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We study theoretically the propagation of electromagnetic waves through periodic structures consistent of
layered materials with an intensity-dependent dielectric constant. We find the transmission properties to be
strongly modulated by both frequency and intensity in the presence of nonlinearity. The transmission diagram
in the frequency versus amplitude plane exhibits distinctive features depending upon whether the Kerr coef-
ficient is positive or negative. These features, though complicated, can be understood through the analysis of
stable periodic orbits of the corresponding nonlinear mapping. These systems exhibit bistability and multista-
bility most strongly near the upper band edges and between the basins of stable periodic orbits. Resonance
transmissions via soliton formation are analyzed through a simple mechanical analogy. We also discuss the
switching threshold and the feasibility of making a switch utilizing such a structure.@S0163-1829~96!01324-0#

I. INTRODUCTION

When dielectric materials are arranged periodically in cer-
tain ways, light at some frequencies is forbidden to propa-
gate in any direction. The utilization of this remarkable prop-
erty of the recently discovered photonic band-gap~PBG!
crystals for device applications is currently under intensive
investigations.1 Almost all the existing work focuses on the
linear regime in which the dielectric constant is independent
of the field strength. It is well known that the presence of
optical nonlinearity in a system leads to a much richer and
more complex response to radiation. Examples include the
formation of solitons in optical fibers2 and optical bistability
in nonlinear Fabry-Perot etalon.3,4 These phenomena have
important potential technological applications in high-speed
optical communication systems and in ultrafast optical
switches.5 We believe that incorporating nonlinearity in PBG
materials may prove to be equally fruitful. However, before
attacking the full three-dimensional problem, which is much
more challenging, we need a better understanding of the glo-
bal picture of the propagation of electromagnetic~EM!
waves in nonlinear media by using a simpler structure. Such
studies in low dimensions may also prove useful for engi-
neering structures that have very low thresholds for switch-
ing.

In this paper, we investigate theoretically the nonlinear
response of wave propagation in a one-dimensional analog
of the PBG material: a multilayered structure consisting of
alternating dielectric material. These structures, commonly
known as Bragg reflectors, exhibit forbidden regions of EM
wave transmission in the layering direction known as stop

bands. The possibility of achieving optical bistable switching
in these distributed feedback structures was first pointed out
by Winful et al.6 and demonstrated experimentally with a
GaAs/AlAs periodic structure.7 In essence, the bistable re-
sponse results from the modulation of the transmission by an
intensity-dependent phase shift,5 in much the same way as
occurred in the traditional nonlinear Fabry-Perot etalon. Ad-
ditional EM wave transmission modes were discovered
within the stop bands in a numerical study8 of the wave
propagation in nonlinear superlattice structures. These modes
are localized solutions, known as ‘‘gap solitons.’’ Under ap-
propriate conditions, they can couple with the incident wave
to achieve resonant transmission.8,9 Gap solitons can also
exist in higher dimensions.10 Recently, the propagation of
ultrashort pulses in nonlinear superlattices11 has also been
investigated. Due to the nonlinear nature of the problem, the
response to a pulse cannot be obtained from the response to
plane-waves by superposition. Even for plane-wave input, a
global picture of the optical response, has not been presented
yet. Much more is known about the response of electrons in
a nonlinear lattice.12,13 In this case, the periodic modulation
of the nonlinear media is provided by the discrete nature of
the lattice. A recent attempt14 to formulate the transmission
problem of EM waves through nonlinear layered media ne-
glected the inherent difference between EM waves and elec-
tronic waves, and the phase diagram obtained is thus only
appropriate to electrons. Two features of the present study
differ from the previous studies,12,13 ~1! the effectiveness of
the nonlinearity is strongly modified by the frequency, due to
the different behavior of the Maxwell and Schro¨dinger equa-
tion, and~2! the modulation of dispersion relation by super-
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lattice breaks the symmetry between positive and negative
nonlinear media and makes the nonlinear response to the EM
wave much richer and more interesting.

