PHYSICAL REVIEW B VOLUME 53, NUMBER 22 1 JUNE 1996-II

Quantum-liquid regimes for spin chains coupled to phonons:
Phonon density wave versus magnetic order

A. S. loselevich
Institut fir Theoretische Physik, Rheinisch-Westfalische Technische Hochschule Aachen, Templergraben 55, D-52056 Aachen, Germany
and Landau Institute for Theoretical Physics, Russian Academy of Sciences, Kosygina strasse 2, Moscow, 117940, Russia
(Received 3 November 1995

We consider a chain of localized spins, coupled to phonons. Recently this problem has been solved exactly
for a “basic model,” a family of spin-phonon Hamiltoniarigg,, characterized by one parameteoupling
constantK), and a zercF first-order phase transition from the magnefierro or antiferrg state at low
couplings to the nonmagnetic state with a phonon density wave at high couplings was found. Here we probe
the general case, constructing an effective Hamiltoriafor low-energy degrees of freedom by means of
regular expansion in deviatior¥{=H— Hgy, of the general Hamiltoniafi{ from that of the basic model. In
linear approximation irH the problem appears to be exactly solvable as well, due to an infinite number of
conservation laws. IK is far enough from the critical valu¢.. , then the character of the basic model solution
is not altered. In the vicinity oK. the magnetic state is dramatically reconstructed: Here the ground state is a
gapless magnetic quantum liquid, consisting of mobile singlet spin-phonon complexes and unbound spins. The
fraction of singlets increases gradually upon approaclipg and the magnetic order parameter gradually
vanishes. Thus we have here a partial screening of spins by phonons without formation of a phonon density
wave. The latter appears only Kt=K_ in the first-order phase transition. Corrections, quadratid?
destroy the integrability of the system, but outside a narrow critical region arkiyrttiey only lead to an
opening of a small gap in the spectrum of the quantum liquid. The behavior of the system within the critical
region is an open question. Most likely the continuous magnetic phase transition &t becomes a first-
order one, but close to second order. The relevance of our results for three-dimensional systems and possible
applications to compounds with anomalously weak magnetism are briefly disc[88&63-182006)02222-9

I. INTRODUCTION K.<K<w, the ground state of the model is indeed nonmag-
netic. It consists of singlet complexdslusterg, each of
In a previous papéra model of a strongly interacting which is constituted by one excited oscillator, coupled to
spin-phonon system was introduced, which aimed to give aadjacent spins. These complexes tile the entire lattice in such
alternative explanation for a peculiar magnetic behavior ofa way that each spin belongs to one and only one cluster
certain material§mostly the so-called heavy-fermion com- (close packing The low-lying excitations are packings with
pounds, containing anomalous rare earths, e.g), Tgese holes(free dangling spins The excitation spectrum is sepa-
materials exhibit, at high temperatures, quite normal pararated from the ground state by the gapy(K), which van-
magnetic properties, while at lower temperatures they gradushes, wherK tends either td, or to w.
ally “become nonmagnetic? The freezing out of magne- In Ref. 1 the authors also discussed briefly what happens
tism is usually not accompanied by any substantial change ab the properties of the system when its Hamiltontdrde-
the lattice symmetry. On the other hand, most of these comviates slightly from the Hamiltoniah(g,, of the basic model.
pounds demonstrate gigantic magnetoelastic anontaliesAn answer to this guestion is relatively simple, if
which implies that the relevant spin-phonon interactionssH=H— Hg,, is small compared td gy, . ThensH is either
might be strong. These facts have provided us with a motiirrelevant (for systems with nondegenerate or only globally
vation for anonperturbativestudy of spin-phonon interac- degenerate ground statesr, for systems with a local degen-
tions mainly in order to answer the major question whetheeracy of the ground state, it mixes the different ground states
phonons can screen spins. It is also especially interesting.e., different close packingsnd lifts, partially or fully, the
whether it can happen without a lowering of lattice symme-ground state degeneracy.
try. A quite different(and much more interestingsituation
For the simple one-parameter family of spin-phononmust arise, however, 7 is comparable td\ g, . Then the
Hamiltonians (“basic model”), with the realistic phonon excited states of{gy, can be admixed considerably to the
modes being replaced by local isotropic three-componenground state, and one can expect a mixture of singlet clusters
Einstein oscillators with frequency and the spin-phonon and free spins to form already @t=0 in the ground state.
interaction posessing a special high symmetry, the authors dthis mixture is most likely a quantum liquid of mobile clus-
Ref. 1 were able to find the ground state of the system and itters, but its properties, even the presence or absence of long-
low-lying excitations in a nonperturbative way for an arbi- range magnetic order, is still an open question.
trary coupling constari and for arbitrary space dimension-  The problem of a quantum liquid and its properties seems
ality. It was shown that in a certain range df, to be intriguing not only from a purely theoretical, but also
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from a practical, point of view. Actually the nonmagnetic
ground state of the basic model is characterizethimken
translational symmetry. In Ref. 1 it was argued that this sym-
metry breaking is hard to observe because a modulation oc-

[e© eJo[e O e|o[e © e|0[e © o]0 O e]
(@)

curs only in zero-vibration amplitudgg kind of “phonon [e®elo : o[e @ elo[e © e|o po $ ofe
density wave’), but not in classic lattice displacements. \ (®)

Anyway, it seems more attractive to get rid of modulation

whatsoever, and restore the full translational invariance, { {
which is exactly what happens in a quantum-liquid regime. (2@ eJo[e0slo s o[eTefogosole
The possibility of partial spin screening at=0 in a (0)

guantum-liquid regime is also attractive, since some sub-

stances reveal a long-range magnetic order, but with dramati- FIG. 1. Low-energy configurations for the chain of alternating
cally suppressed effective magnetic monteNote that the  spins and oscillatorsK>K_); solid circles, spins; single open
pure basic model provides only two possibilities: either full circles, unexcited oscillators; doubled open circles, excited oscilla-
screening or no screening at all. tors; rectangular boxes, singlet spin-phonon complédiesers. (a)

So far we have not been able to develop a reliable quanThe grognd state: fully dimer.ized.“close packing(b),(c). Excited
titative approach to the quantum-liquid state in any two-States with holgs in the packingg) is related Fo(b) by aflrst-orgler
dimensional(2D) or three-dimensional3D) version of our ~ Process, described by the hopping Hamiltonidf”, and vice
model. In this paper we undertake a special study of th%ersg. The orientation of the free spin at its new position after the
quantum-liquid state in the 1D chain, where the problem°P 'S unalitered.

turned out to be tractable. Some preliminary results were

already presented in Ref. 5; here we give a full solution Ofvvhere the units are chosen so that masses of the oscillators

the problem. We consider a class of one-dimensional sys@ndﬁ are unities. In this paper we adopt the following as-

tems with Hamiltoniang<{, deviating fromHgy, in the vicin- sumptions, Cof‘cem'”@f- . : I
ity of the thresholdK . In Sec. Il, in a form of series expan- (i) The crucial assumption—the spin-phonon Hamiltonian

sion in SH="H—"Hgy, We derive an effective Hamiltonian M is in a sense close to the '_*a_m"to”iafbm of the basic

H for low-energy degrees of freedom. In Sec. Il we formu- r;;_){d_e;_.{_f]ljl{amelr)]/, Idct;)aracterlllstlc matn(;(t elﬁmenf[s , t(')f
late a set of conservation laws, valid in linear approximation h — ¢ v _SNould be smail, compared 1o characteristic
in 8H. These conservation laws make an exact solution of (()_r_1)0n gr?lueml'iféract'ons of nearest neighbors
the problem possible. The effects of second orderthd I y 1 ' 9

break the internal symmetry of the effective Hamiltonidn <Saa >’<bf? ),t<bafb>,(bab ) ar;e a.ssr:gneq tto b?. essentlac::
and destroy the integrability of the problem, the most impor- ome efiects o ngn-neares -heignbor Interactions are cis-
ssed only briefly: They actually play the same role as the

tant consequence being an opening of a gap in the spectruji) ) ;
q g b g gap P igher corrections invH.

of the quantum liquid. In Sec. IV we discuss the ground state ™~ .- e o . .
and thermodynamics of a chain with an inversion center, and (iii) The "direct sp|n-sp|n_|nterac_t|0m_'-{m, Eq. (2), is .
supposed to be the weakest interaction in the problem. It is

in Sec. V we do the same for a chain without an inversion onsidered onlv so far as it lifts some residual degeneracies
center. In both cases the solution describes a uniform quas(f— : y it lad 9 I€s,

gapless magnetic quantum liquid, but with somewhat differ-Which other interactions fail to lift. IfH,, were large, the

ent magnetic properties. In Sec. VI we discuss the charactéyStém would be dominated by the magnetic interaction,

of the zeroT phase transition between magnetic and nonWhich case is well known and is not our concern here.

magnetic phases. Finally, in Sec. VII we try to single out o _
most general results and speculate about their possible gen- A. Principal features of the basic model

eralization for higher dimensions. We review here briefly the properties of the ground state
and low-lying excitations in the basic modébr details see
Ref. 1. This model, allowing for a nonperturbative solution,

Il. EFFECTIVE HAMILTONIAN is characterized by the following three assumptions.

