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As a simplified model of randomly pinned vortex lattices or charge-density waves, we study the random-
field XYmodel on square (d52) and simple cubic (d53) lattices. We verify in Monte Carlo simulations that
the average spacing between topological defects~vortices! diverges more strongly than the Imry-Ma pinning
length as the random field strengthH is reduced. We suggest that ford53 the simulation data are consistent
with a topological phase transition at a nonzero critical fieldHc to a pinned phase that is defect free at large
length scales. We also discuss the connection between the possible existence of this phase transition in the
random-fieldXY model and the magnetic-field-driven transition from a pinned vortex lattice to a vortex glass
in weakly disordered type-II superconductors.@S0163-1829~96!06421-1#

I. INTRODUCTION

There is considerable current interest in the effects of
quenched disorder on ordered phases with continuous sym-
metry. Examples are vortex lattices in type-II
superconductors1,2 and spin- and charge-density-wave sys-
tems subject to random pinning,3 as well as amorphous fer-
romagnets with random anisotropy4 and liquid crystals in
porous media.5 The random pinning induces continuous,
elastic distortions of the ordered state and it may also induce
plastic deformation due to topological defects, such as dislo-
cations, which do not represent continuous distortions of the
ideal ordered state. The distortions induced by random pin-
ning in the absence of topological defects can be treated
within an elasticity theory, and have received an ever-
growing amount of attention over the years.6–14 Hence, it is
important to assess the regime of validity of these ap-
proaches that assume that the topological defects are not
present. To do so, we focus here specifically on the produc-
tion of topological defects by the random pinning in
equilibrium.14,15

The simplest system in which to study these issues ap-
pears to be the ferromagneticXYmodel with a random field.
Here the long-range order in the pure system is ferromag-
netism, the pinning is due to the random field, and the topo-
logical defects are vortices in the magnetization pattern. The
Hamiltonian we consider is

H52(
^ i , j &

Si•Sj2(
i
hi•Si , ~1.1!

where the first sum is over all nearest-neighbor pairs of lat-
tice sites,Si is a unit-length, two-component (XY) spin at
site i , and the static random fieldshi have rms magnitude
H. The ground state of~1.1! evolves from being ferromag-
netic and vortex free forH50 to a state with all spins
aligned with the random fields, and thus a dense array of
vortices, for largeH. In the context of vortex lattices, the

H50 limit corresponds to an unpinned Abrikosov lattice,
while largeH corresponds to a vortex-glass ground state at
strong pinning.1,2,16The connections between this model and
vortex lattices are discussed in more detail in Sec. IV below.

Let us first consider a small random fieldH, following
Imry and Ma.7 Treating the random field as a perturbation,
the long-range-ordered ferromagnetic phase is stable at small
H only for spatial dimensiond.4. Ford,4 the static elas-
tic relative spin rotations induced by the random field are of
order one at the pinning lengthjP;H22/(42d). The behavior
at longer scales is not accessible by simply perturbing in
H. This perturbative treatment only considers continuous
elastic distortions of the uniform state, not vortices, which
are nonperturbative. Let us ask about the system’s stability at
small H and length scaleL<jP to static vortex-antivortex
pairs ind52 or to vortex loops ind53. The vortices permit
the system to align better with the random field on a length
scaleL. This, naively, lowers the random-field pinning en-
ergy by an amount of orderHmLd/2, wherem is the magne-
tization density atH50. However, the added energy of the
elastic strains around the vortices is of order
KL (d22)u ln(L)u, where K is the spin stiffness. Even at
L5jP , the elastic energy cost is larger than the typical pin-
ning energy gain by a factor ofu ln(H)u. Hence, the system
appears to be stable against vortices for smallH at length
scales less than or of orderjP(H).

