
Leggett’s conjecture for a mesoscopic ring

P. Singha Deo
Institute of Physics, Bhubaneswar 751005, India

~Received 24 July 1995; revised manuscript received 25 January 1996!

We show that the generic feature of topological defects in a ring, which acts as an energy-dependent
one-body potential, is that they can produce a discontinuous phase change of the electron wave function and
then Leggett’s conjecture breaks down.@S0163-1829~96!03423-6#

A normal metal ring pierced by a magnetic field carries a
persistent current.1 Persistent current has been observed
experimentally2 but some aspects of it are still not fully
explained.3 The ring shows a strong parity effect in the sense
that for spinless electrons, a clean one-dimensional ring with
an odd number of electrons has a diamagnetic response and a
ring with an even number of electrons has a paramagnetic
response.4 It was conjectured by Leggett that this fact fol-
lows just from the symmetry property of the wave function
~the electrons being fermions, the wave function must be
antisymmetric! and is independent of electron-electron inter-
action as well as defect scatterings.5 See Ref. 6 for a discus-
sion of earlier works.

In the multichannel situation7 parity exists. In a multi-
channel ring, the slope of the states changes within an energy
scale Ec, the Thouless energy of the system. In open
systems,8 we can define the parity effect with the phase of
the persistent current or with the phase of the conductance.9

However, the parity of the phase of the conductance in such
open systems is related to the parity of the eigenenergies of
closed systems.9

It has been shown6 that in a loop of lengthu, to which a
single stub of lengthv is attached~Fig. 1!, the parity effect is
completely destroyed whenv/u.1 and the slopes of the
states change after eachv/u state~on the average and not
exactly!. However, Ref. 6 studies the effect of a single stub
and says that forv/u,1 the parity effect is not violated in
the ring. In this paper we show that topological defects of the
type v/u,1 can also violate the parity effect under some

special situations and in general the parity effect is destroyed
if we have many such geometric scatterers. In Ref. 6 it has
also been argued that the length of the stub provides an ad-
ditional energy scale that creates some additional states. But
why these additional states do not obey the parity effect was
left as an open question. In this paper we try to analyze the
physical reasons behind the breakdown of the parity effect.

If there are some sharp variations in thickness then some
resonant cavities may be formed at certain places in the ring.
Resonant cavities can be taken as stubs10 and the width of
the resonant cavities only lowers the energy.11 Recently the
parity effect of such geometries has gained a lot of impor-
tance because of a recent experiment12 and subsequent
theories.9 The relevant situation in that experiment was
v/u,1.

If k is the allowed wave vector anda52pf/f0 is the
Aharonov-Bohm phase,f being the flux through the ring
andf0 the flux quantum then, following Ref. 6,

cos~a!5Re@1/T~k!#, ~1!

where T(k) is the transmission amplitude across the ring
when the ring is cut open. For a clean ring the bound state
condition isei (ku2a)51. Whereas Eq.~1! is just the condi-
tion

ei $cos
21@Re~1/T!#2a%51. ~2!

This simple analogy has far reaching consequences.13

cos21(Re1/T) is the Bloch phaseKu ~whereK is the Bloch
momentum! acquired by the electron in traversing a unit cell
of an infinite periodic system whereT is the transmission
amplitude across a unit cell of the periodic system.6 Hence
Eq. ~2! is justei (Ku2a)51. This suggests that inside the ring
the electron moves clockwise or anticlockwise with momen-
tum K and not with the free particle momentumk. One of
them is a diamagnetic~anticlockwise moving! state and the
other is a paramagnetic~clockwise moving! state. Without a
magnetic fielda50. If the magnetic field is increased con-
tinuously thena also increases continuously to give rise to
anE versusa dispersion.1 Hencea is called a pseudo Bloch
momentum. Initially as the magnetic field is increased the
two states move away from each other. However, the dia-
magnetic and paramagnetic states are not degenerate for any
value ofa for reasons explained later. Equation~2! is due to
the single valuedness of the wave function. Hence if the
Bloch phase of an electron, in traversing a unit cell of an
infinite periodic system,Ku equalsa, then the single val-FIG. 1. A stub of lengthv attached to a ring of lengthu.
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uedness of the wave function is obtained in the ring made of
the unit cell and we get a bound state. So the bound states
can be determined by graphically solving Re(1/T)
5cos(a). This equation is satisfied at certaink values and
thenk2 is the energy of the electron in that particular state
K. This is in analogy with a scattering problem wherek is
the momentum outside the potential where it vanishes, and
K is the momentum inside the potential.K can be quite
different fromk. However, the energy throughout the space
under consideration isk2 ~we have set\51 and 2m51).

