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Brillouin-zone sampling in total-energy calculations of aperiodic systems using periodic boundary condi-
tions is considered. Although the energies converge to the exact result in the limit of large supercells for any
k-point sampling scheme, they do not converge at the same rate. In particular, it is shown that the use of a
single sampling point at the origin of reciprocal space is especially inefficient. Ak-point sampling scheme is
proposed, which is computationally efficient and its efficacy relative to other common approaches is demon-
strated.@S0163-1829~96!02923-2#

I. INTRODUCTION

Total-energy calculations of periodic systems are gener-
ally performed on a single unit cell, using periodic boundary
conditions.1 The eigenstates of such a system can be labeled
by the reciprocal-lattice vectors,k, in the first Brillouin
zone.2 Since the system is infinite, the quantum numbersk
are continuous. Calculation of the total energy requires a
self-consistent calculation of the potential and the eigenval-
ues, which are performed at a finite number of points in the
Brillouin zone. Procedures for generating optimal sets ofk
points have been proposed and discussed.3–7The dependence
of the eigenvalues~as well as other quantities! on k reflects
the chemical binding between atoms in the unit cell under
consideration and their counterparts in neighboring cells.8 In
the absence of any interaction, the energy bands would be
flat.

Aperiodic systems, such as defects and surfaces, are also
often calculated in a periodic arrangement using a supercell.
The supercell contains part of the system of interest, which is
then periodically repeated in space. If the supercell is chosen
to be large enough, the interactions with neighboring cells
will be insignificant and the energy calculated will be that of
the aperiodic system. The advantages of using periodic
boundary conditions for aperiodic systems include easy rep-
resentation of a condensed-matter environment and the use
of numerical schemes developed for periodic structures, in
particular, the plane-wave representation.

However, in practice, it is difficult to perform calculations
in cells large enough for the total energy of the aperiodic
system to be fully converged with respect to cell size. This is
because the computational effort increases rapidly with cell
size: e.g., for a defect in a solid the effort increases asV3,
whereV is the volume of the supercell, and even in the best
case, of an isolated atom or molecule, the effort increases as
V lnV.1 If the calculation is performed using a supercell
which is too small the calculated energy contains a spurious

contribution from interactions between the neighboring su-
percells. Therefore, it is relevant to consider which calcula-
tional scheme leads to results for the total energy that con-
verge fastest with respect to cell size. In a previous paper,9

we considered this question for purely electrostatic interac-
tions. We showed that for any system, with suitable choice
of the energy functional, the calculated energy could be
made to converge to its limiting result asO(L25), whereL
is the linear dimension of the supercell. However, it is pos-
sible that in the limit of large cells the interaction is not
dominated by the remaining electrostatic interactions
~quadrupole-quadrupole, dipole-octupole, etc.!, but instead
by chemical interactions. The existence of such interactions
causes the band structure to be dispersive, with the energy
varying through the Brillouin zone associated with the re-
peated supercell. Therefore, it is necessary to examine
k-point sampling schemes for performing the integration
over the Brillouin zone also for aperiodic systems.

Unlike periodic systems, a converged calculation of an
aperiodic system is possible only in a very large supercell. In
the limit of an infinitely large supercell, the bands are flat
and all points in reciprocal space are equivalent, but for any
finite cell, the band structure is dispersive. In determining the
set ofk points to be sampled in a calculation of an aperiodic
system, an important consideration is minimizing the number
of k points, because of the computational effort required for
large supercells. Many aperiodic calculations have low or no
symmetry and, therefore, the first Brillouin zone is irreduc-
ible and the sampling must extend over the entire zone.
Therefore, it is preferable to sample at points of high sym-
metry in the Brillouin zone, in order to reduce the total num-
ber of points sampled. These considerations have often led to
the choice of single-point sampling at the origin (G point!,
which has the additional advantage of real wave functions.
This simple scheme will indeed converge to the exact result
in the limit of a large enough supercell, but it is not clear that
its rate of convergence will be especially fast. More exten-
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sive k-point sampling has also been reported for aperiodic
calculations, but, to the best of our knowledge, no analysis of
k-point sampling for aperiodic systems has been reported to
date.

