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We consider a chain of localized spins, coupled to phonons. Recently this problem has been solved exactly
for a ‘‘basic model,’’ a family of spin-phonon HamiltoniansHBM characterized by one parameter~coupling
constantK), and a zero-T first-order phase transition from the magnetic~ferro or antiferro! state at low
couplings to the nonmagnetic state with a phonon density wave at high couplings was found. Here we probe
the general case, constructing an effective HamiltonianH for low-energy degrees of freedom by means of
regular expansion in deviationsdH5H2HBM of the general HamiltonianH from that of the basic model. In
linear approximation indH the problem appears to be exactly solvable as well, due to an infinite number of
conservation laws. IfK is far enough from the critical valueKc , then the character of the basic model solution
is not altered. In the vicinity ofKc the magnetic state is dramatically reconstructed: Here the ground state is a
gapless magnetic quantum liquid, consisting of mobile singlet spin-phonon complexes and unbound spins. The
fraction of singlets increases gradually upon approachingKc , and the magnetic order parameter gradually
vanishes. Thus we have here a partial screening of spins by phonons without formation of a phonon density
wave. The latter appears only atK5Kc in the first-order phase transition. Corrections, quadratic indH,
destroy the integrability of the system, but outside a narrow critical region aroundKc they only lead to an
opening of a small gap in the spectrum of the quantum liquid. The behavior of the system within the critical
region is an open question. Most likely the continuous magnetic phase transition atK5Kc becomes a first-
order one, but close to second order. The relevance of our results for three-dimensional systems and possible
applications to compounds with anomalously weak magnetism are briefly discussed.@S0163-1829~96!02222-9#

I. INTRODUCTION

In a previous paper1 a model of a strongly interacting
spin-phonon system was introduced, which aimed to give an
alternative explanation for a peculiar magnetic behavior of
certain materials~mostly the so-called heavy-fermion com-
pounds, containing anomalous rare earths, e.g., Ce!. These
materials exhibit, at high temperatures, quite normal para-
magnetic properties, while at lower temperatures they gradu-
ally ‘‘become nonmagnetic.’’2 The freezing out of magne-
tism is usually not accompanied by any substantial change of
the lattice symmetry. On the other hand, most of these com-
pounds demonstrate gigantic magnetoelastic anomalies,3

which implies that the relevant spin-phonon interactions
might be strong. These facts have provided us with a moti-
vation for anonperturbativestudy of spin-phonon interac-
tions mainly in order to answer the major question whether
phonons can screen spins. It is also especially interesting
whether it can happen without a lowering of lattice symme-
try.

For the simple one-parameter family of spin-phonon
Hamiltonians ~‘‘basic model’’!, with the realistic phonon
modes being replaced by local isotropic three-component
Einstein oscillators with frequencyv and the spin-phonon
interaction posessing a special high symmetry, the authors of
Ref. 1 were able to find the ground state of the system and its
low-lying excitations in a nonperturbative way for an arbi-
trary coupling constantK and for arbitrary space dimension-
ality. It was shown that in a certain range ofK,

Kc,K,v, the ground state of the model is indeed nonmag-
netic. It consists of singlet complexes~clusters!, each of
which is constituted by one excited oscillator, coupled to
adjacent spins. These complexes tile the entire lattice in such
a way that each spin belongs to one and only one cluster
~close packing!. The low-lying excitations are packings with
holes~free dangling spins!. The excitation spectrum is sepa-
rated from the ground state by the gapDBM(K), which van-
ishes, whenK tends either toKc or to v.

In Ref. 1 the authors also discussed briefly what happens
to the properties of the system when its HamiltonianH de-
viates slightly from the HamiltonianHBM of the basic model.
An answer to this question is relatively simple, if
dH[H2HBM is small compared toDBM . ThendH is either
irrelevant~for systems with nondegenerate or only globally
degenerate ground states!, or, for systems with a local degen-
eracy of the ground state, it mixes the different ground states
~i.e., different close packings! and lifts, partially or fully, the
ground state degeneracy.

A quite different ~and much more interesting! situation
must arise, however, ifdH is comparable toDBM . Then the
excited states ofHBM can be admixed considerably to the
ground state, and one can expect a mixture of singlet clusters
and free spins to form already atT50 in the ground state.
This mixture is most likely a quantum liquid of mobile clus-
ters, but its properties, even the presence or absence of long-
range magnetic order, is still an open question.

The problem of a quantum liquid and its properties seems
to be intriguing not only from a purely theoretical, but also
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from a practical, point of view. Actually the nonmagnetic
ground state of the basic model is characterized bybroken
translational symmetry. In Ref. 1 it was argued that this sym-
metry breaking is hard to observe because a modulation oc-
curs only in zero-vibration amplitudes~a kind of ‘‘phonon
density wave’’!, but not in classic lattice displacements.
Anyway, it seems more attractive to get rid of modulation
whatsoever, and restore the full translational invariance,
which is exactly what happens in a quantum-liquid regime.
The possibility of partial spin screening atT50 in a
quantum-liquid regime is also attractive, since some sub-
stances reveal a long-range magnetic order, but with dramati-
cally suppressed effective magnetic moment.4 Note that the
pure basic model provides only two possibilities: either full
screening or no screening at all.

So far we have not been able to develop a reliable quan-
titative approach to the quantum-liquid state in any two-
dimensional~2D! or three-dimensional~3D! version of our
model. In this paper we undertake a special study of the
quantum-liquid state in the 1D chain, where the problem
turned out to be tractable. Some preliminary results were
already presented in Ref. 5; here we give a full solution of
the problem. We consider a class of one-dimensional sys-
tems with HamiltoniansH, deviating fromHBM in the vicin-
ity of the thresholdKc . In Sec. II, in a form of series expan-
sion in dH5H2HBM , we derive an effective Hamiltonian
H for low-energy degrees of freedom. In Sec. III we formu-
late a set of conservation laws, valid in linear approximation
in dH. These conservation laws make an exact solution of
the problem possible. The effects of second order indH
break the internal symmetry of the effective HamiltonianH
and destroy the integrability of the problem, the most impor-
tant consequence being an opening of a gap in the spectrum
of the quantum liquid. In Sec. IV we discuss the ground state
and thermodynamics of a chain with an inversion center, and
in Sec. V we do the same for a chain without an inversion
center. In both cases the solution describes a uniform quasi-
gapless magnetic quantum liquid, but with somewhat differ-
ent magnetic properties. In Sec. VI we discuss the character
of the zero-T phase transition between magnetic and non-
magnetic phases. Finally, in Sec. VII we try to single out
most general results and speculate about their possible gen-
eralization for higher dimensions.

II. EFFECTIVE HAMILTONIAN

Consider a 1D chain of alternating spinssa (s51/2) at
sitesa of sublatticeA, and three-component oscillators at
sitesb of sublatticeB ~see Fig. 1!,Qb ,Pb being the displace-
ments and momenta of an oscillator. A reasonably general
Hamiltonian~see the detailed discussion in Ref. 1! for such a
chain would be

Htot5H1Hm , Hm5(
aa8

Jaa8
aa8sa

asa8
a8 , ~1!

H5(
b

Pb
2/21(

bb8
Ubb8

bb8Qb
bQb8

b8/21 (
abb8

Kabb8
abb8sa

aQb
bPb8

b8 ,

~2!

where the units are chosen so that masses of the oscillators
and\ are unities. In this paper we adopt the following as-
sumptions, concerningH.

~i! The crucial assumption—the spin-phonon Hamiltonian
H is in a sense close to the HamiltonianHBM of the basic
model. Namely, characteristic matrix elements of
dH5H2HBM should be small, compared to characteristic
phonon frequencies.

~ii ! Only interactions of nearest neighbors
^aa8&,^bb8&,^bab&,^bab8& are assumed to be essential.
Some effects of non-nearest-neighbor interactions are dis-
cussed only briefly: They actually play the same role as the
higher corrections indH.

~iii ! The ‘‘direct’’ spin-spin interactionHm , Eq. ~2!, is
supposed to be the weakest interaction in the problem. It is
considered only so far as it lifts some residual degeneracies,
which other interactions fail to lift. IfHm were large, the
system would be dominated by the magnetic interaction,
which case is well known and is not our concern here.

A. Principal features of the basic model

We review here briefly the properties of the ground state
and low-lying excitations in the basic model~for details see
Ref. 1!. This model, allowing for a nonperturbative solution,
is characterized by the following three assumptions.

