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Conductivity of coupled quantum wells under an in-plane magnetic field
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The electrical conductivity tensor of the double quantum wells in the magnetic field parallel to the
layers is calculated. The system of kinetic equations for the tunnel-coupled electron states is analyzed
for the case of elastic scattering. The anisotropic suppression of the tunnel coupling and deformation
of the Fermi surface by the magnetic field give rise to the complex magnetic field dependence of the
conductivity tensor. The anisotropy of conductivity, as well as the negative magnetoresistance due
to suppression of the resonant tunnel coupling in the structures with nonsymmetrical distributions
of scatterers, are described. The results of the calculations are in agreement with the experimental

data.

I. INTRODUCTION

Modifications of the electron energy spectrum in a
single quantum well under a magnetic field parallel to
the two-dimensional (2D) layer (in-plane magnetic field),
such as shift of the levels and anisotropic dependence
of the energy upon the 2D momentum p, are signif-
icant only in the case of very strong fields, when the
cyclotron energy Aw,. is comparable with the size quan-
tization energy.! However, in the double quantum wells
(DQW'’s) with tunnel-coupled electron states, the modi-
fications of the electron spectrum are considerable even
in the fields as low as 1 T.%3 To understand the reason
for this difference, it is necessary to take into account
that the magnetic field deflects motion of the electrons
and drives the tunnel-coupled states out of the tunneling
resonance. Such an effect is significant when the energy
ey = hw.Z/\, where A is the characteristic wavelength
of the electrons (for example, Fermi wavelength) and Z is
the distance between the centers of the wave functions in
the wells, is comparable with the levels splitting energy
Axr. Since Ap ~ 1-5 meV, and Z is usually larger than
A, the electron spectrum of DQW’s is significantly modi-
fied when the cyclotron energy is still small in comparison
with the size quantization energies (~ 50-100 meV).

Magnetic-field-induced modifications of the electron
energy spectrum in DQW?’s change the electrical proper-
ties of this system. Recent experimental studies* 7 of the
electrical conductivity of DQW’s have revealed a number
of interesting features. Quenching of the resistance reso-
nance peak (i.e., the maximum resistivity in the tunnel-
ing resonance conditions in the DQW’s with nonsymmet-
rical scattering®) by the magnetic field, and anisotropy
of this phenomenon with respect to the angle between
the magnetic field and current have been observed.>™7 A
complex N-shape behavior of the conductivity in large
magnetic fields, when the Fermi level passes through the
tunnel-induced energy gap, has been found.®* Although
the physical reasons for these phenomena and their con-
nection with the shape of the Fermi surface (see Fig. 1,
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which describes the deformation of the Fermi surface by
the magnetic field) have been discussed in the cited pa-
pers, theoretical examination of the DQW’s conductivity
is still not sufficient. In Refs. 3 and 4 this conductivity
has been calculated in the relaxation-time approxima-
tion. It is a simplified approach, which is not valid for
a quantitative description of the conductivity in general,
when the scattering asymmetry (asymmetrical distribu-
tion of the scatterers in the growth direction) and the
long-range nature of the scattering potentials must be
taken into account. In Ref. 7 the conductivity has been
calculated in the limit of small magnetic fields (when ey
is small in comparison with the Fermi energy) and ex-
pressed through the transport times. However, due to
the magnetic-field-induced anisotropy of the scattering,
the transport times do not describe the conductivity even
in the case of small magnetic fields (see below).

In this paper we present a theory of the electrical con-
ductivity of DQW’s under the in-plane magnetic field.
The conductivity tensor of the DQW’s is calculated in
the low-temperature limit, when the electron gas is de-
generate and the most important scattering mechanism

(a) (®)
TH
(e) (d)

FIG. 1. Modification of the Fermi surface for a double
quantum well with the increasing magnetic field H: (a) H =0,
the isotropic case; (b) small H, the tunnel coupling is partly
suppressed; (c) large H, the Fermi energy lies in the tun-
nel-induced gap; (d) very large H, the Fermi surface splits in
two circles.
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is the elastic scattering (due to the impurities, interface
roughnesses, etc.). Calculation is done in the two-level
approximation, which is valid when the cyclotron energy
is smaller than the quantization energies of the electrons
in the wells. Assuming that the level splitting energy
is high in comparison with the collision broadening en-
ergy i/7 (here 7 is a typical scattering time), and the two
tunnel-coupled states are well defined, we use an ordinary
kinetic theory, based upon a pair of the Boltzmann ki-
netic equations for the distribution functions of electrons.
Even in these approximations, the problem appears to be
rather difficult, because both the electron energy spec-
trum and scattering probabilities are anisotropic, since
the in-plane magnetic field is considered. For this rea-
son, the kinetics of the momentum relaxation cannot be
described by introduction of the relaxation times. In gen-
eral, a numerical solution of the kinetic equations is nec-
essary.

