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A theory describing a one-dimensional Luttinger liquid in contact with a superconductor is developed.
Boundary conditions for the fermion fields describing Andreev reflection at the contacts are derived and used
to construct a bosonic representation of the fermions. The Josephson current through a superconductor/
Luttinger liquid/superconductor junction is considered for both perfectly and poorly transmitting interfaces. In
the former case, the Josephson current at low temperatures is found to be essentially unaffected by electron-
electron interactions. In the latter case, significant renormalization of the Josephson current occurs. The profile
of the (induced condensate wave function in a semi-infinite Luttinger liquid in contact with a superconductor
is shown to decay as a power law, the exponent depending on the sign and strength of the interactions. In the
case of repulsiveattractive interactions the decay is fastéslowep than in their absence. An equivalent
method of calculating the Josephson current through a Luttinger liquid, which employs the bosonization of the
system as a whol@.e., superconductor, as well as Luttinger liguisl developed and shown to give the results
equivalent to those obtained via boundary conditions describing Andreev reflection.

[. INTRODUCTION tional quantum Hall systemsnd in semiconductor quantum
wires?

When a normal metalN) is put in good electrical contact The purpose of this paper is to address the issue of prox-
with a superconductorS), superconducting order is induced imity effects at Luttinger-liquid/superconductor interfaces,
in the normal metal over distances far greater than any miincluding the Josephson effect in superconductor/Luttinger-
croscopic lengthscale, either of the normal metal or the suliquid/superconductorSLS) junctions. Our motivation is
perconductor. This induced order leads to a number of retwofold. First, experimentally, such a study is relevant in
markable phenomena, such as the Josephson effect in SNf&w of the rapid progress in the fabrication of
junctions and the induced Meissner effect in SN bilayers, superconductor/semiconductor interfatesspecially those
collectively known as “proximity effects? Until very re-  with high interface transparendguch as, e.g., the Nb/InAs
cently, all work on such effects, both experimental and theointerfacg, and also in view of the recently reported observa-
retical, has concentrated on systems in whittis in the  tions of LL-like behavior in GaAs quantum wiréghus, the
Fermi-liquid (FL) state. It has long been appreciated theoretifabrication and investigation of SLS systems may reasonably
cally that, in contrast with their higher-dimensional analog,be anticipated in the near future. Second, theoretically, we
(effectively) one-dimensional systems of interacting elec-aim to understand the interplay between electron-electron in-
trons are not Fermi liquids. Instead, they exhibit a number oferactions and induced superconducting order in 1D elec-
possible regime$,among which the Luttinger liquidLL)  tronic systems. Furthermore, one of the possible scenarios of
provides a one-dimensionélD) metallic counterpart to the high-temperature superconductivity in oxide materials is
(higher-dimensionalFL state, albeit differing in several im- built on the assumption of the LL-like character of the nor-
portant respects, most notably in the absence of singlemal electronic state in these materiflisThe existence of
particle excitations in the low-energy part of the spectrumLLs in dimensions higher than one, however, is not yet es-
The basic features of LL's have been understood mainly iablished, in contrast to the 1D case. Thus, a 1D LL in which
the context of 1D organic charge-transfer and mixed-valencthe superconductivity is induced via the proximity effect may
conductoré In addition, the prediction of the suppression of provide a model system for superconductivity in 2D.
the tunneling conductance of LLiRefs. 5 and Bhas stimu- Our main results can be formulated as followig:At low
lated the experimental search for Luttinger liquids in mesotemperatures, the Josephson current through an SLS junction
scopic systems, in particular, in the edge channels of frachaving perfectly transmitting interfaces has the same
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phase—and length—dependences as in the noninteracting
case, the only difference being a renormalization of the ef-
fective Fermi velocity. The reason for this is that, using the
bosonic language, the nondissipatiftepologica) currents,
including the Josephson current, are carried in LL's by the
topological modes of the boson fields, which are not sensi-
tive to the interactions. At temperatures above a certain
crossover value, interactions lead to the additional suppres-
sion of the Josephson currefit.) The (induced supercon-
ducting condensate wave function in a LL in good electrical
contact with a superconductor decaysxas with the dis- A A
tancex from the LL/S interface, withy depending on the 0 0
strength of the interactionsy& 1 corresponds to the nonin-

teracting case, whereas>1 for repulsive andy<1 for at- (c)

tractive interaction$.(iii) For the case of imperfectly trans-

mitting interfaces, the renormalization of the interface- |A(X)|

transmission coefficientgvia a mechanism known from

studies of LL's coupled by weak linR$) is reflected in the
renormalization of the Josephson current, which gets
strongly suppressed in the case of the repulsive interaction
Along the way, we have als@v) derived effective boundary
conditions describing Andreev reflection at the interface witl
a superconductor, which we have then used as boundary ¢
ditions in the bosonization proceduré;) determined the
structure of the topologicaHaldane excitations in an SLS

system; andyvi) confirmed resulf(i) via an alternative ap- . . . . L
proach, in which bosonization is applied to both the supergreev reflection at the interface, i.e., electronlike excitations

conducting and normal parts of the system. are reflected as holelike excitations, with a Cooper pair being

