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Conductivity of coupled quantum wells under an in-plane magnetic field
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The electrical conductivity tensor of the double quantum wells in the magnetic Geld parallel to the
layers is calculated. The system of kinetic equations for the tunnel-coupled electron states is analyzed
for the case of elastic scattering. The anisotropic suppression of the tunnel coupling and deformation
of the Fermi surface by the magnetic field give rise to the complex magnetic Geld dependence of the
conductivity tensor. The anisotropy of conductivity, as well as the negative magnetoresistance due
to suppression of the resonant tunnel coupling in the structures with nonsymmetrical distributions
of scatterers, are described. The results of the calculations are in agreement with the experimental
data.

I. INTRODUCTION

Modifications of the electron energy spectrum in a
single quantum well under a magnetic Geld parallel to
the two-dimensional (2D) layer (in-plane magnetic field),
such as shift of the levels and anisotropic dependence
of the energy upon the 2D momentum p, are signif-
icant only in the case of very strong fields, when the
cyclotron energy ~ is comparable with the size quan-
tization energy. However, in the double quantum wells
(DQW's) with tunnel-coupled electron states, the modi-
Gcations of the electron spectrum are considerable even
in the Gelds as low as 1 T. ' To understand the reason
for this difference, it is necessary to take into account
that the magnetic Geld deHects motion of the electrons
and drives the tunnel-coupled states out of the tunneling
resonance. Such an eÃect is significant when the energy
e~ = Ru, g/A, where A is the characteristic wavelength
of the electrons (for example, Fermi wavelength) and. Z is
the distance between the centers of the wave functions in
the wells, is comparable with the levels splitting energy
LT . Since AT 1—5 meV, and Z is usually larger than
A, the electron spectrum of DQW's is significantly modi-
fied when the cyclotron energy is still small in comparison
with the size quantization energies ( 50—100 meV).

Magnetic-Geld-induced modiGcations of the electron
energy spectrum in DQW's change the electrical proper-
ties of this system. Recent experimental studies of the
electrical conductivity of DQW's have revealed a number
of interesting features. Quenching of the resistance reso-
nance peak (i.e., the maximum resistivity in. the tunnel-
ing resonance conditions in the DQW's with nonsymmet-
rical scattering ) by the magnetic field, and anisotropy
of this phenomenon with respect to the angle between
the magnetic field and current have been observed. " A
complex N-shape behavior of the conductivity in large
magnetic fields, when the Fermi level passes through the
tunnel-induced energy gap, has been found. ' Although
the physical reasons for these phenomena and their con-
nection with the shape of the Fermi surface (see Fig. 1,

which describes the deformation of the Fermi surface by
the magnetic field) have been discussed in the cited pa-
pers, theoretical examination of the DQW s conductivity
is still not sufEcient. In Refs. 3 and 4 this conductivity
has been calculated in the relaxation-time approxima-
tion. It is a simplified approach, which is not valid for
a quantitative description of the conductivity in general,
when the scattering asymmetry (asymmetrical distribu-
tion of the scatterers in the growth direction) and the
long-range nature of the scattering potentials must be
taken into account. In Ref. 7 the conductivity has been
calculated in the limit of small magnetic fields (when eH
is small in comparison with the Fermi energy) and ex-
pressed through the transport times. However, due to
the magnetic-Geld-induced anisotropy of the scattering,
the transport times do not describe the conductivity even
in the case of small magnetic fields (see below).

In this paper we present a theory of the electrical con-
ductivity of DQW's under the in-plane magnetic field.
The conductivity tensor of the DQW's is calculated in
the low-temperature limit, when the electron gas is de-
generate and the most important scattering mechanism