~1! The modesQb are isotropic and local~dispersionless!:

Ubb8
bb85v2dbb8dbb8.
~2! The spin-phonon interaction is local and spherically

symmetric:Kabb8
abb85Kdbb8d^ab&eabb8.

~3! The direct spin-spin interaction is totally neglected:

Jaa8
aa850.
Thus the Hamiltonian of the basic model is

HBM5(
b

S 12Pb21 v2

2
Qb
2D1K(

^ab&
~saLb!, ~3!

with Lb5@QbPb# being the angular momentum of an oscil-
lator. The properties of the system are actually governed by
unique dimensionless parameterK/v.

FIG. 1. Low-energy configurations for the chain of alternating
spins and oscillators (K.Kc); solid circles, spins; single open
circles, unexcited oscillators; doubled open circles, excited oscilla-
tors; rectangular boxes, singlet spin-phonon complexes~dimers!. ~a!
The ground state: fully dimerized ‘‘close packing.’’~b!,~c! Excited
states with holes in the packing;~c! is related to~b! by a first-order
process, described by the hopping HamiltonianH (1), and vice
versa. The orientation of the free spin at its new position after the
hop is unaltered.
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We note that the radial quantum numberNb
(r ) and the

angular momentumLb of each oscillator are good quantum
numbers, the only nontrivial dynamics being associated with
orientations ofLb and sa . In each sector, characterized by
the set$Nb

(r ) ,Lb%, one can write

HBM$N~r !,L%5(
b

v~Nb
~r !1Lb13/2!1K(

^ab&
~saLb!,

and at T!v one can consider only the sectors with
Nb
(r )[0. Thus the basic model is mapped to the Heisenberg

chain of alternating spins 1/2 and momentaLb , the latter
ones varying from site to site in their sublattice. This model,
of course, cannot be solved for a general set$Lb%, but, for-
tunately, it has been shown1 that the ground state and the
low-lying excitations correspond to very simple sets, allow-
ing for an exact solution. Namely,~1! for uKu.v the lattice
is unstable~formally all Lb→` in the ground state and
EG→2`); ~2! for 2v,K,Kc

(BM)[v/2 all Lb50, the os-
cillators are unexcited, the spins are decoupled from them,
and the ground state of the spin subsystem is governed by
Hm ; and ~3! for Kc

(BM),K,v the ground state is nonmag-
netic and dimerized@Fig. 1~a!#, and there is only a global
twofold degeneracy: One-half of the oscillators is unexcited,
while the other half is excited to theL51 state and each
excited oscillator binds two adjacent spins, forming a dimer,
a singletspin-phonon complex,EG5N0(Kc

(BM)2K), N0 be-
ing the total number of spins in the chain.

For generalK;v the only natural energy scale for the
system isv. If, however,K is close to the dimerization
thresholdKc

(BM) , then a lower scale arises. ForK,Kc
(BM) it

is the energy of a dimer creation,

Dd52~Kc
~BM!2K !, ~4!

while for K.Kc
(BM) it is the energy of a free spin creation,

D f5K2Kc
(BM) . The low-energy excited states, relevant for

T,DBM!v, are partial tilings of the chain by dimers, where
some spins remain free@Figs. 1~b!, 1~c!#. All the configura-
tions with overlapping dimers~i.e., with neighboring excited
oscillators!, or with dimers in internal states, different from
the singlet one, have energies;v, and are ruled out. Each
allowed configuration can be labeled by a sequence of posi-
tions of ~nonoverlapping! dimers and of projections of the
free spins@e.g., the configurations, shown in Figs. 1~a!, 1~b!,
1~c! are ud1d3d5d7•••&, ud1(↑)3d4d6(↓)8(↑)9•••& and
ud1d3(↑)5d6(↓)8(↑)9•••& correspondingly#. An energy of
any allowed configurationul& depends only on the total
numberNl of dimers within it:

Hll8
~BM![^luHBMul8&5dll8DdNl . ~5!

The arising statistical problem may be reduced to the prob-
lem of classic hard dimers, whose partition function in 1D
can be calculated in the closed form.6

Our aim is the construction of an effective Hamiltonian
H, equivalent toH so far as the low-energy scales (!v) are
concerned. It acts in the subspace of eigenstates ofHBM ,
constituted by the ground state and the low-lying excited
states, i.e., the allowed configurationsul&, mentioned above.
Since according to our principal assumption~i! matrix ele-

ments ofdH are small compared tov ~but not necessarily to
DBM), we will presentH in a form of a series in powers of
dH:

H5H ~0!1H ~1!1H ~2!1•••, ~6!

H (0) we know already: It is given by Eq.~5!; H (1) describes
direct transitions within the low energy subspace;H (2) de-
scribes the second-order processes with both initial and final
states having low energies, but with a high-energy interme-
diate state; etc.

B. First-order processes: Effective kinetic energy of dimers

The HamiltonianH (1) can be found by means of direct
projection ofdH onto the low-energy space. A structure of
relevant matrix elements can be found from the following
considerations, based mainly on the symmetry arguments.

The part ofdH describing the phonon dispersion and an-
isotropy, as well as a deviation of the spin-phonon interac-
tion from the form prescribed by the basic model, is bilinear
in the operatorsQ,P. There are two kinds of terms. The
terms of the first kind contain two operatorsQb ,Pb , corre-
sponding to the same siteb. They may have matrix elements
either being diagonal inLb , or describing transitions
Lb→Lb62. Since the only low-energy states for the dimers
are those withLb50 or Lb51, it is clear that the latter
transitions cannot keep a configuration within the low-energy
subspace, and thus they are irrelevant. The matrix elements
diagonal inLb lead to unimportant shifts of the configuration
energies, resulting only in a shift ofKc .

This is not the case for terms of the second kind, contain-
ing two phononic operators at neighboring sites^b,b11&.
They have matrix elements corresponding to the transitions
(Lb ,Lb11)→(Lb61,Lb1161), which can keep a configura-
tion within the low-energy subspace@e.g., the transition
(Lb51,Lb850)→(Lb50,Lb851) describes the move of a
cluster from siteb to siteb11; see Figs. 1~b!, 1~c!#.

As a result,H (1) has a form of effective kinetic energy of
dimers:

H ~1!52 (
mss8

tss8u•••~s!m21dm•••&

3^•••dm21~s8!m11•••u1H.c. ~7!

It describes a process where a dimer hops to a neighboring
position ~if it is allowed by the constraint, the requirement,
that the dimers do not overlap! while the neighboring free
spin ‘‘dives’’ under the hopping dimer@Figs. 1~b!, 1~c!#. The
spin structure of the matrix element, tss8
5tdss81 i ( ts)ss8, with realt andt, follows from the sym-
metry with respect to time reversal. It is convenient to treat
t and t as phenomenological parameters of the effective
Hamiltonian, though they can be expressed through the con-

stantsUbb8
bb8 andKabb8

abb8, entering the expression~2!.
If the spin-quantization axis is chosen to be parallel to

t, then the projections of the ‘‘diving’’ spin s is conserved
in the hopping process, described by the Hamiltonian~7!,
namely,s5s8, and the HamiltonianH (1) may be rewritten
in a form
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H ~1!52 (
m;s561

~ t1 i ts!u•••~s!m21dm•••&

3^•••dm21~s!m11•••u1H.c., ~8!

where the free spin emerges on the opposite side of the dimer
without changing its orientation.

C. Second-order processes:
Creation and annihilation of pairs of dimers

Second-order processes involve forbidden configurations
~with high energies;v) as intermediate states. The most
important second-order process is an effective annihilation of
two neighboring dimers accompanied by creation of four
free spins ~or vice versa!. One possible path
(Lb51, Lb1150, Lb1251)→(Lb50, Lb1151, Lb1251)
→(Lb50,Lb1150,Lb1250) for this process is shown in
Fig. 2. The corresponding effective Hamiltonian has the
form

H ~2!5 (
mss̃s8s̃8

D̃ss̃s8s̃8u•••dmdm12•••&

3^•••~s!m~ s̃ !m11~s8!m12~ s̃8!m13•••u1H.c.,

~9!

where the magnitude of matrix elementsD̃ is of order
t2/v!t. The spin structure ofD̃ss̃s8s̃8 depends on the sym-
metry of the HamiltoniandH.

We should mention that the very same ‘‘pair processes’’
would arise already in first order indH if we took into ac-
count an interaction of next-nearest oscillators. Such an in-
teraction leads to direct transitions (Lb5Lb1251)
↔(Lb5Lb1250), the result of those being equivalent to the
second-order process, described above.