In what follows, we shall formulate the problem of the
EM transmission in nonlinear layered structures and investi-
gate in detail its transmission characteristics. In contrast to
the electronic systems12,13studied previously, the strength of
the nonlinearity depends upon both the frequency and the
intensity of the incident wave. Thus, the transmission dia-
gram is quite different from that of the electronic response in
a nonlinear lattice. This is especially true for nonlinear media
with negative Kerr coefficients, where the strong modifica-
tion of the nonlinearity by frequency, together with the
physical boundary condition, conspires to make the transmis-
sion diagram more complex and interesting. However, we
shall show that as complex as it may appear, the overall
features can be understood through analysis of stable peri-
odic orbits of the nonlinear mapping and analysis of various
bounds of the nonlinear difference and the corresponding
differential equations. We also present a simple and intuitive
picture of the soliton and soliton trains based upon a me-
chanical analogy. We investigate the bistability and multista-
bility in different regions of the parameter space and discuss
their potential use as switches.

Our analysis is based on the steady state response of local
Kerr media to plane-wave input. The effect of absorption,
nonlocal nonlinearity, and possible dynamic and transverse
instability are not included. These effects could be important
for the operation of switching devices. In semiconductors,
the diffusive nature of the nonlinearity counteracts the trans-
verse instability and makes the plane-wave analysis more
relevant to experiment.

This paper is organized as follows. The theoretical formu-
lation of the wave transmission in a nonlinear superlattice
shall be presented in Sec. II, along with some discussions on
the general symmetry properties of the resultant difference
equation. The transmission diagrams from the numerical in-
tegration of the difference equation will be presented in Sec.
III. Also presented in Sec. III is some theoretical understand-
ing of these rich and complex features, including the pres-
ence of gap-soliton solutions. The bistable and multistable
response will be discussed in Sec. V, and we conclude in
Sec. VI.

II. FORMULATION OF THE PROBLEM

Consider a structure of 2N alternating layers of two di-
electrics with linear dielectric constante0a ande0b and thick-
nessa and b, respectively. The nonlinearity of one of the
dielectrics, say mediaA, is much larger than the other, so we
can consider the later as linear. The steady state plane-wave
transmission problem can be formulated as follows. A plane-
wave of wave vectork is normally incident on the structure
from the left. A fraction of the wave is transmitted through
the structure and exits from the right and the rest is reflected
back. In this study, we concentrate on the stationary response
only and shall not deal with the transient behavior and pos-
sible chaotic dynamics that have been discussed in previous
studies.9 Transverse effects have also been neglected.

The EM waves outside the nonlinear structure are de-
scribed by

E~x,t !5HE0e
i ~kx2vt !1Ere

2 i ~kx1vt ! for x,0

Ete
i ~kx2vt ! for x.N,

~1!

where k5v/c, v is the optical frequency, andc is the
vacuum speed of the light. Within the structure, the propa-
gation of a wave is governed by the Maxwell equations. The
transmission coefficient is defined as

T5
uEtu2

uE0u2
. ~2!

We are interested in the transmission characteristics for dif-
ferent frequencies and input or output intensities.

To obtain the transmission characteristics, one usually
solves the nonlinear wave equation within each layer and
then matches the waves with appropriate boundary
conditions.4,8 Since the solution of the nonlinear equation is
expressed as the inverse of a Jacobi elliptic integral, analyti-
cal calculation becomes nontransparent when the number of
layers exceeds three. In this study, instead of taking this ap-
proach, we investigate the response of the system in the limit
that the nonlinear layer is so thin, such that the field within it
can be approximated as a constant. This is the case when the
nonlinear layer thickness is small compared with the effec-
tive wavelength within it. Under this condition, the Kronig-
Penneyd-function model becomes adequate. Thus, the elec-
tric field obeys,

d2E~x!

dx2
1

ev2

c2 (
n51

N

@11luE~x!u2#E~x!d~x2n!1k2E~x!

50. ~3!

Within the linear layers, the wave consists of two plane-
waves traveling in opposite directions. Eliminating the
waves in the linear media results in a difference equation in
terms of the field at the nonlinear layers,En ,

En111En215@2 cosk2ak sink~11luEnu2!#En , ~4!

where we have adopted the Kerr-type of local nonlinearity,
ea5e0a1lauEu2. The nonlinear Kerr coefficient isla,
wherea5e0a3a. We have assumed the linear media are a
vacuum (eb51), and the distance between the neighboring
nonlinear layers,d5a1b, is taken as one unit length. Equa-
tion ~3! is valid whend!lAen, but end@1. It happens that
such a model captures most of the essential features of the
nonlinear response of the superlattice structures and is
simple enough to allow for analytical treatment under special
conditions, as we shall see later.

