PHYSICAL REVIEW B VOLUME 53, NUMBER 22 1 JUNE 1996-II

Effect of diffusive boundaries on surface superconductivity in unconventional superconductors
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Boundary conditions for a superconducting order parameter at a diffusive scattering boundary are derived
from microscopic theory. The results indicate that for all but isotropic gap functions the diffusive boundary
almost completely suppresses surface superconductivity in the Ginzburg-Landau regime. This indicates that in
anisotropic superconductors surface superconductivity can only be observed for surface normals along high-
symmetry directions where atomically clean surfaces can be clefS@eii63-18206)06122-X]

Superconductivity in URtis believed to be described by upper critical field. In the presence of a surface the following
an unconventional order parameter which has two complesurface free energy density is added:
componentsy; and 7,.17° This description allows for an
explanation of the many unique experimental features asso- Fs=g|y|2. )
ciated with superconductivity in this hexagonal material. For
example, the upper critical field for fields in the basal planer,o Ginzburg-Landau equations are
(Hﬁf) as a function of temperature displays a kink at a tem-

*x 6 *
peratureT*.”> At temperatures béalovvl one component of ay=«kD-Dyy, h=H, 3)
the order parameter orders u@z, while for temperatures

aboveT* the other component orders lel@:. The observa- where a=ay(T—T.,) with the boundary condition

tion and experimental investigati®if of surface supercon- N-Di|sytace (1) ] sutace Where n is the surface normal
ductivity in UPt; has led to an examination of this phenom- and b= «/g is the extrapolation length and is described in
enon in unconventional superconduct®rs: In contrast to  Fig. 1 (also see Ref. 18 For an applied magnetic field or-
HE>, the upper critical field for surface superconductivity for thogonal to the surface normal this equation can be solved by

fields in the basal planel—@;’) exhibits no anomaly with following the method of Saint Jamé$The solution is

temperaturé&. This can be understood if one component of
the order parameter is suppressed at the surface, allowing @
surface superconductivity to occur only with the other A(x)
component!! It is therefore important to understand under

what conditions the superconducting order parameter is sup-

pressed at a boundary. Microscopic calculations for bound-

ary conditions at specular reflecting surfaces have been
conducted®*?|t is also interesting to examine the effects of

diffusive boundaries on surface superconductivity. It is

known that rough surfaces are pair breaking for anisotropic
superconductofs!® and therefore are expected to suppress

surface superconductivity. Here we investigate how strong = b X
such a suppression will be for general order parameter sym-

metries. First, we examine the solution of the isotropic ()
Ginzburg-Landau model with general boundary conditions to A(R) [T777 T e

gain an understanding of the effects of the boundary condi-
tions on surface superconductivity. Then we use a weak cou-
pling microscopic theory to calculate the boundary condi-
tions at a diffusive scattering boundary for general order
parameter symmetries.

The Ginzburg-Landau free energy density for an isotropic

superconductor in an external magnetic fields . &M

- bh—
F=ao(T—T¢)|¥|?+ k(D) - (Dy)* +h?/8w—h-H/4m,
oy FIG. 1. Schematic representation of the extrapolation lebgth
) (a) Microscopic depiction of the spacial variation of the supercon-
whereD= d—(i2e/Aic)A, andh= @< A. We have only kept  ducting order parameter near a superconductor to insulator bound-
terms to order)? since we are interested in determining the ary. (b) Macroscopic representation ().
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Hc3_ 1 =(TT{cl,’s, ,(7)cl (0)}) where ¢, (7)=€""c, 7" and
H_Cz_ w2(H—12’ (4) T, is the imaginary time ordering operator and finding the

equations of motion for these averages leads to the linearized
wherech=27r¢>0/§2(T), ¢o is the elementary flux quan- gap equation

tum, &(T)=+—«/a is the coherence length, and(l) is

given by Ag, s,(0.K) = ~keTY 2>V
wn k’,k”,q’
S$3,5S4,55,Sg

XGg, o (K’ +a/2K"+0'[2;i wp)

(k,k")

