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A theory describing a one-dimensional Luttinger liquid in contact with a superconductor is developed.
Boundary conditions for the fermion fields describing Andreev reflection at the contacts are derived and used
to construct a bosonic representation of the fermions. The Josephson current through a superconductor/
Luttinger liquid/superconductor junction is considered for both perfectly and poorly transmitting interfaces. In
the former case, the Josephson current at low temperatures is found to be essentially unaffected by electron-
electron interactions. In the latter case, significant renormalization of the Josephson current occurs. The profile
of the ~induced! condensate wave function in a semi-infinite Luttinger liquid in contact with a superconductor
is shown to decay as a power law, the exponent depending on the sign and strength of the interactions. In the
case of repulsive~attractive! interactions the decay is faster~slower! than in their absence. An equivalent
method of calculating the Josephson current through a Luttinger liquid, which employs the bosonization of the
system as a whole~i.e., superconductor, as well as Luttinger liquid! is developed and shown to give the results
equivalent to those obtained via boundary conditions describing Andreev reflection.

I. INTRODUCTION

When a normal metal (N) is put in good electrical contact
with a superconductor (S), superconducting order is induced
in the normal metal over distances far greater than any mi-
croscopic lengthscale, either of the normal metal or the su-
perconductor. This induced order leads to a number of re-
markable phenomena, such as the Josephson effect in SNS
junctions1 and the induced Meissner effect in SN bilayers,2

collectively known as ‘‘proximity effects.’’2 Until very re-
cently, all work on such effects, both experimental and theo-
retical, has concentrated on systems in whichN is in the
Fermi-liquid~FL! state. It has long been appreciated theoreti-
cally that, in contrast with their higher-dimensional analog,
~effectively! one-dimensional systems of interacting elec-
trons are not Fermi liquids. Instead, they exhibit a number of
possible regimes,3 among which the Luttinger liquid~LL !
provides a one-dimensional~1D! metallic counterpart to the
~higher-dimensional! FL state, albeit differing in several im-
portant respects, most notably in the absence of single-
particle excitations in the low-energy part of the spectrum.
The basic features of LL’s have been understood mainly in
the context of 1D organic charge-transfer and mixed-valence
conductors.4 In addition, the prediction of the suppression of
the tunneling conductance of LL’s~Refs. 5 and 6! has stimu-
lated the experimental search for Luttinger liquids in meso-
scopic systems, in particular, in the edge channels of frac-

tional quantum Hall systems7 and in semiconductor quantum
wires.8

The purpose of this paper is to address the issue of prox-
imity effects at Luttinger-liquid/superconductor interfaces,
including the Josephson effect in superconductor/Luttinger-
liquid/superconductor~SLS! junctions. Our motivation is
twofold. First, experimentally, such a study is relevant in
view of the rapid progress in the fabrication of
superconductor/semiconductor interfaces,9 especially those
with high interface transparency~such as, e.g., the Nb/InAs
interface!, and also in view of the recently reported observa-
tions of LL-like behavior in GaAs quantum wires.8 Thus, the
fabrication and investigation of SLS systems may reasonably
be anticipated in the near future. Second, theoretically, we
aim to understand the interplay between electron-electron in-
teractions and induced superconducting order in 1D elec-
tronic systems. Furthermore, one of the possible scenarios of
high-temperature superconductivity in oxide materials is
built on the assumption of the LL-like character of the nor-
mal electronic state in these materials.11 The existence of
LL’s in dimensions higher than one, however, is not yet es-
tablished, in contrast to the 1D case. Thus, a 1D LL in which
the superconductivity is induced via the proximity effect may
provide a model system for superconductivity in 2D.12

Our main results can be formulated as follows:~i! At low
temperatures, the Josephson current through an SLS junction
having perfectly transmitting interfaces has the same
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phase—and length—dependences as in the noninteracting
case, the only difference being a renormalization of the ef-
fective Fermi velocity. The reason for this is that, using the
bosonic language, the nondissipative~topological! currents,
including the Josephson current, are carried in LL’s by the
topological modes of the boson fields, which are not sensi-
tive to the interactions. At temperatures above a certain
crossover value, interactions lead to the additional suppres-
sion of the Josephson current.~ii ! The ~induced! supercon-
ducting condensate wave function in a LL in good electrical
contact with a superconductor decays asx2g with the dis-
tancex from the LL/S interface, withg depending on the
strength of the interactions. (g51 corresponds to the nonin-
teracting case, whereasg.1 for repulsive andg,1 for at-
tractive interactions.! ~iii ! For the case of imperfectly trans-
mitting interfaces, the renormalization of the interface-
transmission coefficients~via a mechanism known from
studies of LL’s coupled by weak links5,6! is reflected in the
renormalization of the Josephson current, which gets
strongly suppressed in the case of the repulsive interactions.
Along the way, we have also~iv! derived effective boundary
conditions describing Andreev reflection at the interface with
a superconductor, which we have then used as boundary con-
ditions in the bosonization procedure;~v! determined the
structure of the topological~Haldane! excitations in an SLS
system; and~vi! confirmed result~i! via an alternative ap-
proach, in which bosonization is applied to both the super-
conducting and normal parts of the system.

The issue of the Josephson current through a LL has also
been studied in a recent paper by Fazio, Hekking, and
Odintsov13 for the case of poor interface transmittance~see
also Ref. 10!. By using the tunneling Hamiltonian method, it
was found that the Josephson current through an SLS junc-
tion is suppressed compared to the noninteracting case. The
present paper takes a different approach. This approach origi-
nates from work on SNS junctions with perfect interface
transmittance,14–17 in which the Josephson current was re-
lated to the spectrum of electronic states confined to theN
region by Andreev reflection. Our results concerning poorly
transmitting interfaces agree with those of Ref. 13~up to
nonuniversal numerical prefactors, which we have not at-
tempted to calculate!.