FIG. 1. Modification of the Fermi surface for a double
quantum well with the increasing magnetic field H: (a) H =0,
the isotropic case; (b) small H, the tunnel coupling is partly
suppressed; (c) large H, the Fermi energy lies in the tun-
nel-induced gap; (d) very large H, the Fermi surface splits in
two circles.
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is the elastic scattering (due to the impurities, interface
roughnesses, etc.). Calculation is done in the two-level
approximation, which is valid when the cyclotron energy
is smaller than the quantization energies of the electrons
in the wells. Assuming that the level splitting energy
is high in comparison with the collision broadening en-
ergy 5/r (here w is a typical scattering time), and the two
tunnel-coupled states are well defined, we use an ordinary
kinetic theory, based upon a pair of the Boltzmann ki-
netic equations for the distribution functions of electrons.
Even in these approximations, the problem appears to be
rather difBcult, because both the electron energy spec-
trum and scattering probabilities are anisotropic, since
the in-plane magnetic field is considered. For this rea-
son, the kinetics of the momentum relaxation cannot be
described by introduction of the relaxation times. In gen-
eral, a numerical solution of the kinetic equations is nec-
essary.

Below, in Sec. II, we give basic equations describing
the DQW's in the in-plane magnetic field. In Sec. III we
consider the scattering on the short-range correlated po-
tentials, when the scattering probability is independent
of the momentum transfer. In this model, the kinetic
equations are solved exactly in the whole range of the
magnetic fields. We present a general expression of the
conductivity tensor, as well as its limit in the case of
small magnetic fields, when eH is smaller than the Fermi
energy, but can be comparable with the level-splitting
energy. In Sec. IV we present results of the numerical so-
lution of kinetic equations in the more general situation,
when the scattering is described by a finite correlation
length. We also compare our results with the experimen-
tal data. Discussion and concluding remarks are given in
Sec. V.

II. GENERAL FORMALISM

In this section we describe the wave functions, energy
spectrum, and group velocities of the electrons in DQW's,
and derive the linearized kinetic equations and general
expression of the conductivity tensor.

A. Electron energy spectrum

The electron states in the DQW's under in-plane mag-
netic field H are described by the Hamiltonian

1 2 g2 g2
p ——A — +U z

where p = (p, p„) is the 2D momentum, m is the
electron mass, z is the transverse coordinate, U(z) is
the potential energy of DQW's, e is the elementary
charge, c is the light velocity, and A is the vector po-
tential. Assuming that the magnetic field is directed
along the y axis, and using the Landau gauge, we have
A = [H(z —zp), 0, 0], where zp is an arbitrary coordinate
appearing due to the gradient invariance, and H = lHl.
In the further consideration, we employ a basis of the

ground electron states in the l and r wells, which are de-
scribed by the single-well envelope wave functions ll) and
lr) (l and r orbitals). This approximation is valid when
the cyclotron energy is small in comparison with the
single-well quantization energies, so that the magnetic
field has no considerable eO'ect on the single-well states.
In the described basis, the three-dimensional Hamilto-
nian (I) transforms to the 2x2 matrix Hamiltonian

(.„+~„(p.)/2 T
T s„—A~(p )/2 p

lelH
, [(rlzlr) —(llzll)] = ~.& (4)

2

[(ll"ll) —(.l"l.)
—

&ll

In derivation of Eqs. (2)—(5), the constant zp has been
chosen in order to satisfy the equation (llz —zpll) +
(rlz —zplr) = 0. This choice eliminates a p -dependent
contribution appearing in both diagonal terms of the
Hamiltonian (2) due to the magnetic field effect. An-
other symmetrical contribution in these terms (which is
proportional to H and does not depend on p) is elim-
inated by the proper choice of the energy counting. In
the symmetrical DQW's, zp is the coordinate of the sym-
metry plane. We also note that b~ is equal to zero in the
symmetrical DQW's.

Hamiltonian (2) gives rise to the electron energy spec-
trum

+(p) ="+ &T(p*)/2

&T(p*) = &H(p-) + 4T'

where indexes "+" and "—"denote the two tunnel-
coupled states, upper and lower in energy, and the func-
tion AT (p ) describes p -dependent splitting of these
states. The group velocities v+(p) = [v+(p ), v+(p„)j
of the electrons in the + states are given by

The wave functions of the tunnel-coupled states are de-
scribed by the linear combinations of the l and r orbitals,

where T is the tunneling matrix element (tunnel coupling
energy) and s„= p /2m is the kinetic energy for the
parabolic spectrum. Hamiltonian (2) is analogous to the
one introduced in Ref. 9 in the absence of the magnetic
field. The efFect of the magnetic field on the tunnel-
coupled states is described by the function A~(p ). At
H=O this function is equal to the level-splitting energy
A in the absence of tunneling (the value of A can be
controlled by application of the transverse bias to the
DQW's). At H $0, AH(p ) includes additional terms,
which depend of H and p:

&H(p*) = & —vip*+ ~a.
The characteristic velocity nH and energy bH are de-
scribed as
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according to a&+ Il) + a Ir), where the projection coeffi-

cients a+. are functions of p and H. In order to describe

the scattering, we require the functions x . , (p ) = a a,
describing projections of the + states on the l and r or-
bitals. These functions are expressed through the DQW's
parameters in the following way:

1 f &H(p*) ~
x«(p*) = x..(p*) =

2 I
1+ ~, *,

I

T (p*)

x.+.(p*) =x(, (p. ) =
2

I
1 —

~ I, (8)
1 f &~(p.)l

T
x(+„(p*) = -x(„(p ) = ~,&P~)

and x&„(p ) = X t (p ). We stress that the functions
x+, (p ) depend on the magnetic field.

where we have defined p„+(p ) as

p„+(p.) = /2m. ~ ~ m~T(p. ) —p2.

The region of integration over p in Eq. (12) and below is
determined by an obvious requirement that the expres-
sion under the square root in Eq. (13) must be positive.
We also mention the relation describing conservation of
the group velocity flux through the Fermi surface

dpv" (p )8(sg(p) —s~)-

which is valid since the Fermi surface is closed.
The electric current density J = (1,J„) in the sys-

tem is expressed through the nonequilibrium part of the
distribution function:

J = 2e) v" (p)@i,(p)8(sg(p) —s~).

B. Kinetic equations

When the electric field E = (Z, E„) is applied along
the 2D plane, the distribution functions of the electrons
in the two states f+ (p) and f (p) are found from the
system of two kinetic equations, which are written in the
following way