Consider a 1D chain of alternating spiss (s=1/2) at (1) The mode<, are isotropic and locddispersionless
sitesa of sublatticeA, and three-component oscillators at Uff, =w25Bﬁ,5bb,_
sitesb of sublatticeB (see Fig. 1, Qp, P, being the displace- (2) The spin-phonon interaction is local and spherically

ments and momenta of an oscillator. A reasonably general

L aBB _
Hamiltonian(see the detailed discussion in Reffdr such a Symmetnc:Kapy =K dpp S €appr- _
chain would be (3) The direct spin-spin interaction is totally neglected:

J = .

aa’
Thus the Hamiltonian of the basic model is

Hio=H+Hm, Hp=2, Jo0 s2s?, (1) ,
aa’ 1 , W5
Hew= 2 pr+7Qb +K 2, (silp), ©)
b (ab)
= P22+ UB,B,’ B ﬂ,’/2+ Ka,B,B,' @ 3PB/’1 with L,=[QpPp] b_eing the angular momentum of an oscil-
T Eb: b bzt,: b Qb Qp e%;j by SaQbP lator. The properties of the system are actually governed by

(2 unigue dimensionless parametéfw.
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We note that the radial quantum numbéf? and the ments ofsH are small compared te (but not necessarily to
angular momentunh,, of each oscillator are good quantum Agy,), we will presentH in a form of a series in powers of
numbers, the only nontrivial dynamics being associated withH:
orientations ofL,, ands,. In each sector, characterized by
the set{N{"” L.}, one can write H=HO+H®D+H@ 4. .. (6)

— " H© we know already: It is given by Ed5); H®) describes
Hem{N -L}—% o(Np'+Lp+ 3/2)+K2b (Sakb), direct transitions within the low energy subspatt? de-
ab) scribes the second-order processes with both initial and final
and at T<w one can consider only the sectors with states having low energies, but with a high-energy interme-
N{"=0. Thus the basic model is mapped to the Heisenbergiate state; etc.
chain of alternating spins 1/2 and momenhig, the latter
ones varying from site to site in their sublattice. This model, B. First-order processes: Effective kinetic energy of dimers
of course, cannot be solved for a general{dgf, but, for-
tunately, it has been showrhat the ground state and the
low-lying excitations correspond to very simple sets, allow-
ing for an exact solution. Namelyl) for |K|> w the lattice

The HamiltonianH® can be found by means of direct
projection of §H onto the low-energy space. A structure of
relevant matrix elements can be found from the following
is unstable(formally all L,— in the ground state and considerations, based mglnly on the symmetry grguments.
Eq——); (2) for —wo<K<KEW=¢/2 all L,=0, the 0s- . The part of6H descnbln.g Fhe phonon dllspersmn qnd an-

G ' ¢ b isotropy, as well as a deviation of the spin-phonon interac-

cillators are unexcited, the spins are decoupled from the : ; A
and the ground state of the spin subsystem is governed rEﬂon from the form prescribed by the basic model, is bilinear

M. and(3) for K(CBM)<K<w the ground state is nonmag- i the operatord,P. There are two kinds of terms. The

) . . . . terms of the first kind contain two operatd@, ,P,,, corre-
netic and dimerizedFig. 1(a)], and there is only a global . : ;
twofold degeneracy: One-half of the oscillators is unexcited sponding to the same site They may have matrix elements

while the other half is excited to the=1 state and each either being diagonal inl,, or describing transitions

excited oscillator binds two adjacent spins, forming a dimer 7o Lo+ 2. Since the only low-energy states for the dimers

; ; — (BM) are those withL,=0 or L,=1, it is clear that the latter
asmgletspln—phonon comple)EG_ NO(Kc_ K), No be- ransitions cannot keep a configuration within the low-energy
ing the total number of spins in the chain. subspace, and thus they are irrelevant. The matrix elements

For generalkK~w the only natural energy scale for the gjaq0na) inL, lead to unimportant shifts of the configuration
system isw. If, however, K is close to the dimerization energies, resulting only in a shift &f
H Cl

thresholdK {**”, then a lower scale arises. Fgr<K{™™ it This is not the case for terms of the second kind, contain-
is the energy of a dimer creation, ing two phononic operators at neighboring sitésb+1).
_ (BM) They have matrix elements corresponding to the transitions
Ag=2(K = K), 4) (Lp,Lps1)—(Lp=1Ly,1=1), which can keep a configura-

tion within the low-energy subspade.g., the transition
(Lp=1Lp =0)—(Lp=0,Lp =1) describes the move of a
cluster from siteb to siteb+1; see Figs. (b), 1(c)].

As a resultH® has a form of effective kinetic energy of

while for K> KgBM) it is the energy of a free spin creation,
A=K—K®" The low-energy excited states, relevant for
T,Agu<<w, are partial tilings of the chain by dimers, where
some spins remain frdé-igs. 1b), 1(c)]. All the configura-

tions with overlapping dimer§.e., with neighboring excited dimers:

oscillators, or with dimers in internal states, different from

the singlet one, have energiesw, and are ruled out. Each HO = _ 2 toor| () me10m- - - )
allowed configuration can be labeled by a sequence of posi- moa’

tions of (nonoverlapping dimers and of projections of the
free spinde.g., the configurations, shown in Figga)l 1(b),
1(c) are |didsdsdy---), [di(T)sdade(1)s(T)s ) and ¢ describes a process where a dimer hops to a neighboring
|d1ds(1)sde(1)(T)e- - -) correspondingly An energy of  position i it is allowed by the constraint, the requirement,
any allowed configuratiorj\) depends only on the total that the dimers do not overlapvhile the neighboring free

X (- dpo1(0 )mer- - |+ Hee. (@)

numberN, of dimers within it: spin “dives” under the hopping dimdiFigs. 4b), 1(c)]. The
(BM) , spin  structure of the matrix element, t,
Hix =M HamlN )= 80 AgNy . Q) =td,, ti( 70) .4, With realt andr, follows from the sym-

b|_”netry with respect to time reversal. It is convenient to treat

lem of classic hard dimers, whose partition function in 1DLan(?:tT as ptuenorr??r?ologlcaL parametersa ?k]: the he{;‘]ectlve
can be calculated in the closed fofm. amiftonian, thougn they can be expressed through the con-

Our aim is the construction of an effective Hamiltonian stantsUZe, andK2E5', entering the expressiof).
H, equivalent tdH so far as the low-energy scales ) are If the spin-quantization axis is chosen to be parallel to
concerned. It acts in the subspace of eigenstate®/gf, 7, then the projectiowr of the “diving” spin sis conserved
constituted by the ground state and the low-lying excitedn the hopping process, described by the Hamiltor(an
states, i.e., the allowed configuratidag, mentioned above. namely,oc=¢', and the Hamiltoniat*) may be rewritten
Since according to our principal assumptiéh matrix ele- in a form

The arising statistical problem may be reduced to the pro
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D. Effective magnetic interactions

(1= _ i . .
H m;¢r2=i1 (t+izo)] - (O)m-gdm ) The Hamiltonian™,,, corresponding to direct spin-spin
interactions, being projected onto the low-energy subspace,
X(+dp-1(0)mer- [+ HC, (8 couples neighboringree spins, but does not affect the

where the free spin emerges on the opposite side of the dimg}mers. A corresponding effective Hamiltonian is then

without changing its orientation. ~
Ho= 2 (s5d-s00), (10
C. Second-order processes: (@a’)(m
Creation and annihilation of pairs of dimers where the summation ruraly over the free spinghe ten-