12,17 ~Note, however, that
there will be a low density of isolated vortex pairs for
d52 and loops ford53 that are induced by unusually
strong local configurations of the random field.! Thus we
expect that at smallH, the smallest length scale at which the
equilibrium system is unstable to a proliferation of static
vortices,jV , is larger than the pinning lengthjP andpossi-
bly infinite. Recently, theoretical progress has been made in
understanding the essential features of the physics at play in
the pinned, vortex-free length scale regime intermediate be-
tweenjP andjV .

10–13However, other than the above lower
bound predicted forjV , howjV depends onH and when and
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how the static vortices proliferate at length scalesL.jP is
far from well understood.12,14This is what we investigate in
this paper.

If vortices are forbidden, then the equilibrium long-
distance spin-spin correlation function is expected to decay
as a power law.10–12, 17This behavior should also apply in
the distance range betweenjP and jV where the system is
strongly pinned but still largely vortex free. The above argu-
ment says thatjV@jP for smallH, and so this intermediate-
distance regime does exist. The true correlation length, be-
yond which the correlations decay exponentially, should be
of orderjV . There are two possible behaviors for the vortex
spacingjV(H): ~a! It may diverge only atH50, but with a
stronger divergence than the pinning lengthjP , or ~b! it
could diverge at a nonzero critical fieldHc . These two pos-
sibilities are schematically illustrated in Fig. 1. Our simula-
tion results below appear consistent withHc50 for d52,
but with Hc.0 for d53. When this second possibility~b!
occurs, there is at low temperatures an intermediate pinned
phase for 0,H,Hc(T) that is vortex free at the largest
length scales, and therefore has topological long-range
order.12 This ordered pinned phase, if it exists, has power-
law decay of the long-distance spin-spin correlations, and is
separated from the disordered and plastic phases at higher
H by a topological phase transition atHc where large-scale
static vortices first appear.

Let us now discuss what are the fixed points governing a
hypothetical renormalization-group flow from various por-
tions of the (H,T) phase diagram in a scenario where there is
a topologically ordered phase for 0,H,Hc(T) at low tem-
peratures. For the ferromagnetic random-fieldXY model the
important energy scales are the temperatureT, the spin stiff-
nessJ, the random fieldH, and the core energy per unit
length of a vortex line,E. ~There is also the uniform field,
which we do not consider here!. The fixed points are sum-
marized in Table I.

First, let us consider the stability of the pureXYmodel in
the regionsT.Tc , T5Tc , andT,Tc with H50 against

FIG. 1. Schematics of possible phase diagrams for the random-
field XY model, and~insets! dependences of the characteristic
lengthsjP and jV on the random-field strengthH along the paths
marked by the arrows. In~a! there is no phase transition at nonzero
H. The average vortex spacingjV diverges more strongly than the
pinning lengthjP with decreasing random field, but both lengths
remain finite as long asH.0. At some fieldH* that depends on
temperatureT, the lengths and relaxation times become large
enough that equilibrium can no longer be attained, and soH* (T) is
a type of kinetically determined glass transition, whose location
depends on the time scales of the experiment or simulation. In~b!
there is a true equilibrium thermodynamic phase transition at
Hc(T), wherejV diverges. The region 0,H,Hc(T) is the topo-
logically ordered, pinned phase that is vortex free at large length
scales.

TABLE I. Summary of the various fixed points in the (H,T) phase diagram of the three-dimensional
random-fieldXY model in the scenario where there is a topologically ordered phase in the parameter range
0,H,Hc(T) andT,Tc . See the text for more discussion.