The present paper is organized as follows. In Sec. II we
derive the boundary conditions for the fermion field opera-
tors at the NS interface in the absence of interactions. In Sec.
III we develop a bosonization procedure for interacting fer-
mions confined to the normal 1D region of an SLS system,
which makes use of the boundary conditions derived in Sec.
II. We calculate the Josephson current through an SLS junc-
tion in Sec. IV. In Sec. V, we analyze the profile of the
condensate amplitude in a semi-infinite LL connected to a
superconductor. Up to this stage, we will have applied
bosonization only to the normal part of the system, the pres-
ence of a superconductor being implemented as a boundary
condition. An alternative approach, in which both the normal
and the superconducting parts of the system are bosonized, is
presented in Sec. VI.

II. ANDREEV BOUNDARY CONDITIONS

A. Andreev reflection at the NS interface: Qualitative picture

Electronic excitations in a normal metal having energies
smaller than the superconducting energy gapD0 suffer An-

dreev reflection at the interface, i.e., electronlike excitations
are reflected as holelike excitations, with a Cooper pair being
injected into the superconductor, and vice versa.18,19 The
single-particle excitations inS are mixtures of electronlike
and holelike states with weights determined by the self-
consistency condition. In the bulk ofN, the electronlike and
holelike states are uncorrelated. Near the boundary, however,
Andreev reflection mixes the electronlike and holelike states
precisely in the same proportion as they are mixed inS,
which leads to the formation of a condensate, the amplitude
of which decays into the bulk ofN. The decay length of this
condensate is the lengthLT over which superconducting cor-
relations in the motion of bulk normal-state electrons exist.
In the case of perfect metals,LT5\vF /T, wherevF is the
Fermi velocity andT is the temperature~we choose units in
which kB51). @The same length determines the thermal dis-
ruption ~in the absence of inelastic processes! of mesoscopic
phase coherence, as is manifested in the phenomenon of uni-
versal conductance fluctuations.20! For T!D.Tc ~where
Tc is the critical temperature ofS!, LT@jS ~where
jS.\vF /D0 is the coherence length ofS!. In order to de-
scribe the influence of the superconductors on theN region,
we now derive effective boundary conditions that account for
the Andreev reflection suffered by the low-energy compo-
nents of the fermion fields at the NS interfaces. Our strategy
is as follows: in Sec. II B, we derive these boundary condi-
tions for the case of the noninteracting electron gas inN;
then, in Sec. III, we implement these boundary conditions
into the bosonization scheme for interacting electrons.

B. Derivation of Andreev boundary conditions

We consider a one-dimensional electronic conductor~i.e.,
a quantum wire! of lengthL, adiabatically connected to su-
perconducting leads@see Fig. 1~a!#. We begin by analyzing
the ideal case, in which the single-electron parameters
~Fermi velocities, effective masses, etc.! are the same in the

FIG. 1. ~a! A Luttinger-liquid ~LL ! conductor connecting two
superconducting electrodes with phases of the order parameters
x1 andx2 . ~b! The model profile of the pair potential used for the
derivation of Andreev boundary conditions~Sec. II!. ~c! Generic
profile of the pair potential appropriate for the bosonization of the
system as a whole~Sec. VI!.
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N andS parts of the structure, the only difference betweenN
and S being the presence of a pairing potential inS. We
adopt the conventional model14–17 in which the pairing po-
tentials in the leads are assumed to be unaffected by the
presence ofN. Although this is a non-self-consistent ap-
proximation, it is known to reflect correctly the aspects of the
problem relevant for the present treatment.14–17

To derive the boundary conditions, we replace the adia-
batically widening 3D superconducting leads by effective 1D
leads. The profile of the pair potential is then given by@cf.
Fig. 1~b!#

D~x!5H D0e
ix1 for x<0

0 for 0,x,L

D0e
ix2 for x>L.

~1!

In the Andreev ~semiclassical! approximation,18 which is
valid for D0!eF[\kFvF/2, the spinor of Bogoliubov am-
plitudes

w5S uv D ~2!

satisfying the Bogoliubov–de Gennes equations22 is decom-
posed into left- and right-moving components,

w5eikFxw11e2 ikFxw2 , ~3!

wherekF is the Fermi wave vector. The componentsw6 now
satisfy the~formally! relativistic ~first-order! Bogoliubov–de
Gennes equations:HD

6w65ew6 , with the Hamiltonians

HD
65S 7 i\vF]x D~x!

D* ~x! 6 i\vF]x
D .

The full solution of these equations is obtained14 by finding
the solutions in theN andS regions and then matching them
at the interfaces.~In the semiclassical approximation, only
the wave functions need be continuous.! The solution inN
for e,D0 can be written as

w65A6S e6 ikx

R71~e!e2 ix1e7 ikxD , ~4!

where

R~e!5e2 ih~e! and h~e!5cos21~e/D0!, ~5!

in which R is the Andreev reflection coefficient, whose
phase ish. The quasiparticle momentum\k5e/vF satisfies
the quantization condition

R~e!2e6 i ~x12x2!e2ikd51, ~6!

where6 corresponds to two sets of energy levels.14 In Eq.
~4!, A6 are overall normalizations which, without the loss of
generality, can be chosen to be real. Evaluating Eq.~4! at
x50 andx5L and using Eq.~6!, one can see that at the
boundaries the left and right components of the Bogoliubov
amplitudes satisfy

H v65R71e2 ix1u6 , for x50

v65R61e2 ix2u6 , for x5L.
~7!

Equations~7! describe the essence of Andreev reflection: the
electronlike excitations (u6) are converted into holelike ex-
citations (v6), at the same time acquiring the phase of the
order parameter (x1,2) together with the phase shift of the
Andreev reflection coefficient (h).