Below, in Sec. II, we give basic equations describing
the DQW?’s in the in-plane magnetic field. In Sec. III we
consider the scattering on the short-range correlated po-
tentials, when the scattering probability is independent
of the momentum transfer. In this model, the kinetic
equations are solved exactly in the whole range of the
magnetic fields. We present a general expression of the
conductivity tensor, as well as its limit in the case of
small magnetic fields, when £y is smaller than the Fermi
energy, but can be comparable with the level-splitting
energy. In Sec. IV we present results of the numerical so-
lution of kinetic equations in the more general situation,
when the scattering is described by a finite correlation
length. We also compare our results with the experimen-
tal data. Discussion and concluding remarks are given in
Sec. V.

II. GENERAL FORMALISM

In this section we describe the wave functions, energy
spectrum, and group velocities of the electrons in DQW'’s,
and derive the linearized kinetic equations and general
expression of the conductivity tensor.

A. Electron energy spectrum

The electron states in the DQW’s under in-plane mag-
netic field H are described by the Hamiltonian

1 e \2 h? 0%

—(p-%A)y -2 41U 1

2m (p c ) 2m 822 +U() (1)
where p = (pg,py) is the 2D momentum, m is the

electron mass, z is the transverse coordinate, U(z) is
the potential energy of DQW’s, e is the elementary
charge, c is the light velocity, and A is the vector po-
tential. Assuming that the magnetic field is directed
along the y axis, and using the Landau gauge, we have
A = [H(z — 29),0,0], where zg is an arbitrary coordinate
appearing due to the gradient invariance, and H = |H|.
In the further consideration, we employ a basis of the
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ground electron states in the [ and r wells, which are de-
scribed by the single-well envelope wave functions |I) and
|7} (I and r orbitals). This approximation is valid when
the cyclotron energy is small in comparison with the
single-well quantization energies, so that the magnetic
field has no considerable effect on the single-well states.
In the described basis, the three-dimensional Hamilto-
nian (1) transforms to the 2x2 matrix Hamiltonian

€p + AH(pw)/2 T (2)
- T &~ Dn(pa)/2 )
where T is the tunneling matrix element (tunnel coupling
energy) and £, = p?/2m is the kinetic energy for the
parabolic spectrum. Hamiltonian (2) is analogous to the
one introduced in Ref. 9 in the absence of the magnetic
field. The effect of the magnetic field on the tunnel-
coupled states is described by the function Ag(p.). At
H=0 this function is equal to the level-splitting energy
A in the absence of tunneling (the value of A can be
controlled by application of the transverse bias to the
DQW’s). At H #0, Ag(p;) includes additional terms,
which depend of H and p,:

AH(pm) :A_vam+5H- (3)

The characteristic velocity vy and energy 8y are de-
scribed as

le] H

v = [(rlzlr) = (2] = weZ, “)
S = T2 (U1 - (vl
— 1)20)® + (rl2|r)?) (5)

In derivation of Egs. (2)—(5), the constant zo has been
chosen in order to satisfy the equation (l|z — zo|l) +
(r|z — zo|r) = 0. This choice eliminates a p,-dependent
contribution appearing in both diagonal terms of the
Hamiltonian (2) due to the magnetic field effect. An-
other symmetrical contribution in these terms (which is
proportional to H? and does not depend on p) is elim-
inated by the proper choice of the energy counting. In
the symmetrical DQW'’s, zg is the coordinate of the sym-
metry plane. We also note that §g is equal to zero in the
symmetrical DQW'’s.

