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Periodic boundary conditions in ab initio calculations.
Il. Brillouin-zone sampling for aperiodic systems
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Brillouin-zone sampling in total-energy calculations of aperiodic systems using periodic boundary condi-
tions is considered. Although the energies converge to the exact result in the limit of large supercells for any
k-point sampling scheme, they do not converge at the same rate. In particular, it is shown that the use of a
single sampling point at the origin of reciprocal space is especially inefficiektpaint sampling scheme is
proposed, which is computationally efficient and its efficacy relative to other common approaches is demon-
strated [S0163-18206)02923-3

[. INTRODUCTION contribution from interactions between the neighboring su-
percells. Therefore, it is relevant to consider which calcula-
Total-energy calculations of periodic systems are genertional scheme leads to results for the total energy that con-
ally performed on a single unit cell, using periodic boundaryverge fastest with respect to cell size. In a previous paper,
conditions! The eigenstates of such a system can be labeledie considered this question for purely electrostatic interac-
by the reciprocal-lattice vectors, in the first Brillouin  tions. We showed that for any system, with suitable choice
zone? Since the system is infinite, the quantum numbers of the energy functional, the calculated energy could be
are continuous. Calculation of the total energy requires anade to converge to its limiting result &(L ~°), wherelL
self-consistent calculation of the potential and the eigenvalis the linear dimension of the supercell. However, it is pos-
ues, which are performed at a finite number of points in thesible that in the limit of large cells the interaction is not
Brillouin zone. Procedures for generating optimal setk of dominated by the remaining electrostatic interactions
points have been proposed and discussédhe dependence (quadrupole-quadrupole, dipole-octupole, ethut instead
of the eigenvaluegas well as other quantitieen k reflects by chemical interactions. The existence of such interactions
the chemical binding between atoms in the unit cell undercauses the band structure to be dispersive, with the energy
consideration and their counterparts in neighboring &dits.  varying through the Brillouin zone associated with the re-
the absence of any interaction, the energy bands would beeated supercell. Therefore, it is necessary to examine
flat. k-point sampling schemes for performing the integration
Aperiodic systems, such as defects and surfaces, are alswer the Brillouin zone also for aperiodic systems.
often calculated in a periodic arrangement using a supercell. Unlike periodic systems, a converged calculation of an
The supercell contains part of the system of interest, which isiperiodic system is possible only in a very large supercell. In
then periodically repeated in space. If the supercell is chosethe limit of an infinitely large supercell, the bands are flat
to be large enough, the interactions with neighboring cellsand all points in reciprocal space are equivalent, but for any
will be insignificant and the energy calculated will be that of finite cell, the band structure is dispersive. In determining the
the aperiodic system. The advantages of using periodieet ofk points to be sampled in a calculation of an aperiodic
boundary conditions for aperiodic systems include easy repsystem, an important consideration is minimizing the number
resentation of a condensed-matter environment and the usd k points, because of the computational effort required for
of numerical schemes developed for periodic structures, itarge supercells. Many aperiodic calculations have low or no
particular, the plane-wave representation. symmetry and, therefore, the first Brillouin zone is irreduc-
However, in practice, it is difficult to perform calculations ible and the sampling must extend over the entire zone.
in cells large enough for the total energy of the aperiodicTherefore, it is preferable to sample at points of high sym-
system to be fully converged with respect to cell size. This ismetry in the Brillouin zone, in order to reduce the total num-
because the computational effort increases rapidly with celber of points sampled. These considerations have often led to
size: e.g., for a defect in a solid the effort increase&/3s  the choice of single-point sampling at the origifi point),
whereV is the volume of the supercell, and even in the bestwhich has the additional advantage of real wave functions.
case, of an isolated atom or molecule, the effort increases dshis simple scheme will indeed converge to the exact result
VInV.! If the calculation is performed using a supercell in the limit of a large enough supercell, but it is not clear that
which is too small the calculated energy contains a spuriouits rate of convergence will be especially fast. More exten-
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sive k-point sampling has also been reported for aperiodic B 3 )
calculations, but, to the best of our knowledge, no analysis of e(k)=e+ | dr[¢(r)]“Au(r)
k-point sampling for aperiodic systems has been reported to

date. + A3 p(r)Au(r) d(r—R)cogk:-R
In this paper, we consider the question of obtaining a Rgo ;‘2:} HOAU & )eos )
sampling scheme for which computed energy will converge 1)

rapidly to the limiting value for the infinitely large supercell. ' .