In the limit e!D0 , the phase shifth→p/2,21 and the
boundary conditions~7! become energy independent. This
enables one to derive from Eqs.~7! the boundary conditions
for the real-space fermion operatorscs(x), where s5↑,↓
denotes the spin projection. These field operators are related
to the (u,v) amplitudes via the Bogoliubov transformation22

cs~x!5( @csu~x!2sc2s
† vs* ~x!#, ~8!

wherecs (cs
†) is the fermion annihilation~creation! operator,

the sum runs over all single-particle quantum numbers, and
the variables takes on the values11(21) for the↑(↓) spin
projections. We decomposecs(x) into the left and right
movers:

cs~x!5eikFxc1,s~x!1e2 ikFxc2,s~x!. ~9!

Substituting decompositions~3! and~9! into Eq. ~8!, we ob-
tain the Bogoliubov transformation forc6,s :

c6,s~x!5( @csu6~x!2sc2s
† v7* ~x!#. ~10!

The boundary conditions for the~Pauli! spinorsc6,s then
follow upon substitution of Eqs.~7! into Eq. ~10!, and using
h5p/2. After some algebra, we obtain

c1,↑ux50,L57 ieix1,2c2,↓
† ux50,L , ~11a!

c1,↓ux50,L56 ieix1,2c2,↑
† ux50,L , ~11b!

or, more compactly,

S c1,↑

c1,↓
D U

x50,L

57 ieix1,2T̂S c2,↑

c2,↓
D U

x50,L

. ~12!

Here,T̂5ĝĈ is the time-reversal operator,22 with

ĝ5 i ŝy5S 0 1

21 0D ~13!

and Ĉ being the Hermitian conjugation operator. The pres-
ence ofT̂ in Eq. ~12! signals an important property of An-
dreev reflection:18 a reflected excitation is the time-reversed
version of an incident one.

Further insight into the meaning of the boundary condi-
tions ~12! can be obtained by employing the chiral symmetry
of left-right fermion fieldsc6,s . In what follows, we adopt
the methods of Refs. 23 and 24, in which the chiral symme-
try of boson fields satisfying Dirichlet or Neumann boundary
conditions was used to derive effective periodic boundary
conditions. The right~left! field describes the propagation of
the ~formally! relativistic fermions to the right~left! with the
Fermi velocity. Consequently, in the Heisenberg representa-
tion, the space-time dependence of these fields is given by

c6,s~x,t !5c6,s~x7vFt !. ~14!
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Using the boundary conditions~11a! and~11b!, one sees that
at any instant of time the time-dependent left-moving ferm-
ion fields satisfy

c2,s
† ~vFt !52sie2 ix1c1,2s~2vFt !, ~15a!

c2,s
† ~L1vFt !5sie2 ix2c1,2s~L2vFt !. ~15b!

Choosing t5(L1x)/vF in Eq. ~15b!, we obtain
c2,s
† (x12L)5sie2 ix2c1,2s(2x). Equation ~15a! gives

c1,s(2x)52sieix1c2,2s
† (x) which, in combination with

the previous equation, leads to

c2,s~x12L,t !5eipqc2,s~x,t !, ~16a!

c1,s~x,t !52sieix1c2,2s
† ~2x,t !, ~16b!

whereq[11(x/p) andx[x22x1 . Thus, we see that the
Andreev boundary conditions~11a! and~11b! are equivalent
to twistedperiodicboundary conditions forc2,s , Eq. ~16a!,
on an interval of length twice the length of the original sys-
tem, supplemented by the connection between thec1,s and
c2,s fields following from the chiral symmetry, Eq.~16b!.
~Equivalently, the periodic boundary conditions can be de-
rived forc1,s and the chiral symmetry can be used to obtain
c2,s .) The problem thus becomes very similar to one of
fermions on a ring of circumference 2L, threaded by an ef-
fective Aharonov-Bohm fluxq/2, the persistent current25–27

being the analog of the Josephson current. A detailed treat-
ment of persistent currents in Luttinger liquids was given in
Ref. 28 ~for the case of spinless electrons!, and we shall
adopt this treatment in what follows.29

We now discuss the range of validity of the Andreev
boundary conditions. The conditione!D0 , which we
needed in order to arrive at Eq.~12!, means that our bound-
ary conditions are capable of describing only excitations
with wavelengths 1/k@\vF /D0.jS . Such excitations exists
only in ‘‘long’’ junctions, i.e., L@jS ; thus our treatment is
valid only for this case. On the other hand, as follows from
self-consistent calculations,2 the order parameter inS gets
reduced from its bulk value over the scalejS near the bound-
ary, which also affects the excitations inN in the boundary
region of the thickness ofjS . Thus, the model of a steplike
profile ofD, Eq. ~1!, can adequately describe only processes
taking place in the interior ofN ~i.e., for x outside boundary
layers of widthjS), where the exact shape of the profile of
D in S is irrelevant. The latter condition can be satisfied only
if L@jS . Therefore, the range of validity of our boundary
conditions is the same as that of the non-self-consistent
model itself. We can also view Eq.~12! as the minimal-
model boundary conditions that describe the time-reversal
process associated with Andreev reflection.

III. BOSONIZATION OF LUTTINGER LIQUID
IN CONTACT WITH SUPERCONDUCTORS

We now turn to the bosonization of an interacting 1D
electronic system31 in contact with superconductors. We rep-
resent the free fermion fields in the conventional bosonic
form:

c6,s~x!5
1

AaL
exp@6 iApf6,s~x!#, ~17!

wherea→10 is a convergence factor and the chiral bosons
f6,s are expressed through the density~phase! bosons
fs(us) via

f6,s~x!5fs~x!7us~x!. ~18!

We construct mode expansions forf6,s(x) in such a way
that the twisted boundary conditions~16a! and the auxiliary
conditions~16b! are satisfied:

f2,s~x!5
ws

Ap
1Ap~Ns1q!

x

2L
1f̄s~x!, ~19a!

f1,s~x!5
w2s

Ap
2Ap~N2s1q!

x

2L
1f̄2s~2x!.

~19b!