Second-order processes involve forbidden configuration§Or Of effective exchange constarts:J**, enteringHp,,
(with high energies~w) as intermediate states. The most consists of two partsJ .., of the initial spin-spin Hamil-
important second-order process is an effective annihilation ofonian ,, and renormalization’)~t? w, arising from the
two neighboring dimers accompanied by creation of foursecond-order processes, mentioned at the end of the previous
free  spins (or vice versa One possible path section.
(Lp=1, Lp4+1=0, Lp4>=1)—(Lp=0, Lp+1=1, Lps+2=1)

—(Lp=0Lp+1=0Lp.,=0) for this process is shown in Ill. CONSERVATION LAWS
Fig. 2. The corresponding effective Hamiltonian has the ) . , ,
form Following our basic assumptions, we imply that

J<t<w, but Ay is not necessarily large, compared tto
_ Consequently, the Hamiltonians, obtained in the previous
H?= > Azor| - dplmez ) section, obey the following hierarchy:

~ 1=
Mooo o

X<' : '(O')m(g)m+l(0'/)m+2(5,)m+3' t |+ H.c.,
(9  but H© andH® may be in arbitrary relation to each other,
B becauseH® vanishes, wherk —K®&" | So our first task
where the magnitude of matrix elemenss is of order should be to understand the properties of the Hamiltonian
t?/ w<t. The spin structure ok, 3, ~, depends on the sym-
metry of the HamiltoniansH.

We should mention that the very same “pair processes’|, this section we describe the internal symmetries inherent

would arise already in first order i67{ if we took into ac- iy this Hamiltonian, and also discuss how these symmetries
count an interaction of next-nearest oscillators. Such an ing

, ! C are violated by additional terms(?) andH,,.
teraction leads to direct transitionsLy=L,,,=1)
—(Lp=Ly+2=0), the result of those being equivalent to the
second-order process, described above.

Besides the pair processes there are also other second- A very important property is that botH(®> andH® com-

order processes. One leads to four-lattice-spacings-long hopsute with the total number of dimersl. We will see that
of free spin, and the other leads to effective exchange ofhe conservation of the number of particles leads to the gap-
neighboring free spins. We will not, however, discuss themess spectrum of excitations. This conservation law is unaf-
in detail, because the former only renormalizes the kinetidected by magnetic interactioribecauseH ,, also commutes
energy termH®), and the latter renormalizes the effective with N), but it is broken by the particle-nonconserving

H® H,<HO HD, (11

Ho=H@+H®, (12)

A. Conservation of the number of dimers

magnetic interactiom,,, arising from?,,,. H®) interaction, which opens a small gapin the excitation
spectrum.
(e ©elo[e @ e]|o[e O e|o[e © e|o[e O o]
(Initial) B. Conservation of “floating spins”: Separation of variables
Since the total number of dimerdy, commutes with
[FOslo b ce@sO9[sDelo[sDe Ho1, We can consider a state with any fixid<Ny/2. Then
¥ ' the number of free spindl =Ny—2N, is also fixed. Let us
(Intermediate) look at any particular configuratiofwith free spins, say, in
positionsa;<a,<---<ay) and renumber all th&ee spins
[coslo bo 1e T(; il)oo from left to right: oy —01,00,— 03, ... ,00,— 0y [se€
mal . . . . .
Fig. 3@]. We will call {o{, ... ,o} thefloating spin vari-

FIG. 2. An example of the process of second ordersi ables The crucial point is that these variables commute with

described by effective Hamiltoniad®. Two neighboring dimers the HamiltonianH,,; i.e., the floating-spin configuration is

in the close packing annihilate, giving rise to a hole in a closeconserved in time, although the identitig=., the physical
packing, containing four free spins in the final state. In the interme0sitions of the free spins may be changed. This property is
diate state there is a forbidden configuratiawal bo, involving a direct consequence of the symmetryHbf;: In any el-

two neighboring excited oscillators, coupled to three spins; this conementary process a free spin just hops over a neighboring
figuration has relatively high energy o. dimer, without changing projection.
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a=1 2 3 4 5 6 7 ©® 10 11 @ where all 2 possible floating-spin wave functiori§ are
[e@ejlosc[e@eo[eDejoecec[e@el0s degenerate.
i = 1 9 3 4 The degeneracy of eigenenergies with respect to floating-
(a) spin configurations is not so general property, since it im-
plies the spin independence of the matrix elemébtg this
b= D 2 @ 5 @ 7 ® 1 property is still present for the lardd-1D Hubbard modg!
Om0 0 GOm0 O—0 © 0 ©=—o The degenerate_case is a marginal one in the sense of the
I 9 3 . s o6 7 Nagaoka theorefmwhich states, roughly, that, if the system

is dominated by the kinetic energy of the mobile particles,
(b) then theferromagnetic ordein the background spins is pref-
erable, as the most homogeneous one. In the degenerate case,
FIG. 3. The renumbering trickéRef. 8. (&) Renumbering of however, the ferromagnetic state has exactly the same en-
free spins introduces the “floating spins”: Numbexsare physical  ergy, as any other one.
positions for the spinsa, while numbersi are their “floating” ThUS, the internal Symmetry of the System in the
labels, appearing when only the free spins are counted. This renuninyersjon-symmetrical case is much higher than in the inver-
bering reveals a hidden symmetry of the system: The floating spingjon asymmetrical one. We will see that it leads to dramatic
are conservedb) Renumbering of dimers by the squeezing trans-consequences: The inversion-symmetrical case occurs to be
formation(spins are not shownSolid bars(i.e., the rigid segments, exactly solvable for all eigenstates, while in the asymmetri-
mentioned in the textrealize the finite-size hard-core constraint, cal case only the ground state and low-lying excitations of
forbidding the dimers from occupying neighboring sites. AgainH
) i . ) 01 May be found exactly.
numbersb are the natural physical positions of dimdtee posi- - . S
. ) . ; . The conservation of floating spins is violated by both
tions of corresponding excited oscillatprsvhile numbersn are 2) - . . . .
H'<) andH,, interactions. Their role is, however, restricted:

their “internal” labels in the “squeezed” numeration, when the . ! .
RHS neighbor of any cluster is not counted. This renumbering is' Ney just lift the residual degeneracy of the ground state of

equivalent to the nonlocal unitary transformation, Etg), which  Hor (Which is infinite in the symmetrical case, and only four-
resolves the constraint. fold in the asymmetrical one The exception is the close
vicinity of the magnetic phase transitiaferitical region,
whereH(® andH,,, become of primary importandeee dis-

Conservation of floating-spin configurations is a charac i
cussion in Sec. VI

teristic feature for many of 1D models; for example, it is also
present in the 1D large} Hubbard model. The real source of
it is in the absence of nontrivial closed loops in the 1D par-
ticle trajectories, which leads to the following basic property
of the system: Suppose that someone looks at the system at
some initial moment of time and memorizes the positions of |n the linear approximation i a symmetric chain is
particles and the configurations of spins at this momentdescribed by the HamiltoniaHl sy, =Hg,—o, and, as was
When he comes again, after some time, he may look only athown in Sec. Ill, the eigenfunctions of this Hamiltonian
the positions of particles. The point is that these data argystem can be factorized according to Exg). Then our first
sufficient to reconstruct the new spin configuration as well. step should be determination of the orbital pétt In this
Thus the projections| of all the “floating spins”s are  section we demonstrate that this problem can be soiwed
good quantum numbers and one can, in principle, write dowrctly, with the aid of the trick, used previouélyo solve the
a reduced Hamiltoniarh-l{,,i/} acting only onN “orbital” 1D Emery model in the larget limit. After that we will

degrees of freedorﬁ_e_, the positions of d|mer§)]}), and take into account the COfreCtiOhgz) ande, which lift the
depending oM parameterga; }. The orbital wave function degeneracy with respect to floating-spin configurations and

Yo ' (by, . .. by) must be symmetric with respect to find the floating-spin parE of the wave function. Finally,
an(; 1 perr:m tation of its variables we discuss the thermodynamics of the system.