In this paper, we consider the question of obtaining a
sampling scheme for which computed energy will converge
rapidly to the limiting value for the infinitely large supercell.
For simplicity we focus on neutral point defects, without
dipole moments, in systems with gaps at the Fermi level~i.e.,
semiconductors or insulators!, which are neutral and do not
have net dipole moments. We consider the energy-band
structure of these systems in the limit of large supercells,
using the tight-binding approximation to describe the weak
interactions between defects in different cells. From this pic-
ture, we show how to obtain simplek-point sampling
schemes, which efficiently converge the calculated energy
with respect to supercell size in the limit of very large cells.
In particular, we confirm that the choice of the origin of
reciprocal space as a single sampling point has a particularly
slow convergence with respect to cell size. For cells which
are not very large, we argue that better convergence is ob-
tained by increasing thek-point sampling and propose a
method for determining the required sampling. We illustrate
our approach and its efficacy with several examples.

II. k-POINT SAMPLING

The total energy of the aperiodic supercell containing a
defect can be considered as the sum of three contributions:
~i! the energy of the underlying lattice,~ii ! the interaction of
the defect with the lattice, and~iii ! the interaction between
the defects in neighboring supercells. The latter is just the
spurious energy which disappears in the limit of an infinitely
large cell. Therefore, for any givenk-point sampling, the
total energy of an aperiodic system willalwaysconverge to
its limiting value in a large enough cell. In contrast, the
energy of the underlying lattice is well known to converge
for any cell size as the number ofk points sampled is in-
creased, until a certain~system dependent! k-point density is
reached. The convergence of the defect-lattice interaction re-
quires both a large cell size, so that the isolated defect is
adequately represented, and a sufficiently highk-point den-
sity, so that the underlying density is also adequately repre-
sented. Note that, in contrast to periodic systems, in an ape-
riodic system it isnot possible to converge the energy only
by increasing the density ofk-point sampling, but it is also
necessary to converge with respect to supercell size.

Consider first the regime where the defect-defect interac-
tions dominate the convergence of the energy. This occurs if
the cell size is large relative to the spatial extension of the
defect state and if we assume, temporarily, that the lattice-
defect interaction is either insignificant or is well converged
for any k-point sampling scheme in these large cells. For
localized defects, the defect interaction can be described in
the tight-binding approximation.8 Defect states, described by
Wannier functions, will combine to form a band. Thek de-
pendence of the band will be of the form

«~k!5«1E d3r uf~r !u2Du~r !

1 (
R5” 0

Eunit
cell

d3rf~r !Du~r !f~r2R!cos~k•R!,

~1!

where the sum is over the supercell lattice vectorsR, f are
the Wannier functions,Du is the interaction potential, and
« is a constant. The interaction potentialDu decreases to
zero as the supercell size increases. Therefore, the second
and third terms on the right-hand side of Eq.~1! vanish as the
supercell size becomes infinite, which implies that« is the
energy of interaction of the defect with the lattice. The sec-
ond term, which is a linear response term, is independent of
k. This term contains the residual size dependence in the
limit of the bestk-point sampling scheme. The third term is
a sum of interactions between overlapping defect states lo-
calized on neighboring cells.

To calculate the energy, it is necessary to calculate the
integral,10

E5
Vc

8p3E d3k «~k!, ~2!

which in the limit of finite sampling corresponds to the sum:

E5

(
i
wi«~k i !

(
i
wi

, ~3!

where$k i% are the sampling points andwi are the weights. It
is obvious that by choosing a set ofk points, such that all the
cosine factors in the sum of«(k) are zero, we obtain an
optimal sampling scheme in the sense that sampling at addi-
tional k points will not improve the result. This optimal set
of k points is infinite. However, the overlaps in the third term
in ~1! decrease rapidly with increasing distance, so for large
cells the dominant terms are the nearest-neighbor terms.
Thus, in the limit of large cells, it is necessary to consider
only the finite set ofk points which zero the cosine terms for
the nearest-neighbor interactions in the third term in~1!. If
we use this set ofk points, then the size dependence of the
energy is concentrated in the second term in Eq.~1!. Note
that, if we sample only at the origin of reciprocal space, we
obtain the result

«~k!5«1E d3r uf~r !u2Du~r !

1 (
R5” 0

Eunit
cell

d3rf~r !Du~r !f~r2R!, ~4!

which contains all the interactions with neighboring defects.
Minimal sampling schemes which give zero-nearest-
neighbor interactions for some common lattice types are
given in Table I. Note that the optimal sampling schemes are
determined by a combination of the lattice geometry and the
symmetry of the lattice basis. Furthermore, particular bases
can reduce the sampling density even further, e.g., the eight-
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atom cubic cell of the diamond structure has its nearest-
neighbor interactions zeroed just by the~0, 0, 0! point or the
~12 ,

1
2 ,

1
2 ! point, instead of by both points together. This is

because of a symmetry-induced ‘‘accidental degeneracy’’ in
the band structure.