~The additivec-number terms have been omitted in the ex-
pansion forf1,s .) Here,ws are zero-mode operators,Ns are
operators whose eigenvalues give the winding numbers of
the Haldane~topological! excitations,32 and f̄s(x) are the
non-zero-mode components of the chiral boson fields, which
are periodic on the interval (0,2L):

f̄s~x!5 (
k.0

gk~e
2 ikxak,s

† 1eikxak,s!, ~20!

wherek5pn/L ~with n51,2,. . . ,), gk5exp(2an/2)/AkL,
and ak,s satisfy the canonical commutation relations
@ak,s ,ak8,s8

†
#5dss8dkk8. In Eqs. ~19a! and ~19b!, the terms

linear inx describe the topological excitations of the bosonic
system, which do not conserve the total number of fermions.
The eigenvalues ofNs give the numbers of fermions added
to or removed from the Luttinger liquid. The non-zero-mode
componentsf̄s describe the quantum fluctuations around the
topological excitations. These correspond to the fluctuations
in the fermion density that conserve the total number of fer-
mions.

We require that the chiral bosons obey the canonical com-
mutation relations,33

@f6,s~x!,]x8f6,s8~x8!#57 idss8 (
n52`

`

d~x2x812nL!,

~21!

where the summation overn reflects periodicity on the inter-
val ~0,2L!. The non-zero-mode components of, e.g., expan-
sion ~19a! obey

@f̄2,s~x!,]x8f̄2,s8~x8!#

5dss8H ix/L1 (
n52`

`

d~x2x812nL!J . ~22!

Thus, in order for Eq.~21! to be satisfied, the zero-mode
operatorsws and the winding-number operatorsNs must
obey

@ws ,Ns8#52idss8. ~23!
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~The same result can certainly be found by considering the
commutation relations off1,s .) A posteriori, we can also
justify the choice of the coefficientsgk in Eqs. ~19a! and
~19b!: they were chosen in such a way that the commutation
relations~21! are satisfied.

Next, we introduce the charge (r) and spin (s) compo-
nents of the boson fields:fr,s[(f↑6f↓)/A2 and
ur/s[(u↑6u↓)/A2. The mode expansions forfm and um
~where m5r,s) follow from the expansions~19a! and
~19b!:

fr~x!5
wr

Ap
1 (

k.0
gkcoskx~akr

† 1akr!, ~24a!

fs~x!5Ap

2
M
x

L
1 i(

k.0
gksinkx~aks

† 2aks!, ~24b!

ur~x!5Ap

2
~J1q!

x

L
1 i(

k.0
gksinkx~akr

† 2akr†!,

~24c!

us~x!5
ws

Ap
1 (

k.0
gkcoskx~aks

† 1aks!, ~24d!

where wr/s[(w↑6w↓)/A2, M[(N↑2N↓)/2, J[(N↑
1N↓)/2, andakr/s[(ak,↑6ak,↓)/A2. It is natural that the
phase difference of the superconducting order parameters
x, which determines the charge flow between the supercon-
ductors, appears only in the field associated with the charge
current, i.e.,ur .

We now have to determine the topological constraints im-
posed on the winding numbersNs ~and, consequently, onM
andJ!. This can be done by substituting the expansion, e.g.,
for f2,s , Eq. ~19a!, into the bosonization formula~17!, and
requiring that the boundary conditions for fermions~16a! be
satisfied.28 @When disentangling the operators in the expo-
nent of Eq. ~17!, one must recall thatfs and Ns do not
commute, and use Eq.~23!.# One thus finds thatNs satisfies

~2 !Ns1151, ~25!

i.e., that the eigenvalues ofNs are odd.~Neglecting the op-
erator nature of the zero modes and the winding numbers
would have led toNs being even.! Consequently,J1M must
be odd. It is convenient to introduce an effective winding
number J85J11, so thatJ1q5J81x/p in Eq. ~24c!.
Then,J81M must be even. Comparing this constraint with
the similar constraint on the topological numbers in the
persistent-current problem,28 we see that our constraint effec-
tively corresponds to the case of anoddnumber of fermions
on the ring, in which case the response of the system to the
twist in boundary conditions is diamagnetic, i.e., the free
energy is minimal at zero twist. Tracing back through our
calculations, we note that the diamagnetic nature of the Jo-
sephson current is guaranteed by the Andreev phase shift
(p/2), which ultimately shiftsJ to J11. The physical mean-
ing of the topological constraint is quite simple: the energy
of the LL is minimal when the left- and right-moving
branches of the spectrum are populated symmetrically;

changing the total number of fermions in the LL by an even
~odd! number results in excitations with even~odd! total mo-
mentum quanta.

We note that expansions similar to Eqs.~24a!–~24d!
could have been obtained by first deriving the boundary con-
ditions directly for the charge and spin bosons from the
boundary conditions for the fermions~in the same way that
the boundary conditions for bosons are derived from the Di-
richlet boundary conditions for fermions in Ref. 23!, and
then constructing expansions satisfying these boundary con-
ditions. In this way, however, the zero modes of the expan-
sions, which are crucial for the topological constraints on the
eigenvalues ofM andJ, might have been missed.~We will
derive and use the boundary conditions for charge/spin
bosons in Sec. V, when the topological structure of the boson
fields will not be important.!

The bosonized Hamiltonian of the LL is given by

H5
\

2 (
m5r,s

E
2L/2

L/2

dxH vm

Km
~]xfm!21vmKm~]xum!2J .

~26!

If the LL model originates from the Hubbard model then
Kr/s51/A16g, where g[Ua/pvF , with U being the
strength of on-site interactions anda the microscopic length
cutoff ~of order the Fermi wavelength!, andvm[vF /Km . In
addition, if the underlying SU~2! symmetry of the Hubbard
model is intact, thenKs51.34

IV. JOSEPHSON CURRENT
THROUGH A LUTTINGER LIQUID

One of the most important consequences of induced co-
herence in theN part of an SNS system is the Josephson
current through it. This current differs from its counterpart in
tunnel junctions in that the critical currentJ c decays with
the junction lengthL according to the power law 1/L ~for
L!LT), rather than exponentially.