For simplicity we focus on neutral point defects, without Where the sum is over the supercell lattice veci®ysp are
dipole moments, in systems with gaps at the Fermi léwel,  the Wannier functionsAu is the interaction potential, and
semiconductors or insulatorsvhich are neutral and do not € iS @ constant. The interaction potentiali decreases to
have net dipole moments. We consider the energy-ban@ero as the supercell size increases. Therefore, the second
structure of these systems in the limit of large supercells@nd third terms on the right-hand side of E%). vanish as the
using the tight-binding approximation to describe the Weaksupercellfs_lze be(_:omefs L”f'g't?’ Wh'(_:?] w;:pl:es_tbal_sr;he
interactions between defects in different cells. From this pic—energy of interaction of the defect with the lattice. The sec-
ture, we show how to obtain simpli-point sampling ond tgrm, which is a linear response t'erm, is mdependgnt of
schemes, which efficiently converge the calculated energl}?r'ni-{ Zlfstrtlzr?escg-ﬂa:)linnst ;g;rﬁi'diaclh::;z d‘rerﬁ):?r?i?;?:rg i;he
with respect to supercell size in the limit of very large cells. b ping y

. ) . o a sum of interactions between overlapping defect states lo-
In partlcular, we conflr.m that the.ch0|c§ of the origin of calized on neighboring cells.
reciprocal space as a single sampling point has a particularly To calculate the energy, it is necessary to calculate the
slow convergence with respect to cell size. For cells Whichntegrallo

are not very large, we argue that better convergence is ob-

tained by increasing thé&-point sampling and propose a V¢ 3

method for determining the required sampling. We illustrate E= 87r3f d>k &(k), @
our approach and its efficacy with several examples.

which in the limit of finite sampling corresponds to the sum:

II. k-POINT SAMPLING > wie(ky)
E=—, 3

The total energy of the aperiodic supercell containing a 2 W
defect can be considered as the sum of three contributions: ™
(i) the energy of the underlying latticéi) the interaction of
the defect with the lattice, angii) the interaction between
the defects in neighboring supercells. The latter is just th
spurious energy which disappears in the limit of an infinitely
large cell. Therefore, for any givek-point sampling, the

where{k;} are the sampling points arng are the weights. It
és obvious that by choosing a setlopoints, such that all the
cosine factors in the sum aof(k) are zero, we obtain an
optimal sampling scheme in the sense that sampling at addi-
- . tional k points will not improve the result. This optimal set
Fota! energy of an'apenodlc system wallwaysconverge to of k points is infinite. However, the overlaps in the third term
its limiting value in a large enough cell. In contrast, the, (1) qecrease rapidly with increasing distance, so for large
energy of the underlying lattice is well known to converge cq|is the dominant terms are the nearest-neighbor terms.
for any cell size as the number &f points sampled is in-  Thygs in the limit of large cells, it is necessary to consider
creased, until a certaifsystem dependenk-point density is  only the finite set ok points which zero the cosine terms for
reached. The convergence of the defect-lattice interaction rene nearest-neighbor interactions in the third tern{lin If
quires both a large cell size, so that the isolated defect ige use this set ok points, then the size dependence of the
adequately represented, and a sufficiently Highoint den-  energy is concentrated in the second term in @g. Note
sity, so that the underlying density is also adequately reprethat, if we sample only at the origin of reciprocal space, we
sented. Note that, in contrast to periodic systems, in an ap@btain the result
riodic system it isnot possible to converge the energy only
by increasing the density df-point sampling, but it is also s(k)=8+j d3r| (1) 2Au(r)
necessary to converge with respect to supercell size.

Consider first the regime where the defect-defect interac-
tions dominate the convergence of the energy. This occurs if +> T A(NAU(r) p(r—R), 4
the cell size is large relative to the spatial extension of the R£0 J cell
defect state and if we assume, temporarily, that the latticéyhich contains all the interactions with neighboring defects.
defect interaction is either insignificant or is well convergedpjinimal sampling schemes which give zero-nearest-
for any k-point sampling scheme in these large cells. Foreighbor interactions for some common lattice types are
localized defects, the defect interaction can be described igiven in Table I. Note that the optimal sampling schemes are
the tight-binding approximatiofiDefect states, described by determined by a combination of the lattice geometry and the
Wannier functions, will combine to form a band. Thede-  symmetry of the lattice basis. Furthermore, particular bases
pendence of the band will be of the form can reduce the sampling density even further, e.g., the eight-
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TABLE I. Minimal sets ofk points necessary to zero-nearest- 10
neighbor interactions for several types of lattices, units ef&
where a is the lattice constant. The points are determined in a
Cartesian basis. Low-symmetry basis implies no symmetry assumed
(PI space groupand high-symmetry basis implies that the basis

point group has all the symmetry of the lattice point group. Note
that these points are not uniquRef. 3.