Besides the pair processes there are also other second-
order processes. One leads to four-lattice-spacings-long hops
of free spin, and the other leads to effective exchange of
neighboring free spins. We will not, however, discuss them
in detail, because the former only renormalizes the kinetic
energy termH (1), and the latter renormalizes the effective
magnetic interactionHm , arising fromHm .

D. Effective magnetic interactions

The HamiltonianHm , corresponding to direct spin-spin
interactions, being projected onto the low-energy subspace,
couples neighboringfree spins, but does not affect the
dimers. A corresponding effective Hamiltonian is then

Hm5 (
^aa8&~ f !

~sa• Ĵ•sa8!, ~10!

where the summation runsonly over the free spins. The ten-
sor of effective exchange constantsĴ[Jaa8, enteringHm ,
consists of two parts:Ĵ^aa8& of the initial spin-spin Hamil-
tonianHm and renormalizationd Ĵ;t2/v, arising from the
second-order processes, mentioned at the end of the previous
section.

III. CONSERVATION LAWS

Following our basic assumptions, we imply that
J!t!v, but Dd is not necessarily large, compared tot.
Consequently, the Hamiltonians, obtained in the previous
section, obey the following hierarchy:

H ~2!,Hm!H ~0!,H ~1!, ~11!

butH (0) andH (1) may be in arbitrary relation to each other,
becauseH (0) vanishes, whenK→Kc

(BM) . So our first task
should be to understand the properties of the Hamiltonian

H015H ~0!1H ~1!. ~12!

In this section we describe the internal symmetries inherent
in this Hamiltonian, and also discuss how these symmetries
are violated by additional termsH (2) andHm .

A. Conservation of the number of dimers

A very important property is that bothH (0) andH (1) com-
mute with the total number of dimers,N. We will see that
the conservation of the number of particles leads to the gap-
less spectrum of excitations. This conservation law is unaf-
fected by magnetic interactions~becauseHm also commutes
with N), but it is broken by the particle-nonconserving
H (2) interaction, which opens a small gapD in the excitation
spectrum.

B. Conservation of ‘‘floating spins’’: Separation of variables

Since the total number of dimers,N, commutes with
H01, we can consider a state with any fixedN,N0/2. Then
the number of free spins,M5N022N, is also fixed. Let us
look at any particular configuration~with free spins, say, in
positionsa1,a2,•••,aM) and renumber all thefreespins
from left to right: sa1

→s18 ,sa2
→s28 , . . . ,saM

→sM8 @see

Fig. 3~a!#. We will call $s18 , . . . ,sM8 % thefloating spin vari-
ables. The crucial point is that these variables commute with
the HamiltonianH01; i.e., the floating-spin configuration is
conserved in time, although the identities~i.e., the physical
positions! of the free spins may be changed. This property is
a direct consequence of the symmetry ofH01: In any el-
ementary process a free spin just hops over a neighboring
dimer, without changing projection.

FIG. 2. An example of the process of second order indH,
described by effective HamiltonianH (2). Two neighboring dimers
in the close packing annihilate, giving rise to a hole in a close
packing, containing four free spins in the final state. In the interme-
diate state there is a forbidden configuration~oval box!, involving
two neighboring excited oscillators, coupled to three spins; this con-
figuration has relatively high energy;v.
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Conservation of floating-spin configurations is a charac-
teristic feature for many of 1D models; for example, it is also
present in the 1D large-U Hubbard model. The real source of
it is in the absence of nontrivial closed loops in the 1D par-
ticle trajectories, which leads to the following basic property
of the system: Suppose that someone looks at the system at
some initial moment of time and memorizes the positions of
particles and the configurations of spins at this moment.
When he comes again, after some time, he may look only at
the positions of particles. The point is that these data are
sufficient to reconstruct the new spin configuration as well.

Thus the projectionss i8 of all the ‘‘floating spins’’si8 are
good quantum numbers and one can, in principle, write down
a reduced HamiltonianH $s i8% acting only onN ‘‘orbital’’

degrees of freedom~i.e., the positions of dimers$bj%), and
depending onM parameters$s i8%. The orbital wave function
c (s

18 , . . . ,sM8 )(b1 , . . . ,bN) must be symmetric with respect to

any permutation of its variablesbj .
For a general set$s i8% and for a general Hamiltonian with

tÞ0 an expression forH $s i8% is, however, too complicated

because of the necessity to express the physical spinsa ~en-
tering the matrix element of theH (1)) through the floating-
spinss i8 and the orbital degrees of freedombj explicitly. So
it is practically useless unless the floating-spin configuration
is especially simple.

An important simplification arises, however, if the point
of the unit cell, where the spin is situated, is the inversion
center. In this caset50, the matrix elements ofH (1) are spin
independent, and the floating-spin degrees of freedom are
completely split from the orbital ones. Then the total wave
function of the system can be factorized:

C5J~s18 , . . . ,sM8 !c~b1 , . . . ,bN!, ~13!

where all 2M possible floating-spin wave functionsJ are
degenerate.

The degeneracy of eigenenergies with respect to floating-
spin configurations is not so general property, since it im-
plies the spin independence of the matrix elements~but this
property is still present for the large-U 1D Hubbard model!.
The degenerate case is a marginal one in the sense of the
Nagaoka theorem7 which states, roughly, that, if the system
is dominated by the kinetic energy of the mobile particles,
then theferromagnetic orderin the background spins is pref-
erable, as the most homogeneous one. In the degenerate case,
however, the ferromagnetic state has exactly the same en-
ergy, as any other one.

Thus, the internal symmetry of the system in the
inversion-symmetrical case is much higher than in the inver-
sion asymmetrical one. We will see that it leads to dramatic
consequences: The inversion-symmetrical case occurs to be
exactly solvable for all eigenstates, while in the asymmetri-
cal case only the ground state and low-lying excitations of
H01 may be found exactly.

The conservation of floating spins is violated by both
H (2) andHm interactions. Their role is, however, restricted:
They just lift the residual degeneracy of the ground state of
H01 ~which is infinite in the symmetrical case, and only four-
fold in the asymmetrical one!. The exception is the close
vicinity of the magnetic phase transition~critical region!,
whereH (2) andHm become of primary importance~see dis-
cussion in Sec. VI!.

IV. CHAIN WITH INVERSION SYMMETRY:
EXACT SOLUTION

In the linear approximation indH a symmetric chain is
described by the HamiltonianHsym[H01ut50 , and, as was
shown in Sec. III, the eigenfunctions of this Hamiltonian
system can be factorized according to Eq.~13!. Then our first
step should be determination of the orbital partc. In this
section we demonstrate that this problem can be solvedex-
actly, with the aid of the trick, used previously8 to solve the
1D Emery model9 in the large-U limit. After that we will
take into account the correctionsH (2) andHm , which lift the
degeneracy with respect to floating-spin configurations and
find the floating-spin partJ of the wave function. Finally,
we discuss the thermodynamics of the system.

A. Orbital degrees of freedom

The finite-size hard-core constraint, following from the
definition of low-energy states, forbids to have two dimers
either at the same site or at neighboring sites. Thus we arrive
at the problem ofN spinless bosonic rigid segments on the
chain with N0 equivalent sites@see Fig. 3~b!#. The corre-
sponding Hamiltonian has the form

Hsym5Dd(
b51

N0

db
†db1 (

b51

N021

$2t~db
†db111db11

† db!

1U~db
†db

†dbdb1db11
† db

†dbdb11!% ~U→1`!,

~14!

FIG. 3. The renumbering tricks~Ref. 8!. ~a! Renumbering of
free spins introduces the ‘‘floating spins’’: Numbersa are physical
positions for the spinssa , while numbersi are their ‘‘floating’’
labels, appearing when only the free spins are counted. This renum-
bering reveals a hidden symmetry of the system: The floating spins
are conserved.~b! Renumbering of dimers by the squeezing trans-
formation~spins are not shown!. Solid bars~i.e., the rigid segments,
mentioned in the text! realize the finite-size hard-core constraint,
forbidding the dimers from occupying neighboring sites. Again
numbersb are the natural physical positions of dimers~the posi-
tions of corresponding excited oscillators!, while numbersn are
their ‘‘internal’’ labels in the ‘‘squeezed’’ numeration, when the
RHS neighbor of any cluster is not counted. This renumbering is
equivalent to the nonlocal unitary transformation, Eq.~16!, which
resolves the constraint.