« f~(p) = —) ~a~ (p, p') [f~(p) —fi (p')],
t9p jfl I

where k and k' denote + states, and Wi, i,i(p, p') is the
elastic scattering probability

~~~ (p, p') =
~ ).was (Ip —p'I)

22'

»,", (p*)X,",'(p'. )~ [s~(p) —s~ (p')] (»)
In this equation, j,j' are the well numbers (l and r), and
W~~ (Ip —p'I) are the randoin potential correlators, whose
explicit form depends upon the scattering model. For ex-
ample, in the model of interface roughness scattering
we have

The linearized kinetic equations for the functions @~(p)
are obtained after summing up Eq. (9) over p„, using
the energy conservation requirements expressed by the b
functions of energy. Such requirements imply rigid re-
lations between p, p„, and s~. p„= [p„+(p )] . Due
to the symmetry of the electron energy spectrum with
respect to p„, it is convenient to introduce symmetrical
and antisymmetrical (with respect to p„) combinations
of 4i, (p, p„), according to

+.[p. , p„"(p.)] + ~.[p. , -p"„(p.)1

~.[p. , p"„(J.)] —+.[p. , p„"(p.)]-
~ (p-) =

These functions are determined from the integral equa-
tions

u~(p*) = F~(p*)&i(p*)

dp'. &~~ (p» p'. )qi, (p'. ),

1 = F~(p*)~~(p*)
W, ~ (q) = h~, io,. exp( —q l, /4h ),

dp'. &~~ (p* p'. )qi, (p'. ) (19)
where l is the correlation length, which is assumed to
be the same for all four interfaces, and b~~ has appeared
because the roughnesses of di6'erent interfaces are statis-
tically independent.

To calculate the linear conductivity of DQW's, we lin-
earize the kinetic equation in the usual way, by detach-
ment of the small nonequilibrium contribution in the dis-
tribution function: fg(p) = f& (p)+@i,(p)8(ek(p) —z~).
Here f& (p) is the equilibrium part of fi, (p), and s~ is
the Fermi energy, which is connected with the electron
concentration n in DQW's according to

(12)

&4 (p* p'. ) = k'
, „.. . , ) .x,, (p*)x,, (p. )

~y 9~ H'y 9 x ) . -
g

x [W,, (q ) + W, ,' (q+)], (20)

I A.
"

&ga (p*,p. ) = ~, „, , „„,, x,, (p-)x, , (p. )
~QLP~ ~g 9 K

& [W'. (q-) —W" (q+)] (21)

where the dimensionless velocity uy(p ) is defined as
uy(p ) = mv" (p )/p„"(p ). The dimensionless kernels of
the Eqs. (18) and (19) are given by
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where III. LIMIT GF SHGRT-RANGE SCATTERINC

(»* —p'. )'+ [p,"(p*)+ p,"'(p'. )]'.

The function Pg(p ) is defined as

Fr (p*) = ). dp'. &~r, (»- »'. )

(22) In this section we assume that dependence of the po-
tential correlators W~~ (lql) of the momentum transfer
q is not important. We also suppose that W~~ (lql) are
diagonal with respect to the well index j:

~.. (Iql) =~~& ~..

2

~~ = —). dp*u~(p*) g~(p*) (24)

The linear relation between the current density J and
electric 6eld E takes form J = 0.~E~ and J„=o.t[E»
where the components 0 ~ and 0

~ i
of the conductivity

tensor are expressed through the gi, (p~) and gg (p ), re-

spectively. We have

In application to the impurity scattering, this approxi-
mation means that a typical range of the single impurity
potential is small in comparison with the Fermi wave-
length A n i and with the interweH distance Z. If
we consider the interface roughness scattering, Eq. (26)
means that the typical size of the roughnesses [correlation
length in Eq. (11)]must be smaller than A. We obtain

~~(p* p'. ) =0,

2

o'ii ——
& ) dp C(p ).

k

(25)

2
R' 7t m

kk (p&&pm) =
g2 kr i gIr r i ~~jXjj (p!)X2jj (p~)

&yU ~By 'LJ'x)

(27)

Let us summarize results of this section. Due to the
symmetry of the 2D system in the direction of the mag-
netic field (y axis), the conductivity tensor is diagonal in
the (x, y) coordinate system. However, the components
0~ and 0

~ i

describing the currents perpendicular and par-
allel to H, respectively, are not equal to each other; i.e. ,
the magnetic field induces the anisotropy of the conduc-
tivity. Each component of the conductivity tensor is ex-
pressed through the functions g+(p ) or g~(p ). These
functions are to be found from the one-dimensional inte-
gral equations (18) and (19), obtained after the lineariza-
tion of the kinetic equations (9). In the following section
we present solutions of Eqs. (19) and (20) and calculate
o.~ and 01~ for the case of short-range scattering poten-
tials.

The first equation means that the integral part of Eq. (19)
vanishes. Then we have g&(p ) = 1iEi, (p ), and crit is
found in the straightforward way:

e x ~ dp~

~.(p )
(28)

u~(»*) CiXri(p*) + C-X.".(»*)
+~(» -) p,'(p-) +~(p*)

(29)

where the constants Cz and C„are determined from the
system of linear equations:

On the other hand, the integral equation (18) with the
factorized kernel Bk&, (p, p') from Eq. (27) has the solu-
tion

*
[» „"(p.)]'+~(p*) "~~'~, ' „»„"(p-)+r (p-)

We stress that the determinant of this system is equal to zero [it is easy to check this statement, using the definition
of Eg(p )]. Therefore, the system (30) really gives us only one linear relation between Ci and C, . However, this
feature has no influence on the conductivity because of the property given by Eq (14). Su. bstituting (29) into (24),
and expressing Ci through the C„, we obtain

)- „[ (p)]' )- „(p)x (p))- „(p)& (p)" ~.(p. ) „- "p„"(p-)+.(p*) „- *
p,"(p*)+.(p*)

xii (p*)x.".(» *)*
[p,'(p*)l'+~(p*)

I

(31)
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Under investigation of the DQW's with high electron
concentration (when eF » T), it is worth considering
the case of small fields, when the magnetic field drives the
tunnel-coupled states out of the resonance, but causes no
considerable anisotropy of the electron energy spectrum.
Using u~(p ) = p /p„+(p ) and p„+(p ) = Qp2F —p2,
where pF hi/7m is the Fermi momentum, we rewrite
expressions (28) and (31) as

a.
((

= j1 —2p [Io(H) —I2(H)] ),

(1 —2p, I2(K) —Ii (H)/Ip(H) ), (33)

where oo ——e nw/m is the conductivity at H = 0 and
4 = 0, which is expressed through the reduced relaxation
time r = 2riw„/(7i + 7„), where ri = h /mtoi and w„=
hs/mtu„are the relaxation times in the l and r wells.
The constant p, = (r —w~)/(w, + r~) characterizes the
scattering asymmetry. In Eqs. (32) and (33) we have
introduced the following functions of the magnetic Geld

portant (scattering potentials with a finite correlation
length). A common method of the solution, based on
the introduction of the transport times, is valid only in
the isotropic situation (H = 0) and fails as the magnetic
field increases and the problem becomes anisotropic. In