For a general sdio{ } and for a general Hamiltonian with
7#0 an expression foH,, is, however, too complicated A. Orbital degrees of freedom

because of the necessity to express the physicalspiien- The finite-size hard-core constraint, following from the
tering the matrix element of thel¥)) through the floating-  definition of low-energy states, forbids to have two dimers
spinso; and the orbital degrees of freeddmexplicitly. So  either at the same site or at neighboring sites. Thus we arrive
it is practically useless unless the floating-spin configuratiorat the problem oN spinless bosonic rigid segments on the
is especially simple. chain with Ny equivalent site§see Fig. 8)]. The corre-

An important simplification arises, however, if the point sponding Hamiltonian has the form
of the unit cell, where the spin is situated, is the inversion
center. In this case=0, the matrix elements ¢1*) are spin
independent, and the floating-spin degrees of freedom are
completely split from the orbital ones. Then the total wave Hsym:Adel dgdb"' bgl {_t(dgdbﬂ"'dgﬂdb)
function of the system can be factorized:

IV. CHAIN WITH INVERSION SYMMETRY:
EXACT SOLUTION

Ng Ng—1

+U(d{didydp+d], didydp 1)} (U—+%),
V=E(oy, ....o0) by, ... by, (13 (149
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wheredg (dp) are Bose operators creatiignnihilating a  The effective contraction of the chain length, occurring in
dimer at a siteb. the transformation(16), reflects the obvious effect of ex-

The part of the constraint which forbids double occupancycluded volume, due to the finite length of rigid segments.
of sites can be easily eliminated by a transformation to fer-The eigenfunctiong of the initial Hamiltonian, expressed in
mionic variabIeSaI,(ab), which is a standard trick for 1D terms of internal coordinatds}, are the symmetrized Slater
hard-core bosons. Then the Hamiltonidg,, takes the form ~ determinants of plane waves:

No No—1 dl{ki}(nla e 1nN)=(_1)P(nl ..... nN)deﬂSIrkan”Y (18)
Hoym=A T+ —t(afap, 1+ af
sym dbzl @b bgl {~Hapapat apqan) where  “internal momenta” k;==m;/(L+1) and
N + 0<m;<---<my aredifferentintegers. Generally, the inter-
+U(ap;1ap:1) (apap)}. (15 nal momentsk are not identical to the physical momenta

. . P .
The corresponding antisymmetric wave functidtiey van- of quasiparticles. The factor{1)" provides a proper Bose-

ish if coordinates of any two dimers coincjdghould then be  YP& Symmetry to the wave functio®(ny, ... ,ny) being
resymmetrizedsee Eq(18) below]. the parity of permutation from the initial order
|-N1,N2, . .. Ny to the “normal” one (numbered from left to

The remaining part of the constraint, which does not a

low dimers to occupy neighboring sites, can be resolved b)yight). The form of the orbital wave function in terms of the

the nonlocal transformation, “squeezing” the segme(see ~ Physical variables,, ... by can be obtained with the aid
Ref. 8, of the transformation(16), but the explicit expression is
cumbersome and we will not present it here. The eigenener-
b+1 . gies are
a,= H (ag,_labr+abrab,) ap, N
b’ =Ng
E{ki}zzl e(ki), e(k)=Aq—2tcok. (19
b—1
n=b— >, ag,ab,, L=Ny—N. (16)  As usual, the ground state corresponds to a filled Fermi seg-
b'=1 ment (m;=1, my,=2,..., my=N) with internal Fermi

momentum kg=7N/(L+1), and in the thermodynamic

This transformation renumbers the sites of the clugimami- '™~ ;
))|m|t the ground state energy is

cally in such a way that only one site is associated with an
segmenidimer), the second one is excludgske Fig. 8b)],

and therefore the chain is shortenedNbsites. We will call E(©=NA4— Zt_Lkod kcosk

the variables\y, ... ,ny, the internal coordinates of dimers, ™ Jo

b, ... by being their physical coordinates. It can be shown ot n

that the new operatora,, obey the standard Fermi-Dirac =No{ nAy— —(1—n)sin( _” (20)
commutation rules in the subspace of allowed configurations. ™ 1-n

'-TEt us comment on the physical meaning of the operatorge; ys recall now that the concentration of dimers,
a,a’. The operator destroys a dimer at a certain place and,— N/N,, is not an external parameter, but it has to be found

then shifts one step to the left the entire string of dimers ofyom the condition of minimal energydE/dn=0), which
the right-hand side of that place. As a result, only one of thga54s to the following equation far:

two free spins, created when the dimer was destroyed, sur-

vives. In particular, being applied to the close packing con- 1 n 1 [ an Ay KEW—K
figuration, the operataa creates exactly one single free spin in COS( —) — —Sin —) sooE=——".

. ' + : -n 1-n/ 7 \1-n/ 2t t
(the soliton. Vice versa, the operata’ creates a dimer out 1)

of onefree spin in a following manner: First it shifts one step _ _ o o
to the right the entire string of dimers on the right-hand siddlts solutionn=n(K) is shown in Fig. 4a) by a solid line. In

] . . . P — K (BM) _
of that free spin, opening a second free spin to the right ofhe quantum-liquid rangl . <K<K, (whereK.=Kg t
the initial one. Then a dimer is made out of these two freeand K=K + 2t) the concentratiom is neither zero nor
spins. In particular, being applied to the configuration with-1/2. In this range the spectrum of the systengaplessand
out dimers, the ODEF?KET just creates one isolated dimer. the excitations are fermionlike, while outside the range there
Thus the operatora,a’ correctly describe the true quasipar- js a gap:A(K)=2(K,—K) for K<K, and A(K)=K—K,
ticles in both limiting cases: If the concentration of dimers isfor K> K, [see Fig. 4b)].

low, thena (a) corresponds to annihilatiofcreation of Let us discuss a physical interpretation of the above exact
dimers; if there are only few solitons, then (a') corre-  selution for two simple limiting cases.
sponds to creatiofannihilation of solitons. The above ob- (1) Close to the lower threshold<0K—Rc<t. In this
servation gives an intuitive answer for the question why the:ase the Fermi level is close to the bottom of the band, Eq.
transformation(16) diagonalizes the Hamiltoniaf15). (19), where internal momentk<1 of fermions asymptoti-
Flnallylwe have arrl_ved at the Hamiltonian Mffree spin- cally coincide with physical momentaof dimers, and their
less fermion®n a chain of length. = Ny— N: energye(p)~e¢(k) can be expanded:
L L-1 p2
Hsym:Adnz1 alan_tnzl (a$+1an+a;an+1)- (17) G(p)ZZ(Kc— K)+ ﬁ, (22)
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B. Floating spins: Role of magnetic interactions

So far we have neglected the magnetic interaction, Eq.
(10); thus the ground state wad'Zold degenerate with re-
spect to all the floating-spin configurations. To study how
this degeneracy is lifted bl ,, and what is the true ground
state, one can treat the magnetic interaction within the frame-
work of the adiabatic approximation.

Two neighboring floating spir‘s ands, , are coupled to
each other by the exchangg (J-s,) only in those moments
of time when they are real physical neighbdrsot only
neighbors in their floating numeratign.e., when there are
no dimers between them. At all other times they are decou-
pled.

On the other hand, the dimer configurations are changing
very rapidly. Namely, the characteristic time scale' for
the orbital motions within the quantum-liquid regime is
much shorter than that for spin-flip processds¥). There-
fore we can introduce effective time-averaged exchanges
Jei(K), proportional to the fraction of time, when a given
free spin has itphysicalright-hand-side neighbor being also

FIG. 4. TheK dependence of the average dimer concentratiorfr€€ (but not coupled in a dimgr

(n) at T=0 (a) and the gapA (b). Solid lines, the results in first
order in 8H (exact solution of the HamiltoniaH (,); dashed lines,
the results corrected due to effects of second ordéfHn The true

behavior of the gap in the critical region near the phase transition

K. is not clear(see Sec. Vl

where the effective mass of a dimer=1/2t. The concen-
tration of fermions,p=(ala,), and the concentration of
dimers,n=p/(1+p), are both small:

1
n~p=~ ;\/Z(K— Ko)/t<l1, Kkeg=mp.

(23

3 (K)= (an+1al+1anag>‘_( % Sinz(ﬂ'P*))j
- - - .
eff <anan> p 77_2p~k

(25

For low dimer concentrationK—K¢) almost all the spins
are free, and solgp~{1—(Lm)[2(K—K.)/t]¥3}I—J,
while for low concentration of free spin@t K—K,) the
probability to have free spins on two neighboring sites van-
ishes, andl ¢~ (1/37)[ (K.— K)/t]¥2)—0.