The issue of the Josephson current through a LL has alsiected into the superconductor, and vice vefsd. The
been studied in a recent paper by Fazio, Hekking, anc$|ngle-par't|cle excitations s are mixtures of electronlike
Odintsov® for the case of poor interface transmittarisee ~ @nd holelike states with weights determined by the self-
also Ref. 10. By using the tunneling Hamiltonian method, it consistency condition. In the bulk ®f, the electronlike and
was found that the Josephson current through an SLS jundwlelike states are uncorrelated. Near the boundary, however,
tion is suppressed compared to the noninteracting case. THgdreev reflection mixes the electronlike and holelike states
present paper takes a different approach. This approach origiecisely in the same proportion as they are mixedSjn
nates from work on SNS junctions with perfect interfacewhich leads to the formation of a condensate, the amplitude
transmittance; %’ in which the Josephson current was re- of which decays into the bulk dfi. The decay length of this
lated to the spectrum of electronic states confined toNthe condensate is the lengthy over which superconducting cor-
region by Andreev reflection. Our results concerning poorlyrelations in the motion of bulk normal-state electrons exist.
transmitting interfaces agree with those of Ref. i® to  In the case of perfect metaley=%Avg/T, wherevg is the
nonuniversal numerical prefactors, which we have not atFermi velocity andT is the temperatureve choose units in
tempted to calculaje which kg=1).[The same length determines the thermal dis-

The present paper is organized as follows. In Sec. Il weuption (in the absence of inelastic processesmesoscopic
derive the boundary conditions for the fermion field opera-phase coherence, as is manifested in the phenomenon of uni-
tors at the NS interface in the absence of interactions. In Sewersal conductance fluctuatioff§. For T<A=T. (where
Il we develop a bosonization procedure for interacting fer-T. is the critical temperature ofS), L>¢&s (where
mions confined to the normal 1D region of an SLS system{s=huvg/Ag is the coherence length &). In order to de-
which makes use of the boundary conditions derived in Secscribe the influence of the superconductors onNhegion,

Il. We calculate the Josephson current through an SLS junowve now derive effective boundary conditions that account for
tion in Sec. IV. In Sec. V, we analyze the profile of the the Andreev reflection suffered by the low-energy compo-
condensate amplitude in a semi-infinite LL connected to anents of the fermion fields at the NS interfaces. Our strategy
superconductor. Up to this stage, we will have appliedis as follows: in Sec. Il B, we derive these boundary condi-
bosonization only to the normal part of the system, the prestions for the case of the noninteracting electron gad\jn
ence of a superconductor being implemented as a boundatigen, in Sec. Ill, we implement these boundary conditions
condition. An alternative approach, in which both the normalinto the bosonization scheme for interacting electrons.

and the superconducting parts of the system are bosonized, is
presented in Sec. VI.

FIG. 1. (@) A Luttinger-liquid (LL) conductor connecting two

§Uperconducting electrodes with phases of the order parameters

el and y,. (b) The model profile of the pair potential used for the
derivation of Andreev boundary conditioriSec. 1). (c) Generic

OE)'r'ofile of the pair potential appropriate for the bosonization of the
system as a wholé&ec. V).

B. Derivation of Andreev boundary conditions

Il. ANDREEV BOUNDARY CONDITIONS We consider a one-dimensional electronic condugter,

a quantum wirgof lengthL, adiabatically connected to su-

perconducting leadksee Fig. 1a)]. We begin by analyzing
Electronic excitations in a normal metal having energiesghe ideal case, in which the single-electron parameters

smaller than the superconducting energy dapsuffer An-  (Fermi velocities, effective masses, ¢tare the same in the

A. Andreev reflection at the NS interface: Qualitative picture
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N andS parts of the structure, the only difference betwéen
and S being the presence of a pairing potential Sh We
adopt the conventional modéf’in which the pairing po-
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Equationg7) describe the essence of Andreev reflection: the
electronlike excitationsu.) are converted into holelike ex-

citations @ ..), at the same time acquiring the phase of the

tentials in the leads are assumed to be unaffected by therder parametery(; ,) together with the phase shift of the

presence ofN. Although this is a non-self-consistent ap-

proximation, it is known to reflect correctly the aspects of the

problem relevant for the present treatm&ht.’

Andreev reflection coefficientr).
In the limit e<A,, the phase shifty— #/2,>! and the
boundary conditiong7) become energy independent. This

To derive the boundary conditions, we replace the adiaenables one to derive from Eq3) the boundary conditions
batically widening 3D superconducting leads by effective 1Dfor the real-space fermion operatogg(x), wheres=1,|

leads. The profile of the pair potential is then given[bi
Fig. 1(b)]

Age'Xr  for x<0
A(x)= 0 for 0<x<L (1)
Age'X2  for x=L.