In Fig. 2 we show a simple plot ofy5Re(1/T) ~solid
curve! with ku for v/u50.2. Wherever this curve intersects
the straight liney5cos(a), the correspondingk gives a
bound state of the system. Let us start witha50, and the
y5cos(0) curve is shown in Fig. 2 by the dotted line. Two
consecutive points where the curvey5Re~1/T) intersects the
straight liney5cos(0) are denoted byA andB in the figure.
The correspondingk values are denoted byk1 andk2 in the
figure. If a is increased gradually then the straight curve
y5cos(a) shifts gradually downwards towards the dashed
curve. As the curvey5cos(a) goes gradually downwards,
with a, the allowed wave vectorsk1 and k2 slowly drift
rightwards and leftwards, respectively, along thek axis.
Sincek1 drifts towards higher energy witha, k1 is a dia-
magnetic state. Similarly,k2 is a paramagnetic state. That
k1 , k2 , etc. gradually increase or decrease witha gives rise
to a dispersion witha (E versusa) with close by consecu-
tive states going further away from each other witha up to
a5p. y5cos(p) is also shown in Fig. 2 with dashed lines.
If we increasea further then the straight curvey5cos(a)
starts moving upwards and comes back to its original posi-
tion ata52p. This ensures thef0 periodicity of the disper-
sion curves. Since cos(a) can vary from21 to 11 ~dotted
lines to dashed lines! the dispersion curve for any two con-
secutive states can never cross~see Fig. 2!. So the dispersion
curve is exactly similar to that of a ring with a random po-
tential ~see Fig. 6 in Ref. 4!. In our case the rotational sym-
metry is destroyed by the topological defect~i.e., the stub!
and so levels do not cross. Hence from Fig. 2 it is evident
that consecutive states carry persistent currents with opposite

signs and have opposite magnetic properties up to infinite
energy. So the parity effect is maintained.

But this effect is not observed when we plot the same
curves for different values ofv/u50.21 ~Fig. 3! ~in fact
v/u50.26e is sufficient to destroy the effect wheree is an
infinitesimal quantity!. Consider the intersections between
the graphsy5Re(1/T) and y5cos(0). Thefirst few con-
secutive states have opposite magnetic properties but the
fifth and the sixth states~two consecutive states markedA
and B) are both diamagnetic, disobeying the parity effect.
This can be seen by slowly increasinga from zero to see that
the straight liney5cos(a), i.e., the dotted line in Fig. 3,
shifts downwards and hence the intersectionsA andB both
shift rightwards, i.e., towards higher energy. This means both
the consecutive states atA andB are diamagnetic, violating
the parity effect. The parity effect is again violated for the
11th and the 12th states, both of which are paramagnetic.
After a spacing of five levels we always find two consecutive
levels that violate the parity effect. We shall soon see why it
does not happen for specific values ofv/u. It should be
noted that the parity-violating states likeA carry an amount
of persistent current that is comparable to that of neighboring
states likeC. Also note that forkv5np, the transmission
across a stub is zero14 due to the formation of a node at the
junction between the ring and the stub. This mode always
lies deep inside a gap of the dispersion curve and is never an
allowed mode.

A special feature of thed function potential is that
uTu25Re(T). This feature is also observed in the case of a
stub. This makes it possible to map a single stub onto an
effectived function potentialV(x)5k cot(kv)d(x). So the
strength of thed potentials depends on the Fermi energy and
hence it is a special type of one-body potential. Now let us
start with k50 and then slowly and continuously increase
k. For k50, V(x)5(1/v)d(x), which means it starts with a
small positive value. Then it decreases and soon goes to
zero. After this the strength of the potential increases mo-
notonously on the negative side and finally becomes2` at
kv5p. After this V(x) undergoes a discontinuous jump
from 2` to 1`. If the strengths of thed potential at

FIG. 2. Graphical solutions for the allowed modes for
v/u50.2.