Equation ~4! has the property of conserving the energy
flux J52i (EnEn11* 2En*En11). Moreover, it is invariant un-
der a global gauge transformationEn→eiuEn . This means
one can always takeEt to be a real positive number. The
strength of the nonlinearity can be absorbed into the field by
a simple rescaling of the fieldE→E/Aulu. We shall vary the
field strength, but keepulu51. We also note that Eq.~4! has
the same structure as the discretized version of the stationary
nonlinear Schro¨dinger equation for the electron transmission
problem,12,13

cn111cn2152Vcn2leucnu2cn , ~5!
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when we make the identification

cn↔En ,

le↔lak sink,

V[22 cosK↔22 cosk1ak sink.

It is clear that the effective nonlinearity is strongly modi-
fied by the wave vector~or frequency! in the EM case. The
nonlinearity is much less effective in the long wave regime
and at the bottom of the band, in general, where sink;0.
Another important difference is that in the electron case, a
simple gauge transformationcn85(21)ncn maps the system
from (K,V,le) to (K1p,2V,2le). Thus, the transmis-
sion diagram for negativele is related to that of a positive
le , simply by an inversion of theV axis. No such transfor-
mation exists for Eq.~4!. This means the transmission dia-
gram in the (v,uEtu) plane will depend upon the sign of the
nonlinearity. The superlattice structure modifies the disper-
sion in such a way that it breaks the symmetry between posi-
tive and negative nonlinearity.

Before presenting our numerical results, let us explain the
procedure upon which these results are obtained. In the pres-
ence of nonlinearity, the transmission coefficient depends not
only upon the frequency, but also upon the intensity of the
incident wave. Indeed, the possibility of observing bistability
and multistability, i.e., the same input yielding more than one
possible output, is the key signature of the nonlinear
phenomenon.4 Instead, a common approach is to solve the
problem with a fixed output. Equation~4! can then be iter-
ated backwards from the right to the left until we reach the
outside of the nonlinear media on the input side. The electric
field for x,0 is subsequently decomposed into the incident
and reflected plane waves. The transmission coefficient is
then evaluated from the definition given in Eq.~2!.

III. GLOBAL TRANSMISSION DIAGRAM

The results of our numerical calculations for anN580
system witha51.0 are shown in Figs. 1 and 2, for positive
l and negativel, respectively. In these gray-scale plots of
the transmission coefficient in the (k,uEtu) plane, the non-
passing regions appear as dark. We restrict the frequency to
be in the first band, although similar structures are observed
for all the bands. It is striking that the overall features,
strongly modified by frequency as well as the field intensity,
show dominant tongue structures and appear fractal-like. As
the field strength increases, transmission stability diminishes
and nonpassing regions appear and enlarge. Transmission
stops beyond a frequency-dependent critical field strength.
Other salient features include clear interference fringe in the
transmission band, and stop-band widening for positive

FIG. 1. The transmission diagram for a nonlinear superlattice
with a positive Kerr coefficient showing the broadening of the in-
stability regions~dark! and the developing of instabilities around
the stable low-period orbits~shown as lines!. N580 anda51.
Higher bands~not shown! show a similar behavior.

FIG. 2. The transmission diagram for a nonlinear superlattice
with a negative Kerr coefficient showing the creation of passing
regions in the stop bands of the linear systems and overall suppres-
sion of transmission in the lower frequency part.N580 and
a51. Lines are the trajectories of periodic orbits with the period
indicated by the number. The lower periodic orbits bridge the gap
completely for a large enough amplitude.

FIG. 3. The resonant transmission trajectories of single and mul-
tiple solitons in the first stop band of a nonlinear superlattice with a
negative Kerr coefficient.N580 anda50.35. Notice the extreme
low field amplitude.
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Kerr-type nonlinearity, but narrowing for negative Kerr-type
nonlinearity, as the output field strength increases. In fact,
the gap seems to be completely bridged in the negative non-
linear system. Detailed examination of the transmission
within the stop-band reveals well-defined transmission strips
~Fig. 3! for negative nonlinearity only. At the end of this
section, we shall show these are the trajectories of the reso-
nant transmission via single soliton and soliton trains that
were first observed by Chen and Mills.8

In the following subsections, we shall attempt to provide
some theoretical understanding of these complex features
and demonstrate that the main features can be understood
from two important aspects of Eq.~4!. First, each of the
stable periodic orbits of the corresponding discrete nonlinear
mapping possesses a stable basin and these basins form the
dominant tongue and fractal-like structures. Second, the
spectrum and the stability bounds of Eq.~4! control the over-
all shape of the transmission region. We shall also provide an
intuitive mechanical analogy that will help understand the
appearance of solitons and their trajectories in the (k,uEtu)
plane.