Portion of (H,T) phase diagram Governing fixed point Relevant operators

H50, T.Tc J5E5H50, T.0 only H/T is relevant

H50, T5Tc H50, T;J;E.0 H/J andT/J are relevant

H50, T,Tc H5T50, E@J.0 only H/J is relevant

H.Hc(T) J5E50, H/T.0 nothing is relevant

H5Hc(T), T,Tc T50, H;E@J only H/E is relevant

0,H,Hc(T) T50, E@H@J nothing is relevant
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infinitesimally smallH. In the fully disordered paramagnetic
phase the random field is in a sense marginal, since the
frozen-in magnetization induced by the random field and the
rms thermally fluctuating magnetization are both of the order
of the square root of the number of sites,Ld/2 ~whereL is the
length scale considered!, with a ratio which varies continu-
ously as one variesH/T. Thus it would appear that the fully
disordered phase is governed by a trivial fixed line of which
the H/T50 paramagnetic fixed point is a special, higher-
symmetry point. For the (H50,T50) fixed point that gov-
erns the low-temperatureH50 ferromagnetic phase, one has
H/T50, butJ/T andE/T are both infinite, withE/T larger
thanJ/T by a factor of order ln(L), due to the logarithmically
divergent energy of a vortex line. HereH/J is relevant for
d,4, as argued by Imry and Ma. For the (H50,T5Tc)
fixed point,H/T50, andJ/T andE/T are of order one. For
H50, T/J is obviously a relevant operator at the~unstable!
nontrivial T5Tc critical fixed point of the pure model.H/J
is also relevant atT5Tc . One can obtain the scaling of the
correlation length atT5Tc and H.0 by comparing the
random-field free energy scaleHm(L)Ld/2 with the spin
stiffness on length scaleL, which is L independent at
T5Tc . Since at criticalitym(L);L2(d221h)/2, we find, tak-
ing j5L, that j(H,T5Tc);H22/(22h), where h is the
usual critical exponent for the spatial decay of the correla-
tions of the pureXY model atT5Tc andH50.

Now, if an intermediate topologically ordered phase ex-
ists, it is governed by a zero-temperature fixed point~as in
other random-field problems! whereH/T is infinite, but there
E/T is also infinite and much larger thanH/T ~since large-
scale vortex loops must be absent to ensure topological or-
der!. J/T might well be zero at that fixed point~or at least
much smaller thanH/T). At the fixed point governing the
H.0 critical line, H5Hc(T).0, H/T and E/T would be
comparable~probably both infinite! and againJ/T much
smaller or even zero. For the fixed point governing the dis-
ordered phase,H.Hc(T), one hasJ5E50 and only
H/T.0, and none of the scaling fields are relevant, although,
as discussed above,H/T is in some sense marginal here.

We have performed Monte Carlo simulations of the
random-fieldXY model ~1.1! on simple cubic (d53) and
square (d52) lattices. In both cases we find that, as ex-
pected by the above heuristic arguments and also suggested
by Giamarchi and Le Doussal,12 the spacing between vorti-
ces diverges more strongly with decreasingH than the pin-
ning lengthjP obtained from the Imry-Ma argument. For
d53, the data appear consistent with a transition to a topo-
logically ordered phase at a nonzero critical fieldHc.0,
with the correlation length and vortex spacing diverging as a
power of (H2Hc). For d52, on the other hand, the vortex
density is better fit by a power law inH itself, indicating that
there is no intermediate phase~i.e., Hc50). For d53 we
have tried to more precisely locate the proposed phase tran-
sition atHc using various forms of finite-size scaling involv-
ing moments of the magnetization distribution and the de-
rivative of the magnetization with respect toH, but have
been unsuccessful in obtaining a convincing one-parameter
scalingL/j(H), whereL is the linear size of the samples.
We suspect that this lack of simple finite-size scaling may be

due to the presence of two distinct diverging length scales in
this problem, namely,jP and jV , which complicates the
finite-size scaling.18

The rest of the paper is organized as follows: The details
and results of our Monte Carlo simulations are presented in
the next section. Section III contains a discussion of the pos-
sible nature of the phase transition ind53 and of the under-
lying topologically ordered phase at small random field. The
connections between the random-fieldXY model and vortex
lattices and the possible existence of two thermodynamically
distinct superconducting ‘‘glassy’’ vortex phases in type-II
superconductors are discussed in Sec. IV. Section V contains
a brief conclusion.