In the Andreev (semiclassical approximationt® which is
valid for Ag<eg=fkrve/2, the spinor of Bogoliubov am-

plitudes
u
w=|,

satisfying the Bogoliubov—de Gennes equatféis decom-
posed into left- and right-moving components,

2

w=ekPw, +e kFw_

)

wherekg is the Fermi wave vector. The componews now

satisfy the(formally) relativistic (first-orde)y Bogoliubov—de

Gennes equation$i;w.. = ew.. , with the Hamiltonians
Fihvgdy A(X)

H5:< A*(X) iihvpéx)'

The full solution of these equations is obtainédy finding
the solutions in thé\ andS regions and then matching them
at the interfaces(In the semiclassical approximation, only
the wave functions need be continugusThe solution inN
for e<A, can be written as

aikx
W+:A+(!%g+l(e)eixle+ikx)' (4)

where
Z(e)=e 1" and n(e)=cos Y(elAy), (5)

in which .72 is the Andreev reflection coefficient, whose

phase isy. The quasiparticle momentufrk= e/v satisfies

the quantization condition
!%3(6)2eii()(17)(2)e2ikd: 1,

(6)

where = corresponds to two sets of energy lev€lsn Eq.

denotes the spin projection. These field operators are related
to the (u,v) amplitudes via the Bogoliubov transformatfén

Ys(x)=2 [eu(x)—sc wi(x)], ®)
wherecg (cl) is the fermion annihilatioricreatior) operator,

the sum runs over all single-particle quantum numbers, and
the variables takes on the values 1(—1) for the(]) spin
projections. We decomposég(x) into the left and right
movers:

ws(x):eikFXl/f+,s(X)+e_ikpx¢—,s(x)- (9)

Substituting decomposition8) and(9) into Eq. (8), we ob-
tain the Bogoliubov transformation faf.. :

Yo (=2 [eU=(0)—scl@i(0]. (10
The boundary conditions for th@Paul) spinors .. ¢ then
follow upon substitution of Eqq7) into Eqg. (10), and using
n=ml2. After some algebra, we obtain

l/f+,¢|x:o,L:1ieiX1'zl/fi,¢|x:o,Ly (119
‘/’+,¢|x=o,L=iieiX1’2¢1,¢|x=o,Lv (11b
or, more compactly,
I oA
( o =Iie'X12T( ! (12
‘//+,l x=0,L =/ Ix=0L
Here,:l'ztjf: is the time-reversal operatérwith
o 0 1
g=ioy=| _, 0 (13

and C being the Hermitian conjugation operator. The pres-
ence ofT in Eq. (12) signals an important property of An-
dreev reflectiort? a reflected excitation is the time-reversed
version of an incident one.

Further insight into the meaning of the boundary condi-
tions(12) can be obtained by employing the chiral symmetry
of left-right fermion fieldsi.. 5. In what follows, we adopt
the methods of Refs. 23 and 24, in which the chiral symme-

(4), A are overall normalizations which, without the loss of try of boson fields satisfying Dirichlet or Neumann boundary

generality, can be chosen to be real. Evaluating @y.at
x=0 andx=L and using Eq(6), one can see that at the

conditions was used to derive effective periodic boundary
conditions. The rightleft) field describes the propagation of

boundaries the left and right components of the Bogoliubovne (formally) relativistic fermions to the righleft) with the

amplitudes satisfy

ve=R e iy, for x=0
. i 7
ve.=72"te "Xy, .  for x=L. @

Fermi velocity. Consequently, in the Heisenberg representa-
tion, the space-time dependence of these fields is given by

he (X, 1) =t (XFUEL). (14
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Using the boundary conditiond¢1g and(11b), one sees that

1
at any instant of time the time-dependent left-moving ferm- Yo o(X)= —ex{d *i \/;qﬁi,s(x)], (17)
ion fields satisfy Val
‘ - wherea— +0 is a convergence factor and the chiral bosons
o (vpt)=—sie” My, _(—vet), (158 4. are expressed through the densiphas¢ bosons
¢s(05) via

t cia

L (Lt+ovet)y=sie "2y, _(L—vgt). 15b _
V=Lt oet) frms(bmved) (D b o(X)=Bs(X) T ,X). 19
Choosing t=(L+x)/vg in Eg. (15b, we obtain We construct mode expansions f@r. (x) in such a way
z/fi,s(x+ 2L)=sie "2y, _(—x). Equation (158 gives that the twisted boundary conditioi$6a and the auxiliary
z//+,s(—x)=—sie'X1<//1,_S(x) which, in combination with conditions(16b) are satisfied:
the previous equation, leads to

Ps X -
b (x+2LD=8"y (xb), (168 P-s0= =+ Vm(Ng+ 9) 5+ ds(x), (198

i X ) =—sieny! _(—xt), (16b)

_ X —
0 0= ZZ TNt 9) o+ f o).

whered=1+(x/7) and y=x,— x1. Thus, we see that the 4 (19b
Andreev boundary conditiond1g and(11b) are equivalent
to twistedperiodic boundary conditions fog_ ¢, Eq. (164, (The additivec-number terms have been omitted in the ex-
on an interval of length twice the length of the original sys-pansion foré, s.) Here,¢s are zero-mode operatony are
tem, supplemented by the connection betweenythg and  operators whose eigenvalues give the winding numbers of
¥_ s fields following from the chiral symmetry, Eq16b).  the Haldane(topologica) excitations®? and ¢¢(x) are the
(Equivalently, the periodic boundary conditions can be denon-zero-mode components of the chiral boson fields, which
rived for ¢, s and the chiral symmetry can be used to obtainare periodic on the interval (Q,2:
¥_s.) The problem thus becomes very similar to one of
fermions on a ring of circumference 2 threaded by an ef-
fective Aharonov-Bohm fluxd/2, the persistent currént?’
being the analog of the Josephson current. A detailed treat- )
ment of persistent currents in Luttinger liquids was given inWherek=mn/L (with n=1,2,...), Vk:eXp(_‘Yn/Z)/\/Hz
Ref. 28 (for the case of spinless electrongnd we shall and a,%S satisfy the canonical commutation relations
adopt this treatment in what follow?s. [Aks 3y ¢ 1= ss Sk~ IN Egs. (198 and (19b), the terms