53 15 235QUANTUM-LIQUID REGIMES FOR SPIN CHAINS . . .



wheredb
† (db) are Bose operators creating~annihilating! a

dimer at a siteb.
The part of the constraint which forbids double occupancy

of sites can be easily eliminated by a transformation to fer-
mionic variablesab

†(ab), which is a standard trick for 1D
hard-core bosons. Then the HamiltonianHsym takes the form

Hsym5Dd(
b51

N0

ab
†ab1 (

b51

N021

$2t~ab
†ab111ab11

† ab!

1U~ab11
† ab11!~ab

†ab!%. ~15!

The corresponding antisymmetric wave functions~they van-
ish if coordinates of any two dimers coincide! should then be
resymmetrized@see Eq.~18! below#.

The remaining part of the constraint, which does not al-
low dimers to occupy neighboring sites, can be resolved by
the nonlocal transformation, ‘‘squeezing’’ the segments~see
Ref. 8!,

an5H )
b85N0

b11

~ab821
† ab81ab8ab8

†
!J ab ,

n5b2 (
b851

b21

ab8
† ab8, L5N02N. ~16!

This transformation renumbers the sites of the chaindynami-
cally in such a way that only one site is associated with any
segment~dimer!, the second one is excluded@see Fig. 3~b!#,
and therefore the chain is shortened byN sites. We will call
the variablesn1 , . . . ,nN , the internal coordinates of dimers,
b1 , . . . ,bN being their physical coordinates. It can be shown
that the new operatorsan obey the standard Fermi-Dirac
commutation rules in the subspace of allowed configurations.

Let us comment on the physical meaning of the operators
a,a†. The operatora destroys a dimer at a certain place and
then shifts one step to the left the entire string of dimers on
the right-hand side of that place. As a result, only one of the
two free spins, created when the dimer was destroyed, sur-
vives. In particular, being applied to the close packing con-
figuration, the operatora creates exactly one single free spin
~the soliton!. Vice versa, the operatora† creates a dimer out
of onefree spin in a following manner: First it shifts one step
to the right the entire string of dimers on the right-hand side
of that free spin, opening a second free spin to the right of
the initial one. Then a dimer is made out of these two free
spins. In particular, being applied to the configuration with-
out dimers, the operatora† just creates one isolated dimer.
Thus the operatorsa,a† correctly describe the true quasipar-
ticles in both limiting cases: If the concentration of dimers is
low, then a (a†) corresponds to annihilation~creation! of
dimers; if there are only few solitons, thena (a†) corre-
sponds to creation~annihilation! of solitons. The above ob-
servation gives an intuitive answer for the question why the
transformation~16! diagonalizes the Hamiltonian~15!.

Finally we have arrived at the Hamiltonian ofN free spin-
less fermionson a chain of lengthL5N02N:

Hsym5Dd(
n51

L

an
†an2t(

n51

L21

~an11
† an1an

†an11!. ~17!

The effective contraction of the chain length, occurring in
the transformation~16!, reflects the obvious effect of ex-
cluded volume, due to the finite length of rigid segments.
The eigenfunctionsc of the initial Hamiltonian, expressed in
terms of internal coordinates$n%, are the symmetrized Slater
determinants of plane waves:

c$ki %
~n1 , . . . ,nN!5~21!P~n1 , . . . ,nN!detisinkinj i , ~18!

where ‘‘internal momenta’’ ki5pmi /(L11) and
0,m1,•••,mN aredifferentintegers. Generally, the inter-
nal momentak are not identical to the physical momentap
of quasiparticles. The factor (21)P provides a proper Bose-
type symmetry to the wave function,P(n1 , . . . ,nN) being
the parity of permutation from the initial order
n1 ,n2 , . . . ,nN to the ‘‘normal’’ one~numbered from left to
right!. The form of the orbital wave function in terms of the
physical variablesb1 , . . . ,bN can be obtained with the aid
of the transformation~16!, but the explicit expression is
cumbersome and we will not present it here. The eigenener-
gies are

E$ki %
5(

i51

N

«~ki !, «~k!5Dd22tcosk. ~19!

As usual, the ground state corresponds to a filled Fermi seg-
ment (m151, m252, . . . , mN5N) with internal Fermi
momentum kF5pN/(L11), and in the thermodynamic
limit the ground state energy is

E~G!5NDd2
2tL

p E
0

kF
dkcosk

5N0H nDd2
2t

p
~12n!sinS pn

12nD J . ~20!

Let us recall now that the concentration of dimers,
n5N/N0 , is not an external parameter, but it has to be found
from the condition of minimal energy (]EG /]n50), which
leads to the following equation forn:

1

12n
cosS pn

12nD2
1

p
sinS pn

12nD5
Dd

2t
[
Kc

~BM!2K

t
.

~21!

Its solutionn5n(K) is shown in Fig. 4~a! by a solid line. In
the quantum-liquid rangeK̃c,K,Kc ~whereK̃c5Kc

(BM)2t
andKc5Kc

(BM)12t) the concentrationn is neither zero nor
1/2. In this range the spectrum of the system isgaplessand
the excitations are fermionlike, while outside the range there
is a gap:D(K)52(K̃c2K) for K,K̃c andD(K)5K2Kc
for K.Kc @see Fig. 4~b!#.

Let us discuss a physical interpretation of the above exact
solution for two simple limiting cases.

~1! Close to the lower threshold 0,K2K̃c!t. In this
case the Fermi level is close to the bottom of the band, Eq.
~19!, where internal momentak!1 of fermions asymptoti-
cally coincide with physical momentap of dimers, and their
energye(p)'«(k) can be expanded:

e~p!52~K̃c2K !1
p2

2m
, ~22!
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where the effective mass of a dimerm51/2t. The concen-
tration of fermions,r[^an

†an&, and the concentration of
dimers,n5r/(11r), are both small:

n'r'
1

p
A2~K2K̃c!/t!1, kF5pr. ~23!

Thus, we have here a dilute gas of dimers; in this limit the
low-energy quasiparticles are isolated dimers.

~2! Close to the upper threshold 0,Kc2K!t. In this
case the Fermi level is close to the top of the band. Here each
hop of a fermionic hole by one lattice spacing in the internal
coordinates is equivalent to a hop of a soliton by two lattice
spacings in the physical coordinates; hence internal momenta
k and physical momentap are connected by an asymptotic
relation k'2p. Similarly, the internal concentration of fer-
mionic holes,r*512r5^anan

†&, is related to the physical
concentration of solitons,n[122n, by n'r* /2, and both
concentrations are small:

r*'2n'
1

p
A~Kc2K !/t!1, kF5p~12r* !. ~24!

We have here a dilute gas solitons, carrying one free spin.
Outside the quantum-liquid range the band for fermions is

either totally empty ~for K,K̃c) or totally filled ~for
K.Kc). The kinetic energy termH (1) is therefore effec-
tively turned off, andH01 coincides withH

(0). Note that the
entire above scenario is analogous to the spontaneous
quantum-vacancy production10 and has none of the 1D spe-
cifics. It can be applied to the 3D case with small modifica-
tions.

B. Floating spins: Role of magnetic interactions

So far we have neglected the magnetic interaction, Eq.
~10!; thus the ground state was 2M-fold degenerate with re-
spect to all the floating-spin configurations. To study how
this degeneracy is lifted byHm and what is the true ground
state, one can treat the magnetic interaction within the frame-
work of the adiabatic approximation.

Two neighboring floating spinssi8 andsi118 are coupled to
each other by the exchange (si8• Ĵ•si 88 ) only in those moments
of time when they are real physical neighbors~not only
neighbors in their floating numeration!, i.e., when there are
no dimers between them. At all other times they are decou-
pled.

On the other hand, the dimer configurations are changing
very rapidly. Namely, the characteristic time scalet21 for
the orbital motions within the quantum-liquid regime is
much shorter than that for spin-flip processes (J21). There-
fore we can introduce effective time-averaged exchanges
Ĵeff(K), proportional to the fraction of time, when a given
free spin has itsphysicalright-hand-side neighbor being also
free ~but not coupled in a dimer!:

Ĵeff~K !5
^an11an11

† anan
†&

^anan
†&

Ĵ5S r*2
sin2~pr* !

p2r* D Ĵ.
~25!