Thus, in the adiabatic approximation, which is valudth
the exception of a very narrow critical region near the thresh-
old K,) if t=J, the total wave function of the system can

Thus, we have here a dilute gas of dimers; in this limit thestill be factorized in the form of Eq13). The orbital part

low-energy quasiparticles are isolated dimers.
(2) Close to the upper threshold<K,.—K<t. In this

¥(nq, ... ny) is the same, as befofeee Eq(18)], but the
floating-spin parE (o, . .. ,04) is not an arbitrary one any

case the Fermi level is close to the top of the band. Here eadhore. It is an eigenfunction of the effective Heisenberg
hop of a fermionic hole by one lattice spacing in the internalHamiltonian
coordinates is equivalent to a hop of a soliton by two lattice

spacings in the physical coordinates; hence internal momenta

k and physical momentp are connected by an asymptotic
relationk~2p. Similarly, the internal concentration of fer-
mionic holes,p* =1—p=(a,a), is related to the physical
concentration of solitonsy=1—2n, by v~p*/2, and both
concentrations are small:

1
p*~2v~ ;\/(Kc— K)/t<l, ke=a(1l—p*). (24

We have here a dilute gas solitons, carrying one free spin.

M-1

H e = i; (S - Jeit- S 4 1)- (26)

The chain of spins=1/2 with Hamiltonian(26) is a well-
known exactly solvableXY Z model (see, e.g., Ref. 1llts
ground state is either ferromagnetic, antiferromagneti¢inor
the case of isotropic antiferromagnetic excharsjeglet. We
will not discuss here the well-known properties of these
states, but only mention one peculiarity, specific to our prob-
lem.

The magnetism of the floating spins has rather an itinerant

Outside the quantum-liquid range the band for fermions ischaracter, and a physical distaree’ between two floating

either totally empty (for K<K.) or totally filled (for
K>K_). The kinetic energy ternH) is therefore effec-
tively turned off, andH,; coincides withH®. Note that the

spinss’ ands, (with fixed separatiori-i’ in their floating
notation is not fixed, but is subject to Gaussian fluctuations
with dispersionxIn|i—i’| (see Ref. 8 This leads to a faster

entire above scenario is analogous to the spontaneoukecay of magnetic correlations in real physical space than for

quantum-vacancy productihand has none of the 1D spe-

cifics. It can be applied to the 3D case with small modifica-

tions.

the conventional chaifi.in particular, for the axially sym-
metric case XXZ mode) the transverse magnetic fluctua-
tions decay as
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+ 2 r|—6—-1
S, S.,)x(1-2n)la—a ,
(Sa 82 ( i | szb: {Agafap—t(afap 1+ al, jap)+U(al japiq)
while (s';"s")e|i—i’| 7, 2 "y

(s'y)=li=1'] @ x(afay)—i|Bl(afal 2— ans2ap) (29)

where of interacting spinless fermions with repulsive constraint at

neighboring sites and superconductinglike terms. The
_ 1 /W_ZJZ/JX sqeezing transformatiail6), used in the previous section for
2 VN 7+23,/13, resolving the constraint at neighboring sites, is here, unfor-
_ . i _ tunately, not very helpful, because it mak&germs nonlo-
is the standard index of the transverse correlation function g
for the XXZ model(see Ref. 1L Thus, we have to stay with the problem of interacting

Note that in the above consideration we have taken intermjons, governed by the Hamiltoni&9). This problem is

: 2
account only theH, correction, but not thé4(>) one. The  yractable, if the concentration of dimers is logn)<1. We
latter does not conserve the number of dimers and, therefor@i\,e here only an outline of the solution and restrict our-

contributes to the ground-state energy only in second ordekelves to an evaluation of relevant quantities, without calcu-
The corresponding correctiont’/w® cannot compete with [ation of numerical factors. As a first step, we renormalize
the contribition ofH,,, which is ~J=t%/ . the interaction of fermions and introduce the vertex function

One should have in mind that the total wave functibn 1 in a standard waysee, e.g., Ref. 22For small momenta
has a relatively simple factorized structure only in the aboveb we obtain'~tp? (with a positive coefficient of order
floating-spin §')—internal-coordinater() representation. In  ynity). Then, proceeding in the spirit of BCS-like mean-field
the initial physical representation tipdysicalspin variables  theory(see Ref. 1pwe find quasiparticles with the spectrum
(sy) are heavily mixed with thephysical orbital ones b),

and the explicit form of¥ in the initial representation is E(p)= sgrie(p)]VAZ(p)+ €(p),
immense and practically useless.
whereA(p)~Dp for p<1, (30)

C. Gap in the spectrum of the quantum liquid ] ] ]
and e(p) is described by Eq22). Note thatA(p)«p is an

Except certain highly symmetric casdthe isotropic 44 fynction ofp, because spinless fermions can only be
Heisenberg chain or the easy-plane Joffee spectrum of  qireq in a tripletlike antisymmetric state. For the constant

Hamiltonian H{EM describing “magnetic excitations” in  p we get the self-consistency “gap equation” in the form
the system, has a finite gapn,q~ Je(K). It is not the case

for the spectrum of the “orbital excitations,” described by _
the HamiltonianH,,,: These excitations are gapless in the D:4|A|—thf
whole rangeK . <K<K, where the Fermi surface exists.

The low-energy orbital excitations should, therefore, beWhere the dimensionless “coupling constarg’~1 is posi-
renormalized by the weak residual interactigff). In what piing P

follows we demonstrate briefly that this interaction, violatingtlve and related to the numerical coefficient in thempli-

the conservation of number of dimeis, opens a gap in the tude. ~
spectrum of orbital excitations. For simplicity we consider 0" K<Kc the second term on the right-hand side of Eq.

here only the case whett,,¢|A|, so that the magnetic (31) can be completely nggiected; theref@¥e-4|A|. Then,
excitations are frozen and the spin dependencgoqurgr in the range @:KC._K<|A| /t we obtain for the average
can be eliminated by means of projecting onto the groundUmper of dimers in the ground state
state ofH{®™ . Then we arrive at the effective Hamiltonian , ~5
for orbital degrees of freedom, (n>=<2 agab>%f (A(p)) dp~ ~|A| _
b e(p) YK —K)¥2
(32

pdp
p)’

(31)

H=Hgmt > {Adid], ,+A*dy, o0y}, N
Thus(n) does not vanish identically fdk <K, but decays
_ smoothly. In general{n(K)) is a continuous function, in-
00010203|:>; (28) creasing monotonously, whet increasegsee Fig. 4a)].
o ) For K>K, there are two regions with different behavior
the indicesogo, o075 in the last formula are to be convo- ot yhe gpectrum. In the immediate vicinity &, where the
luted with the arguments of the ground staiefunctions, concentration of dimers is so small ti(at}ln(t/|Z|)<1, their

;,or;fespc;pdlng to four consequent floating SPMSinteraction can be neglected and the gap function still coin-
1 +199+219+3" ~

The transformation to the fermionic field%(ab), resolv- C|d_e§ V<tht/h| Eh§|z|bi:]e ong:Dt:4|A|. ;I'hus |fn thgt t[gnge.
ing the on-site constraint and used in the previous sectior{f ¢ n(t|A]) the gap in the spectrum of excitations is

can be applied to the Hamiltonid@8) as well. Choosing an
appropriate phase for operatosg, we obtain the Hamil- A(K)~A(k )”|Z| [K—K¢
tonian F t

A=(E|A

(33
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The reason for the suppression of the gap earwhere the  temperature range is identical to that of a superconductor
Fermi momentunkg vanishes, is as follows: Spinless fermi- with a gap A(K): the specific heaC(T)xexd —A(K)/T],

ons have a tendency to avoid each other and keep distancéets.

of the order of an average one-kg'>1). On the other (2) Spin-chain regime. Here the thermodynamics is domi-
hand, the pairing interaction becomes active if the fermionglated by the magnetic excitations, excitations of the floating-
approach each other as close as two lattice spacings, whi@pin variables, governed by the Hamiltonie26). Therefore
happens only rarely. Note that there exists a p(NﬁiRé the properties of the model in this range are identical to those

where the gap\(K) vanishes. The position d'zé is a little of the XYZ chain ofM =N0[_1—2n(_K)] spins, coupled by
bit shifted with respect t&; by an interplay of the interac- the exchangdeq(K). (For a discussion of the thermodynam-

tion of fermions and\ terms. Exactly at the poirK =K the ics of the XY Z chain see Ref. 11.The corresponding spe-

o . cific heat Cp,{T) reaches the maximum value
low-energy excitations of the system are massless fermloné(max)~[1—2n(K)] at T-T At high temperatures
mag*

. — A mag
with a spectrume(p) A:lA||p|.~The average number of T>T g all the spin configurations become equipopulated,

dimers at this point |$n(Ké)>~|A~|/t. - the specific heaCp,,{ T)—0, and the magnetic part of the
For higherK [i.e., for t/In?(t/|]A|])<K—K.<1] the gap entropy tends to a saturatioByag—MIn2.

functjon is heavilly suppressed by the repulsive interag:tion of (3) In the Fermi-liquid regimeand, certainly, also in the

fermions. Solution of Eq.(31) in this range gives cjassic ongthe magnetic interactions can be altogether ne-

D~4|A|/gkeIn(t]A[)<|A|, and the gap in the excitation glected, and one is left with the spinless-fermions problem,

spectrum, Eq. (17), supplemented with an additional entropy
Smag=No(1—2n)In2, regarding the degeneracy with respect
4|Z| to the floating-spin variables. The “superconductinglik&”
A(K)%gln(t—/m)’ (34 terms are also negligible in this regime, sifEg,=A(K).