Hamiltonian (2) gives rise to the electron energy spec-
trum

e+(P) =¢&p £ Ar(p2)/2,
AT(pa:) = A%{(p:c) + 4T2a (6)

where indexes “+” and “—” denote the two tunnel-
coupled states, upper and lower in energy, and the func-
tion Ar(p,) describes p,-dependent splitting of these
states. The group velocities v¥(p) = [vf(pw),v;k(py)]
of the electrons in the + states are given by

AH (pa:) + Py
el = =2 7
2Ar(p) Y P = m @)

The wave functions of the tunnel-coupled states are de-
scribed by the linear combinations® of the [ and r orbitals,

vE(pe) = 22 Fom
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according to af |I) + a |r), where the projection coeffi-

cients a;t are functions of p, and H. In order to describe

the scattering, we require the functions x (px) = a;ta.;t,
describing projections of the + states on the [ and r or-
bitals. These functions are expressed through the DQW'’s

parameters in the following way:

1 Apg (Z&))
— 14+ =)
2 ( AT(pw)

Xl+l(pa:) = X;-(Pm) =

() = i) = 3 (1=

Ar(pz)
_ T
Xip (Pe) = =X, (Pa) = Arlpn)’
and xi(pg) = xfl(pm). We stress that the functions

X;tj,(pm) depend on the magnetic field.

B. Kinetic equations

When the electric field E = (E,, E,) is applied along
the 2D plane, the distribution functions of the electrons
in the two states fi(p) and f_(p) are found from the
system of two kinetic equations, which are written in the
following way'°®

eE fk ZWkk' p,P) [fe(P) — fer(P)], (9)

k'p

where k and k' denote =+ states, and Wy (p,p’) is the
elastic scattering probability

Wik (P, P') = ZWJ.’I (lp—p')

x5 (P2) x5 (PL)d [ex(P) — en (P)] - (10)

In this equation, j, 7' are the well numbers (! and r), and
W;;(lp—p’|) are the random potential correlators, whose
explicit form depends upon the scattering model. For ex-
ample, in the model of interface roughness scattering®®'2
we have
W;j(q) = 8j5:w; exp(—q®IZ/4K?), (11)
where [, is the correlation length, which is assumed to
be the same for all four interfaces, and é;;; has appeared
because the roughnesses of different interfaces are statis-
tically independent.
To calculate the linear conductivity of DQW’s, we lin-
earize the kinetic equation in the usual way,'® by detach-
ment of the small nonequilibrium contribution in the dis-

= £ (p)+Tk(p)é(en(pP)—cF).-

Here f,io)(p) is the equilibrium part of fi(p), and ep is
the Fermi energy, which is connected with the electron
concentration n in DQW’s according to

1
n= o Z/dePS(Pm), (12)
x

tribution function: fi(p)
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where we have defined pj *(p,) a

pE(ps) = /2mer F mAr(ps) — p2- (13)

The region of integration over p, in Eq. (12) and below is
determined by an obvious requirement that the expres-
sion under the square root in Eq. (13) must be positive.
We also mention the relation describing conservation of
the group velocity flux through the Fermi surface

:c(pz) =0, (14)

/dp'v (Pz)0(ex(P) —€F) N/d Pk (pz)

which is valid since the Fermi surface is closed.

The electric current density J = (J;,Jy) in the sys-
tem is expressed through the nonequilibrium part of the
distribution function:

J=2¢) v*(p)Tr(P)é(ck(P) — cF)- (15)

k,p

The linearized kinetic equations for the functions ¥4 (p)
are obtained after summing up Eq. (9) over p,, using
the energy conservation requirements expressed by the §
functions of energy. Such requirements imply rigid re-
lations between p,, py, and eg: pz = ij(Pz)]z. Due
to the symmetry of the electron energy spectrum with
respect to py, it is convenient to introduce symmetrical
and antisymmetrical (with respect to p,) combinations
of ¥ (ps,py), according to

\I’k[vap’;(pz)] + “pk[pma —PZ(Pm)]
2m2heE, ’

9k (pz) = (16)

Ui [Pes PE(P2)] — Yk [po, py(px)]
2n2heE,

9k (P2) = (17)

These functions are determined from the integral equa-
tions

= Fi(pz) gk (P=)
-3 [ @Rt ) . (19)
kl

uk(Px)

