@=R;l2, wherel is the net current

entering the metal contact. Although the problem would ap-

pear quite complex, it turns out that the dissipated heat does

not depend on the specific structure of the vertex. We will
We have shown that low-temperature measurements afow show this from very general arguments.

the quantum Hall effect in inter-plateau regions are very sen- Let us draw an imaginary circlghe dashed line in Fig.

VI. CONCLUSIONS
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2(b)] enclosing all of the structure of the vertex. Consider the |2
total currentd ¢, I,, andl crossing this circle in the black, Q
white, and metallic areas, respectively. From the current con-
tinuity condition, I=1,—1,, and from the condition that which yields the formuld9) quoted in the main text.
electric potentials at points 1, 3 of the metal boundary must Note, that if the colors in Fig. (®) are interchanged,
be equall,/o1=1,/0,, we find which corresponds to interchangileg and o in Eq. (A7),
the Joule heat will be negativérecall that we assume
| — 01 | 1= 02 | (A1) o,> 04 everywhere in the paperSince this would contra-
Yoo,—oy 0 % om0y dict the second law of thermodynamics, for such a vertex, all
that is, only one of the three currents is an independent qua q_urrents must be zero. Herjce,_only the ve'rtices for which the
. ' rPlghtmost color, as shown in Fig(1®, is white, can be “ac-

tty. . : . . tive” (can participate in the current transfer
thengntgrtz;I g)?grlgsr;?;: inside of the circle is determined by To illustrate our result9), consider the simplegtvithout
branching example of a 3-vertex presented by a corner of a
rectangular homogeneous conductor with the Hall conductiv-
Q= f E(n)j(r)d?r, (A2) ity o,. Two metallic probes are attached at the bottom and at
the top of the rectangle, the sample on the left and on the
whereE(r) andj(r) are the local electric field and the local right bordering to vacuumg;=0. If o,>0, the current will
current density, respectively, at pointinside of the circle. leave and enter metallic probes focusing at the lower left and
Since V-j=0,VXE=0, we can expres§ in terms of the the upper right corners of the sample, which represent the
pseudoscalay, andE in terms of the electric potentiat, as  active 3-vertices. The two-terminal resistance of such a
given by sample is equal, as is easy to see, to the inverse Hall con-
) . ductivity 1l/o,. This amounts to the effective resistance
IN=[zxVy(r)], Er)==Va(r). (A3)  R,=1/20, per each active 3-vertex, in agreement with Eq.
In this notation, the three currenttd ;,1, can be written as (9
As is easy to check, the same rule of selection of active
I=i1—3, l1=do—id, lo=dr—¢3. (Ad) vertices applies if the metal in Fig.(1® is replaced by a
Substituting Eqgs.(A3) into (A2), changing order in the vacuum, as is appropriate for a Hall bar W|th_ an abrupt edge
: . . (Sec. IV. In contrast to the edge-to-metal discussed above,
mixed product, and integrating by parts, we get we now have zero current out of the edge,0, and a non-
zero voltage differenc¥ = ¢p3— ¢, . The expression for the
Q= —f H(V-dl), (A5)  Joule hea can be obtained in almost the same manner as

Eqg. (A5), except it is now convenient to use, instead of Eq.
where the integral is taken along the closed circle in Fig(A9), an equivalent formula

2(b). The circle can be broken into three segments: 3-2, 2-1,

G a7

and 1-3. Within each of the segments, we have _
V¢=(1l0;) V¢, where the Hall conductivityr; is equal to Q=] ¢(Vy-d). (A8)
o,,01, ando (meta), respectively. Integration within sepa- i
rate segments yields The final answer has the form
1 2 2 1 2 2 Q— V2 (Ag)
Q:—E(¢z_¢3)—fq(¢1_¢z)- (A6) 2(0; =0, )’
Using Egs.(Al) and(A4), we obtain, finally, which has the same sign as the right-hand side of(&d).
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