$5,81:83:Sy

foo(Zu—,u—I)e’(”’“)zu’(”"z"z)’zdu:0, (5)
0

wherel =(H.,/H.,)*?€(T)/b. The ratioH.,/H., as a func- XGY  (—k'+q/2,—K'+q'/2;— i wp)
tion of temperature is given in Fig. 2. e
Microscopic calculations are required to determine the ra- XAss,se(k"’Q')a (7

tio b/£(0). Such calculations have been performed for gen-
eral order parameter symmetries in the presence of a speculaherew,= 7kgT(2n+ 1) are the Matsubara frequencies and
reflecting surface in a weak-coupling model with a sphericathe normal state electron Green’s funct'@@s,(k,k’,i wy) is
Fermi surfacé’'? Here similar calculations are performed given by the Fourier transform of '

for a diffusive scattering surfacghis has previously been

done for isotropic? weakly aynlsotropl_é,7 and p-wave' or- . . ¢* (R) b, o (R
der parametejs The correlation function method developed G, (RR',i wy)=2, -

by deGennes and co-work&td3and extended to unconven- ' v

tional superconductors by Sigrist and Utt# used. We here #,.s(R) are the eigenfunctions of the single-particle

consider a weak-coupling model with a spherical Fermi sury,miironianH,. We assume that the interaction can be writ-
face and assume that there is no spin-flip scattering at the,, i, the weak-coupling form

surface. The development of the formalism initially parallels
that of Sigrist and Ued&

53,3'1 (8)

lop—€,

The Hamiltonian is Vs 5,555,k =2 g(D)Ag ¢ (T,m.ke)
I''m
It ’ T ’
H=2 (ks|Holk's" )clCos + 2 Ve s, .55.5,(KiK) XAg, 5, (Tmke), €)
Kk’ kk'.q
58’ 51+52:93:54 wheree(k) ande(k’) are restricted to lie within an energy
XCglzfk,slcg/2+k,sch/2+k’,s3cq/27k’,s47 (6) e. of eg, T' refers to an irreducible representation of the

point group, andm to the basis of thd" representation. If
where H, is the single-particle Hamiltonian including the only one representation is important, then the gap matrix can
interaction due to the boundary amg ¢ destroys a free be written asA(R,Kg)=2=,,7m(R)An(Kg). Fourier trans-
electron with momentumk and spin s. Defining forming the linearized gap equation with respect to the
Gs,sr(k,k’,7)=—<TT{Ck,s(T),Clr,sr(0)}> and F! _(k,k’,7)  center-of-mass variableg and q’, substituting the above

s,s’
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forms for the gap function and the potential, and using the TABLE I. Boundary conditions for gap matrices transforming

orthogonality condition for the gap matrix, as selected basis functions of the point grdig,. The surface
normal is along the hexagonaldirection. The specular boundary

condition is found by applying P, A(k) A(k 2k-Xx). |If

) . - P A(K)=A(k), thenb=c, and if P,A(k)=—A(k), thenb=0.
Jsd K TrLA|(Kp) A(Ke) =20, (100 Theo, are the Pauli matrices.
where the integral is over the Fermi surface, gives the fol- b b
lowing equation for the order parametgi(R): . &o o
r A(k) specular diffusive

Alg |0'y 0 0

7i(R)= J d*R'K;;(RR) 7j(R"), (1D oy (K + k) ® 12

ioyk? o 1.4
Azg i oy (K§— 3kyk2) (k3 —3kZk,) 0 0.72
with K;;(R,R") given by Big gk (K3— 3k, k2) o 0.66
Byg ia'ykz(k?’ 3Kyk?) 0 0.63
gksT - o (lugl-ien Eug gk 0 0.64
Kij(R,R’)=Tz dtf dei—— (12 ToykKy * 0.46
on JO lon—e Eaq iy 2keky 0 0.64

iy (K—k?) o 1.3
XE <V|trAT[ J(R)} Alu |O'y0' Zk o0 0.53
Ap  ioyo ZK,(k§—3k,k3) (k3 — 3kZky) 0 0.68
Im By ioyo 2(k$—3k k2) o 0.72
XA, WJ(R’,t) |v)o(e—e,), (13) By, ioyo 2(K;—3K,K?) 0 0.68
F E, iy 0 7K, 0 0.11
ioyo- iky o0 0.53
whereJ(R) is the current operator. We use the semiclassicak,, ioyo- 22k,kyk, 0 0.58
and weak-coupling approximations, which entails iy i(ki—kﬁ)kz © 0.67