1 = F(p=)gk (p2)
—Z/dp;RZkr(pz,p;)gZ'(p;) : (19)
kl
where the dimensionless velocity ug(p;) is defined as

uk(pz) = muk (pw)/p’;(pw) The dimensionless kernels of
the Egs. (18) and (19) are given by

™m 2
R} (Pa,pl) = W ZX” Pcc)X“ (P%)
x [Wjjr(g-) + Wjj'(f1+)] ) (20)
Ry (PeyPy) = F(%W ZX”  (p2) X (PL)
x [Wjji(g-) — Wj:"(‘l+)] ) (21)



where
ax = /(pe = P4)? + [h(22) £ 25 (4)12. (22)
The function Fi(p.) is defined as
Fi(pz) = Z/dP;Rikr(pmp;)- (23)
kl

The linear relation between the current density J and
electric field E takes form J, = 0. F, and J, = o\ E,,
where the components o, and o) of the conductivity
tensor are expressed through the gi(p,) and gg(pz), re-
spectively. We have

(24)

82 s
01 =G L [ doaunloalaie).

(25)

e? o
k

Let us summarize results of this section. Due to the
symmetry of the 2D system in the direction of the mag-
netic field (y axis), the conductivity tensor is diagonal in
the (x,y) coordinate system. However, the components
o, and o) describing the currents perpendicular and par-
allel to H, respectively, are not equal to each other; i.e.,
the magnetic field induces the anisotropy of the conduc-
tivity. Each component of the conductivity tensor is ex-
pressed through the functions g% (p.) or g4 (pz). These
functions are to be found from the one-dimensional inte-
gral equations (18) and (19), obtained after the lineariza-
tion of the kinetic equations (9). In the following section
we present solutions of Egs. (19) and (20) and calculate
o1 and oy for the case of short-range scattering poten-
tials.

XJJ (pz)X] 5 (p:z)
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III. LIMIT OF SHORT-RANGE SCATTERING

In this section we assume that dependence of the po-
tential correlators Wj;:(|q|) of the momentum transfer
q is not important. We also suppose that W;;/(|q|) are
diagonal with respect to the well index j:

Wijr(lal) = 655 w;. (26)
In application to the impurity scattering, this approxi-
mation means that a typical range of the single impurity
potential is small in comparison with the Fermi wave-
length A ~ n~'/2 and with the interwell distance Z. If
we consider the interface roughness scattering, Eq. (26)
means that the typical size of the roughnesses [correlation
length in Eq. (11)] must be smaller than A. We obtain

RZk’ (pmaplm) = 0’

7'1'777,2

Rip (PoPy) = s
b (PoP2) = R2pk (p.)pk' (pl,)

Z wJX]J Pz)X” (pa:)

(27)

The first equation means that the integral part of Eq. (19)
vanishes. Then we have g¢(p,) = 1/Fx(p.), and oy is
found in the straightforward way:

dpz

On the other hand, the integral equation (18) with the
factorized kernel R}, (p.,p.,) from Eq. (27) has the solu-
tion

(28)

Py(p=)Fi(pe)

where the constants C; and C, are determined from the
system of linear equations:

(29)

gi(pz) = Fk(P:)

X]J Pz)uk(])z)

(30)

S

* Pk (o) 2 Fi(pe) 77 wm?

o= [

(pm)Fk(pw)

We stress that the determinant of this system is equal to zero [it is easy to check this statement, using the definition

of Fr.(pz)]-

feature has no mﬂuence on the conductivity because of the property given by Eq. (1

and expressing C; through the C,., we obtain

S IR EWES i

5 o

Therefore, the system (30) really gives us only one linear relation between C, and C,.. However, this

4). Substituting (29) into (24),

Xll(pw er(pt)
[P (=) *Fi(p2)

uk pz er P:c

yadks

(31)
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Under investigation of the DQW’s with high electron
concentration (when er > T), it is worth considering
the case of small fields, when the magnetic field drives the
tunnel-coupled states out of the resonance, but causes no
considerable amsotropy of the electron energy spectrum.
Using u+(pz) ~ po/pf(p=) and pf(p.) ~ +/p% —p2,
where pr ~ hy/mn is the Fermi momentum, we rewrite
expressions (28) and (31) as
{1-2u2[Io(H) — I:(H)]},

oo
1-— 2

— I(H)/Io(H)]}, (33)

o
oL=7 _Ouz {1—24% [I(H)
where 0y = e?n7/m is the conductivity at H = 0 and
A = 0, which is expressed through the reduced relaxation
time 7 = 277,./(7; + 7+), where 7, = K3/mw; and 7, =
k3 /muw, are the relaxation times in the I and r wells.
The constant p = (7, — 1)/(7» + 71) characterizes the
scattering asymmetry. In Eqgs. (32) and (33) we have
introduced the following functions of the magnetic field