II. SIMULATIONS AND RESULTS

Here we report results from simulations of the random-
field XY model on large lattices~up to 106 spins! in the
temperature and field range where we could obtain true ther-
modynamic equilibrium. We simulated two copies~replicas!
of each sample, one with a ferromagnetic initial condition
and one with the spins initially aligned with the random field
at each site. We took care to only use late-time results where
both replicas give the same time-independent averages. At
the lowest fields studied, this required up to 105 Monte Carlo
steps per spin~single-spin rotations, Metropolis algorithm!.
We studied the model with independently Gaussian-
distributed random fields at each site@hi #50,
@hi•hj #5H2d i j , where the square brackets represent an av-
erage over the distribution of random fields. We measured
the time-averaged magnetizationmi5^Si& at each site. The
angle between the magnetization vectorsmi on each nearest-
neighbor pair of sites was obtained, with the convention that
it lies between2p and p. For each elementary square
plaquette, these angles were added to obtain the total rotation
of the magnetization on moving around the plaquette. This
sum is a multiple of 2p; if it is nonzero, then there is a
vortex in that plaquette in the equilibrium~static! magneti-
zation pattern. We also measured the correlation function
g(r )5@mi•mj #, for pairs of sitesi and j that are separated
by a distancer along a lattice axis.

We wanted to study the ordered-phase~low-temperature!
behavior, but be at a high enough temperature that we can
equilibrate in not too much computer time. Ford53, where
the critical point in the absence of the random field (H50)
is atTc

3D>2.2,19 we examinedT51.5, which is sufficiently
far belowTc

3D to avoid theH50 critical regime. Ford52,
whereTc

2D>0.9,20 we worked atT50.7. The quantities we
have measured are all self-averaging, and so they can be
accurately determined from a single sample, provided it is
large compared to the correlation lengths. We generally
simulated more than one sample and the sample-to-sample
differences were small, as expected. We have also varied the
sample size to check that any finite-size effects in the data
reported are smaller than the statistical errors.

The fractionf V of elementary square plaquettes occupied
by static vortices is shown vsH in Fig. 2. The solid
(d52) and dashed (d53) lines indicate what the slopes
would be if the intervortex spacing was the pinning length
jP given by the Imry-Ma argument, and sof V;jP

22 . The
argument given in the Introduction says thatf V should van-
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ish more rapidly than this with decreasingH, and the data
clearly support this. Ford53, the vortex density is not well
approximated by a power ofH over any substantial field
range inH.1.5, the range we can equilibrate.

In Fig. 3~a! we show the correlation function ford53,
which is very well fit by a simple exponential
g(r );exp(2r/j). The measured correlation lengthj also di-
verges substantially faster than the Imry-Ma estimate of the
pinning length,jP;H22, asH is decreased. We find that the
vortex densityf V equilibrates much earlier in the simulation
than the long-distance correlation function; hence we have
results that we trust forf V to slightly lower field than for
g(r ) andj.

One naively expects that if there is a transition to a topo-
logically ordered phase ford53 at a nonzeroHc ~which
depends onT), the correlation lengthj diverges as a power
of (H2Hc). In Fig. 4 we show that our data forT51.5 are
consistent with such a critical behavior withHc>1.35. In
fact, the vanishing of the vortex density,f V , is also consis-
tent with such a power law. However, such a power law for
f V should not hold all the way toHc because a small density
of small isolated vortex loops should be present even in the
ordered phase, due to rare, strong local random-field con-
figurations. The fact thatf V is vanishing almost as fast as
j22 suggests that these small loops represent only a small
fraction of the full vortex density over the field range studied
here. We did not attempt to separate the population of vorti-
ces into small and large loops ford53 ~but see below for
d52). The apparent exponents withHc51.35, indicated by
the solid lines in Fig. 4, arej;(H2Hc)

2n with n>0.85,
and f V;(H2Hc)

r with r>1.4. Note that the range of the
scaling fits for all the quantities in Fig. 4 is less than one
decade, and so this apparent scaling should not be taken too
seriously. But we can definitely say that the data forj and
f V in this field range are very different from a power-law
critical point with Hc50 and are consistent with a power-

law critical point withHc near 1.3.
For d52 the Imry-Ma argument givesjP;1/H at T50.