A. Nonlinear mapping

Equation~4! can be viewed as a nonlinear discrete map as
follows. We write the complex fieldE in polar coordinates:
En5r ne

iun. The integral of motion for Eq.~4! becomes

J5r nr n21sin~Dun!, ~6!

representing physically the conservation of current, where
Dun5un2un21 . We introduce new dynamical variables:
un5r n

2 and vn5Jcot(Dun). We then obtain, from Eq.~4!,
the corresponding area-preserving nonlinear discrete map-
ping S:13

S:H un215
1

un
~vn

21J2!

vn2152vn2un21~leun211V!

, ~7!

whereV52(2cosk2aksink) andle5lak sink. The start-
ing point of the mapping is (u0 ,v0)5(uEtu2,uEtu2cosk), ob-
tained from the physical boundary condition Eq.~1!.

Starting from an arbitrary point in the (k,uEtu) plane, the
mapping generated by Eq.~7!, in general, will exhibit stable,
unstable, or even chaotic trajectories. Stable and unstable
orbits correspond to passing and nonpassing regions of the
phase diagram, respectively. The unstable orbit diverges as
n decreases, producing an exponentially large value of the
required input amplitude and equivalently, an exponentially
small transmission for a finite input amplitude. Chaotic or-
bits, characterized by irregular field amplitude and phase as a
function of n and extreme sensitivities to initial conditions,
are also found between the dominant tongues of transmis-
sion.

The initial condition that corresponds to stable periodic
orbits can be obtained by iterating Eq.~7! from the starting
values (u0 ,v0) and demanding that the solution be periodic
with periodp. We have explicitly computed these curves for
several lower period orbits (p up to 4; see Appendix! and the
results are shown as solid and dashed lines in Figs. 1 and 2.
These curves clearly trace the dominant tongues of the trans-

mission diagram. Each of these stable periodic orbits sup-
ports a finite stability basin. The size of these basins dimin-
ishes as the intensity increases, and eventually vanishes
completely at a critical value of intensity when the mapping
turns from elliptic to hyperbolic. In fact, there are an infinite
number of such periodic orbits starting atk52pq/p on the
Et50 axis. Because these orbits cannot cross each other and
they terminate at different values of the critical intensity, the
overall shape of the transmission diagram appears fractal-
like. The dominant tongue structure is an actual reflection of
the strong stability of the lower-period orbits. The fractal-
like structure indicates the nonperturbative nature of the in-
stability in nonlinear lattices.12

It is also interesting to see that the period-three and -four
orbits actually cross from one side of the stop band to the
other in the negative Kerr nonlinear coefficient media. The
stability of the orbits apparently decreases when approaching
the center of the stop band, leaving the bridging incomplete.
We find when the frequency is in the gap, the trajectories of
the periodic orbits are sensitive to the form of the initial
condition in the mapping. This clearly indicates the impor-
tance of the physical boundary conditions. The use of
vacuum as an embedding medium for the nonlinear system
makes some of the phase space directly accessible to real
experiments, the gap region in the negative Kerr case being a
good example. This part of the phase space would not be
relevant to the electron case if lattices~rather than a vacuum!
were used outside the nonlinear system. In this case, one can
study the region only by treatingV and k as independent
variables.13

B. Spectra bounds

A spectrum bound can be obtained in a mean field fashion
by linearizing Eq.~4!:

u2 cosk2ak sink~11luEtu2!u<2. ~8!

This bound is placed on solutions with a uniform field am-
plitude throughout the structure. Although in our system no
solutions of this type can exist due to interferences of the
transmitting and the scattered waves by the surfaces at the
two ends of the structure, Eq.~8! nevertheless provides a
reasonable bound for stable transmission as shown in Fig. 4.
This bound atEt50 coincides with the bound of a linear
spectrum for a periodic Kronig-Penneyd-function model.
Equation~8! has simple physical solutions close tok5mp.
For l.0,

uEtu2<H 2

alk2
for k;0

2

ampld
for k5mp1d.

~9!

For l,0,

uEtu2<H 11a

aulu ~12k2/6! for k;0

1

lS 11
d

mpa D for k5mp1d.