] . :
V(I —iy)?+ a2’
[ 1 -1y ]
V(I —dy)?+a? ]’
e ]
iz_iRe (1 —1y)

x? VA =y +z2|’

where the dimensionless parameters z and y are defined

as

_prvEy/1—p2 (A +6g)/1—p?

B 2T U 2T ’
The rule of calculation of the square root from the com-
plex expression (1 — iy)2 + z? in Egs. (34) can be spec-
ified, for example, by the requirement that the result of
this calculation at y — 0 must be positive. Expressions
(32)—(35) can be useful for interpretation of the resis-
tance resonance shape in the in-plane magnetic field.>¢
These expressions immediately show that (a) the quench-
ing of the resistance resonance becomes significant when
z > 1, or weprZ > 2T; (b) o, always increases faster
than o) with the increase of H. Both these results are
in agreement with all the experimental data and recent
theoretical results.” At A = §g = 0 (y = 0), our re-
sults are consistent with Egs. (2)—(4) of Ref. 7. In the
limit 2/7 < 2T, Egs. (32)—(35) generalize Egs. (2)—(4) of
Ref. 7 for the nonresonant case, when the energy levels
in the two wells do not coincide.

Io(H) = Re
1

I(H) =

(35)

IV. NUMERICAL RESULTS AND COMPARISON
WITH THE EXPERIMENTS

The integral equations (18) and (19) cannot be solved
in general when the dependence of W;;:(|q|) of q is im-
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portant (scattering potentials with a finite correlation
length). A common method of the solution, based on
the introduction of the transport times, is valid only in
the isotropic situation (H = 0) and fails as the magnetic
field increases and the problem becomes anisotropic. In
fact, the transport times do not describe the conductivity,
when either the energy spectrum or scattering probabili-
ties are anisotropic.!® For this reason, a simple analytical
solution of the kinetic equations cannot be obtained even
in the case of small magnetic fields (considered in the
end of the previous section), when the electron energy
spectrum is isotropic, but the scattering probabilities are
a,nisotropic due to the dependence of the overlap factors
£ (pz) of py.'® Therefore, Egs. (2)-(4) of Ref. 7 are
fld only in the case of short-range scattering potentials
(l = 0), but not in the general case. In order to describe
the conductivity of DQW’s in the in-plane magnetic field,
it is necessary to solve the kinetic equations numerically.
Below we present results of the numerical solution of
Eqgs. (18) and (19) using a standard iterative procedure.
In such a calculation we should restrict ourselves by some

2.4 g
20{ (@

o (H)/a(0)

T T

8 12 16
H (1)

(=]
A

2.4

ay(H)/o(0)

H (1)

FIG. 2. Magnetic-field dependence of the conductivity oy
(configuration J || H). Parameters of the structure are given
in the text; 1. I =0, 2. I =10 nm; (a) A =0, (b) |A| = 2T.



33 CONDUCTIVITY OF COUPLED QUANTUM WELLS UNDER AN ...

model of scattering. We use the model described by the
correlation function (11). Although this model is not
general, it describes both the scattering asymmetry (the
ratio of the mobilities in the wells is given by the fac-
tor w;/w,), and properties of the long-range scattering
potentials (finite correlation length I.). Figures 2 and 3
show the magnetic-field dependence of the conductivity
tensor components o] and o, calculated for the sym-
metrical DQW’s (6g = 0) with the interwell distance
Z =15 nm, electron concentration n = 6x10'! cm™2, res-
onant tunnel splitting 27" =3 meV, and scattering asym-
metry w;/w, =5. Consider the resonant case (A = 0)
first. In the small magnetic fields, both conductivities
increase, because the magnetic field drives the Fermi cir-
cles out of the tunneling resonance [see Fig. 1(b)]. Such
an increase exists only in the DQW’s with nonsymmetri-
cal scattering. This phenomenon, known as quenching of
the resistance resonance,® has been observed in a num-
ber of experiments. In agreement with the experimental
data, o increases faster than o). The increase of the
conductivities becomes slower as the correlation length
increases. In high magnetic fields, both conductivities