At finite temperature, the magnetization at scaleL, m(L), is
renormalized by thermal fluctuations in the critical phase be-

FIG. 2. The fraction of plaquettes occupied by vortices vs the
rms random-field strength for the random-fieldXYmodel. Triangles
ared53, T51.5; squares ared52, T50.7. The slopes of the lines
on this log-log plot are 4~for d53) and 16/7~for d52), as given
by naive extensions of the Imry-Ma argument~see text!. These data
are, in most cases, from simulations of two large samples (105–
106 spins!, and so the statistical errors, indicated by the error bars,
are only roughly estimated.

FIG. 3. The magnetization correlation function versus distance
for ~a! d53, T51.5, and ~b! d52, T50.7, for the indicated
random-field strengths. The dotted lines in~a! are fits to simple
exponentials. The error bars, where shown, indicate variations be-
tween two and three large samples.

FIG. 4. Ford53, T51.5, andHc51.35 the vortex densityf V
~solid symbols! and correlation lengthj ~open symbols! vs
(H2Hc) on a log-log plot.j is obtained from the simple exponen-
tial fits in Fig. 2~a!.
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low the Kosterlitz-Thouless temperatureTKT @m(L)
;L2(d221h)/2 with d52#. When the Imry-Ma argument is
modified to take this into account one obtains
jP;H22/(22h). If we then take the largest valueh51/4 at
the Kosterlitz-Thouless transition temperature,21 we obtain
the maximum possibly Imry-Ma slope 16/7 (f V;jp

22), indi-
cated by the solid line near thed52 data in Fig. 2. As
expected, the vortex density ford52 is found to vanish even
faster than this with decreasingH. This again indicates that,
as found ind53, the vortex spacing diverges more strongly
than the pinning length given by the Imry-Ma argument.
However, ford52 the low-field behavior is quite consistent
with a power law inH, just with a larger exponent~roughly
f V;H3), rather than a phase transition at nonzeroHc . We
have checked that even for the lowestH we could equili-
brate, the majority of the vortices are well separated; less
than half are in closely spaced vortex-antivortex pairs.~Note
that thermally excited vortices are not present in our mea-
surements because we time average to obtain thestaticmag-
netization pattern.! The correlation function ford52 @Fig.
3~b!# and low field does not fit a simple exponential as found
in d53, and so it is not obvious how one should define the
correlation length.

III. DISCUSSION

We now give a heuristic argument for why rare, strong-
pinning regions should prevent the proposed topologically
ordered thermodynamic phase from being stable atH.0 for
d52. In d52 the vortices are point defects. The elastic en-
ergy cost of a vortex is finite, being proportional to ln(jP),
due to integrating the elastic energy from the lattice spacing
out to the pinning lengthjP . Beyond jP the system is
strongly pinned and no longer behaves as an elastic medium.
The local random-field pattern over any given area of order
jP
2 or larger has a nonzero probability of favoring the pres-
ence of a vortex by enough to compensate this finite elastic
energy cost of the vortex, thus forcing in a vortex there in the
ground state. For example, consider the extreme random-
field configuration that has the random fields in a vortex
pattern out to distancejP . This random-field pattern, which
occurs with a nonzero probability for finitejP , favors a spin
pattern that contains a vortex over one without a vortex by an
energy proportional tojP , for T50. In an infinite sample,
the density of occurrences of rare, special random field pat-
terns that induce vortices in the ground state will be nonzero
as long asH.0. Therefore, ford52 there cannot be a
vortex-free equilibrium phase in the thermodynamic limit of
an infinite sample, except atH50. Our data are quite con-
sistent with this conclusion.