The Josephson current in SNS junctions is affected
strongly by the quality of the interface. The transmittance of
interfaces between semiconductors and superconductors var-
ies widely, depending on the nature of the junction. The in-
terface that has been studied most intensively in recent years,
particularly in the context of mesoscopic effects, is the Nb/
InAs interface. This interface is unique in the sense that a
charge-accumulation layer is formed instead of a Schottky
barrier and, as a result, the interface transparency is quite
high. More commonly, however, the transmittance may be
quite low, both because of interface roughness and Schottky-
barrier formation. Below, we calculate the Josephson current
through the LL in two limiting cases: perfectly transmitting
interfaces ~Sec. IV A! and poorly transmitting interfaces
~Sec. IV B!. The latter case has been investigated in Ref. 13.

A. Perfectly transmitting interfaces

First, we consider the case of perfectly transmitting inter-
faces, in which the only scattering that takes place at the
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S/LL boundaries is Andreev reflection, single-particle reflec-
tion being absent. The Josephson currentJ is given by

J5
2e

\

]

]x
V, ~27!

where V52kBTlnZ is the grand potential, andZ is the
grand partition function. Substituting Eqs.~24a!–~24d! into
Eq. ~26! and diagonalizing the non-zero-mode part via a ca-
nonical transformation, we get for the many-body eigenener-
gies of the system

E5
p\

4L FvrKrS J81
x

p D 21 vs

Ks
M2G

1\(
k.0

(
m5r,s

vmk~nkm11/2!, ~28!

wherenkm[bkm
† bkm , and the new boson operatorsbkm are

connected to the old ones viaam5bmcoshlm2bm
†sinhlm ,

in which

lr/s56
1

2
tanh21

12Kr/s
2

11Kr/s
2 . ~29!

We see that the phase differencex appears only in the topo-
logical part ofE , as it should, because the non-zero-mode
excitations are neutral, and therefore do not contribute to the
~equilibrium! charge current. We also note that only two of
the four charge/spin bosons, viz.,fs and ur , contribute to
the topological part ofE . ~The Josephson-current problem
differs in this respect from the persistent-current problem, in
which all four bosons contain topological excitations.! The
combination$fs ,ur% commonly arises in the study of super-
conductivity in LL’s.34

The partition function factorizes asZ5Zt(x)Zn , where
Zt/n is the contribution from the topological~non-zero-mode!
part ofE . To calculateJ , we need only knowZt , which is
given by

Zt~x!5 ( 8
J8,M

e2«r~J81x/p!2e2«sM
2
, ~30!

where «r[pLTvrKr/4vFL and «s[pvsLT/4KsvFL, and
the primed sum indicates thatJ8 andM are connected via the
constraint found in Sec. III~i.e.,J81M even!. ~Although the
spin part ofZt does not depend onx, it does not simply
reduce to an overall multiplicative factor because of this con-
straint.! It is convenient to represent the winding numbers
J8 and M in the following form: J852 j1kJ and
M52m1kM ~with kJ50,1 andkM50,1).28 The topological
constraint is then satisfied forj ,m50,61, . . . , and
kJ5kM . We can then rewrite Eq.~30! in the unconstrained
form:

Zt~x!5 f 0,r~x! f 0,s~0!1 f 1,r~x! f 1,s~0!, ~31!

where

f k,m~x![ (
n52`

`

e2«m~2n1k1x!2. ~32!

The Josephson current can now readily be calculated. With-
out writing down the exact expression~which contains, as
usual for this kind of problem, Jacobiq3 functions28! we
consider only the asymptotic cases of low (L!LT) and high
(L@LT) temperatures. In the former case, one finds

J5
evrKr

L

x

p
, for uxu<p, ~33!

with J (x12p)5J (x). We note that the interaction renor-
malization of the Josephson current is the same as that of the
persistent current.28 When the Luttinger-liquid Hamiltonian
~26! is obtained as the long-wavelength limit of the Hubbard
Hamiltonian then vrKr5vF . Comparing Eq. ~33! for
vrKr5vF with the corresponding expressions for the nonin-
teracting electrons,15–17 we see thatthe Josephson current
through the Luttinger liquid is precisely the same as through
the noninteracting electron gas. A word of caution is neces-
sary, however: this conclusion is only valid if backscattering
and umklapp scattering are not taken into account. Even if
these types of scattering are irrelevant~in the
renormalization-group sense!, they will modify the param-
eters of the LL entering Eq.~26!, so that the equality
vrKr5vF will no longer hold.

35 Nevertheless, the deviations
from this equality are expected to be small.~For instance, in
the spinless case, the maximal reduction in the product
vrKr due to umklapp scattering is 20%, even at half-filling,
when such processes are most effective.28,36! Also, there is
a much more significant source of the renormalization of
J which we have not yet taken into account, viz., the non-
perfectness of the interfaces~see Sec. IV B!.

For high temperatures (L@LT) we find

J58e\21Texp~22paL/LT!sinx, ~34!

where

a[
1

2 S vrKr

vF
1

vs

vFKs
D . ~35!

In the Hubbard model with the SU~2! symmetry,
a5(111/A12g)/2.1. Thus, at high temperatures, interac-
tions lead to the further suppression ofJ ~in addition to the
thermal disruption of the phase coherence!.

B. Poorly transmitting interfaces

Having discussed the case of perfectly transmitting inter-
faces, we now give a brief discussion of the case of poorly
transmitting interfaces. In this case, qualitative information
can be obtained by making use of the known results on the
interaction-induced renormalizations of the transmission co-
efficient.~For the analogous treatment of persistent current in
imperfect LL rings, cf. Ref. 37.!