3.0+

(a)

O'_L(H)/(T(())
2.0+

1.5

1.0

~ 4

H(T)

3.0

2.5 (b)

o.(H)/a(0)

g

04

—
(=)

0 4 8 12 16
H (1)

FIG. 3. The same as in Fig. 2 for o (configuration J LH).
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show steplike growth, occurring when the higher sub-
band (+) becomes unpopulated by the electrons (in other
words, the Fermi level appears in the gap). This growth
is connected with the steplike behavior of the density of
states.®* However, due to the anisotropy of the Fermi
surface [see Fig. 1(c)], the amplitude of the step is differ-
ent for different components of the conductivity tensor:
oy always jumps higher (see Appendix). With the in-
crease of l., the amplitude of the step increases for oy
and decreases for o, so that the difference between oy
and 0| becomes less pronounced. When tunnel splitting
2T is smaller, the amplitude of the step is smaller too.
The step of the conductivities is followed by the V-like
dip, which is connected with the logarithmic divergence
of the density of states: the Fermi level crosses the saddle
point in the energy spectrum.®* The region of the mag-
netic fields between the step and the dip corresponds to
the situation shown in Fig. 1(c). After the dip, when the
Fermi surface splits into two circles [Fig. 1(d)], both con-
ductivities increase again and go to the saturation value
o(o0) = o(0)(w; + wr)?/(4wyw,). We stress that o(oco)
is the conductivity at zero tunnel coupling, which is not
surprising, because in the very high magnetic fields the
coherent superposition of ! and r orbitals is completely
destroyed.

General features described above take place at A # 0,
when the tunnel-coupled states are driven from the ex-
act resonance by a transverse electric field. Application
of the magnetic field also leads to the increase of o)} and
o,. However, in the region of small H, this increase
begins slower, because the magnetic field, driving one
side of the Fermi circles from the tunneling resonance,
simultaneously drives the other side towards the reso-
nance. Moreover, at large enough |A|, the conductivities
o) and o) may slightly decrease with the increase of H.
Experimental data*® also show this behavior. In large
H, both conductivities go to the same saturation value.
The difference between the saturation values of the ratio
o(H)/o(0) at different I, (in contrast to the case A = 0)
exists because o(0) at A # 0 is smaller for larger I..1*

In Fig. 4 we plot the magnetic-field dependence of o,
and o, using experimental parameters from Ref. 4, and
compared results of our calculation with the experimen-
tal data. We have chosen a single fitting parameter, the
correlation length [, in order to make the ratio between
the peaks of 0, and o) around 7.5 T close to the ex-
perimentally observed ratio. A good quantitative agree-
ment is obtained in the region of small magnetic fields. A
qualitative agreement exists in the whole range of H. In
particular, when the Fermi level lies in the gap (H = 6.8
~ 8.4 T), o, is larger than oy, in agreement with the
experimental data. However, the calculated conductiv-
ities in this region are considerably larger than the ex-
perimental ones, and the latter do not show sharp steps.
These discrepancies may be explained by the following.
At first, the electron scattering leads to the broadening of
the density of states. Also, the long-scale planar inhomo-
geneities (such as nonuniform doping) cause variations of
the electron concentration in the DQW?’s plane. As a re-
sult, the sharp conductivity peaks become broadened and
the amplitudes of the peaks become smaller. Other ex-
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o(H)/a(0)

FIG. 4. Magnetic field dependence of o)) and o, in DQW’s
with parameters Z =13.5 nm, n = 2.4 x 10** cm™2, 2T =1.8
meV, and w;/w, =2, taken from Ref. 4 (g = 0 since both
wells have equal widths). Solid lines represent the results of
calculation for I = 12 nm. Dashed lines are the experimental
results (Ref. 4).

planations, such as size effects, are also possible. We also
stress that the calculated peak amplitudes can be low-
ered if we assume that the splitting energy 27 is smaller
than 1.8 meV mentioned in Ref. 4.