A similar conclusion does not apply ford53, where the
vortices are lines so that the elastic energy cost of a vortex
loop is proportional to the length~perimeter! of the loop. For
such a vortex loop to be present at equilibrium, this elastic
energy cost must be compensated by a larger pinning energy
that favors the presence of the vortex loop. Naively, for
small random fieldH, the probability of such a large pinning
energy occurring falls off exponentially with the length of
the loop, and thus vanishes in the limit of a large loop, be-
cause it would require a rare, strong-pinning configuration

favoring the vortex that extends along the entire length of the
loop. ~In a recent paper, Kierfeldet al.14 use a scaling argu-
ment and a variational calculation to argue that the algebraic
translational order of the vortex lattice predicted by Giama-
rchi and Le Doussal12 should be stable at small disorder
against the proliferation of large dislocation loops.! Thus we
see that the vortex-free phase may be stable against rare,
strong-pinning configurations ford53. However, this is just
a heuristic argument, and there remains the possibility that
some sort of random-field configuration does destabilize the
vortex-free phase even at arbitrarily smallH.0. One sce-
nario is that theT50 correlation lengthj could vary faster
than any power ofH with a form j;exp(1/Hm), with some
exponentm. Our data certainly do not rule out this possibil-
ity.

How should one think about the physics at length scales
beyond jP? One proposal is the following: Consider first
d52, for concreteness. First, forbid vortices and find the
lowest-energy state satisfying this no-vortex constraint. This
state is pinned with some particular nontrivial spin pattern
resulting from the competition between the random-field en-
ergy at each site and the ‘‘elastic’’ exchange energy. Now
consider a patch of linear sizeL ~areaL2), with L@jP .
Introduce a vortex and an antivortex separated by a distance
of orderL and, within this patch, choose their locations and
the spins’ orientations to minimize the energy with this pair
present. ForL,jV this new energy is presumably typically
higher than the lowest-energy vortex-free state, but for
L.jV it is typically lower, and so the true ground state has
typical vortex spacingjV .

What does the unconstrained ground state, with vortex
separationjV , look like? Therelative spin orientation be-
tween it and the lowest-energy vortex-free state must rotate
by 2p on encircling any vortex. But the system~for
jV@jP) is strongly pinned, and so it will typically cost a lot
of energy to locally rotate the spins away from their local
ground state. Thus we expect that the relative spin rotation
will be concentrated in line defects~like sine-Gordon soli-
tons or domain walls! that each extend from a vortex to an
antivortex. Thus to find the ground state one must optimize
not only over the positions of the vortices but also of these
line defects~these defects are present only in therelative
spin orientations and are presumably of width of orderjP).
Since the line defects are not permitted in the vortex-free
state, they can have negative energy relative to the lowest-
energy vortex-free state once their positions are optimized.
Generally, it must require a length of defect line with end-
to-end distance at least of orderjV for its negative energy to
be enough to ‘‘pay for’’ the positive energy of the vortex
cores. This picture provides an energy-balance mechanism
that can set the density of topological defects.

For d53, instead of vortex-antivortex pairs one has vor-
tex loops, and instead of defect lines one has defect surfaces
that span the vortex loops or extend from loop to loop. Again
an optimally positioned defect surface spanning a vortex
loop can have a negative energy whose magnitude increases
as the loop grows, but now the positive core energy of the
vortex loop also grows in proportion to its perimeter. The
vortex-free phase will occur if the negative defect energy
typically increases in magnitude more slowly withL than the
loop’s core energy, and so the defect surface is generally not
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able to ‘‘pay for’’ the vortex loop~again, except for a low
density of small loops that are present due to anomalously
strong local pinning configurations!. Similar scenarios~for
d52 and 3) may also apply to random-anisotropy XY
models.4,22