We now discuss the range of validity of the Andreev linear inx describe the topological excitations of the bosonic
boundary conditions. The conditior<A,, which we System, which do not conserve the total number of fermions.
needed in order to arrive at E(L2), means that our bound- The eigenvalues o give the numbers of fermions added
ary conditions are capable of describing only excitationdo or removed from the Luttinger liquid. The non-zero-mode
with wavelengths I>fhv/Ay=£&s. Such excitations exists componentsp describe the quantum fluctuations around the
only in “long” junctions, i.e., L>£g; thus our treatment is topological excitations. These correspond to the fluctuations
valid only for this case. On the other hand, as follows fromin the fermion density that conserve the total number of fer-
self-consistent calculatiorfsthe order parameter i gets  mions.
reduced from its bulk value over the scglenear the bound- We require that the chiral bosons obey the canonical com-
ary, which also affects the excitations Min the boundary mutation relationg?
region of the thickness of5. Thus, the model of a steplike .
profile of A, Eq. (1), can adequately describe only processes , . ,
taking place in the interior oKl (i.e., forx outside boundary [ @=.s(X):dx ¢ s (X)]= +'5SS’n:2x S(x—x"+2nL),
layers of width&g), where the exact shape of the profile of (21)

A in Sis irrelevant. The latter condition can be satisfied only . L .
if L>£5. Therefore, the range of validity of our boundary where the summation overreflects periodicity on the inter-

conditions is the same as that of the non-self-consistenf®' (0,2). The non-zero-mode components of, e.g., expan-
model itself. We can also view Eq12) as the minimal- SIon (198 obey

model boundary conditions that describe the time—reversa[l(; (x).0 (Z x)]

process associated with Andreev reflection. S OxI s

)

=85 i iXIL+ > S(x—x'+2nL)}. (22)

n=-—o

$s<x>=k§0 y(e~a] +eay ), (20

IIl. BOSONIZATION OF LUTTINGER LIQUID

IN CONTACT WITH SUPERCONDUCTORS ) o
Thus, in order for Eq(21) to be satisfied, the zero-mode

We n.OW turn tO the bosonization of an interacting 1D Operators¢s and the Winding-number 0pe|’at0MS must
electronic SyStem in contact with SUperCOﬂdUCtorS. We rep- Obey

resent the free fermion fields in the conventional bosonic
form: [@s,Ng/ 1= 2i Ssg - (23
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(The same result can certainly be found by considering thehanging the total number of fermions in the LL by an even

commutation relations of. .) A posteriori we can also
justify the choice of the coefficienty, in Egs. (199 and

(odd) number results in excitations with evérdd) total mo-
mentum guanta.

(19b): they were chosen in such a way that the commutation We note that expansions similar to Eg43—(24d)

relations(21) are satisfied.

Next, we introduce the charge) and spin ¢-) compo-
nents of the boson fields:¢, ,=(¢;= qbl)/\/i and
0,,=(60,= BL)/\/E. The mode expansion§ fap, and 6,
(where u=p,o) follow from the expansiong19g9 and
(19b):

b, (X)= %+k§0 ncokx(al, *ay,), (249

™ X . . t
$o(X) =\ ZM [ +i 2, nsinkx(ag,~a), (24b)

T X .
0,(x)= \/;(JJr 0)E+|k>o Yisinkx(aj,— ay,1),

(249
GU(X)=&+E yecokx(aj,+a,), (240
Jrm &o
where @ ,=(¢;%¢)\2, M=(N;—N)/2, JI=(N;

+N))/2, andakp,oz(amiakyl)/\/i. It is natural that the

could have been obtained by first deriving the boundary con-
ditions directly for the charge and spin bosons from the
boundary conditions for the fermiorign the same way that
the boundary conditions for bosons are derived from the Di-
richlet boundary conditions for fermions in Ref. )23nd
then constructing expansions satisfying these boundary con
ditions. In this way, however, the zero modes of the expan-
sions, which are crucial for the topological constraints on the
eigenvalues oM andJ, might have been misse@Ve will
derive and use the boundary conditions for charge/spin
bosons in Sec. V, when the topological structure of the boson
fields will not be importanj.

The bosonized Hamiltonian of the LL is given by

h L2 Vu 2 2
A= EFEM fude|K_,L((9x¢“) +0,K (50,2

(26)

If the LL model originates from the Hubbard model then
K,o=11*g, where g=Ua/mvg, with U being the
strength of on-site interactions aadhe microscopic length
cutoff (of order the Fermi wavelengthandv ,=vg /K, . In
addition, if the underlying S(2) symmetry of the Hubbard

phase difference of the superconducting order parameters  4e| is intact. therk .= 1.34

X, Which determines the charge flow between the supercon-
ductors, appears only in the field associated with the charge
current, i.e.,f,,.