In Fig. 5 we present a comparison of our calculations
with the experimental data® concerning quenching of the
resistance resonance in the high-mobility DQW’s with
large mobility ratio. The value of the mobility ratio 6.7
has been obtained from the amplitude of the resistance
resonance peak at H =0, and it differs from the mobility

1.25

1.00 4

AR/R

0.254

H (T)

FIG. 5. Magnetic field dependence of the normalized resis-
tivity calculated for the structure with parameters Z =17.25
nm, n = 7.5 x 10"* cm™2, 2T =2.0 meV, w;/w, =6.7, and
6 = 0 taken from Ref. 6. Solid lines, I. =12 nm, dashed
lines, I =0; circles and diamonds are the experimental points
(Ref. 6). Upper lines, J || H; lower lines, J 1L H.

O. E. RAICHEV AND F. T. VASKO 33

ratio 3.3 determined in condition of the full depletion®
(possibly, due to the screening effects). We plot the
magnetic-field dependence of the normalized resistivity
AR/R = o(o0)/o(H) — 1. A single fitting parameter,
correlation length [., has been chosen in order to ob-
tain quantitative agreement with the experiment. A good
agreement is achieved for both directions of H. However,
in higher magnetic fields, the experimental points corre-
sponding to the configuration J || H are situated above
the theoretical curve, indicating that the quenching of
the resistance resonance occurs slower than is expected.
This discrepancy exists because our calculations have
been done for the constant concentration n = 7.5 x 1011,
which corresponds to the resonance at H = 0. On the
other hand, the experimental data show that in high mag-
netic field the resonant peak for J || H is significantly
shifted in the region, where the electron concentration is
smaller. We cannot describe the reason for this shift in
the frames of our theory (it is possibly related to the size
effects). Nevertheless, the mentioned discrepancy can be
explained taking into account that the quenching goes
slower for the smaller electron concentration. In Fig. 5
we also show results of calculation at I. =0 (short-range
scattering potentials). Corresponding curves are situated
considerably below the experimental points, indicating
that the scattering on the short-range potentials was not
important in the investigated® DQW'’s.

V. CONCLUDING REMARKS

In this paper we have examined behavior of the elec-
trical conductivity of DQW’s under the in-plane mag-
netic field H. One of the most interesting features of
the conductivity is its anisotropy with respect to the an-
gle 6 between the magnetic field and the current. In the
most common situation, when the tunnel coupling energy
is small in comparison with the Fermi energy, a signifi-
cant anisotropy exists in the two distinct regions of the
magnetic fields, described below. The first is the region
of high magnetic fields, when the Fermi energy lies in
the gap and the Fermi surface is described by the single
anisotropic branch; see Fig. 1(c). The anisotropy of the
conductivity in this region exists due to the anisotropy
of the Fermi surface. On the other hand, below or
above the mentioned region, the Fermi surface consists of
two circles, either intersecting, or not, respectively; see
Figs. 1(b) and 1(d). Each of these circles corresponds
to the single well (left or right), and the scattering of
the electrons in the Fermi surface occurs mostly within
each circle (intrawell scattering). Since each Fermi cir-
cle is nearly isotropic, the conductivity tensor is nearly
isotropic too (a small anisotropy, determined by the ra-
tio of the tunnel coupling energy to the Fermi energy,
exists in the region of H, where the Fermi circles inter-
sect each other). Another region, where the anisotropy
may be significant, is the region of small magnetic fields,
where the tunnel coupling is not significantly suppressed
by the magnetic field; i.e., the density of the electron
states near the intersections (anticrossing points) is com-
parable with the overall density of states in the Fermi
surface. The anisotropy of the conductivity in this re-
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gion is connected with the anisotropy of the scattering.
This anisotropy exists in the DQW’s with nonsymmetri-
cal distributions of scatterers in the direction of growth,
where the resistance resonance phenomenon takes place.
In other words, the magnetic field induces the anisotropic
quenching of the resistance resonance.