For low dimer concentration (K→K̃c) almost all the spins
are free, and soĴeff'{12(1/p)@2(K2K̃c)/t#

1/2} Ĵ→ Ĵ,
while for low concentration of free spins~at K→Kc) the
probability to have free spins on two neighboring sites van-
ishes, andĴeff'(1/3p)@(Kc2K)/t#3/2Ĵ→0.

Thus, in the adiabatic approximation, which is valid~with
the exception of a very narrow critical region near the thresh-
old Kc) if t@J, the total wave function of the system can
still be factorized in the form of Eq.~13!. The orbital part
c(n1 , . . . ,nN) is the same, as before@see Eq.~18!#, but the
floating-spin partJ(s18 , . . . ,sM8 ) is not an arbitrary one any
more. It is an eigenfunction of the effective Heisenberg
Hamiltonian

Hm
~eff!5 (

i51

M21

~si8• Ĵeff•si118 !. ~26!

The chain of spinss51/2 with Hamiltonian~26! is a well-
known exactly solvableXYZmodel ~see, e.g., Ref. 11!. Its
ground state is either ferromagnetic, antiferromagnetic, or~in
the case of isotropic antiferromagnetic exchange! singlet. We
will not discuss here the well-known properties of these
states, but only mention one peculiarity, specific to our prob-
lem.

The magnetism of the floating spins has rather an itinerant
character, and a physical distancea-a8 between two floating
spinssi8 and si 88 ~with fixed separationi -i 8 in their floating
notation! is not fixed, but is subject to Gaussian fluctuations
with dispersion} lnui2i8u ~see Ref. 8!. This leads to a faster
decay of magnetic correlations in real physical space than for
the conventional chain.8 In particular, for the axially sym-
metric case (XXZ model! the transverse magnetic fluctua-
tions decay as

FIG. 4. TheK dependence of the average dimer concentration
^n& at T50 ~a! and the gapD ~b!. Solid lines, the results in first
order indH ~exact solution of the HamiltonianH01); dashed lines,
the results corrected due to effects of second order indH. The true
behavior of the gap in the critical region near the phase transition
Kc is not clear~see Sec. VI!.
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^sa
1sa8

2 &}~122n!2ua2a8u2u21,

while ^s8 i
1s8 i 8

2&}u i2 i 8u2u, ~27!

where

u5
1

2
Ap22Jz /Jx

p12Jz /Jx

is the standard index of the transverse correlation function
for theXXZmodel ~see Ref. 11!.

Note that in the above consideration we have taken into
account only theHm correction, but not theH (2) one. The
latter does not conserve the number of dimers and, therefore,
contributes to the ground-state energy only in second order.
The corresponding correction;t4/v3 cannot compete with
the contribition ofHm , which is;J>t2/v.

One should have in mind that the total wave functionC
has a relatively simple factorized structure only in the above
floating-spin (si8!–internal-coordinate (n) representation. In
the initial physical representation thephysicalspin variables
(sa) are heavily mixed with thephysicalorbital ones (b),
and the explicit form ofC in the initial representation is
immense and practically useless.

C. Gap in the spectrum of the quantum liquid

Except certain highly symmetric cases~the isotropic
Heisenberg chain or the easy-plane one! the spectrum of
Hamiltonian Hm

(eff) , describing ‘‘magnetic excitations’’ in
the system, has a finite gapDmag;Jeff(K). It is not the case
for the spectrum of the ‘‘orbital excitations,’’ described by
the HamiltonianHsym: These excitations are gapless in the
whole rangeK̃c,K,Kc , where the Fermi surface exists.
The low-energy orbital excitations should, therefore, be
renormalized by the weak residual interactionH (2). In what
follows we demonstrate briefly that this interaction, violating
the conservation of number of dimers,N, opens a gap in the
spectrum of orbital excitations. For simplicity we consider
here only the case whenDmag@uD̃u, so that the magnetic
excitations are frozen and the spin dependence ofD̃ss̃s8s̃8
can be eliminated by means of projecting onto the ground
state ofHm

(eff) . Then we arrive at the effective Hamiltonian
for orbital degrees of freedom,

H5Hsym1( $D̃db
†db12

† 1D̃* db12db%,

D̃[^JuD̃s0s1s2s3
uJ&; ~28!

the indicess0s1s2s3 in the last formula are to be convo-
luted with the arguments of the ground stateJ functions,
corresponding to four consequent floating spins
si8 ,si118 ,si128 ,si138 .

The transformation to the fermionic fieldsab
†(ab), resolv-

ing the on-site constraint and used in the previous section,
can be applied to the Hamiltonian~28! as well. Choosing an
appropriate phase for operatorsab , we obtain the Hamil-
tonian

H5(
b

$Ddab
†ab2t~ab

†ab111ab11
† ab!1U~ab11

† ab11!

3~ab
†ab!2 i uD̃u~ab

†ab12
† 2ab12ab!% ~29!

of interacting spinless fermions with repulsive constraint at
neighboring sites and superconductinglikeD̃ terms. The
sqeezing transformation~16!, used in the previous section for
resolving the constraint at neighboring sites, is here, unfor-
tunately, not very helpful, because it makesD̃ terms nonlo-
cal.

Thus, we have to stay with the problem of interacting
fermions, governed by the Hamiltonian~29!. This problem is
tractable, if the concentration of dimers is low:^n&!1. We
give here only an outline of the solution and restrict our-
selves to an evaluation of relevant quantities, without calcu-
lation of numerical factors. As a first step, we renormalize
the interaction of fermions and introduce the vertex function
G in a standard way~see, e.g., Ref. 12!. For small momenta
p we obtainG;tp2 ~with a positive coefficient of order
unity!. Then, proceeding in the spirit of BCS-like mean-field
theory~see Ref. 12! we find quasiparticles with the spectrum

ẽ ~p!5 sgn@e~p!#AD2~p!1e2~p!,

whereD~p!'Dp for p!1, ~30!

ande(p) is described by Eq.~22!. Note thatD(p)}p is an
odd function ofp, because spinless fermions can only be
paired in a tripletlike antisymmetric state. For the constant
D we get the self-consistency ‘‘gap equation’’ in the form

D54uD̃u2gDtE pdp

ẽ~p!
, ~31!

where the dimensionless ‘‘coupling constant’’g;1 is posi-
tive and related to the numerical coefficient in theG ampli-
tude.

For K,K̃c the second term on the right-hand side of Eq.
~31! can be completely neglected; thereforeD'4uD̃u. Then,
in the range 0,K̃c2K,uD̃u2/t we obtain for the average
number of dimers in the ground state

^n&5K (
b

ab
†abL 'E S D~p!

e~p! D 2dp;
uD̃u2

t3/2~K̃c2K !1/2
.

~32!

Thus ^n& does not vanish identically forK,K̃c but decays
smoothly. In general,̂n(K)& is a continuous function, in-
creasing monotonously, whenK increases@see Fig. 4~a!#.

For K.K̃c there are two regions with different behavior
of the spectrum. In the immediate vicinity ofK̃c , where the
concentration of dimers is so small that^n& ln(t/uD̃u)!1, their
interaction can be neglected and the gap function still coin-
cides with the ‘‘bare’’ one:D'4uD̃u. Thus in the range
K2K̃c!t/ ln2(t/uD̃u) the gap in the spectrum of excitations is

D~K !'D~kF!;uD̃uAK2K̃c

t
. ~33!
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The reason for the suppression of the gap nearK̃c , where the
Fermi momentumkF vanishes, is as follows: Spinless fermi-
ons have a tendency to avoid each other and keep distances
of the order of an average one (;kF

21@1). On the other
hand, the pairing interaction becomes active if the fermions
approach each other as close as two lattice spacings, which
happens only rarely. Note that there exists a pointK5K̃c8
where the gapD(K) vanishes. The position ofK̃c8 is a little
bit shifted with respect toK̃c by an interplay of the interac-
tion of fermions andD̃ terms. Exactly at the pointK5K̃c8 the
low-energy excitations of the system are massless fermions
with a spectrume(p)54uD̃uupu. The average number of
dimers at this point iŝn(K̃c8)&;uD̃u/t.

For higherK @i.e., for t/ ln2(t/uD̃u)!K2K̃c!1# the gap
function is heavily suppressed by the repulsive interaction of
fermions. Solution of Eq. ~31! in this range gives
D'4uD̃u/gkFln(t/uD̃u)!uD̃u, and the gap in the excitation
spectrum,

D~K !'
4uD̃u

gln~ t/uD̃u!
, ~34!

ceases to depend on the coupling constantK @see Fig. 4~b!#.
If uD̃u;Jeff , the low-energy orbital excitations are

strongly mixed with the magnetic ones. There are no doubts,
however, that the gap in their spectrum survives also in this
case. The existence of the special pointK̃c8 , where the gap
vanishes, is also likely to survive, though it is a more delicate
question.