~10!
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The spectrum bound analysis helps the understanding of
the different responses at low frequencies between the posi-
tive and negative Kerr media. For positive Kerr media, the
critical field amplitude to suppress transmission diverges at
the bottom of the bands, while for negative Kerr media, it is
finite. ~See Figs. 1 and 2.! Physically, the overall suppression
of transmitting regions for positive Kerr media is due to the
increased contrast between the effective dielectric constant
of the nonlinear and linear layers, and at the same time,
decreased stability, as the field intensity increases. Since the
nonlinearity is modified by thev2 prefactor, the suppression
is the weakest at low frequencies. In contrast, for negative
nonlinear media, the bound is severe at low frequencies,
while it is less below the bottom of the upper band. For
negative Kerr media, increasing intensity has the effect of
shrinking the stop band. The competition between the in-
creased transmission bandwidth, on the one hand, and the
decreased stability, on the other, makes the phase diagram
quite complex. Notice in Fig. 2 the appearance of passing
regions just below the upper band edge.

C. Mechanical analogy and stability bound

The previous subsection focused on the spectrum bound
assuming a uniform amplitude~Bloch-like! solution that pro-
vides a rather reasonable qualitative understanding of the sta-
bility boundary found numerically. In actual calculations, the
amplitude varies as one moves along the structure. In this
section, we shall see that better bounds can be obtained if we
examine the stability of these solutions under the assumption
of a slowly varying field. Under such conditions, the problem
of solving the coordinate-dependent field intensity can be
mapped to the classical dynamics problem of a particle mov-

ing in a centrifugal field. The coordinaten is identified as the
time variablet and the field amplitude as the distancer .
Within this mapping, the stability of the solution really
means the particle will not go to infinity asymptotically.

Close to the ‘‘effective’’ band edge where the mean field
solution iseiKn, the mapping,

F~ t5n!5HEn for K;2mp

~21!nEn for K5~2m11!p,
~11!

transforms Eq.~4! into the differential equation,

d2F

dx2
1c1F1c2uFu2F50, ~12!

wherec152(17cosk)6aksink, c256ak sink, and the up-
per ~lower! sign is taken forK52mp @K5(2m11)p#.

Identifying n with t andF with reiu, the above equation
describes the motion of a unit mass particle in a potential

V~r !5 1
2 c1r

21 1
4 c2r

4, ~13!

with a conserved angular momentum

L5r 2
du

dt
5Et

2sink ~14!

and total energy

Etot5
1

2 S drdt D
2

1
L2

2r 2
1V~r !. ~15!

The radial part of the motion is governed by

Veff~r !5
1

2
c1r

21
1

4
c2r

41
1

2

L2

r 2
. ~16!

This mechanical analogy is very appealing and intuitive.
A similar analogy exists for a dispersive nonlinear film.4

When c2.0, all solutions of Eq.~12! are stable. However,
whenc2,0, the stability of the solution requires the particle
bounded within the local minimum. Noticing the effective
potential can be expressed as a function of intensity
I5uFu2 only,

Veff~ I !5
1

2
c1I1

1

4
c2I

41
I t
2sin2k

2I
, ~17!

the condition for the stability is thendVeff /dI,0, i.e.,

Et
2,

c12sin2k

uc2u
. ~18!

This bound is shown in Fig. 4, together with the spectrum
bound for both the positive and negative Kerr media, ob-
tained by solving Eq.~8!. It is clear that the stability condi-
tion places a stronger bound than the spectrum bound and is
generally in better agreement with the phase diagrams pro-
duced with numerical solutions of Eq.~4!.

A second bound can be obtained by requiring that the
particle be confined within the local minimum ofV(r )
aroundr50 ~for c1.0 andc2,0). This condition is satis-

FIG. 4. The spectrum@Eq. ~8!# and stability bounds@Eqs. ~18!
and~19!# in the first band for a nonlinear superlattice with a positive
~a! and a negative~b! Kerr coefficient.

53 15 581WAVE PROPAGATION IN NONLINEAR PHOTONIC BAND-GAP . . .



fied when the total energy is less than the maximum of the
potential barrier. Taking into account thatdr/dt50 at t50,
the condition is then

Veff~ I t!<
c1
2

4uc2u
. ~19!

This bound~shown in Fig. 4 as stability bound 2! for positive
Kerr media is in much better agreement with the numerical
phase diagram, Fig. 1.