The population of fermionic states with different internal
momentak is described by the Fermi-Dirac distribution
function f,=(1+exp{{e(k)—x]/T}) "1, where the spectrum

I |A|~.‘]eﬁ' the low-energy orbital excitations are (k) is defined by Eq(19), while the chemical potential for
strongly mixed with the magnetic ones. There are no doubtsthe fermions,u= u(T), is to be found. One should not mix

however, that the gap in their spectrum survives also in thi‘T.’his chemical potential with the chemical potential for
case. The existence of the special pdit, where the gap gimers; the latter is, of course, zero. The total free energy
vanishes, is also likely to survive, though it is a more de"cate(normalized to the unit callof the system with fixed concen-

question. _ o tration of dimersn is
The behavior of the system in the vicinity of the other

boundary of the quantum-liquid range, close to the phase- F(n,u(n,T),T)=un+(1-n)Q(«,T)—(1-2n)TIn2,
transition pointK=K,, is an open question. In this region (35

all three factors, the kinetic energy of solitons, their m""gneti(iNhere the last term is the contribution of the free spins, men-
interaction, and thé terms, creating 4's of solitons, become joneq above, while

equally important and interplay actively. We do not have a

guantitative theory for this critical behavior; a qualitative = dk
discussion is given in Sec. VI. Q(p,T)= —TJ7 >, InA+exp[u—e(k)]/T}H (36)

ceases to depend on the coupling conskafsee Fig. 4b)].

is a standard thermodynamical potential of an ideal 1D Fermi

) _ ~gas. The relation
We discuss now the thermodynamics of the model. First

we have to note that there are four temperature ranges with n 10) = dk
different behavior of the systenfl) T<A(K), “frozen” PEE“ﬂ:JﬂE k
regime; (2) A<T~Tpq<Tg, spin-chain regime; (3)
Tmag< T<Tg, Fermi-liquid regime; and4) T>T, classic  follows from the conditiondF/du=0 and determines the
regime. HereA(K) is the gap in the spectrum of fermions dependenceu(n,T). Its meaning is clear: It relates the
[see Eqs(33),(34)], Tmad K)~Jen(K) is the freezing tem- chemical potential of the fermions to their total concentration
perature for the spin degrees of freedom, dpdK) is the  p. The equilibrium concentration then should be found from
Fermi temperature for the Fermi gas, discussed in Sec. Ill Athe condition of the free-energy minimuriiF/dn=0. This
If K is not very close to any of the thresholds, thBn~t, condition leads to the following equation, governing the
though it vanishes upon approaching a boundary of thehemical potential:
guantum-liquid domainTg(K)~2(K—-K,) for K=K, and
Te(K)~(K.—K) for K—K.. We discuss these four re- Qp,T)=p+2TIn2. (38)
gimes below. Solving it and substituting.(T) into Eq. (37), one can, in

(1) Frozen regime. Here all the excitations in the systenprinciple, find the temperature dependence of the dimer con-
are frozen out, and the thermodynamics is dominated byentrationn(T). Substituting Eq(38) into Eq.(35) we arrive
those quasiparticles which have the lowest gap, i.e., by thgt the simple relation
fermions(in the case, when the magnetic excitations have a
gap. The thermodynamics of the system in this low- F=u+TIn2, (39

D. Thermodynamics of the symmetric chain

(37
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which facilitates the further calculations substantially. Forthe reduced Hamlltonlahi{g} is rather complicatedfor a

example, for the specific heat it gives general set of the floating-spin quantum number§}). We

d2u(T) did not succeed in finding a general expression for a “par-

C(T)Z_TW' (400  tial” ground state energ¥Eg{o;} in order to find the true
ground state of the system rigorously, in a straightforward

At relatively low temperatured . K)<T<Tg(K), when  procedure of minimization oEg{o} with respect to differ-
the Fermi gas is degenerate, the thermodynamical potentiaht sets{o{}. Nevertheless, we can try to guess what the

can be expanded im: ground-state sefto{} could be, based upon symmetry con-
siderations.
wT? 2t ,
Q=0y— m QO=;(kFcoskF—smk,:), (41)

A. Ground state of the asymmetric chain

where v =2tsink:, u=A4—2tcok:. After some algebra

' F Since the Hamiltonian of the problem is translationally
we find the specific heat:

invariant, the most obvious choice ff{ } would be the fully
C(T)=y(K)T, (42) translf';lti(')n-invariant ferromagnetic set, where@ll are the
same: either upg=1) or down (= —1). The ferromag-
where y(K)~1/t if K is not close to any threshold, but netic choice seems to be supported by qualitative Nagaoka-
¥(K)—c upon approaching a boundary of the quantum-theorem-like arguments: The ferromagnetic background is
liquid domain: y(K)=~(#/6)[ 2t(K— KC)] V2 for K—Kg, likely to facilitate the energy lowering due to the mobile
Y(K)=(7/12)[t(K,—K)] 2 for K—K,. The linear tem- dimer kinetic energy. There is, however, one additional in-
perature dependence of the specific heat is quite natural faernal symmetry of the Hamiltoniad y;, which modifies the
the fermionic system. The above divergence is due to the fadtiagaoka theorem for our case. Actually any hop shifts the
that the Fermi velocitw, appearing in Eq(41), vanishes physical position of a free spin always by two lattice spac-
when the Fermi level approaches either the bottom or the tojngs (@a—a=2). Then, having in mind that the parity of
of the band. positiona of a free spins, coincides with the parity of the
(4) In the classic regiméfor T>Tg) the kinetic energy numberi of the corresponding floating sp#, one can con-
can be altogether neglected, and the results of Ref. 1, olzlude that the Nagaoka theorémctually requires here fer-
tained for the basic model, are applicable. Note, howeveromagnetism not for the entire skt }, but for two subsets
that for the present 1D version of the basic model, all theyith even and odd separately. Thus, on the basis of the
thermodynamical properties can be found explicitly for anNagaoka theorem, we can expect the antiferromagnetic set of
arbitrary relation betweeAy andT. alternating floating spino =(—1) o] to have the same

Indeed, neglecting the dispersiofi.e., substituting energy as the ferromagnetic one. The antiferromagnetic set
£(k)=Aqin Egs.(37),(38)], we arrive at the following equa-  gescribes a “minimal” breaking of the translational symme-

tions for u andn: try, a doubling of the period. The Nagaoka theorem, being an
B exact one only for a single dimer, cannot be proved rigor-

o2+ X = _In 1+ex;{ L )] , (43 ously for a finite concentration of dimers. So, strictly speak-

T T ing, we cannot exclude further lowering of the initial sym-

—1 metry in the ground statdike tripling of period or other
2+eXF<Ad_MH (44) exotic possibilitiey but we find it unlikely. Therefore we
T ' restrict our consideration to the two physically plausible op-
tions mentioned above.
In both ferromagnetic and antiferromagnetic cases the
p=—Tin{2[1+ \/W]}, (45) HamiltoniansH{Uir} for the orbital degrees of freedom can be
written explicitly:
1 Aqg A i
nm== {l+exp( T 1+ 1+exp(—?>“ . F) ; . R
(46) =A N+E {~t(d}dp+1+df 1dp) —i7o(didp