FIG. 3. Graphical solutions for the allowed modes for
v/u50.21.
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kv5p andkv5p1e are discontinuous the scattering phase
shifts and hence the Bloch phase~which is the phase of the
electron wave function in the ring! will also undergo a dis-
continuous jump. Re(1/T) also make a discontinuous jump
from 2` to ` and hence the Bloch phase jumps byp ~see
Fig. 3! @the Bloch phase of the infinite periodic system has to
be defined modulo 2p i.e.,21,Re(1/T),1#. The next al-
lowed Bloch phase of the infinite periodic system of stubs
after that atD is that atB and they differ byp. This is
markedly different from the next allowed Bloch phase at any
other gap; e.g., the Bloch phase atC is the same as that at
A. From Eq.~1! we see that if the Bloch phase of the peri-
odic system of stubs equals theAB phasea ~for the time
being we have takena50! then the single valuedness of the
wave function gets satisfied in the ring and we get a bound
state. This additional phase due to a discontinuous phase
jump results in satisfying this condition and creates a state at
B around the valuekv5p, which otherwise would be absent
~that is, if the phase change acrosskv5p were continuous!.
If it so happens that this singularity in the Bloch phase~or
phase of the electron wave function in the ring!, due to a
singularity in the effective one-body potentialV(x), is can-
celed by another singularity, then the phase difference be-
tween two consecutive Bloch phases would not be different
by p and this state atB would not exist. This is because the
total phase acquired in this state atB would not be enough to
satisfy the single-valuedness condition in the ring. All other
states, however, would remain qualitatively the same as that
of a ring with a random potential. This is what happens in the
case of Fig. 2. Forv/u50.2 atkv5np, cot(kv)56` but
sin(ku)50. And so there is no discontinuity in Re(1/T).
Hence the state atB of Fig. 3 will not exist. It is easy to see
from Fig. 3 that the slope of Re(1/T) is such that if it jumps
from 2` to 1` then the broken-parity state is diamagnetic
whereas it is paramagnetic for the other case. Specific values
of the parameterv/u at which these two singularities exactly
cancel are negligibly few compared to the values where they
do not and is hardly a likely real situation. Some other values
of v/u where these two singularities exactly cancel are 0.05,
0.1, and 0.25.

Having understood that Re(1/T) is the relevant parameter
that determines the parity-violating states it is easy to under-
stand the absence of the parity effect forv/u@1. The
strength of the effective potential beingk cot(kv), it is the
length scalev that determines how many times Re(1/T) will
undergo discontinuous jumps from2` to ` in a certain
energy interval. Each such jump will create a parity-violating
diamagnetic state. Thus there can bev/u consecutive dia-
magnetic states in the energy interval of two states deter-
mined by the length scaleu. The discontinuous jumps in
Re(1/T) are separated bydk151/v and the zeros that can
cancel the discontinuous jumps are separated bydk251/u.
Now for v/u.1, dk2.dk1 and all the discontinuous jumps
can never be canceled. Hence forv/u.1 the parity effect is
invariably broken and there can be no special situation as in
the case ofv/u,1.

The effect of the topology of the system in Fig. 1 can,
therefore, be incorporated into the Hamiltonian by mapping
the stub into a one-body potential whose strength depends on
the energy of the particle. Now we discuss why the parity
effect breaks down for this system in spite of the fact that we

have Fermions in a single-channel ring. The general Hamil-
tonian for the electrons in the system is5

H~u1 ,u2 , . . . ,un!5S iV~k,v,u i !1S i , jU~u i2u j !

1S i@pi2eA~u i !#
2
1

2m
. ~3!