We now have to determine the topological constraints im-
posed on the winding numbel; (and, consequently, ol
andJ). This can be done by substituting the expansion, e.g.,
for ¢_ 5, Eq.(19a), into the bosonization formulél7), and
requiring that the boundary conditions for fermioii$a be
satisfied®® [When disentangling the operators in the expo-
nent of Eq.(17), one must recall thatp; and Ng do not
commute, and use E¢R3).] One thus finds thal satisfies

IV. JOSEPHSON CURRENT
THROUGH A LUTTINGER LIQUID

One of the most important consequences of induced co-
herence in theN part of an SNS system is the Josephson
current through it. This current differs from its counterpart in
tunnel junctions in that the critical currep?, decays with

the junction lengthL according to the power law [/ (for
L<Ly), rather than exponentially.

The Josephson current in SNS junctions is affected
strongly by the quality of the interface. The transmittance of
i.e., that the eigenvalues df; are odd.(Neglecting the op- interfaces between semiconductors and superconductors var-
erator nature of the zero modes and the winding numberi$s widely, depending on the nature of the junction. The in-
would have led td\, being even.Consequently)+M must ~ terface that has been studied most intensively in recent years,
be odd. It is convenient to introduce an effective windingParticularly in the context of mesoscopic effects, is the Nb/
numberJ'=J+1, so thatd+9=J'+ /= in Eq. (24¢.  INAs interface. This interface is unique in the sense that a
Then,J’ +M must be even. Comparing this constraint with charge-accumulation layer is formed instead of a Schottky
the similar constraint on the topological numbers in thebarrier and, as a result, the interface transparency is quite
persistent-current probleffiwe see that our constraint effec- high. More commonly, however, the transmittance may be
tively corresponds to the case of add number of fermions ~ quite low, both because of interface roughness and Schottky-
on the ring, in which case the response of the system to th@arrier formation. Below, we calculate the Josephson current
twist in boundary conditions is diamagnetic, i.e., the freethrough the LL in two limiting cases: perfectly transmitting
energy is minimal at zero twist. Tracing back through ourinterfaces(Sec. IVA) and poorly transmitting interfaces
calculations, we note that the diamagnetic nature of the Jd=5ec. IV B. The latter case has been investigated in Ref. 13.
sephson current is guaranteed by the Andreev phase shift
(7/2), which ultimately shifts] to J+ 1. The physical mean-
ing of the topological constraint is quite simple: the energy
of the LL is minimal when the left- and right-moving First, we consider the case of perfectly transmitting inter-
branches of the spectrum are populated symmetricallyfaces, in which the only scattering that takes place at the

(—)Nsti=1, (25

A. Perfectly transmitting interfaces
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S/LL boundaries is Andreev reflection, single-particle reflec-The Josephson current can now readily be calculated. With-
tion being absent. The Josephson currghis given by out writing down the exact expressidwhich contains, as
usual for this kind of problem, Jacoht, functiong®) we

P 2e J 5 consider only the asymptotic cases of lolw€L+) and high
7= 7@ ' (27) (L>L+) temperatures. In the former case, one finds
where Q)= —kgTInZ is the grand potential, and is the o ev K, x _
grand partition function. Substituting Eq4a—(240d) into J=— o for Ix|=m, (33)

Eq. (26) and diagonalizing the non-zero-mode part via a ca-

nonical transformation, we get for the many-body eigenenerWith 7(x+2m)=_7(x). We note that the interaction renor-
gies of the system malization of the Josephson current is the same as that of the

persistent currerf® When the Luttinger-liquid Hamiltonian
v, (26) is obtained as the long-wavelength limit of the Hubbard
+ K—MZ} Hamiltonian thenv K,=ve. Comparing Eq.(33) for
7 v,K,=ve with the corresponding expressions for the nonin-
teracting electron$~" we see thathe Josephson current
+h|§o z v k(g +1/2), (28)  through the Luttinger liquid is precisely the same as through
repe the noninteracting electron ga# word of caution is neces-

where nkMEbﬁMka and the new boson operatdsg, are ~ Sary, however: this conclusion is only valid if backscattering

h
4L

2
= y+ X
a

oK,

connected to the old ones via,=b, cosh, —b'sinhn,,  and umklapp scattering are not taken into account. Even if
in which oo BOHTTTRT these  types  of scattering  are irrelevantin  the
renormalization-group sensehey will modify the param-
1 1—K2/g eters of the LL entering Eq(26), so that the equality
Nplo= tztanh*l i Kg . (29  v,K,=ve will no longer hold® Nevertheless, the deviations
plo from this equality are expected to be sméHor instance, in

We see that the phase differengeppears only in the topo- the spinless case, the ma>§ima_l reduction in the p.rqduct
logical part of £, as it should, because the non-zero-mode” X, due to umklapp scattering is 20%, even at half-filling,
excitations are neutral, and therefore do not contribute to th&hen such processes are most effect® Also, there is
(equilibrium) charge current. We also note that only two of @ MUch more significant source of the renormalization of
the four charge/spin bosons, vizh, and 6, contribute to 7 which we have not yet taken into account, viz., the non-
the topological part of?. (The Josephson-current problem Perfectness of the interfacésee Sec. IV B
differs in this respect from the persistent-current problem, in  FOr high temperatured & L) we find
which all four bosons contain topological excitationghe T -1 _ ;
combination{ ¢, ,6,} commonly arises in the study of super- /=8eh Texp—2mal/Ly)siny, 349
conductivity in LL's3* where