Defect energy (eV)
[e)

Lattice type k points for k points for
(real space low-symmetry basis high-symmetry basis
Simple cubic ©0,0,0, 4 b ) 4 /‘
bee (7 1.9 (7 7.9
fec (332, (3.3 2) Gz 39 , ,
G -39 (G312 %0 20 40 60

Number of atoms in unit cell

atom cubic cell of the diamond structure has its nearest- F'G: 2. Convergence of the defect energy with supercell size for
neighbor interactions zeroed just by i@ 0, O point or the three differenk-point sampling methods. The defect is substitution

Sl ; .. of an | atom for a Cl atom in a NaCl lattice with CsClI structure.
(3, 3, 3) point, instead of by both points together. This is .
because of a symmetry-induced “accidental degeneracy” inCUtO]cf energy 250 eV and lattice parameter of 3.05 A.
the band structure.

As an illustration of this procedure, consider an ismatedattice—defect interaction, because the sampling densities are

atom in a cubic supercell. The atom is a “defect” in an in the vicinity of those required for convergence to the accu-

empty lattice, the energy of the underlying lattice is aIways][jft{] ;hggggcszs:eg;\'lms in the primitive unit cell. For
zero, and, therefore, the convergence is dominated by th " .
defect-(d;:fect interactions. The nearest-nei?(hbor iSteraction A flzgrvi,n\:éeraigttilér tgocrogsg'ﬁ/eernﬂ;”CZ?ZV:rﬂﬁgﬁ&g‘;gﬁ;?ﬁﬁ'
in Eq. (1) are zero if we sample at the point®, 0, O and . LT X

1 1 1yin reciprocal space. If we sample at four of the eightg(oa:;}’e:2%?;2?5?0(')?:?;?"Ssge'sa'r}?;ggiec[fﬁtg"Sassqzl'i:r:g'
points (= ‘l"_ T3 *a), then the contributions from the S(_':'C' scheme(e.g., the ﬁearest-neighbor scheme discussed above
ond and third-nearest neighbors are zero as well. In Fig. _]and by increasing the supercell size, cause the energy to
we see the results of such calculations for a Mg atom. It ig5erge. An alternative is to increase th@oint sampling
clear that zeroing the second-nearest-neighbor interactiong + the lattice energy converges. The latter is much more
does not cause the energy to converge any faster. FOr COMgricient computationally if one knows in advance how many
parison, we also show results for the case of single-poing points are necessary.

sampling at the origin, where the convergence is much “a nactical solution to this problem is to first converge the
slower. This procedure can also be adopted in the case O.fd"alculation at a fixed cell size with respect to theoint

dgfect in a ;olid, with equall effectiveness as illustrated 'nsampling density. Thé points should be chosen to system-
Fig. 2. (In this example, we ignore the convergence of the,iica1y account for interactions with more distant neighbors.
Once the relevark-point density has been determined, one
converges the calculation with respect to supercell size at the
same, fixed sampling density, i.e., by decreasing the number
of k points as the cell size is increased. If the cell size is
increased to the limit where only a very small numbekof
points is required, then the considerations outlined at the
beginning of this section should be employed.

We illustrate this approach by calculating the energy of
the ideal vacancy defect in Si. This system has been studied
extensively'~**and is thought to require very large super-
cells for convergence, of the order of 200 atofh3he sig-
nificant dispersion of the defect band is thought to be the
dominant factor in limiting the rate of convergende? In

Fig. 3(a), we present the results for the defect energy in a 16-
~22.36 9.0 10.0 1.0 12.0 atom fcc cell, as a function of tHe-point sampling. One can
Cell size (Angstroms) see that the energy converges as the sampling density is in-
creased. From these results, we deduce that sampling, with a

FIG. 1. Convergence of the total energy of Mg with respect todensity equivalent to 86K points in the first Brillouin zone
supercell size. For each system, three sampling schemes are shov@f:the primitive unit cell, is sufficient to converge the defect
I' point only (circles, I' point and(3, 3, 3), point (squares and  energy to an accuracy of better than 0.1 eV. In Fig) 3we
four (3, 3, })-type points(triangles. The horizontal dashed line show the convergence of the defect energy with respect to
shows the fully converged result. Cutoff energy of 150 eV. cell size at this constant density. We find that using the