3 (rAfA;) 8(e, — € ~N(O)(trAfA)) . ., *®*% where N(0)

is the density of states at the Fermi surface, to arrive at the _ . _ _

following form for the kernef® of the order parametdfor a more detailed discussion of this
point see Ref. 18 For a diffusive boundary the expectation
value inKj; is given by

3

= _2‘“’n‘t T _ 4
Kij=N(0) kg T >, Jdte <trA|[2kFJ(R)} d%p ., P

wn trATA ) =[4N(0)k2]? f —=
m { > [ el Z<O%g p,>0 P mp’
XA | - J(R',1) > : (14)
: 2ke e ,Classical X & R'— Ri—i—p E—p ( ! RZ”
P, m Pz
where the expectation value is an average in a canonical p?
ensemble for an electron with momentum on the Fermi sur- T
X 8 ———€p |t A A
face. In the presence of a single boundary, the kernel has two (p=p)o ( 6F> LA (P)&;(P7)].
parts, a direct contributionK®) which is the contribution (16)

when no boundary is present and a contribution due solely to

the scattering at the boundariK). For simplicity, we as- In this equation a quasiparticle that had initial position

sume a spherical Fermi surface in which case the direct corR=(R, ,R,) (z is the component along the surface normal

tribution is given by Sigrist and Ueda to e and initial momentunp=(p, ,p,) has been scattered by the
surface emerging with momentupi. The p,/ap’ repre-
sents the probability of emerging from the surface with mo-

4,0 IN(O)kgT tr{Afr[R/R]AJ-[R/R]} mentump’ (note this is independent qf) and the three-
Kij(R)= 2ue ; R2 dimensional (3D) & function gives the time-dependent
A position R’(t) of the quasiparticle given that at time
2|w,|R t=—mR,/p, the quasiparticle is at the surface with position
xexy{ — T) (15 R, —p,R,/p, (these correspond to the position on the sur-

face and the time required to reach the surface for a quasi-
particle with initial position and momentum given Byand
The transition temperature is given by the conditionp) (see Ref. 16 for a discussion of diffusive scattering for the
Jd®R Kﬁ(R) =1 wherei corresponds to only one component case of isotropic superconductprg/e assume that the order
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parameter varies only in the direction along the surfacevhere K=(vq/2mk,T)K;. It can be verified that
normal and therefore wish to determine 7, = 7;o(1+x£&y/b;) is a solution to Eq(19) asx—ox. As
Jd?R,K;j(R,R")=K;j(z,2"). The resulting kernel is pointed out by deGenné& the linear dependence of the or-

der parameter on appears to give an unphysical result as
Ki(2,2')= gN(O)ka“ flds F{ |wn||z z |) x—o; however, nonlinear terms neglected in Et9) will
e 2vF introduce a negative curvature to the order parameter so that
it will achieve its bulk value foz> &(T) [recallz= £xx]. We
fldse p<—2| ”||Z|)AT( )} are interested in the regian= £,<<&(T) where this curvature
UES is negligible. To find the coefficier; /£, we use the varia-
tional approach of Svidzinskfi as it is presented by
f n||z | A(=s) 17 Samokhit® and by Barash etall®> Substituting
! ' 7=C[z+q(x)] [then b/&=lim, .q(x)] into Eq. (19