The explicit expressions for the specific heat and magnetic —dg+1db)+U(dgdgdbdb+ dgﬂdgdbdbﬂ)} (47)
susceptibility (the latter being simply proportional
to the concentration 12n of free spins: x(T)
=Xpard 1 =2n(T)], where xp,1/T is the paramagnetic
susceptibility of free spins; see Ref) tan also be easily
derived with the aid of Eqs(40) and (46); see Ref. 5 and
Figs. 6,7 of Ref. 1. —i(—1)Pro(didps1—dl, ,dp)+U(d}d]dydy

+df, 1 didpdys 1)}, (48)

n= L:
1+p

which can be solved analytically. Their solution gives

Nog—1

HG = AN+ 2, {~t(dydy 1+ di 1)

V. CHAIN WITHOUT INVERSION SYMMETRY

Without inversion symmetry there is no reasonfdo be  with the same notations as in Ed4). The crucial point is
zero. We have already mentioned that in this case the form dhat, by means of the phase transformations
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db—>d§)F>exr[— iobarctari7/t)], (490 the rangeT~Jg. In the asymmetric case, however, the
. magnetic excitations involve orbital degrees of freedom
for ferromagnetic case, and heavily. Therefore there is no reason any longer for the mag-
( b netic excitations to have an energy scale different from that
dedEAF)eXF{ . arctari7/t) |, (50) for the purely orbital excitations. A_Ithoug_h we are not gble to
2 calculate the spectrum of magnetic excitations explicitly, we

: . (F) (AF) will adopt a natural assumption that there is a dap,qin
for antiferromagnetic case, botfy,” andHg;™” may be re- g spectrum. “Deep” in the quantum liquid reginiee.,

duced to thesamefqrm, 00|'nC|d|ng with the Hamiltonian whenK is not especially close i or K.), this gap can be
Hsym Of the symmetrical chaifsee Eq(14)] up to a replace-  ggtimated as\ g~ 7~t; close to any of the boundaries the
ment gap should be suppressed. The magnetic excitations can con-
, tribute to thermodynamics only at relatively high-t, while
tot' =\t (51 for T<t the thermodynamics is dominated by the quasigap-

Thus the HamiltonianHy; with 7#0 has a fourfold- less purely orbital excitationshence linear specific heat,
degenerate ground staisvo ferromagnetic and two antifer- €tc).
romagnetic componentsAll the results of Sec. IV A are Thus, the thermodynamics of the asymmetric chain is
applicable also to the case of the asymmetric ciiaith a  Similar to that of the symmetric one: The frozen regime, the
substitution(51)]. In particular, the zerd- concentration of Fermi-liquid regime, and the classical regime are basically
dimersn(K) is given by Eq.(21). the same. The spin-chain regime is, however, absent, and

The role of the spin-spin interactiort$,, is here some- there is no corresponding maximum of the specific heat at
what different from that in the case of the symmetric chain,T~Tmag; Moreover, there is no such temperature scale as
especially for antiferromagnetic exchange. For the symmetT mag Whatsoever.
ric chain the magnetic interactions had to lift thdinite
degeneracy with respect to floating-spin configurations

{O'i,}, Wh|Ch I‘esu|ted in the nontriViaI Bethe'ansatz ground' From the most genera| point of VieW our System is Char-
state wave functiorE (o). For the asymmetric chain the acterized by following two order parameters: The magnetic
magnetic interactions have to take care of the fourfold globabrder parameter is a magnetizati@taggered magnetizatipn
degeneracy, and may only choose between the ferromagneii¢ ferromagnetidantiferromagneticcases:
stateE:=|1717---) and a Nel-type antiferromagnetic one

Ear=|11T1---). Both states are of the Ising type: the mag- _ +1\a

netization(or sta>ggered magnetization in AF caseparallel Me.ae ; (=DXs)- 62

to 7 and there are no quantum fluctuatiofspin flips in
terms of the floating spins. In terms of physical spéps of
course,there are strong quantum fluctuatioms both the

VI. CHARACTER OF THE PHASE TRANSITION

The amplitude of the phonon density wave is

ferromagnetic and antiferromagnetic cases; it is due to these A= % (—1*(Q))- (53
fluctuations that the effective magnetic moment is reduced _ _
by a factor -2n(K) and tends to zero wheli—K_. In the lowK magnetic phasé #0, A=0, and the time-

The discussion of the gap in the spectrum of orbital exciinversion symmetry is broken, while in the highnonmag-
tations(fermionéi Opened by the interactioH(z)’ given in netic phase the time-inversion Symmetry is restored, but the
Sec. IV C for the symmetric case, applies to the asymmetrigranslational invariance is brokgdue to the formation of the
case as well; the gap is described by expressi@85(34).  Phonon density wave From the point of view of symmetry
An assumptionK<Amagv necessary for the reduction of the @lone this situation is identical to the spin-Peierls transition
spin dependence of th& operator, is fulfilled in the asym- ]Esee Ref.l 1BthTher(_a 'SF') hovlvever, art1h|mportant ph)t/_sma:]dlf— :
metric case even easier, because the gap in the spectrum ence. 1n e spin-Feieris case the nonmagnetic pnase 1S

; S (_1\b
magnetic excitationg .4 is here much higher than in the ¢ gractt(ra]nzeq by thedolrdt(_ar pa][atr;:emlgp—.Zb(l di) be) ¢
symmetric casénamely, A o~ 7 instead OfA g Jer) —i.e., there is a modulation of the classical displacemen

(Qp) # 0—while in our cas€Q,)=0,Agp=0, and it is only
the amplitude of zero vibrationgQ)2) that is modulated.
What is very important is that neither of the symmetry
As in the symmetric case, we have here two types ofyroupsG,,,Gyy of the two above phases is a subgroup of
excitations. another one. It mear(# one implies a direct transition, with-
(1) Purely orbital excitations, not affecting the floating- out any intermediate phagethat the necessary condition for
spin quantum numbefgr{ }. They have fermionic character, the second-order transition is not fulfilled and it can only be
their energies are given by E(L.9), and their contribution to  of first order'*

B. Thermodynamics of the asymmetric chain

the specific heat at temperaturés- A (K) is described by Let us discuss our results from the point of view of this
Eq. (42). At very low T<A(K) we have again the frozen requirement. For the pure basic model it is fulfilled, since
regime with exponentially small specific heat, etc. bothM andA change abruptly aK=K(CBM) [see Fig. %a)].

(2) “Magnetic” excitations, affecting the quantum num- The situation becomes much more peculiar when one takes
bers{a{}. In the symmetric case these excitations were deinto account deviationd# from the basic model. In the first
coupled from the orbital degrees of freedom; they had a lowapproximation inéH the magnetic order parametst van-
energy scale-J.4<t and dominated the thermodynamics in ishes at the poinK=K, continuously, in a second-order
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(0) ) not expect the magnetic order to exist in this region. On the

J A, other hand, from the point of view of the phonon density

M A M A wave, the fact that virtual solitons are bound in 4’'s means

| : that they are topologically neutral objects, containing two

: ' kinks and two antikinks. Hence the sign of the local order
__________ . [,

parameter\ is the same in all the long segments, separating
these virtual excitations, the long-range order is retained, and
the averagé\ is suppressed only slightly. Upon approaching
(o) K. both the concentration and the radius of complexes in-
- crease and eventually, in the critical region, the complexes
oA begin to overlap. Inside this region there are no well-defined
N four-soliton complexes any longer: Each soliton has a good
_________ ' chance to annihilate not with its three “brothers,” with
K, K whom it was created together, but with partners, originating
from different 4’s. Eventually this will lead to the destruction
(d) (e) of the phonon density wave. On the other hand, free spins,
carried by unbound solitons, acquire a tendency to develop a
magnetic long-range order.