The behavior of the system in the vicinity of the other
boundary of the quantum-liquid range, close to the phase-
transition pointK5Kc , is an open question. In this region
all three factors, the kinetic energy of solitons, their magnetic
interaction, and theD̃ terms, creating 4’s of solitons, become
equally important and interplay actively. We do not have a
quantitative theory for this critical behavior; a qualitative
discussion is given in Sec. VI.

D. Thermodynamics of the symmetric chain

We discuss now the thermodynamics of the model. First
we have to note that there are four temperature ranges with
different behavior of the system:~1! T,D(K), ‘‘frozen’’
regime; ~2! D,T;Tmag!TF , spin-chain regime; ~3!
Tmag!T!TF , Fermi-liquid regime; and~4! T@TF , classic
regime. HereD(K) is the gap in the spectrum of fermions
@see Eqs.~33!,~34!#, Tmag(K);Jeff(K) is the freezing tem-
perature for the spin degrees of freedom, andTF(K) is the
Fermi temperature for the Fermi gas, discussed in Sec. III A.
If K is not very close to any of the thresholds, thenTF;t,
though it vanishes upon approaching a boundary of the
quantum-liquid domain:TF(K)'2(K2K̃c) for K→K̃c and
TF(K)'(Kc2K) for K→Kc . We discuss these four re-
gimes below.

~1! Frozen regime. Here all the excitations in the system
are frozen out, and the thermodynamics is dominated by
those quasiparticles which have the lowest gap, i.e., by the
fermions~in the case, when the magnetic excitations have a
gap!. The thermodynamics of the system in this low-

temperature range is identical to that of a superconductor
with a gapD(K): the specific heatC(T)}exp@2D(K)/T#,
etc.

~2! Spin-chain regime. Here the thermodynamics is domi-
nated by the magnetic excitations, excitations of the floating-
spin variables, governed by the Hamiltonian~26!. Therefore
the properties of the model in this range are identical to those
of the XYZ chain ofM5N0@122n(K)# spins, coupled by
the exchangeĴeff(K). ~For a discussion of the thermodynam-
ics of theXYZ chain see Ref. 11.! The corresponding spe-
cific heat Cmag(T) reaches the maximum value
Cmag
(max);@122n(K)# at T;Tmag. At high temperatures

T@Tmag all the spin configurations become equipopulated,
the specific heatCmag(T)→0, and the magnetic part of the
entropy tends to a saturation:Smag→M ln2.

~3! In the Fermi-liquid regime~and, certainly, also in the
classic one! the magnetic interactions can be altogether ne-
glected, and one is left with the spinless-fermions problem,
Eq. ~17!, supplemented with an additional entropy
Smag5N0(122n)ln2, regarding the degeneracy with respect
to the floating-spin variables. The ‘‘superconductinglike’’D̃
terms are also negligible in this regime, sinceTmag>D(K).
The population of fermionic states with different internal
momentak is described by the Fermi-Dirac distribution
function f k5„11exp{@«(k)2m#/T} …21, where the spectrum
«(k) is defined by Eq.~19!, while the chemical potential for
the fermions,m5m(T), is to be found. One should not mix
this chemical potential with the chemical potential for
dimers; the latter is, of course, zero. The total free energy
~normalized to the unit cell! of the system with fixed concen-
tration of dimersn is

F„n,m~n,T!,T…5mn1~12n!V~m,T!2~122n!Tln2,
~35!

where the last term is the contribution of the free spins, men-
tioned above, while

V~m,T!52TE
2p

p dk

2p
ln„11exp$@m2«~k!#/T%… ~36!

is a standard thermodynamical potential of an ideal 1D Fermi
gas. The relation

r[
n

12n
52

]V

]m
5E

2p

p dk

2p
f k ~37!

follows from the condition]F/]m50 and determines the
dependencem(n,T). Its meaning is clear: It relates the
chemical potential of the fermions to their total concentration
r. The equilibrium concentration then should be found from
the condition of the free-energy minimum:]F/]n50. This
condition leads to the following equation, governing the
chemical potential:

V~m,T!5m12Tln2. ~38!

Solving it and substitutingm(T) into Eq. ~37!, one can, in
principle, find the temperature dependence of the dimer con-
centrationn(T). Substituting Eq.~38! into Eq.~35! we arrive
at the simple relation

F5m1Tln2, ~39!
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which facilitates the further calculations substantially. For
example, for the specific heat it gives

C~T!52T
d2m~T!

dT2
. ~40!

At relatively low temperaturesTmag(K)!T!TF(K), when
the Fermi gas is degenerate, the thermodynamical potential
can be expanded inT:

V5V02
pT2

6vF
, V05

2t

p
~kFcoskF2sinkF!, ~41!

where vF52tsinkF , m5Dd22tcoskF . After some algebra
we find the specific heat:

C~T!5g~K !T, ~42!

where g(K);1/t if K is not close to any threshold, but
g(K)→` upon approaching a boundary of the quantum-
liquid domain: g(K)'(p/6)@2t(K2K̃c)#

21/2 for K→K̃c ,
g(K)'(p/12)@ t(Kc2K)#21/2 for K→Kc . The linear tem-
perature dependence of the specific heat is quite natural for
the fermionic system. The above divergence is due to the fact
that the Fermi velocityvF , appearing in Eq.~41!, vanishes
when the Fermi level approaches either the bottom or the top
of the band.

~4! In the classic regime~for T@TF) the kinetic energy
can be altogether neglected, and the results of Ref. 1, ob-
tained for the basic model, are applicable. Note, however,
that for the present 1D version of the basic model, all the
thermodynamical properties can be found explicitly for an
arbitrary relation betweenDd andT.

Indeed, neglecting the dispersion@i.e., substituting
«(k)[Dd in Eqs.~37!,~38!#, we arrive at the following equa-
tions form andn:

2ln21
m

T
52 lnH 11expS m2Dd

T D J , ~43!

n5
r

11r
5H 21expS Dd2m

T D J 21

, ~44!

which can be solved analytically. Their solution gives

m52Tln$2@11A11exp~2Dd /T!#%, ~45!

n~T!5
1

2 H 11expS Dd

T D F11A11expS 2
Dd

T D G J 21

.

~46!

The explicit expressions for the specific heat and magnetic
susceptibility „the latter being simply proportional
to the concentration 122n of free spins: x(T)
5xpara@122n(T)#, where xpara}1/T is the paramagnetic
susceptibility of free spins; see Ref. 1… can also be easily
derived with the aid of Eqs.~40! and ~46!; see Ref. 5 and
Figs. 6,7 of Ref. 1.

V. CHAIN WITHOUT INVERSION SYMMETRY

Without inversion symmetry there is no reason fort to be
zero. We have already mentioned that in this case the form of

the reduced HamiltonianH $s i8% is rather complicated~for a

general set of the floating-spin quantum numbers$s i8%). We
did not succeed in finding a general expression for a ‘‘par-
tial’’ ground state energyEG$s i8% in order to find the true
ground state of the system rigorously, in a straightforward
procedure of minimization ofEG$s i8% with respect to differ-
ent sets$s i8%. Nevertheless, we can try to guess what the
ground-state set$s i8% could be, based upon symmetry con-
siderations.

A. Ground state of the asymmetric chain

Since the Hamiltonian of the problem is translationally
invariant, the most obvious choice of$s i8% would be the fully
translation-invariant ferromagnetic set, where alls i8 are the
same: either up (s51) or down (s521). The ferromag-
netic choice seems to be supported by qualitative Nagaoka-
theorem-like arguments: The ferromagnetic background is
likely to facilitate the energy lowering due to the mobile
dimer kinetic energy. There is, however, one additional in-
ternal symmetry of the HamiltonianH01, which modifies the
Nagaoka theorem for our case. Actually any hop shifts the
physical position of a free spin always by two lattice spac-
ings (a→a62). Then, having in mind that the parity of
positiona of a free spinsa coincides with the parity of the
numberi of the corresponding floating spinsi8 , one can con-
clude that the Nagaoka theorem7 actually requires here fer-
romagnetism not for the entire set$s i8%, but for two subsets
with even and oddi separately. Thus, on the basis of the
Nagaoka theorem, we can expect the antiferromagnetic set of
alternating floating spins@s i85(21)is# to have the same
energy as the ferromagnetic one. The antiferromagnetic set
describes a ‘‘minimal’’ breaking of the translational symme-
try, a doubling of the period. The Nagaoka theorem, being an
exact one only for a single dimer, cannot be proved rigor-
ously for a finite concentration of dimers. So, strictly speak-
ing, we cannot exclude further lowering of the initial sym-
metry in the ground state~like tripling of period or other
exotic possibilities!, but we find it unlikely. Therefore we
restrict our consideration to the two physically plausible op-
tions mentioned above.