D. Gap solitons

The existence of stationary soliton solutions in the forbid-
den region of the linear system can also be understood
through the mechanical analogy. A soliton is a localized ex-
citation, which, strictly speaking, does not radiate in an infi-
nite lattice. In the mechanical picture, this is possible only
when the total angular momentum is close to zero. The par-
ticle starting withr50 and moving in the potential will be
reflected by the potential barrier at larger , and the time
dependence of the coordinater produces precisely the en-
velop profile of a soliton. Solving the differential equation
@Eq. ~12!# with Et50 yields a single-soliton solution in an
infinite lattice,

F~n!5A 2

2luc2u
1

j
SechS nj D , ~20!

where the extension of solitonj51/Auc1u.
A simple physical picture can dispel the apparent mystery

associated with the formation of the stationary soliton. The
soliton forms only within the otherwise nonpassing region.
In the forbidden region, the wave amplitude can be exponen-
tially increasing or decreasing withx and we reject the ex-
ponentially increasing solution, because it is not physical.
However, in a nonlinear medium, the effective stop-band
width depends upon the field intensity. When the field
strength increases exponentially from a starting small value
as one enters the nonlinear system from outside, the effective
stop-band narrows and eventually closes. The field will then
behave as if it is propagating within the pass band and starts
to oscillate. But as soon as the field strength falls to a value
such that a gap opens and the frequency is once again in the
gap, the field begins to decrease exponentially. The overall
shape of the field thus shows the localized structure of a
soliton.

The analytical solution for the soliton profile compares
well with the numerical results. An example is shown in Fig.
5 for a system exactly at resonance (T51! with N580,
a50.35 and a frequency just above the top of the first band
and field strengthEt50.000 035. The phase of the soliton
field ~not shown! is almost a constant, except in the tail part
where coupling between the soliton and the outside environ-
ment began to have an effect. We have checked that the
soliton extension is independent ofEt , but the peak position
of the soliton moves away from the center of the structure as
Et departs from the resonant field amplitude.

Resonance transmission is achieved via the formation of
solitons which, in turn, couple to the incident and output
field. Resonance occurs when the tail of the soliton exactly
matches the input and the output field at the surfaces with

equal amplitude. When exactlyNs solitons are confined
within the structure, the resonant input~and output! field
amplitude is given by a simple relation,

Et5A 2

2luc2u
1

j
SechS n

2Nsj
D . ~21!

These trajectories are shown in Fig. 6 forNs up to 5 and
should be compared with the numerical results shown in Fig.
3. Given the approximate nature of the analytical solutions,
the overall agreement with the numerical calculation is quite
satisfactory.

Equation~11! clearly shows no soliton solution exists for
positive Kerr media in thed-function model. In fact, this is a
consequence of thed-function approximation. In this model,
for positive nonlinearity and as the field strength increases,
the upper band edge moves away from the frequency, while
the lower band edge of the next band is fixed atk5mp. Not
only does the stop band never close as the field strength
increases, but it actually widens. As a result, gap solitons
cannot form in thed function model when the nonlinearity is
positive. For nonlinear layers of finite width, soliton solu-
tions do exist for both positive and negative Kerr media,
because both band edges shift with intensity. This is in
agreement with the conclusion of Chen and Mills,8 who

FIG. 5. Single-soliton profile in a nonlinear superlattice with a
negative Kerr coefficient.N580 anda50.35. The circles are the
numerical values and the solid line is the analytical results, Eq.~20!.

FIG. 6. Multiple-soliton trajectories from the analytical predic-
tion @Eq. ~21!# for the same system of Fig. 3.
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found solitons at the upper edge for positive Kerr media and
at the lower edge for negative media.

Finally, we note that other types of nonstationary solitons
may exist in the gap of a Bragg reflector. These solitons can
propagate with a velocity between zero and the average
speed of light in the medium and exhibit relativistic
behavior.9,15,16

IV. BISTABILITY AND SWITCHING THRESHOLD

In this section, we focus on the bistability and multista-
bility induced by the periodic modulation of nonlinear me-
dia. Bistability is said to occur when the system has two
output states for the same value of input over some range of
input values. Which state of these possible outputs the sys-
tem follows depends upon the detail history and dynamics of
the input. As an example, the input-output characteristics of
anN580 system with the frequency inside the second trans-
mission band show the generic characteristics for an optical
bistable system~Fig. 7!. This curve is obtained by varying
Et . The part of the curve with a negative slope is unstable,
and the arrows indicate the actual path that the system takes
in response to an increasing or decreasing input field. The
hysteresis loop is a signature of the bistable response. An
important quantity is the switch-up and -down intensity that
measures the energy it takes to operate the switch. To
achieve low switching threshold in application, both
switch-up and switch-down intensity are required to be low.