The partition function factorizes a&=2,(x)Z,, where
Z,, is the contribution from the topologicahion-zero-mode o= E(Upr 4 Ve ) (35
part of £. To calculate7, we need only knowZ,, which is 2\ ve  veKy)o
given by

In the Hubbard model with the SB) symmetry,
) , , a=(1+1//1—g)/2>1. Thus, at high temperatures, interac-
Z(x)= > e e FxmigmeoMT (300 tions lead to the further suppression gf(in addition to the
M thermal disruption of the phase coherence

where g ,=7Ltv K, /4l and e,=7v ,L1/4K vel, and

the primed sum indicates that andM are connected via the
constraint found in Sec. Ifi.e.,J’ +M even. (Although the Having discussed the case of perfectly transmitting inter-
spin part ofZ, does not depend og, it does not simply faces, we now give a brief discussion of the case of poorly
reduce to an overall multiplicative factor because of this contransmitting interfaces. In this case, qualitative information

straint) It is convenient to represent the winding numberscan be obtained by making use of the known results on the
J’ and M in the following form: J'=2j+«k; and interaction-induced renormalizations of the transmission co-
M =2m+ ky (with k;=0,1 andky, =0,1) 2 The topological efficient.(For the analogous treatment of persistent current in

B. Poorly transmitting interfaces

constraint is then satisfied forj,m=0,=1,..., and imperfect LL rings, cf. Ref. 37.
k3= ky - We can then rewrite E30) in the unconstrained First, consider a noninteracting SNS “clean” systéire.,
form: the elastic mean free path being far greater thanwith
interface-transmission coefficients, ,<1. For simplicity,
Zi(x)=F0,(X)f0(0)+f1,(x)f1,(0), (83)  we now restrict attention to the low-temperature case
where (Ly>L). The result for the Josephson current can be ob-

tained from the general formula of Ref. 38, E@6), which
o expressesZ through the probability for an excitation to
£ — 2 —&,(2n+K+x)? 2 propagate from one interface to another within a certain
K,,U,(X)_ € n . (3 ) . . . . . . . .
n=—o time. Substituting the probability of ballistic propagation into
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Eq. (16) of Ref. 38, we find, after some simple algebra, thatrange 0.1—1Q.m are quite common in experimeritsp both

the critical current7., for the structure with imperfect inter-
faces is

Te=TT, 7, (36)

where 7, is the critical current forT;=T,=1, which is
given by they-independent factor in Eq33). In the inter-

acting case, the low-transparency interfaces can be describ

within the weak-link model of Kane and Fishf.In this
model, the weak linkéin our case, the interfaceare treated

as perturbations that transfer electrons between the disco

nected(in zeroth order parts of the LL, and the renormal-
ization group(RG) of the boundary sine-Gordon model is
used to find the effective values of the hoppitigansmis-

sion) probabilities. The case of the double barrier has been

considered in Ref. 6. We note th@t because in our Hamil-

tonian (26), and hence in our action, the topological excita-
tions are decoupled from the nonzero modes, the RG flo
equations for the transmission coefficients are the same as

Ref. 6;(ii) the effective cutoff for the RG flow is provided in
our case by the junction length Therefore, we can borrow
the result for the renormalized produtiT, from the Kane-

Fisher result for the double barrier away from the resonanc

TiTo—TyTo(kel) ™M HKa™2), (37

If the SU2) symmetry of the underlying Hubbard model is
intact, i.e.,K,=1, we find

-1

) 1 KP —1/
;Z'CZTlTZ k,:_L T

which is in agreement with Ref. 13, up to(aonuniversal
numerical coefficient.

Whether Eq(33) or Eq.(38) is relevant to a given experi-
mental situation depends on the bdre., unrenormalized
values ofT, , and onL. Suppose thal ;~T,=Ty~1. Then

(38)

Egs.(33) and(38) may be relevant in experimental situation.
Indirectly, one also can appreciate the extent to which
interactions renormalize the Josephson current by using re-
cent experimental results on tkdissipative conductance of
the ultrahigh mobility GaAs quantum wirésAs was shown
in Ref. 8, the conductance of the wire is reduced from the
8nductance quanturtti.e., e?/h per spin projectionas the
emperature is lowered, the temperature dependence being
consistent with the theory of charge transport in dirty Lut-
inger liquids®*~*! The absolute value of this reduction is
quite small, however: it amounts to 1-5 % for wires of
length 2—10um.

V. PROXIMITY EFFECT IN LUTTINGER LIQUIDS

As has been mentioned in Sec. Il A, Andreev reflection at
the NS interface gives rise to correlations between electron-

Wke and holelike excitations ifN. These correlations are

Ymilar to those between the single-particle excitation$,in
which can be viewed as the induction of superconducting
off-diagonal long-range order iN due to the proximity of.

The presence of such order is usually described by(itie

e'I‘Iomogeneol)snt:ondensate wave functidir(x), defined by

FOO=(g1 () ¢ (X))- (41)

In the bulk ofN, F=0. The scale over whick (exponen-
tially) changes from its value at the NS boundary to zero in
the bulk is given byLt. As T—0, the lengthLt—~, and
the exponential decay &f crosses over to a slowépower-
law) decay. In particular, ifN is a Fermi-liquid metal,F
decays with the distance from the interface ax 1at
T=0).**We now explore how this decay law is changed if N
is in the LL state.