XF(s)+m r

where  F(s)= (1/2)trfé”d¢[A*(s Hisp+il-s I
) Ai(—s,8)], Ai(s)=J2"dpA (s, ¢), andA; {(.9) is given CEX (e
by settingk = (y1—s’cosp,1—s%sing.s) in A(k). To ob- q)=——+ jo K(x,x")q(x")dx’, (20)

tain Eq.(17) the following was used: ) Y )
with E(x)=2[¢x'K(x,x")dx’—2x. The above equation

can be found by minimizing the functional

2w ~ ~ _ 2w ~ 3
J; eeblopainpn= ] Tesilior - Faaxa00Ta00 - fax Roex )aex)]

. ¥[q]= - ; (21
X Aj(b,p,—2) (18 [Jodxa(x)E(x)]
Whefeﬁ(tﬁ,p,Z) is given by settingk=(p cosp,p sing,2) in The minimum value of¥'[q] is given by
A(k). Equation(18) arises because both and4j; transform _— 1 o
identically under parity. A similar development for a specu- M= S [ E A qOE(X)

larly reflecting surface gives the same result as Samokhin. o .
To proceed we consider thie j contributions onlyithese ~ The coefficiento can be expressed in terms ¥y, as
are frequently the only contributions along high-symmetry

directions. After  introducing x=2z/&,, where Efwdxxax)+1/4wmin
éo=vel2mk, T, the integral equation for the order param- 3_ 2J)o
eter becomes & 1(> o © '
—f de(x)—f dx’x’ f dxK(x',x)—1
2)o 0 0
* v ’ ! (23)
n (0= [ d¢Roex) mox), a9 |
0 Using a constant fog(x) gives the result
|
b_ 769) 2 R
& [IPF(s)ds+ (12mt] [isAT(s)[Ls?Ai(—s) - [is?AT(s) [IsAi(—s)] | 24
70(3)12 [[is2F(s)ds+ m rfisAT(s) [3s?A.(—9)]?
Y 1"f ms)j 2h (g + TEOL Lo _lfol i M-S o
2w JosF(s)ds— 7~ rfgsA{(s) [gSAi(—S)
|
where{(3)=3,1/(2n+1)3. value arises becausg= C[b/&y+x] is an asymptotic solu-

Values forb; / &, are given in Table | for various functions tion to Eq.(19) and the exact boundary condition is valid
A(K) corresponding to irreducible representation®gf for ~ only on the surfac¢see Fig. 1 The variational result for the
a surface normal along the hexagomaHirection. For the constant order parametgh/£,=>] is exact.
case ofp-wave pairing an exact solution can be compared to Note that in genera§(0)=Vk/aqT # &, [for isotropic su-
the variational solution. Th@-wave order parameter trans- perconductors£(0)~0.2§, (Ref. 18]; however, £(0)~ &
forms as a vector under spatial rotations. For the order paand the valued/£(0) ~0.6 give rise toH; ~H,, to less
rameter component transverse to the surface normal thgan a tenth of a percent within the temperature range shown
variational solution givesd,/&,=0.53 which compares fa- in Fig. 2. This indicates that diffusive scattering effectively
vorably to the exact resuli,/£,=0.5413 For the longitudi- completely suppresses surface superconductivity for all but
nal component the order parameter obey®)=0 irrespec- isotropic order parameters. Since the electronic wavelength
tive of the form of the boundar¥’ In this case the variational is typically on the order of atomic length scales, a surface
approach give®,/£,=0.11 which is nonzero. This nonzero will usually be diffusive. An interesting implication is that
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surface superconductivity is expected only to occur on sursymmetry of the order paramet@rOur results indicate that
faces with normals along high-symmetry directions, wheresuch an experiment is not feasible because the surface of the
atomically clean surfaces can be cleaved. These results asample will be diffusive.

consistent with the observation by Kellet al. that cutting We acknowledae the support of the Natural Sciences and
the crystals destroyed surface superconductivity inJUPit wiedg upp u '

has been proposed that turning a cylindrical superconducttﬁnﬁ"nee”ng rF]Qelsearch COUHICI| of Canadi';l. We a:cso tha;k N.
in a magnetic field orthogonal to the axis of symmetry and<€ller, J.L. Tholence, A. Huxley, and J. Flouquet for making
measuring the surface superconductivity can determine th&€ir work available to us prior to publication.
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