fact, the transport times do not describe the conductivity,
when either the energy spectrum or scattering probabili-
ties are anisotropic. For this reason, a simple analytical
solution of the kinetic equations cannot be obtained even
in the case of small magnetic fields (considered in the
end of the previous section), when the electron energy
spectrum is isotropic, but the scattering probabilities are
anisotropic due to the dependence of the overlap factors
y+, (p ) of p . s Therefore, Eqs. (2)—(4) of Ref. 7 are
va/id only in the case of short-range scattering potentials
(l, = 0), but not in the general case. In order to describe
the conductivity of DQW s in the in-plane magnetic field,
it is necessary to solve the kinetic equations numerically.

Below we present results of the numerical solution of
Eqs. (18) and (19) using a standard iterative procedure.
In such a calculation we should restrict ourselves by some

1
Io(H) = Re

Q(1 —iy)'+ x'

(34)
2.0—

o (((H )/o (0)
1.8-

where the dimensionless parameters x and y are defined
as 1.4—

(35)

The rule of calculation of the square root from the com-
plex expression (1 —iy)2 + x in Eqs. (34) can be spec-
ified, for example, by the requirement that the result of
this calculation at y —+ 0 must be positive. Expressions
(32)—(35) can be useful for interpretation of the resis-
tance resonance shape in the in-plane magnetic field. '

These expressions immediately show that (a) the quench-
ing of the resistance resonance becomes significant when
z ) 1, or ~,pFZ ) 2T; (b) 0'g always increases faster
than 0~~ with the increase of H. Both these results are
in agreement with all the experimental data and recent
theoretical results. At A = h~ = 0 (y = 0), our re-
sults are consistent with Eqs. (2)—(4) of Ref. 7. In the
limit 5/w « 2T, Eqs. (32)—(35) generalize Eqs. (2)—(4) of
Ref. 7 for the nonresonant case, when the energy levels
in the two wells do not coincide.

~~, (H)/~(O)

2.0—

IV. NUMERICAL RESULTS AND COMPARISON
WITH THE EXPERIMENTS

The integral equations (18) and (19) cannot be solved
in general when the dependence of W~~ (~q~) of q is im-

FIG. 2. Magnetic-field dependence of the conductivity o
~~

(configuration J
~~

H). Parameters of the structure are given
in the text; 1. l, =0, 2. l, =10 nm; (a) A = 0, (b) ~A~ = 2T
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gion is connected with the anisotropy of the scattering.
This anisotropy exists in the DQW s with nonsymmetri-
cal distributions of scatterers in the direction of growth,
where the resistance resonance phenomenon takes place.
In other words, the magnetic field induces the anisotropic
quenching of the resistance resonance.

When the angle 0 is neither zero nor vr/2 and (T~ g o
~
~,

the direction of the current is not coinciding with the
direction of the applied electric field. This property gives
rise to the charge accumulation phenomena in the real
samples. Consider a rectangular Hall bar with the length
l and width d. When the magnetic field is directed at the
angle 0 with respect to the bar axis and the longitudinal
bias U~ is applied to the bar, a transverse bias Uq appears
on the Hall contacts. The absolute value of Uz is equal to
o.(0) ~Ui~d/t, where n(8) is the anisotropy constant, which
goes to its maximum at 0 = vr/4:

a(m. /4) =
OJ + CJ/I

(36)

The sign of Uq is changing when we rotate the direction
of H. Typical values of the anisotropy constant may
be extracted from the experimental data. For example,
the DQW's investigated in Ref. 6 had a(~/4) 0.14 at
H =1.2 T (small-field region). Another sample, investi-
gated in Ref. 4, had the most significant anisotropy in
the high-field region: a(~/4) 0.05 at H =7.3 T.

Below we discuss the approximations used in this pa-
per. Our calculations were based upon the Boltzmann
kinetic theory, which is valid when the scattering does
not suppress the coherent tunneling [it means that the
minimum splitting energy 2T is large in comparison with
the characteristic broadening energy h/7]. This require-
ment has been fulfilled in both experiments ' analyzed
in this paper. To be precise, the values of 2T in Refs. 4
and 6 are equal to 1.8 and 2.0 meV, respectively, while
the broadening energies 5/w estimated with use of the
mobilities in the low-mobility wells are 0.27 and 0.25
meV. On the other hand, we did not analyze experimen-
tal data from Refs. 5 and 7, because in the conditions
h/r is comparable with 2T and the tunnel coupling is
partly suppressed due to the scattering. An examination

of this case (it will be reported at a later date) requires
a quantum kinetic approach. In our calculations we have
neglected the spin splitting of the electron states in the
magnetic field. This splitting must be taken into account
when it is comparable with the tunnel splitting 2T. How-
ever, in the GaAs/Ga Ali As structures, the spin split-
ting is small enough (less than 0.3 meV even at H 10
T), due to the smallness of the g factor of the electrons.
Another important approximation concerns the scatter-
ing model described by the correlation function (ll). As
a result of its usage, the validity of the numerical re-
sults presented in this paper is restricted by the proper
class of the scattering potentials (interface roughnesses
with the same correlation length l for all the interfaces).
For instance, these results cannot be directly applied in
the case of Coulomb impurity scattering. In spite of this
restriction, the model gives a good agreement with the
experimental data, when the correlation length is used as
a single fitting parameter. The results of the fitting pro-
vide reasonable values of the correlation length, l 12
nm, which are larger that the Fermi wavelengths in the
investigated DQW's. This fact is a confirmation that
the electron scattering due to the long-range scattering
potentials is important in these structures.
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APPENDIX

Below we estimate the relative size of the conductivity
steps corresponding to the "critical" magnetic field H
when the subband "+" becomes unpopulated. We use
a simple model of short-range-correlated scattering po-
tentials [Eqs. (28) and (31)] and assume A = b~ = 0.
Since the conductivity in high magnetic fields is not very
sensitive to the scattering asymmetry, we put m~ = m„
for simplicity. In this case Eq. (28) gives

1 1
~~~~ (EI -+ EI.) - f dp p„(p ) f dp +