Consider a semi-infinite LL occupying the half lixe>0
and connected t& at x=0. The bosonized form df(x) is

the interface barriers can be treated according to the wealgiven by

barrier modeP:® Assume, for simplicity, that the potential
barriers areé functions with the(bare amplitudeV,. As

Vy is small, its RG flow at distinct interfaces is independent,

and is given byV=Vy(L/a)* Ko, ThenT, is renormal-
ized to

1 1
T T mviik? T =T, LK (39
1+ —
To \a
For relatively short junctions, i.e.,
To U1-K,)
L<L*=a 1—T0) , (40)

the renormalization off; due to interactions is small, and
Eq. (33) applies. The better the interface the larger. In
particular, asTy— 1, L* — o, in accordance with the previ-
ously found virtual absence of the renormalization %ffor
perfect interfacescf. Sec. IV A). For longer junctions, i.e.,
L>L*, Eq.(38) applies.
Choosingg=Ua/mvg=1/2(i.e.,K,~0.8),T;=0.7, and
recalling thata=2x/k-=400 A in the relevant semiconduc-
tor structures, we find* =1 wm. Junctions of lengths in the

F(x)=%@”V‘mp“'@cos(@m(x,o»), (42)

wheres— + 0 is a(dimensionlesscutoff parametera is the
microscopic scale of the system, afg(x,7) and ¢,(x,7)
are boson fields in thémaginary tim¢ Heisenberg represen-
tation. In Eq. (42), the average is taken with respect to
Boltzmann factoe™ %", whereS=S,+ S, is the(Euclidean
action corresponding to Hamiltonian E@6), and

ﬁKP 1 2 2
5, 52| dxdr - (a.0,)% 0 (00,2 (430

Sy= i fd d ! 2 2. (43b
o 2K0. X TU_O-(&T(ﬁO—) +U(T((9X¢O') . ( )

[Note that we have deliberately expres§dvia those boson
fields that enter the bosonized formefx).] The presence

of S at x=0 imposes certain boundary conditions on these
fields. We derive these boundary conditions directly from the
boundary conditions for fermions Eqgl1la and (11b) by
using the bosonized form of the fermion fields7). (The



53 JOSEPHSON CURRENT AND PROXIMITY EFFECT IN ... 1555

phase of the order parameterSris now taken to be zero, as At first sight, the result that the profile of the condensate
we do not consider charge flow through the interface. wave function in the LL decays faster than in the FL seems

Simple algebra then leads to to contradict to the results of Sec. IV, in which it was found
that the junction-length dependence of the critical current is
¢,(0,7)=—~2m/4, 6,0,7)=0. (44)  the same in the LL and the FL. Indeed, it seems natural to

R . connect the X decay law of the condensate in the FL with
In the (semi) infinite geometry, the energy of topological ] .
o P the 1L dependence of7;; then, it would be reasonable to
excitations is infinitesimally smalf, and therefore we do not ‘ .
: 2 .. _expect that the ¥¥ decay law of the condensate in the LL
have to incorporate the winding numbers of such excitations

in boundary condition$44). As one might have anticipated, would be transformed into all7 dependence of;, evenif

Andreev boundary conditions for fermiori$la and (11b thee\llr;'?iedrf:ﬁgs :srevfeersfﬁ:&)ﬁv:/nbf;?)t\;vthtﬁ ;ﬁg&ﬂggr\]’gﬂym
. . ) 1 v'c
impose boundary conditions only on those components o?athO) is universal, and not connected with the profile of

Ejheenggtseocvgsédfsumitocfﬁgr in the bosonized form of the Con'Ehe condensate in thé region of an SNS junction. Consider,
In order to remove .the divergence in E@42) as again, an SNS junction of length® £5. Our main argument

56— +0, we use the following trick. Consider the modified !S that atT=0 the only relevant length scale in the problem

boundary condition for the ¢, field: ¢,(0,7) is L; therefore, at distances from the interface larger than

R . N~ &g, the profile of condensate wave functibhis described
s_atisfyzir:Tg;LH fﬁ;mmﬁgrﬁ)gegi\gugeldﬁg;unﬁgr/;f 5:o(r]?gitionby a single dimensionless parameidt.. Therefore,F(x)

%.(0.)—0. After this. F takes the form can be represented in the following form:
\U,7)=U. y

sing 1 F(X)=Fy,® (x/L)+Fg®*(x/L), (50)

FOO="5 E<97 Y200y (@72 0N 50 .
wherng =Fye'X12 are the values of atx=0(L), and the
1 scaling functionsb = (z) satisfy the following boundary con-
=&~ (G, (X x,0+G,(x,x,0)}, (49 ditions: d=(1)=1(0), ®*(0)=0(1). The supercurrent
flowing through the junction is given by
where G,,,(x,x’,7) is the propagator of the chardepin

boson field, which satisfies dF* (x)
7=iA| F(x) i c.c.|, (51
Keu(d5+v,209)G,=—8(x—x")&(7), (46)

in which a,,,= = 1. G, obeys the following boundary con- WhereA is anL independent constant. Substituting E50)
ditions: pG (0x' 7.)”:0 G (XX, 7) |4 u—0 and into Eq.(51), we see that7 can be represented in the form
- M y ’ 1 o 1 ’ — 00 1 ¢