First, consider a noninteracting SNS ‘‘clean’’ system~i.e.,
the elastic mean free path being far greater thanL!, with
interface-transmission coefficientsT1,2!1. For simplicity,
we now restrict attention to the low-temperature case
(LT@L). The result for the Josephson current can be ob-
tained from the general formula of Ref. 38, Eq.~16!, which
expressesJ through the probability for an excitation to
propagate from one interface to another within a certain
time. Substituting the probability of ballistic propagation into
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Eq. ~16! of Ref. 38, we find, after some simple algebra, that
the critical currentJ c

i for the structure with imperfect inter-
faces is

J c
i .T1T2J c , ~36!

whereJ c is the critical current forT15T251, which is
given by thex-independent factor in Eq.~33!. In the inter-
acting case, the low-transparency interfaces can be described
within the weak-link model of Kane and Fisher.5,6 In this
model, the weak links~in our case, the interfaces! are treated
as perturbations that transfer electrons between the discon-
nected~in zeroth order! parts of the LL, and the renormal-
ization group~RG! of the boundary sine-Gordon model is
used to find the effective values of the hopping~transmis-
sion! probabilities. The case of the double barrier has been
considered in Ref. 6. We note that~i! because in our Hamil-
tonian ~26!, and hence in our action, the topological excita-
tions are decoupled from the nonzero modes, the RG flow
equations for the transmission coefficients are the same as in
Ref. 6;~ii ! the effective cutoff for the RG flow is provided in
our case by the junction lengthL. Therefore, we can borrow
the result for the renormalized productT1T2 from the Kane-
Fisher result for the double barrier away from the resonance:

T1T2→T1T2~kFL !2~1/Kr11/Ks22!. ~37!

If the SU~2! symmetry of the underlying Hubbard model is
intact, i.e.,Ks51, we find

J c
i .T1T2S 1

kFL
D Kr

21
21

J c , ~38!

which is in agreement with Ref. 13, up to a~nonuniversal!
numerical coefficient.

Whether Eq.~33! or Eq.~38! is relevant to a given experi-
mental situation depends on the bare~i.e., unrenormalized!
values ofT1,2 and onL. Suppose thatT1'T2[T0'1. Then
the interface barriers can be treated according to the weak-
barrier model.5,6 Assume, for simplicity, that the potential
barriers ared functions with the~bare! amplitudeV0 . As
V0 is small, its RG flow at distinct interfaces is independent,
and is given byV5V0(L/a)

(12Kr)/2. ThenT0 is renormal-
ized to

T5
1

11~mV/\kF!
2 5

1

11
12T0
T0

S LaD ~12Kr! . ~39!

For relatively short junctions, i.e.,

L!L*.aS T0
12T0

D 1/~12Kr!

, ~40!

the renormalization ofT0 due to interactions is small, and
Eq. ~33! applies. The better the interface the largerL* . In
particular, asT0→1, L*→`, in accordance with the previ-
ously found virtual absence of the renormalization ofJ for
perfect interfaces~cf. Sec. IV A!. For longer junctions, i.e.,
L@L* , Eq. ~38! applies.

Choosingg5Ua/pvF51/2 ~i.e.,Kr'0.8),T050.7, and
recalling thata.2p/kF.400 Å in the relevant semiconduc-
tor structures, we findL*.1mm. Junctions of lengths in the

range 0.1–10mm are quite common in experiments,9 so both
Eqs.~33! and~38! may be relevant in experimental situation.

Indirectly, one also can appreciate the extent to which
interactions renormalize the Josephson current by using re-
cent experimental results on the~dissipative! conductance of
the ultrahigh mobility GaAs quantum wires.8 As was shown
in Ref. 8, the conductance of the wire is reduced from the
conductance quantum~i.e., e2/h per spin projection! as the
temperature is lowered, the temperature dependence being
consistent with the theory of charge transport in dirty Lut-
tinger liquids.39–41 The absolute value of this reduction is
quite small, however: it amounts to 1–5 % for wires of
length 2–10mm.

V. PROXIMITY EFFECT IN LUTTINGER LIQUIDS

As has been mentioned in Sec. II A, Andreev reflection at
the NS interface gives rise to correlations between electron-
like and holelike excitations inN. These correlations are
similar to those between the single-particle excitations inS,
which can be viewed as the induction of superconducting
off-diagonal long-range order inN due to the proximity ofS.
The presence of such order is usually described by the~in-
homogeneous! condensate wave function2 F(x), defined by

F~x![^c↑~x!c↓~x!&. ~41!

In the bulk ofN, F50. The scale over whichF ~exponen-
tially! changes from its value at the NS boundary to zero in
the bulk is given byLT . As T→0, the lengthLT→`, and
the exponential decay ofF crosses over to a slower~power-
law! decay. In particular, ifN is a Fermi-liquid metal,F
decays with the distance from the interface as 1/x ~at
T50!.43We now explore how this decay law is changed if N
is in the LL state.

Consider a semi-infinite LL occupying the half linex.0
and connected toS at x50. The bosonized form ofF(x) is
given by

F~x!5
1

pda
^e2 iA2pur~x,0!cos„A2pfs~x,0!…&, ~42!

whered→10 is a~dimensionless! cutoff parameter,a is the
microscopic scale of the system, andur(x,t) andfs(x,t)
are boson fields in the~imaginary time! Heisenberg represen-
tation. In Eq. ~42!, the average is taken with respect to
Boltzmann factore2S/\, whereS5Sr1Ss is the~Euclidean!
action corresponding to Hamiltonian Eq.~26!, and

Sr[
\Kr

2 E dxdt
1

vr
~]tur!21vr~]xur!2, ~43a!

Ss[
\

2Ks
E dxdt

1

vs
~]tfs!21vs~]xfs!2. ~43b!