As an illustration of this procedure, consider an isolated
atom in a cubic supercell. The atom is a ‘‘defect’’ in an
empty lattice, the energy of the underlying lattice is always
zero, and, therefore, the convergence is dominated by the
defect-defect interactions. The nearest-neighbor interactions
in Eq. ~1! are zero if we sample at the points~0, 0, 0! and
~ 12,

1
2,

1
2! in reciprocal space. If we sample at four of the eight

points (6 1
4 , 6 1

4 , 6 1
4 !, then the contributions from the sec-

ond and third-nearest neighbors are zero as well. In Fig. 1,
we see the results of such calculations for a Mg atom. It is
clear that zeroing the second-nearest-neighbor interactions
does not cause the energy to converge any faster. For com-
parison, we also show results for the case of single-point
sampling at the origin, where the convergence is much
slower. This procedure can also be adopted in the case of a
defect in a solid, with equal effectiveness as illustrated in
Fig. 2. ~In this example, we ignore the convergence of the

lattice-defect interaction, because the sampling densities are
in the vicinity of those required for convergence to the accu-
racy shown—ca. 54k points in the primitive unit cell. For
further details see below.!

Now, we return to consider the convergence of the lattice-
defect interaction. For a given cell size, this interaction will
converge as thek-point sampling is increased@e.g., see Fig.
3~a!#. In principle, one can use a fixedk-point sampling
scheme~e.g., the nearest-neighbor scheme discussed above!
and by increasing the supercell size, cause the energy to
converge. An alternative is to increase thek-point sampling
until the lattice energy converges. The latter is much more
efficient computationally if one knows in advance how many
k points are necessary.

A practical solution to this problem is to first converge the
calculation at a fixed cell size with respect to thek-point
sampling density. Thek points should be chosen to system-
atically account for interactions with more distant neighbors.
Once the relevantk-point density has been determined, one
converges the calculation with respect to supercell size at the
same, fixed sampling density, i.e., by decreasing the number
of k points as the cell size is increased. If the cell size is
increased to the limit where only a very small number ofk
points is required, then the considerations outlined at the
beginning of this section should be employed.

We illustrate this approach by calculating the energy of
the ideal vacancy defect in Si. This system has been studied
extensively11–14 and is thought to require very large super-
cells for convergence, of the order of 200 atoms.13 The sig-
nificant dispersion of the defect band is thought to be the
dominant factor in limiting the rate of convergence.11,12 In
Fig. 3~a!, we present the results for the defect energy in a 16-
atom fcc cell, as a function of thek-point sampling. One can
see that the energy converges as the sampling density is in-
creased. From these results, we deduce that sampling, with a
density equivalent to 864k points in the first Brillouin zone
of the primitive unit cell, is sufficient to converge the defect
energy to an accuracy of better than 0.1 eV. In Fig. 3~b!, we
show the convergence of the defect energy with respect to
cell size at this constant density. We find that using the

FIG. 1. Convergence of the total energy of Mg with respect to
supercell size. For each system, three sampling schemes are shown:
G point only ~circles!, G point and~12,

1
2,

1
2!, point ~squares!, and

four ~14,
1
4,

1
4!-type points~triangles!. The horizontal dashed line

shows the fully converged result. Cutoff energy of 150 eV.

FIG. 2. Convergence of the defect energy with supercell size for
three differentk-point sampling methods. The defect is substitution
of an I atom for a Cl atom in a NaCl lattice with CsCl structure.
Cutoff energy 250 eV and lattice parameter of 3.05 Å.

TABLE I. Minimal sets ofk points necessary to zero-nearest-
neighbor interactions for several types of lattices, units of 2p/a
where a is the lattice constant. The points are determined in a
Cartesian basis. Low-symmetry basis implies no symmetry assumed
~Pl space group! and high-symmetry basis implies that the basis
point group has all the symmetry of the lattice point group. Note
that these points are not unique~Ref. 3!.

Lattice type k points for k points for
~real space! low-symmetry basis high-symmetry basis

Simple cubic ~0, 0, 0!,~12,
1
2,

1
2! ~ 14,

1
4,

1
4!

bcc ~14,
1
4,

1
4! ~14,

1
4,

1
4!

fcc ~12,
1
2,

1
2!, ~21

2,
1
2,

1
2! ~ 12,

1
2,

1
2!