V andU are obviously periodic inu i with a periodicity of
2p. Leggett has shown that such a two-body potentialU
does not change the parity effect of the free-electron system
and so we can drop the interaction part and go back to the
free-electron description. This is because of Leggett’s argu-
ment that the two-particle potential energies depend only on
ucNu2. It does not matter whethercN obeys a periodic or a
twisted periodic boundary condition. That is still true in our
case. HerecN is the N-body wave function. Hence the
single-particle version of Leggett’s arguments goes as fol-
lows. The magnetic field tunes the kinetic energy~KE! term
in ~3! and if the difference in phase acquired by the electrons
in two consecutive states depends on their KE difference
alone then the current carried by them will be of opposite
signs. But in our case the phases acquired by an electron in
the fifth and sixth states of Fig. 3 are not determined by the
KE alone but also due to the fact that the sixth electron
encounters a repulsived potential whereas the fifth electron
encounters an attractived potential that results in an extra
phase difference ofp between these two states. Hence the
argument that the one-body potential also depends onucNu2
breaks down because the strength of the potential can itself
change drastically because of the energy dependence of the
strength. Alternately~i.e., if we do not include the informa-
tion of the topology in the Hamiltonian!, it may mean that a
topological defect makes it possible to have other types of
symmetry-dictated nodal planes energetically more favorable
than the symmetry-dictated nodal planes that directly act
across the cross section of the ring, thereby leading to the
violation of the parity effect. But this approach involves a
very nontrivial exercise as commented by Leggett.5 This
simple model tells us that Leggett’s conjecture, which is
strictly valid for potential scattering, is not strictly valid for
scattering by a sharp boundary roughness that can be mod-
eled as a stub. In fact, any type of boundary roughness as
well as bends can be mapped into a one-body potential
whose strengths depend on the energy of the electron in a
complicated way.15 Our simple model suggests that such
energy-dependent potentials may destroy the parity effect.
Although for every broken-parity state of one type there is a
broken-parity state of the opposite type, these broken-parity
states of opposite types are separated by 1/v. For v!1 this
separation is so large that it is quite possible that the broken-
parity states of only one type are populated.

We then study the spectrum of a ring with four small
topological defects or stubs present in it. To find the spec-
trum we have to solve Eq.~1! numerically using the transfer
matrix mechanism to computeT.16 A portion of theE versus
f/f0 plot is shown in Fig. 4~solid lines! in one-half of the
first Brillouin zone. The dashed horizontal lines are to guide
the eye. Within a certain energy range~3400.Eu2.150!
there are many more diamagnetic levels than paramagnetic.
Below this range consecutive states have opposite slopes.
For higher energy there are, however, more paramagnetic
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levels than diamagnetic levels. We have plotted for only one
configuration i.e., (v i /u50.16,0.21,0.12,0.252) and~v i /u
50.1,0.2,0.3,0.4)whenv i denotes stub length andui de-
notes separation between stubs. It should be noted that some-

times states over an energy scale that is an order of magni-
tude larger than the Thouless energy have the same slope. In
a multichannel ring there are many subbands and very close
by levels. States belonging to a particular subband exhibit
the parity effect.5 Topological defects will destroy the parity
effect of each subband with the first one being diamagnetic
for each. Even one appropriate topological defect, in that
case, can give many broken-parity states of one kind.

It is to be noted that Eq.~1! has been derived6 from the
first principles of quantum mechanics, i.e., Griffith’s bound-
ary conditions. The junction is taken to be defect free and in
such a situation the Griffith’s boundary conditions describe
strong coupling of the stub and the loop. As a result the
eigenenergies as seen in Fig. 4 are all very smooth functions
of magnetic field and nearby states carry a persistent current
of the same order of magnitude. As in a single-channel ring
En(f/f050.5),En11(f/f050). There is no trace of
crossing between levels in the first Brillouin zone. Only the
slopes of the states, unlike that of a single channel ring,
violate the parity effect. The system of stubs attached to a
ring was first studied by Bu¨ttiker17 as a model to understand
the effect of interactions.

We conclude by saying that boundary roughness that can
be mapped into energy-dependent one-body potentials can
lead to a violation of Leggett’s conjecture.

The author thanks Professor A. M. Jayannavar for useful
discussions and Professor A. M. Srivastava for a brief dis-
cussion on topology.
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FIG. 4. E vs f dispersion curves in the range
2000,Eu2,3400 for a ring with four stubs.
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