@Note that we have deliberately expressedSm via those boson
fields that enter the bosonized form ofF(x).# The presence
of S at x50 imposes certain boundary conditions on these
fields. We derive these boundary conditions directly from the
boundary conditions for fermions Eqs.~11a! and ~11b! by
using the bosonized form of the fermion fields~17!. ~The
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phase of the order parameter inS is now taken to be zero, as
we do not consider charge flow through the interface.!
Simple algebra then leads to

fs~0,t!52A2p/4, ur~0,t!50. ~44!

In the ~semi-! infinite geometry, the energy of topological
excitations is infinitesimally small,42 and therefore we do not
have to incorporate the winding numbers of such excitations
in boundary conditions~44!. As one might have anticipated,
Andreev boundary conditions for fermions~11a! and ~11b!
impose boundary conditions only on those components of
the boson fields that occur in the bosonized form of the con-
densate wave function~42!.

In order to remove the divergence in Eq.~42! as
d→10, we use the following trick. Consider the modified
boundary condition for the fs field: fs(0,t)
52A2p/41d. Introduce a new fieldf̃s[A2p/42d1fs

satisfying the homogeneous boundary condition
f̃s(0,t)50. After this,F takes the form

F~x!5
sind

d

1

pa
^e2A2pur&^e2A2pf̃s&ud→0

5
1

pa
exp$2p„Gr~x,x,0!1Gs~x,x,0!…%, ~45!

whereGr/s(x,x8,t) is the propagator of the charge~spin!
boson field, which satisfies

Km
am~]x

21vm
22]t

2!Gm52d~x2x8!d~t!, ~46!

in which ar/s561. Gm obeys the following boundary con-
ditions: Gm(0,x8,t)50, Gm(x,x8,t)ux→`→0, and
Gm(x,x8,t1b)5Gm(x,x8,t), whereb51/T. The Fourier
transform int of the solution of Eq.~46! is given by

Gm~x,x8,v!5Km
2amuv̄u21sinh~ uv̄ux,!exp~2uv̄ux.!,

~47!

where x,[ min$x,x8% and x.[ max$x,x8%. Inverting the
transform, we get

Gm~x,x,0!5
1

2pKam
ln~x/a!, ~48!

where, in order to regularizeGm , we have chosen the same
short-distance cutoffa as in Eq.~42!. Substituting Eq.~48!
into Eq. ~45!, we find

F~x!5
C

a S axD
g

, with g[
1

2
~Ks1Kr

21!, ~49!

whereC is a ~nonuniversal! numerical coefficient. In the
absence of interactions,Kr5Ks51 and we return to the
1/x scaling. In the presence of repulsive~attractive! interac-
tions,g.1 (g,1), and the condensate amplitude in the LL
decays faster~slower! than in the FL. This result is in accord
with one’s intuition: the repulsive~attractive! Coulomb inter-
action weakens~strengthens! the superconducting state in-
duced inN by Andreev reflection. The exponentg is one-
half of the exponent determining the spatial decay of the
~singlet! superconducting fluctuations in the infinite LL.34

At first sight, the result that the profile of the condensate
wave function in the LL decays faster than in the FL seems
to contradict to the results of Sec. IV, in which it was found
that the junction-length dependence of the critical current is
the same in the LL and the FL. Indeed, it seems natural to
connect the 1/x decay law of the condensate in the FL with
the 1/L dependence ofJ c ; then, it would be reasonable to
expect that the 1/xg decay law of the condensate in the LL
would be transformed into a 1/Lg dependence ofJ c , even if
the interfaces are perfect.44 In fact, this conclusion would not
be valid and, as we show below, the 1/L dependence ofJ c
~at T50! is universal, and not connected with the profile of
the condensate in theN region of an SNS junction. Consider,
again, an SNS junction of lengthL@jS . Our main argument
is that atT50 the only relevant length scale in the problem
is L; therefore, at distances from the interface larger than
jS , the profile of condensate wave functionN is described
by a single dimensionless parameterx/L. Therefore,F(x)
can be represented in the following form:

F~x!5F0
2F2~x/L !1F0

1F1~x/L !, ~50!

whereF0
65F0e

ix1,2 are the values ofF at x50(L), and the
scaling functionsF6(z) satisfy the following boundary con-
ditions: F6(1)51(0), F6(0)50(1). The supercurrent
flowing through the junction is given by

J5 iAS F~x!
dF* ~x!

dx
2 c.c.D , ~51!

whereA is anL independent constant. Substituting Eq.~50!
into Eq. ~51!, we see thatJ can be represented in the form

J5AL21F~x/L !, ~52!

whereF(z) is a scaling function that is a combination of the
functionsF6(z) and their derivatives. Due to charge conser-
vation,J (x) does not depend onx, which can be satisfied
only if F(z) is z independent. Thus, we see thatJ}1/L
regardless of the particular form of the condensate wave
function, the latter determining only the numerical coeffi-
cient in front of the 1/L dependence.

VI. SOLUTION VIA THE BOSONIZATION
OF THE WHOLE SYSTEM

So far, we have applied bosonization only to the
Luttinger-liquid part of the system, i.e., to the interval 0,x
,L. We can gain some further insight into our results by
comparison with a system in which the LL occupies the en-
tire real line, but, by some mechanism, has acquired a super-
conducting gap whenx,0 and x.L @cf. Fig. 1~c!#. The
existence of a gap means that the usual Luttinger Hamil-
tonian is modified by the addition of the term

Hgap5E dxuD~x!ueix~x!~c1↑
† c2↓

† 1c2↑
† c1↓

† !1 H.c.

~53!

The corresponding~Minkowski! bosonic action is
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S5E dxdtH Kr

2 S 1vr
~] tur!22vr~]xur!2D

1
1

2Ks
S 1vs

~] tfs!22vs~]xfs!2D
1uDu~ :cos@x~x!1A2p~ur2fs!#:

1:cos@x~x!1A2p~ur1fs!#: !J , ~54!

where x(x) is the local phase of the order parameter. In
regions whereD(x) is large, the principal effect of the non-
linear terms is to constrain the values ofur(x) andws(x) to
the minima of the cosine potential, so that

x1A2p~ur2fs!52np, ~55a!

x1A2p~ur1fs!52mp. ~55b!