~12, 2
1
2,

1
2!, ~12,

1
2, 2

1
2!
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present scheme, the defect energy converges to within ca. 0.5
eV at a cell size of 54 atoms. For comparison, we also show
the much slower convergence obtained if onlyG-point sam-
pling is used, or even if nearest-neighbor interactions are
accounted for.

III. DISCUSSION

We have considered the question of efficientk-point sam-
pling for aperiodic systems calculated in supercells with pe-
riodic boundary conditions. We have described a method for
determining thek points to be sampled, so that overall com-
putational efficiency is achieved, by keeping the density of
k points fixed at a density, which converges the lattice-defect
interaction. As the supercell size increases, thenumberof k
points decreases. In the limit of large supercells where only
very fewk points are required, we have shown that choosing
them to remove the dispersion of the band can considerably

accelerate the convergence with respect to cell size. This
method combines the two different requirements of such cal-
culations: convergence with respect to supercell size and
with respect tok-point sampling. Application of our ap-
proach was demonstrated to significantly improve conver-
gence with respect to supercell size. The present analysis has
concentrated on point defects which are aperiodic in all three
space directions, but it can easily be generalized to other
cases, e.g., surfaces which are aperiodic in one dimension
only.

The present scheme accounts for the particular nature of
the underlying lattice in an exact manner. Alternative
schemes have been proposed, in which the energy is not
converged with respect tok-point sampling at every super-
cell size, but this is partly corrected for by subtracting an
‘‘equivalently’’ unconverged lattice energy.15 While such
schemes may correct for the lattice energy, they do not ac-
count for the error introduced into the defect-lattice term
through inaccurate description of the lattice density. This er-
ror can clearly be seen in Fig. 3~b!.

Our analysis confirms that the common choice of single-
point sampling at the origin is highly inefficient,16 even for
systems of low symmetry. In Table I, we have presented
better alternatives for some common lattices. One interesting
possibility is sampling at theL point for fcc lattices.17 From
Table I, one can see that, for highly symmetric lattice bases,
the L point corrects for nearest-neighbor interactions, and,
therefore, in the limit of sufficiently large supercells it is an
appropriate choice for fcc lattices.

Our previous work9 on charged and dipolar systems to-
gether with the present work shows that total-energy calcu-
lations converged to the so-called ‘‘chemical accuracy’’~less
thankT) can be achieved using moderately sized supercells.
The size of the supercell at which convergence may be
achieved is determined by the spatial extension of the local-
ized defect state. In Fig. 4, we illustrate this for the case of
neutral atoms, for which the density decays asymptotically as
exp@22(2I )1/2r #/r , whereI is the ionization potential. The
total energy of an O atom is seen to converge faster with
respect to supercell size than that of a Mg atom, and even

FIG. 3. ~a! Convergence of the Si vacancy defect energy~de-
fined as the energy to remove a Si atom to infinity! in a 16-atom fcc
cell with respect to the density ofk-point sampling. Several types of
meshes were used following Table III of Ref. 7. Cutoff energy 136
eV and lattice parameter 5.43 Å.~b! Convergence of the vacancy
defect, with respect to supercell size at differentk-point densities.
Solid line, 864k points. Dashed line, nearest-neighbor interactions
only, according to Table I. Dash-dot line,G-point sampling only.

FIG. 4. Relative convergence of the total energy of three differ-
ent atoms: O~filled triangles!, Mg ~crosses!, and Na~filled circles!.
The supercell size at which convergence is achieved is correlated
inversely with the ionization potential.
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faster relative to the Na atom. This ordering reflects the or-
dering of the ionization potentials. In the case of defects in
solids, the spatial extension of the defect state is determined
by its location relative to the nearest conduction band.

Finally, we note that, for an isolated point defect, the most
efficient calculational scheme is to create a bcc lattice of the
defects. In the cases where this is possible, the defects can be
maintained at a given separation in approximately 0.8 the
volume of the unit cell needed in a simple cubic lattice of
defects. For defects in solids, this implies approximately half
the computational effort compared to a simple cubic arrange-

ment. Furthermore, only onek point is necessary to zero the
nearest-neighbor interactions in a bcc lattice, as opposed to
two points in a simple cubic lattice~see Table I!, which
reduces the relative effort by another factor of 2, bringing the
total reduction to a factor of 4.
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