G.(x,x", 7+ B)=G,(x,x",7), where B=1/T. The Fourier

transform inr of the solution of Eq(46) is given by T=ALTID(xIL), (52
G (XX )= K;“#|5|*1sinr(|c3|x<)exp( —|w|x>), where®(z) is a scaling function that is a combination of the

(47 functions® *(z) and their derivatives. Due to charge conser-
) . vation, 7(x) does not depend ox, which can be satisfied
where x.= min{x,x'} and x.= maxx,x'}. Inverting the  ony it @(2) is z independent. Thus, we see thit1/L
transform, we get regardless of the particular form of the condensate wave
function, the latter determining only the numerical coeffi-

- - cient in front of the 1 dependence.
G,(X,x,0) 27TK%In(x/a), (49
where, in order to regulariz€,, we have chosen the same VI. SOLUTION VIA THE BOSONIZATION
short-distance cutofl as in Eq.(42). Substituting Eq(48) OF THE WHOLE SYSTEM

into Eq. (45), find . —
into Eq. (45), we fin So far, we have applied bosonization only to the

Cla\” 1 Luttinger-liquid part of the system, i.e., to the intervak®
F(x)= —(—) , with ’yEE(KU-F K;l), (49 <L. We can gain some further insight into our results by
aix comparison with a system in which the LL occupies the en-
where C is a (nonuniversal numerical coefficient. In the tire real line, but, by some mechanism, has acquired a super-
absence of interaction&,=K,=1 and we return to the conducting gap whex<0 andx>L [cf. Fig. Ac)]. The
1/x scaling. In the presence of repulsi(atractive interac- ~ existence of a gap means that the usual Luttinger Hamil-
tions, y>1 (y<1), and the condensate amplitude in the LL tonian is modified by the addition of the term
decays fastefslowep than in the FL. This result is in accord
with one’s intuition: the repulsivéattractive Coulomb inter- _ 0 ot ot M-
action weakengstrengthensthe superconducting state in- Hgap_f dx|A(x)|e (bt )+ He
duced inN by Andreev reflection. The exponentis one- (53
half of the exponent determining the spatial decay of the
(singled superconducting fluctuations in the infinite Ef.. The correspondingMinkowski) bosonic action is



1556
K, 1
s:f dxdt[ 7p(v—p(&t0p)2_yp(axap)2>

1 /1 ) )
+2—K(r Z(O’)td)a') _vo'(éxd)a')

+|A|(:cod x(X) +V2m(6,— ¢,)1:

+:cog x(x)+ \/ﬁ(ap+¢o—)]:)]y (54)

where x(x) is the local phase of the order parameter. In
regions where\ (x) is large, the principal effect of the non-

linear terms is to constrain the values@f(x) and¢,(x) to
the minima of the cosine potential, so that

x+\2m(6,— ¢,)=2nm, (553
x+\2m(6,+ ¢,)=2ma. (55h)
Equivalently
1
HPZE[—X—F’TT(I"H‘IT])], (56a
! + ) (56b)
=— n—m)].
bo \/ﬂ[ ( ]

There are no constraints ofy, or ¢,. The fieldsé#, and

¢, are thus lockedmodulo winding numbejsto the con-
densate phase in the superconducting regions. In the purely
LL part of the system all four fields are free to fluctuate. The
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see that consistency requires the equilibrium number density
in the Galilean-invariant liquid to be given by

p=2K v ,m/7h. (60)

(The factor of 2 in this equation arises from the two spin
projections) That this is correct is shown by comparing the
commutator

h
'2mi

(%)

tryry g ’ :i T !
W) T 4K | = g hX) 2S5 X)
(61)

of the charge and current in a Galilean-invariant system with
the corresponding commutator in our Luttinger system, viz.,

1
[P0, (x)]==2iK,v,—da5x=x). (62
The Luttinger model approximates the Galilean-invariant
system by the replacement of the charge-density operator on
the right-hand side of Eq61) by its expectation value. This
confirms that Eq(60) is correct.

We now apply Eq(59). In the purely LL segment of the
line (i.e., 0<x<L) the §, and ¢, fields are no longer con-
strained by the condensate. However, as we mentioned ear-
lier, their values at the ends of the interval are fixed, just as in
Eq. (44):

X2 1
[ i00dx=20,, 5= 06 0.

X1

(63

condensate therefore imposes boundary conditions that amhis is the same result as E(33), because the quantity

essentially the same as those in Etd).
The bosonized form of the number density current is

j(x)=—-2v K

1
—d,0,.
pp\/ﬁXp

Substituting 6, from Eqg. (569 into Eq. (57) we find the
T=0 supercurrent to be

(57)

_ 1
J(X):vaKpﬁaxX- (58

found by the thermodynamic trick of differentiating the free
energy with respect tg is the spatial average of the current.
The advantage of E¢60) is that we can see that this average
current is independent of the precise way in which the gap
goes to zero as we enter the Luttinger link. Indeed, because
the duality map between one-dimensional charge-density
waves(CDW) and superconductors interchanges the charge
and current densities, the results we have just described are
just the dual of the well-known result in the theory of CDW
systems that the total charge induced in a region is a topo-
logical quantity depending only on the asymptotic values of

We can confirm this result by considering the case of g4N¢ CDW condensate phae.
Galilean-invariant system. For such a system we know that

) h
J(X)=pgvs= psﬁax)(v (59
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