Equivalently

ur5
1

A2p
@2x1p~n1m!#, ~56a!

fs5
1

A2p
@1p~n2m!#. ~56b!

There are no constraints onus or fr . The fieldsur and
fs are thus locked~modulo winding numbers! to the con-
densate phase in the superconducting regions. In the purely
LL part of the system all four fields are free to fluctuate. The
condensate therefore imposes boundary conditions that are
essentially the same as those in Eq.~44!.

The bosonized form of the number density current is

j ~x!522vrKr

1

A2p
]xur . ~57!

Substitutingur from Eq. ~56a! into Eq. ~57! we find the
T50 supercurrent to be

j ~x!52vrKr

1

2p
]xx. ~58!

We can confirm this result by considering the case of a
Galilean-invariant system. For such a system we know that

j ~x!5rsvs5rs
\

2m
]xx, ~59!

where rs is the density of superconducting electrons. At
T50 we will havers5r. Comparing Eqs.~58! and~59!, we

see that consistency requires the equilibrium number density
in the Galilean-invariant liquid to be given by

r52Krvrm/p\. ~60!

~The factor of 2 in this equation arises from the two spin
projections.! That this is correct is shown by comparing the
commutator

Fc†c~x!,
\

2mi
c†~x8! ]Jx8 c~x8!G5

\

mi
c†c~x!]xd~x2x8!

~61!

of the charge and current in a Galilean-invariant system with
the corresponding commutator in our Luttinger system, viz.,

@r~x!, j ~x8!#522iK rvr

1

p
]xd~x2x8!. ~62!

The Luttinger model approximates the Galilean-invariant
system by the replacement of the charge-density operator on
the right-hand side of Eq.~61! by its expectation value. This
confirms that Eq.~60! is correct.

We now apply Eq.~59!. In the purely LL segment of the
line ~i.e., 0,x,L! the ur andfs fields are no longer con-
strained by the condensate. However, as we mentioned ear-
lier, their values at the ends of the interval are fixed, just as in
Eq. ~44!:

E
x1

x2
j ~x!dx52vrKr

1

2p
~x22x1!. ~63!

This is the same result as Eq.~33!, because the quantity
found by the thermodynamic trick of differentiating the free
energy with respect tox is the spatial average of the current.
The advantage of Eq.~60! is that we can see that this average
current is independent of the precise way in which the gap
goes to zero as we enter the Luttinger link. Indeed, because
the duality map between one-dimensional charge-density
waves~CDW! and superconductors interchanges the charge
and current densities, the results we have just described are
just the dual of the well-known result in the theory of CDW
systems that the total charge induced in a region is a topo-
logical quantity depending only on the asymptotic values of
the CDW condensate phase.45

ACKNOWLEDGMENTS

We thank Eduardo Fradkin for several useful discussions.
This work was supported by the U.S. NSF under Grant Nos.
DMR89-20538 ~D.L.M.! and DMR94-24511 ~M.S. and
P.M.G.!, and by the NSERC of Canada~D.L.!.

*Electronic address: maslov@uiuc.edu
†Electronic address: m-stone5@uiuc.edu
‡Electronic address: goldbart@uiuc.edu
§Electronic address: dloss@sfu.ca
1See, e.g., B. D. Josephson, Adv. Phys.14, 419 ~1965!; in Super-
conductivity, edited by R. D. Parks~Marcel Dekker, New York,
1965!, Vol. I, p. 423.

2G. Deutscher and P. G. de Gennes, inSuperconductivity, edited by
R. D. Parks~Marcel Dekker, New York, 1965!, Vol. II, p. 1005.

3Although fluctuations preclude ordering in 1D, one can distin-
guish a number of regimes by the dominating type of fluctua-
tions. Depending on the sign and strength of interactions, a 1D
system can be in the charge-~spin-! density-wave regime, sin-
glet ~triplet! superconducting regime, or the Luttinger-liquid re-

1556 53MASLOV, STONE, GOLDBART, AND LOSS



gime. See, e.g., V. J. Emery, inHighly Conducting One-
Dimensional Solids, edited by J. T. Devreese~Plenum, New
York, 1979!, p. 327.

4J. Solyom, Adv. Phys.28, 209 ~1979!; H. J. Schulz, Int. J. Mod.
Phys. B5, 57 ~1991!; see the citation in Ref. 3.

5C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett.68, 1220~1992!.
6C. L. Kane and M. P. A. Fisher, Phys. Rev. B46, 7268~1992!; 46,
15 233~1992!.

7F. P. Milliken, C. P. Umbach, and R. A. Webb~unpublished!.
8S. Tarucha, T. Honda, and T. Saku, Solid State Commun.94, 413

~1995!.
9See, e.g.,Mesoscopic Superconductivity, edited by F. W. J. Hek-
king, G. Scho¨n, and D. V. Averin@Physica B203, p. 201~1994!#.

10The issue of Andreev reflection in Luttinger liquids has also
arisen in the contexts of~i! tunneling through the boundary be-
tween a~spin-polarized! fractional Hall system and a supercon-
ductor @M. P. A. Fisher, Phys. Rev. B49, 14 550 ~1994!#; ~ii !
scattering of normal electrons from superconducting fluctuations
in Luttinger liquids@I. Safi and H. J. Schulz~unpublished!#.

11P. W. Anderson, Science235, 1196 ~1987!; Phys. Rev. Lett.64,
1839 ~1990!.

12Models of 1D electronic systems with various pairing interactions
have been considered by a number of authors; see, e.g., the
citation in Ref. 3; I. Affleck and J. B. Marston, J. Phys. C21,
2511 ~1988!; R. Shankar, Physica A177, 530 ~1991!.

13R. Fazio, F. W. J. Hekking, and A. A. Odintsov, Phys. Rev. Lett.
74, 1843~1995!.
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