In the nonlinear wave propagation problem that we are
considering, bistability occurs quite generally when the
transmission coefficient is strongly modified by the field in-
tensity. We classify the bistability into three categories ac-
cording to the way they occur,~1! bistability within the
transmitting regions,~2! bistability between the tongues, and
~3! bistability via soliton formation~only for l,0 in our
model!. Two typical responses are shown in Figs. 8 and 9,
respectively, for frequencies inside and outside the transmis-
sion band.

The bistability within the transmitting band operates ex-
actly with the same principle as the nonlinear Fabry-Perot
devices.4 The modulation of the dielectric constant by the
field inside the nonlinear medium produces an extra phase

shift, which changes the interference pattern and hence the
transmission coefficient. To accumulate over the entire
sample a phase shift of the order ofp required for switching,
both the field strength and the length of the sample must be
large. This is illustrated in Fig. 7 and in the low field part of
Figs. 8~a!–8~c!. The switch-up and switch-down intensities
are generally of the same order of magnitude. The switching
intensity varies as the inverse of the total length of the struc-
ture if absorption is neglected.

The second class of bistability occurs when the field in-
tensity crosses from one tongue to another~see Figs. 1 and
2!. Figure 8 shows the modulation of the transmission coef-
ficient when the output@Fig. 8~a!# or the input@Fig. 8~b!#
field amplitude is increased. Notice the existence of a non-
passing region (T50! in the middle in Fig. 8~a!. The two
output states are characterized by being at different transmis-

FIG. 7. Transmission curve of a typical bistable system. Notice
regions with three output solutions for the same input. The part with
a negative slope is unstable. The switch up and switch down occur
as indicated by the arrows.

FIG. 8. Typical transmission characteristics when the frequency
is inside the transmission band.~a! Transmission coefficient vs out-
put field amplitude;~b! transmission coefficient vs input field am-
plitude; and~c! output field amplitude vs input field amplitude.
Notice the extreme optical limiting as evidenced by the plateau
structure in~c!.
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sion tongues. Because the crossover between the tongues oc-
curs only when the nonlinearity~or the scaled field strength
E) is of the order of one, the switch-down intensity is much
larger as compared with that of the first class. The switch-
down intensity cannot be reduced by increasing the size of
the structure. Moreover, since the instability in the nonpass-
ing region is strongest with a diverging rate of exp(3N), the
plot of Et vsE0 shows plateau structures@Fig. 8~c!#. Similar
behavior was observed in a previous study of the electron
transmission in nonlinear lattices.12 Therefore, the switch-up
intensity can be orders of magnitude~in fact, exponentially!
larger than the switch-down intensity.

The third class of bistability occurs via gap-soliton trans-
mission when the frequency is in the stop band of the linear
system. The transmission states are characterized by the
number of solitons contained in the resonant state. Figure
9~a! shows the transmission coefficient as a function of the

output field amplitudeEt . The resonance transmission at low
field amplitude is a result of soliton and soliton-train forma-
tion. The single-soliton and two-soliton transmission charac-
teristics are shown in Figs. 9~b! and~c!. Notice the extremely
small values of the switch-down field. In fact, the switch-
down field decreases exponentially with the system size and
is given by Eq.~20!. The reduced threshold is due to the
concentration of energy on localized areas. This attribute is
extremely advantageous for highly nonlinear systems with
absorption, for example, semiconductor nonlinear materials
in the vicinity of the electronic band edge. Unfortunately, at
the switch up between the different soliton transmission
states, the transmission is extremely low. Hence, the
switch-up field is very high@not shown in Fig. 9~c!#.

All the experiments on distributed feedback structures
have been done utilizing the first class of bistability. As we
remarked before, the second class bistability requires large
nonlinearity and are not suitable for switches. However, it
can be used very well for optical limiting. The third class
bistability apparently has the promising advantage of an ex-
tremely low switch-down threshold. However, there are sev-
eral difficulties with this type of bistability. The nonlinear
effect in most of the materials saturates at high intensity.
This may hinder the formation of gap solitons, because their
existence still requires a large nonlinear effect at the peak
positions. Moreover, effective coupling between the incident
wave and the gap soliton could be a problem, due to the
sensitivity to the precise value of the input to achieve reso-
nance, as the size of the system is necessarily large for low
threshold applications.