When the angle 6 is neither zero nor 7/2 and o, # oy,
the direction of the current is not coinciding with the
direction of the applied electric field. This property gives
rise to the charge accumulation phenomena in the real
samples. Consider a rectangular Hall bar with the length
! and width d. When the magnetic field is directed at the
angle 6 with respect to the bar axis and the longitudinal
bias Uj is applied to the bar, a transverse bias U; appears
on the Hall contacts. The absolute value of U; is equal to
a(0)|U;|d/1, where a(6) is the anisotropy constant, which
goes to its maximum at 6 = 7w /4:

G‘_L—O'“

. 36
T (36)

a(r/4) =

The sign of Uy is changing when we rotate the direction
of H. Typical values of the anisotropy constant may
be extracted from the experimental data. For example,
the DQW'’s investigated in Ref. 6 had a(m/4) ~ 0.14 at
H =1.2 T (small-field region). Another sample, investi-
gated in Ref. 4, had the most significant anisotropy in
the high-field region: a(n/4) ~ 0.05 at H =7.3 T.
Below we discuss the approximations used in this pa-
per. Our calculations were based upon the Boltzmann
kinetic theory, which is valid when the scattering does
not suppress the coherent tunneling [it means that the
minimum splitting energy 27T is large in comparison with
the characteristic broadening energy %/7]. This require-
ment has been fulfilled in both experiments®® analyzed
in this paper. To be precise, the values of 2T in Refs. 4
and 6 are equal to 1.8 and 2.0 meV, respectively, while
the broadening energies %/7 estimated with use of the
mobilities in the low-mobility wells are 0.27 and 0.25
meV. On the other hand, we did not analyze experimen-
tal data from Refs. 5 and 7, because in the conditions®7
k/7 is comparable with 2T and the tunnel coupling is
partly suppressed due to the scattering. An examination

o (H — He) ~ /dpmp;(pz)// dp, [p;(lpw) + p;(lpz)] '

of this case (it will be reported at a later date) requires
a quantum kinetic approach. In our calculations we have
neglected the spin splitting of the electron states in the
magnetic field. This splitting must be taken into account
when it is comparable with the tunnel splitting 27". How-
ever, in the GaAs/Ga,Al; . As structures, the spin split-
ting is small enough (less than 0.3 meV even at H ~ 10
T), due to the smallness of the g factor of the electrons.
Another important approximation concerns the scatter-
ing model described by the correlation function (11). As
a result of its usage, the validity of the numerical re-
sults presented in this paper is restricted by the proper
class of the scattering potentials (interface roughnesses
with the same correlation length [, for all the interfaces).
For instance, these results cannot be directly applied in
the case of Coulomb impurity scattering. In spite of this
restriction, the model gives a good agreement with the
experimental data, when the correlation length is used as
a single fitting parameter. The results of the fitting pro-
vide reasonable values of the correlation length, I, ~ 12
nm, which are larger that the Fermi wavelengths in the
investigated DQW’s.*® This fact is a confirmation that
the electron scattering due to the long-range scattering
potentials is important in these structures.
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APPENDIX

Below we estimate the relative size of the conductivity
steps corresponding to the “critical” magnetic field H,
when the subband “+” becomes unpopulated. We use
a simple model of short-range-correlated scattering po-
tentials [Eqgs. (28) and (31)] and assume A = dy = 0.
Since the conductivity in high magnetic fields is not very
sensitive to the scattering asymmetry, we put w; = w,
for simplicity. In this case Eq. (28) gives

(A1)

The steplike behavior of this expression is connected with the peculiar property of the following integral

zc=/___dpw ={7r/\/1+7~2, H=H.—0

0, H=H.+0’

p; (P=)

(A2)

| 4T
Y= —
mug

which is also responsible for the step of the density of states. The value of « is usually small, since the tunnel splitting
is typically smaller than the Fermi energy. Calculation of o) in the limit of small v provides an estimate

(A3)

0’||(Hc+0) ~14 1
o(He —0) ~ " 24/T+~72
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Similar calculation using Eq. (31) gives

sy { [ B (oo 2 Y [ ] e

(o) [t U]

This equation shows that the step of o, is always higher than the step of | due to an additional steplike contribution

from the last term of Eq. (31). For small v we obtain

o1 (H:+0) oy (He + 0)

1+ 8y/[r*(v2 - 1)]

oL (He=0)  0)(He=0) 1+8y/[r2(vV2—1+1//1+72)]

(A5)

Estimating relative size of the conductivity steps with parameters used for calculation of Figs. 2 and 3, we obtain
o (H:.+0)/0|(H. —0) ~ 1.15 and 0, (H. + 0)/0, (H. — 0) ~ 1.59, which demonstrates significant difference between

these values.
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