py (»* »y+ p*
(Al)

The steplike behavior of this expression is connected with the peculiar property of the following integral

d») 7(-/pl+a —', H = H. —0
pm+(» *) 0, H=H, +0

4T
B'AV 0

(A2)

which is also responsible for the step of the density of states. The value of p is usually small, since the tunnel splitting
is typically smaller than the Fermi energy. Calculation of o~~ in the limit of small p provides an estimate

(T(~(H, + 0) 1+ 1

o~((H. —0)
(A3)
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Similar calculation using Eq. (31) gives

m ~» (p*))

p~dpx

Iy (s*)&T(s.)

dp 4T2

uy (p*) &T(p*)'
dp* +I

pw (p*)
(A4)

This equation shows that the step of 0~ is always higher than the step of a
~~

due to an additional steplike contribution
f'rom the last term of Eq. (31). For small p we obtain

o~(H, + 0) (r(~(H + 0) 1+ 8g/[vr2(~2 —1)]
&(H 0) (T(((H 0) 1+Sp/[7r2(~2 —1+1/gl+ p2)]

(A5)

Estimating relative size of the conductivity steps with parameters used for calculation of Figs. 2 and 3, we obtain
o ~~(H, + 0)/(T~~(H, —0) 1.15 and a~(H, + 0)/o~(H, —0) 1.59, which demonstrates significant dift'erence between
these values.
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