In both ferromagnetic and antiferromagnetic cases the
HamiltoniansH $s i8% for the orbital degrees of freedom can be

written explicitly:

H01
~F !5DdN1(

b
$2t~db

†db111db11
† db!2 i ts~db

†db11

2db11
† db!1U~db

†db
†dbdb1db11

† db
†dbdb11!%, ~47!

H01
~AF!5DdN1 (

b51

N021

$2t~db
†db111db11

† db!

2 i ~21!bts~db
†db112db11

† db!1U~db
†db

†dbdb

1db11
† db

†dbdb11!%, ~48!

with the same notations as in Eq.~14!. The crucial point is
that, by means of the phase transformations
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db→db
~F !exp@2 isbarctan~t/t !#, ~49!

for ferromagnetic case, and

db→db
~AF!expS 2 is

~21!b

2
arctan~t/t ! D , ~50!

for antiferromagnetic case, bothH01
(F) andH01

(AF) may be re-
duced to thesameform, coinciding with the Hamiltonian
Hsym of the symmetrical chain@see Eq.~14!# up to a replace-
ment

t→t85At21t2. ~51!

Thus the HamiltonianH01 with tÞ0 has a fourfold-
degenerate ground state~two ferromagnetic and two antifer-
romagnetic components!. All the results of Sec. IV A are
applicable also to the case of the asymmetric chain@with a
substitution~51!#. In particular, the zero-T concentration of
dimersn(K) is given by Eq.~21!.

The role of the spin-spin interactionsHm is here some-
what different from that in the case of the symmetric chain,
especially for antiferromagnetic exchange. For the symmet-
ric chain the magnetic interactions had to lift theinfinite
degeneracy with respect to floating-spin configurations
$s i8%, which resulted in the nontrivial Bethe-ansatz ground-
state wave functionJ(s i8). For the asymmetric chain the
magnetic interactions have to take care of the fourfold global
degeneracy, and may only choose between the ferromagnetic
stateJF5u↑↑↑↑•••& and a Ne´el-type antiferromagnetic one
JAF5u↑↓↑↓•••&. Both states are of the Ising type: the mag-
netization~or staggered magnetization in AF case! is parallel
to t and there are no quantum fluctuations~spin flips! in
terms of the floating spins. In terms of physical spinssa , of
course,there are strong quantum fluctuationsin both the
ferromagnetic and antiferromagnetic cases; it is due to these
fluctuations that the effective magnetic moment is reduced
by a factor 122n(K) and tends to zero whenK→Kc .

The discussion of the gap in the spectrum of orbital exci-
tations~fermions!, opened by the interactionH (2), given in
Sec. IV C for the symmetric case, applies to the asymmetric
case as well; the gap is described by expressions~33!,~34!.
An assumptionD̃!Dmag, necessary for the reduction of the
spin dependence of theD̃ operator, is fulfilled in the asym-
metric case even easier, because the gap in the spectrum of
magnetic excitationsDmag is here much higher than in the
symmetric case~namely,Dmag;t instead ofDmag;Jeff).

B. Thermodynamics of the asymmetric chain

As in the symmetric case, we have here two types of
excitations.

~1! Purely orbital excitations, not affecting the floating-
spin quantum numbers$s i8%. They have fermionic character,
their energies are given by Eq.~19!, and their contribution to
the specific heat at temperaturesT@D(K) is described by
Eq. ~42!. At very low T,D(K) we have again the frozen
regime with exponentially small specific heat, etc.

~2! ‘‘Magnetic’’ excitations, affecting the quantum num-
bers$s i8%. In the symmetric case these excitations were de-
coupled from the orbital degrees of freedom; they had a low-
energy scale;Jeff!t and dominated the thermodynamics in

the rangeT;Jeff . In the asymmetric case, however, the
magnetic excitations involve orbital degrees of freedom
heavily. Therefore there is no reason any longer for the mag-
netic excitations to have an energy scale different from that
for the purely orbital excitations. Although we are not able to
calculate the spectrum of magnetic excitations explicitly, we
will adopt a natural assumption that there is a gapDmag in
this spectrum. ‘‘Deep’’ in the quantum liquid regime~i.e.,
whenK is not especially close toK̃c or Kc), this gap can be
estimated asDmag;t;t; close to any of the boundaries the
gap should be suppressed. The magnetic excitations can con-
tribute to thermodynamics only at relatively highT;t, while
for T!t the thermodynamics is dominated by the quasigap-
less purely orbital excitations~hence linear specific heat,
etc.!.

Thus, the thermodynamics of the asymmetric chain is
similar to that of the symmetric one: The frozen regime, the
Fermi-liquid regime, and the classical regime are basically
the same. The spin-chain regime is, however, absent, and
there is no corresponding maximum of the specific heat at
T;Tmag; moreover, there is no such temperature scale as
Tmag whatsoever.

VI. CHARACTER OF THE PHASE TRANSITION

From the most general point of view our system is char-
acterized by following two order parameters: The magnetic
order parameter is a magnetization~staggered magnetization!
in ferromagnetic~antiferromagnetic! cases:

MF,AF5(
a

~61!a^sa&. ~52!

The amplitude of the phonon density wave is

L5(
b

~21!b^~Q!b
2&. ~53!

In the low-K magnetic phaseMÞ0, L50, and the time-
inversion symmetry is broken, while in the high-K nonmag-
netic phase the time-inversion symmetry is restored, but the
translational invariance is broken~due to the formation of the
phonon density wave!. From the point of view of symmetry
alone this situation is identical to the spin-Peierls transition
~see Ref. 13!. There is, however, an important physical dif-
ference: In the spin-Peierls case the nonmagnetic phase is
characterized by the order parameterLSP5(b(21)b^Qb&
—i.e., there is a modulation of the classical displacement
^Qb&Þ0—while in our casêQb&[0 ,LSP50, and it is only
the amplitude of zero vibrationŝ(Q)b

2& that is modulated.
What is very important is that neither of the symmetry

groupsGM ,GNM of the two above phases is a subgroup of
another one. It means~if one implies a direct transition, with-
out any intermediate phases! that the necessary condition for
the second-order transition is not fulfilled and it can only be
of first order.14

Let us discuss our results from the point of view of this
requirement. For the pure basic model it is fulfilled, since
bothM andL change abruptly atK5Kc

(BM) @see Fig. 5~a!#.
The situation becomes much more peculiar when one takes
into account deviationsdH from the basic model. In the first
approximation indH the magnetic order parameterM van-
ishes at the pointK5Kc continuously, in a second-order
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manner, while the amplitude of the density waveL still un-
dergoes a jump from zero to the saturation value at the same
point @Fig. 5~b!#. Such an unusual behavior is pathological
from the point of view of the Landau theory of phase tran-
sitions, and we can suspect that it is an artifact of the special
symmetry of the effective HamiltonianH01 in this approxi-
mation. It is likely to be unstable with respect to further
corrections (Hm andH (2)), violating this additional symme-
try. These terms can only be essential in a narrow ‘‘critical’’
vicinity of the phase transition point, where the average con-
centration of the solitons~holes in the close packing!, carry-
ing free spins, is already very low. On the other hand, all the
conservation laws which we have used~floating spins and
the number of dimersN) are completely destroyed in this
critical region. Therefore a description of the system behav-
ior in the critical region~and thus the true character of the
phase transition! is still a very tough problem, which is be-
yond the scope of the present paper. Here we will give only
a qualitative discussion of certain possibilities.