-22.28 ¢

-22.30

-22.32 |

Energy of Mg atom (eV)

-22.34 |
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15.0 FIG. 4. Relative convergence of the total energy of three differ-
ent atoms: (filled triangles, Mg (crossey and Na(filled circles.
The supercell size at which convergence is achieved is correlated
inversely with the ionization potential.
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% e accelerate the convergence with respect to cell size. This
2 el et method combines the two different requirements of such cal-
| Ve . . .
s 50 - 7 culations: convergence with respect to supercell size and
i ,," with respect tok-point sampling. Application of our ap-
2 / proach was demonstrated to significantly improve conver-
00} /,/’ 1 gence with respect to supercell size. The present analysis has
/ concentrated on point defects which are aperiodic in all three
/ space directions, but it can easily be generalized to other
-5.0 : . cases, e.g., surfaces which are aperiodic in one dimension
0.0 20.0 40.0 60.0 only
(b) Number of atoms in unit cell

The present scheme accounts for the particular nature of
the underlying lattice in an exact manner. Alternative
FIG. 3. () Convergence of the Si vacancy defect enefdg-  schemes have been proposed, in which the energy is not
fined as the energy to remove a Si atom to infinitya 16-atom fcc converged with respect ti-point sampling at every super-
cell with respect to the density &fpoint sampling. Several types of g size, but this is partly corrected for by subtracting an
meshes were used following Table Il of Ref. 7. Cutoff energy 136“equivalently” unconverged lattice enerd;?. While such
eV and lattice parameter 5.43 Ab) Convergence of the vacancy schemes may correct for the lattice energy, they do not ac-
defect, with respect to supercell size at differeoint densities. .t for the error introduced into the defect-lattice term
Solid line, 8§4k points. Dashed line, UeareSF'ne'ghbo.r Inter""Ct'onsthrough inaccurate description of the lattice density. This er-
only, according to Table I. Dash-dot linE-point sampling only. A
ror can clearly be seen in Fig(l3.
Our analysis confirms that the common choice of single-
L point sampling at the origin is highly inefficiefft,even for
present scheme, the defect energy converges to within ca. Os{’/stems of low symmetry. In Table I, we have presented
eV at a cell size of 54 atoms. For comparison, we also shoWetier alternatives for some common lattices. One interesting
the much slower convergence obtained if ofilpoint sam-  qgsibility is sampling at the point for fec latticest’ From
pling is used, or even if nearest-neighbor interactions arg-aple |, one can see that, for highly symmetric lattice bases,
accounted for. the L point corrects for nearest-neighbor interactions, and,
therefore, in the limit of sufficiently large supercells it is an
appropriate choice for fcc lattices.
Our previous work on charged and dipolar systems to-
We have considered the question of efficierioint sam-  gether with the present work shows that total-energy calcu-
pling for aperiodic systems calculated in supercells with pe{ations converged to the so-called “chemical accuradgss
riodic boundary conditions. We have described a method fothankT) can be achieved using moderately sized supercells.
determining the&k points to be sampled, so that overall com- The size of the supercell at which convergence may be
putational efficiency is achieved, by keeping the density ofachieved is determined by the spatial extension of the local-
k points fixed at a density, which converges the lattice-defecized defect state. In Fig. 4, we illustrate this for the case of
interaction. As the supercell size increases,ntimberof k neutral atoms, for which the density decays asymptotically as
points decreases. In the limit of large supercells where onlexf —2(21)¥? ]/r, wherel is the ionization potential. The
very fewk points are required, we have shown that choosingotal energy of an O atom is seen to converge faster with
them to remove the dispersion of the band can considerablespect to supercell size than that of a Mg atom, and even

Ill. DISCUSSION
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faster relative to the Na atom. This ordering reflects the orment. Furthermore, only orle point is necessary to zero the

dering of the ionization potentials. In the case of defects imearest-neighbor interactions in a bcc lattice, as opposed to

solids, the spatial extension of the defect state is determinego points in a simple cubic latticésee Table ), which

by its location relative to the nearest conduction band.  reduces the relative effort by another factor of 2, bringing the
Finally, we note that, for an isolated point defect, the mostgtal reduction to a factor of 4.

efficient calculational scheme is to create a bcc lattice of the

defects. In the cases where this is possible, the defects can be

maintained at a given separation in approximately 0.8 the ACKNOWLEDGMENTS
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