V. CONCLUSIONS

In conclusion, we have investigated the propagation of
EM waves in a superlattice of layered structure with an
intensity-dependent dielectric constant. The transmission
diagrams in the frequency-amplitude plane exhibit interest-
ing and complex tongue structures, due to the increasing in-
stability induced by the the periodic modulation of the inten-
sity. For positive Kerr media, the transmission is severely
suppressed away from the bottom of the band. For negative
Kerr media, transmission within the stop band is possible
with increasing intensity. Moreover, soliton solutions exist
within the stop band, and through coupling, resonance trans-
mission can be achieved. These complex responses are ex-
plained by analyzing the spectrum bound and stable periodic
orbits of the corresponding nonlinear mapping. Utilization of
solitons to confine energies within small localized areas can
reduce the switching threshold to a value that is reachable
within the currently available radiation intensity. However,
several difficulties must be overcome before one can build
switches operating under soliton resonance transmission con-
ditions, as discussed in Sec. IV.
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FIG. 9. Typical transmission characteristics when the frequency
is in the stop band.~a! Transmission coefficient vs output field
amplitude;~b! transmission coefficient vs input field amplitude; and
~c! output field amplitude vs input field amplitude. Notice the loga-
rithmic scale in they axis in ~b! and ~c!.
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APPENDIX A

In this appendix, we give the equations satisfied by the
lower periodic orbits of the mapping Eq.~5! with the starting
point (u0 ,v0)5(uEtu2,uEtu2cosk). We introduce new vari-
ables V52(2 cosk2aksink), le5lak sink, and x
[leuEtu2. The trajectories for the periodic orbits satisfy the
following equations.

For the period-one orbit,

x52~21V!. ~A1!

For the period-two orbit,

x52V. ~A2!

For the period-three orbit,

x514ax41~4a212b!x31~4ab1V!x21~2aV1b222!x

1~2a1b!x50. ~A3!

For the period-four orbit,

f 22~x f21V f2x2a!22sin2k50, ~A4!

wherea[V1cosk, b[a21sin2k, and f (x)[x212ax1b.

1Photonic Band Gaps and Localization, edited by C. M. Soukoulis
~Plenum, New York, 1993!; Photonic Band Gap Materials,ed-
ited by C. M. Soukoulis~Kluwer Academic, Dordrecht, 1996!.

2A. Hasegawa and F. D. Tappert, Appl. Phys. Lett.23, 142~1973!.
3H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesant, Phys. Rev.
Lett. 36, 1135~1976!.

4J. H. Marburger and F. S. Felder, Phys. Rev. A17, 335 ~1978!.
5H. M. Gibbs,Optical Bistability: Controlling Light with Light

~Academic, Orlando, FL, 1985!.
6H. G. Winful, J. H. Marburger, and E. Garmire, Appl. Phys. Lett.
35, 379 ~1979!.

7J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud,
C. Rolland, and A. J. SpringThorpe, Appl. Phys. Lett.63, 866
~1993!; B. Acklin, M. Cada, J. He, and M.-A. Dupertuis,ibid.,
63, 2177~1993!.

8Wei Chen and D. L. Mills, Phys. Rev. B36, 6269~1987!; Phys.
Rev. Lett.58, 160 ~1987!.

9C. Martine de Sterke and J. E. Sipe, inProgress in Optics, edited
by E. Wolf ~Elsevier, Amsterdam, 1994!, Vol. 33.

10S. John and N. Akozbek, Phys. Rev. Lett.71, 1168~1993!.
11M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer,

Phys. Rev. Lett.73, 1368~1994!.
12F. Delyon, Y. Levy, and B. Souillard, Phys. Rev. Lett.57, 2010

~1986!.
13Yi Wan and C. M. Soukoulis, Phys. Rev. B41, 800 ~1990!.
14D. Hennig, H. Gabriel, G. P. Tsironis, and M. Molina, Appl.

Phys. Lett.64, 2934~1994!.
15D. N. Christodoulides and R. I. Joseph, Phys. Rev. Lett.62, 1746

~1989!.
16A. B. Aceves and S. Wabnitz, Phys. Lett. A141, 37 ~1989!.

53 15 585WAVE PROPAGATION IN NONLINEAR PHOTONIC BAND-GAP . . .