It is a priori unclear whether the above two phase trans-
formations must occur simultaneously, but this option seems
K" K K K" K to be the most likely “minimal scenario.” In this case the

phase transition is necessarily of first order, but close to sec-

FIG. 5. TheK dependence of the zeorder parameters in the ©ONd order. Although the magnetic order parameter does not
critical region; M, magnetic order parametésolid lineg; A, am-  vanish completely foK—K:—0, it tends to a very small
plitude of phonon density wavéashed lines (a) for the basic ~ value. The order parametd, in its turn, is not constant for
model (zeroth approximation is%); (b) for the HamiltonianH,,  all K>K; any longer, but decreases when approaching
(first approximation ins7). (c),(d),(e) Three types of possible true K.+ 0 [Fig. 5c)].
behavior in the immediate vicinity of the phase transitisecond The minimal scenario is, however, not the only possible
approximation insH): (c) the minimal scenario, a first-order phase one. The other option would be splitting of the phase transi-
transition, close to second ordéd) the transition is split into two  tion in a sequence of 2, where in the intermediate phase
subsequent second-order phase transitions with fully symmetric inejither both orders coexist or both are abgéuity symmetric
termediate phas@either magnetic order nor phonon density wave nonmagnetic quantum liquid Then the two corresponding
(e) the same with the low-symmetry intermediate phéseth or- phase transitions could be of second ordggs. d), 5(e)].
ders coexist The above arguments do not apply to one special case of

chains with isotropic antiferromagnetic interactions, where
manner, while the amplitude of the density wavestill un-  the “magnetic” phase is actually nonmagnetic due to quan-
dergoes a jump from zero to the saturation value at the sanfgm fluctuations, inherent in a 1D Heisenberg antiferromag-
point [Fig. 5b)]. Such an unusual behavior is pathologicalnet. This phase is fully symmetric and the necessary condi-
from the point Of VieW Of the Landau theory Of phase tran_tion for the second-order phase transition is fulfilled.
sitions, and we can suspect that it is an artifact of the special
symmetry of the effective HamiltoniaH y, in this approxi-
mation. It is likely to be unstable with respect to further
corrections H,,, andH?)), violating this additional symme- Here we will try to generalize the above results, and
try. These terms can only be essential in a narrow “critical” single out those features which seem to us model indepen-
vicinity of the phase transition point, where the average condent.
centration of the solitongholes in the close packingcarry- Both parts of the Hamiltoniafi{, the purely lattice part
ing free spins, is already very low. On the other hand, all theand the spin-phonon interaction, are quadratic in lattice vari-
conservation laws which we have usétbating spins and ablesQy,P,. While the former part is a positively deter-
the number of dimerd) are completely destroyed in this mined quadratic form, the latter part is not, due to presence
critical region. Therefore a description of the system behavef spin variabless, with an undetermined sign. Therefore,
ior in the critical region(and thus the true character of the upon increasing the spin-phonon interaction, the lattice must
phase transitionis still a very tough problem, which is be- sooner or later become unstable. In the basic model it hap-
yond the scope of the present paper. Here we will give onlypens atK|=w; in the general case a certain instability sur-
a qualitative discussion of certain possibilities. faceZ in the space of Hamiltonians must exist. What hap-

Let us discuss what happens when one approaches tipens whenH approaches this instability surface along a
critical region from the nonmagnetithigh K) side. For certain pathP in the space of Hamiltonians?

K’s which are far enough above the threshHld, the aver- The effective modes become softer and softer, and the
age concentration of solitons is very low. They are producedevel of quantum fluctuations in the system grows. These
in 4's at random places in rare virtual processes, and disapgluctuations involve both lattice and spin degrees of freedom,
pear again almost immediately, without giving their freeand one can expect the magnetic order to be suppréased
spins a chance to interact with each other. Therefore we dkeast partly near the instability surface. As was shown in

VIl. DISCUSSION
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Ref. 1 for the pathPgy,, constituted by the one-parameter ever, decreases gradually upon approaching the nonmagnetic
family of basic model Hamiltonian®{gy, this suppression domain boundaryV, due to the growth of the singlet spin-
occurs atK=K®E abruptly, in such a way that for p_honon fluctuations in the regime of magnetic quantum lig-
K>KE" the magnetization is totally suppressespins are  Uid- o _
fully screened, while for K<K£BM) there is no suppression (4) 'I_'he phasg transmon_s, occurring at the sgrfAéeare .
at all (spins are frep most Ilkgly of first order .|f the phonon density wave is

In the present paper we have studied pafsclose to present in the nonmagnetic phase. The second-order phase

Pay . in the sense thatH="H— Hagy, is small along a path transition is, at least in principle, possible in a hypothetical

P. We have shown that for such a path the behavior of zeros 2% of a fully symmetrical phase of nonmagnetic quantum-

T magnetic order is transformed in the following way: The“qlwetyr?ae\}e deliberately mentioned here onlv those most
point K, of the phase transition to the nonmagnetic state iSgeneral features of the g);/round state of the sys)t/em which, we
2%@5‘?{22‘& ?:Tnig;?&%r?s ttr:leeslgi?gtl;gtp:r:nliitﬁ:}]:t;h\?atr:?s%believe’ persist in higher dimensions. In the one-dimensional
ing of the magnetic order paramefér in a phase transition model, considered in this paper, neither the magnetic order

. . nor the phonon density wave can exist at any finite tempera-
at_K_= Keis preced_ed by a continuous decr_easMoalree_ldy ture. Thgt is, of coursg, not the case for higﬁer dimens?ons,
within the magneu'c phase. In a narrow st.ms width being where we can expect an order to persist up to some critical
of the first order ‘!nﬁH) t,r,1e magnetism is gradually sup- temperaturel .. However, since in this system we have to
pre_.\ssed from the nor_ma_l value to a very smal! one. In this deal with the interplay of two different orders, its phase dia-
strip a new quantum-liquid phase, which is a mixture of mo-

N . ) X . ram may be complex and its description is beyond the
bile singlet dimers and free spins, arises, and the fraction g y b P y

. . . . cope of the present paper.
singlets increases continuously upon approachkpg This

phase is magnetic, homogeneous, and almost gafless In conclusion, we have demonstrated the possibility of
gap in the excitations spectrums< 572). The behavior of both complete and partigthough quite strongsuppression

h : | icinity of itical o of magnetism due to quantum fluctuations, induced by strong
the system in a very close vicinity &, (critical region is — goin shonon coupling. While the complete screening of spins
not absolutely clear. The phase transition is most .I|I.<(_aly s almost inevitably accompanied by the formation of a pho-
first-order one, close to second order, but the possibility o

) o on density wave, partial screening occurs in the translation-
'FS Sp“tt.mg In a sequence of tWC.) second_—order phase transglly invariant system. The phenomenon exists in a finite do-
tions with the formation of an intermediate phase of new

: main of the space of spin-phonon Hamiltonians, and it is
symmetry is also not excluded. , stable with respect to small variations of parameters. We
Let us speculate now about a general p&Ihstarting  ygjieve that it may be relevant to those “heavy-fermion”
from the noninteracting poirKng =0 and going to large compounds with a strong spin-phonon interaction, which ex-
K’s. Relying upon the experience obtained in the above perhibit either anomalously weak magnetism or no magnetism

turbational(in §H) study of the problem, we expect the fol- at all.

lowing to be true. Note addedAfter this paper was submitted, G. Uimin
(1) A general pathP will necessarily meet the instability drew my attention to a paperby Villain and Bak, where the
surfaceT. “squeezing transformation” for diagonalization of the

(2) Certain pathgnot all, but at least those sufficiently Hamiltonian (15) [arising there from completely different
close toPgy) will cross the domain of nonmagnetic phase, physics, the anisotropic next-nearest-neighbor Ising
adjacent to the surface The surfaceV, separating the non- (ANNNI) model was introduced. We are sorry for not citing
magnetic domain from the magnetic one, is the surface othis paper in our work where we rediscovered the squeez-
zeroT phase transitions; it separates the phases of differeriig transformation independently, but 10 years later. Another
symmetries. In the magnetic phase time-reversal symmetry inportant message, following from the discussions in Ref.
broken, and in the nonmagnetic one it is not. The translal5, is that the spectrum of the HamiltoniéZ8) may remain
tional symmetry in the nonmagnetic phase is most likely togapless in a certain range kéfs adjacent tK ., even despite
be broken due to the formation of virtual-phonon densitythe presence of symmetry-breakingterms.
wave. A fully translationally symmetric nonmagnetic state is,

in principle, also not excluded, but we could not build any ACKNOWLEDGMENTS
example for such behavigsee Ref. 1 and references therein,
concerning the “Quantum dimer model” The author is indebted to H. Capellmann for numerous

(3) For small spin-phonon couplings the magnetic ordervaluable discussions. Thanks are also due to S. Brazovskii,
persistgif only it is not suppressed already by quantum fluc- G. Eliashberg, A. O. Gogolin, D. Khmelnitskii, M. J. Schulz,
tuations of magnetic HamiltoniaH,,,, like in isotropic anti- and G. Uimin for their useful comments made at different
ferromagnetic Heisenberg chaiffhe order parameter, how- stages of this work.
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