Let us discuss what happens when one approaches the
critical region from the nonmagnetic~high K) side. For
K ’s which are far enough above the thresholdKc , the aver-
age concentration of solitons is very low. They are produced
in 4’s at random places in rare virtual processes, and disap-
pear again almost immediately, without giving their free
spins a chance to interact with each other. Therefore we do

not expect the magnetic order to exist in this region. On the
other hand, from the point of view of the phonon density
wave, the fact that virtual solitons are bound in 4’s means
that they are topologically neutral objects, containing two
kinks and two antikinks. Hence the sign of the local order
parameterL is the same in all the long segments, separating
these virtual excitations, the long-range order is retained, and
the averageL is suppressed only slightly. Upon approaching
Kc both the concentration and the radius of complexes in-
crease and eventually, in the critical region, the complexes
begin to overlap. Inside this region there are no well-defined
four-soliton complexes any longer: Each soliton has a good
chance to annihilate not with its three ‘‘brothers,’’ with
whom it was created together, but with partners, originating
from different 4’s. Eventually this will lead to the destruction
of the phonon density wave. On the other hand, free spins,
carried by unbound solitons, acquire a tendency to develop a
magnetic long-range order.

It is a priori unclear whether the above two phase trans-
formations must occur simultaneously, but this option seems
to be the most likely ‘‘minimal scenario.’’ In this case the
phase transition is necessarily of first order, but close to sec-
ond order. Although the magnetic order parameter does not
vanish completely forK→Kc20, it tends to a very small
value. The order parameterL, in its turn, is not constant for
all K.Kc any longer, but decreases when approaching
Kc10 @Fig. 5~c!#.

The minimal scenario is, however, not the only possible
one. The other option would be splitting of the phase transi-
tion in a sequence of 2, where in the intermediate phase
either both orders coexist or both are absent~fully symmetric
nonmagnetic quantum liquid!. Then the two corresponding
phase transitions could be of second order@Figs. 5~d!, 5~e!#.

The above arguments do not apply to one special case of
chains with isotropic antiferromagnetic interactions, where
the ‘‘magnetic’’ phase is actually nonmagnetic due to quan-
tum fluctuations, inherent in a 1D Heisenberg antiferromag-
net. This phase is fully symmetric and the necessary condi-
tion for the second-order phase transition is fulfilled.

VII. DISCUSSION

Here we will try to generalize the above results, and
single out those features which seem to us model indepen-
dent.

Both parts of the HamiltonianH, the purely lattice part
and the spin-phonon interaction, are quadratic in lattice vari-
ablesQb ,Pb . While the former part is a positively deter-
mined quadratic form, the latter part is not, due to presence
of spin variablessa with an undetermined sign. Therefore,
upon increasing the spin-phonon interaction, the lattice must
sooner or later become unstable. In the basic model it hap-
pens atuKu5v; in the general case a certain instability sur-
face I in the space of Hamiltonians must exist. What hap-
pens whenH approaches this instability surface along a
certain pathP in the space of Hamiltonians?

The effective modes become softer and softer, and the
level of quantum fluctuations in the system grows. These
fluctuations involve both lattice and spin degrees of freedom,
and one can expect the magnetic order to be suppressed~at
least partly! near the instability surface. As was shown in

FIG. 5. TheK dependence of the zero-T order parameters in the
critical region;M , magnetic order parameter~solid lines!; L, am-
plitude of phonon density wave~dashed lines!: ~a! for the basic
model ~zeroth approximation indH); ~b! for the HamiltonianH01

~first approximation indH). ~c!,~d!,~e! Three types of possible true
behavior in the immediate vicinity of the phase transition~second
approximation indH): ~c! the minimal scenario, a first-order phase
transition, close to second order;~d! the transition is split into two
subsequent second-order phase transitions with fully symmetric in-
termediate phase~neither magnetic order nor phonon density wave!;
~e! the same with the low-symmetry intermediate phase~both or-
ders coexist!.
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Ref. 1 for the pathPBM , constituted by the one-parameter
family of basic model HamiltoniansHBM , this suppression
occurs at K5Kc

(BM) abruptly, in such a way that for
K.Kc

(BM) the magnetization is totally suppressed~spins are
fully screened!, while for K,Kc

(BM) there is no suppression
at all ~spins are free!.

In the present paper we have studied pathsP, close to
PBM , in the sense thatdH5H2HBM is small along a path
P. We have shown that for such a path the behavior of zero-
T magnetic order is transformed in the following way: The
point Kc of the phase transition to the nonmagnetic state is
somewhat shifted towards the instability point, and the tran-
sition itself is smoothed in the sense that an ultimate vanish-
ing of the magnetic order parameterM in a phase transition
atK5Kc is preceded by a continuous decrease ofM already
within the magnetic phase. In a narrow strip~its width being
of the first order indH) the magnetism is gradually sup-
pressed from the ‘‘normal’’ value to a very small one. In this
strip a new quantum-liquid phase, which is a mixture of mo-
bile singlet dimers and free spins, arises, and the fraction of
singlets increases continuously upon approachingKc . This
phase is magnetic, homogeneous, and almost gapless~the
gap in the excitations spectrum isD}dH2). The behavior of
the system in a very close vicinity ofKc ~critical region! is
not absolutely clear. The phase transition is most likely a
first-order one, close to second order, but the possibility of
its splitting in a sequence of two second-order phase transi-
tions with the formation of an intermediate phase of new
symmetry is also not excluded.

Let us speculate now about a general pathP, starting
from the noninteracting pointKabb8

abb850 and going to large
K ’s. Relying upon the experience obtained in the above per-
turbational~in dH) study of the problem, we expect the fol-
lowing to be true.

~1! A general pathP will necessarily meet the instability
surfaceI.

~2! Certain paths~not all, but at least those sufficiently
close toPBM) will cross the domain of nonmagnetic phase,
adjacent to the surfaceI. The surfaceN, separating the non-
magnetic domain from the magnetic one, is the surface of
zero-T phase transitions; it separates the phases of different
symmetries. In the magnetic phase time-reversal symmetry is
broken, and in the nonmagnetic one it is not. The transla-
tional symmetry in the nonmagnetic phase is most likely to
be broken due to the formation of virtual-phonon density
wave. A fully translationally symmetric nonmagnetic state is,
in principle, also not excluded, but we could not build any
example for such behavior~see Ref. 1 and references therein,
concerning the ‘‘Quantum dimer model’’!.

~3! For small spin-phonon couplings the magnetic order
persists~if only it is not suppressed already by quantum fluc-
tuations of magnetic HamiltonianHm , like in isotropic anti-
ferromagnetic Heisenberg chain!. The order parameter, how-

ever, decreases gradually upon approaching the nonmagnetic
domain boundaryN, due to the growth of the singlet spin-
phonon fluctuations in the regime of magnetic quantum liq-
uid.

~4! The phase transitions, occurring at the surfaceN, are
most likely of first order if the phonon density wave is
present in the nonmagnetic phase. The second-order phase
transition is, at least in principle, possible in a hypothetical
case of a fully symmetrical phase of nonmagnetic quantum-
liquid type.

We have deliberately mentioned here only those most
general features of the ground state of the system which, we
believe, persist in higher dimensions. In the one-dimensional
model, considered in this paper, neither the magnetic order
nor the phonon density wave can exist at any finite tempera-
ture. That is, of course, not the case for higher dimensions,
where we can expect an order to persist up to some critical
temperatureTc . However, since in this system we have to
deal with the interplay of two different orders, its phase dia-
gram may be complex and its description is beyond the
scope of the present paper.

In conclusion, we have demonstrated the possibility of
both complete and partial~though quite strong! suppression
of magnetism due to quantum fluctuations, induced by strong
spin-phonon coupling. While the complete screening of spins
is almost inevitably accompanied by the formation of a pho-
non density wave, partial screening occurs in the translation-
ally invariant system. The phenomenon exists in a finite do-
main of the space of spin-phonon Hamiltonians, and it is
stable with respect to small variations of parameters. We
believe that it may be relevant to those ‘‘heavy-fermion’’
compounds with a strong spin-phonon interaction, which ex-
hibit either anomalously weak magnetism or no magnetism
at all.

Note added.After this paper was submitted, G. Uimin
drew my attention to a paper15 by Villain and Bak, where the
‘‘squeezing transformation’’ for diagonalization of the
Hamiltonian ~15! @arising there from completely different
physics, the anisotropic next-nearest-neighbor Ising
~ANNNI ! model# was introduced. We are sorry for not citing
this paper in our work,8 where we rediscovered the squeez-
ing transformation independently, but 10 years later. Another
important message, following from the discussions in Ref.
15, is that the spectrum of the Hamiltonian~28! may remain
gapless in a certain range ofK’s adjacent toKc, even despite
the presence of symmetry-breakingD̃ terms.
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