IV. VORTEX LATTICES

We now comment on the connection between thed53
random-fieldXY model and the Abrikosov vortex lattice in

type-II superconductors with uncorrelated random pinning.
There are at least two aspects of the vortex lattice that are

not captured by theXYmodel. The single continuous degree
of freedom in theXY model, the spin orientation, plays the
role of the vector displacement of the vortex lattice. One
consequence of this simplification is that the topological
charge of a vortex in theXYmodel is a scalar~how much the
spin orientation winds upon encircling the vortex!, while that
of a dislocation in the vortex lattice is the two-component
Burgers vector. The other simplification is that the supercon-
ductor has the additional U~1! symmetry of the complex sca-
lar Ginzburg-Landau order parameterc under rotations in
the complex plane; this symmetry is absent in the random-
field XY model. This U~1! symmetry can be spontaneously
broken in the absence of any vortex-lattice order in the su-
perconductor, yielding the vortex glass phase.1,2,16 The
random-fieldXYmodel has no analogous ordered phase. An-
other consequence of the U~1! symmetry is that in the vortex
lattice an interstitial~or vacancy!, being a change in the vor-
tex number, is itself a topological defect; the random-field
XY model has no analogous defect.

The topologically ordered pinned phase at intermediate
disorder H that we discuss in this paper for thed53
random-fieldXY model would correspond for a supercon-
ductor to a pinned, Abrikosov vortex-lattice phase that is
dislocation free at large length scales.16 In the latter system,
the structure factorS(q) would have power-law singularities
at the basic reciprocal lattice vectorsQ of the form
S(q);uq2Qu2(22h).11,12 By increasing the disorderH in
the random-fieldXY model, we drive the system into the
fully disordered phase. In that case, the disordered phase is
not thermodynamically distinct from the high-temperature
paramagnetic phase. For the superconductor, on the other
hand, there are at least two noncrystalline phases: the super-
conducting vortex-glass phase at zero and/or lowT and the
resistive vortex-liquid phase at higherT. The higher-
temperature transition directly from the vortex-lattice phase
to the vortex liquid involves loss of both crystalline and su-
perconducting order, and so is certainly not fully modeled by
the random-fieldXY model. In the superconductor, for weak
pinning this melting transition is first order;23–25 the XY
model shows no such transition. For example, theXYmodel
would not display an analogue of the ‘‘vortex-slush’’ phase
that has been discussed based on some transport
measurements.26 However, for the zero-temperature transi-
tion from the pinned vortex lattice to the vortex glass, both
phases have off-diagonal long-range~superconducting!
order,27 and so the superconducting order could be effec-
tively just a bystander, and the random-fieldXY model,
which ignores this order, might capture the essential physics
of this transition.

It has recently been suggested that there could be~at least!
two types of glass phases caused by point impurities in
type-II superconductors,12,14 i.e., two types of vortex-glass
phases. Indeed, there might already exist indirect experimen-
tal evidence for two distinct superconducting phases in clean
crystals of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O high-Tc super-
conductors. At low applied magnetic fields, experiments see
the first-order melting transition of the vortex lattice.23–25, 28

At higher fields, the effective random pinning appears
stronger,29 and the superconducting transition is continuous,

FIG. 5. Internal magnetic fieldB vs temperatureT schematic
phase diagram for a layered type-II superconductor with strong
thermal fluctuations and weak random pinning. For an applied field
less than the lower critical fieldHc1 , the system is in the Meissner
phase withB50. The true zero-field critical temperatureTc is de-
pressed from the mean-field estimateTc

MF by thermal fluctuations.
For largeB andT, the system is in the normal~nonsuperconduct-
ing! state. BelowHc2

MF , the system is in the so-called vortex-liquid
state. Here it exhibits some local pairing and an increased conduc-
tivity due to superconducting fluctuations, but no long-range off-
diagonal order. The vortex liquid has a nonzero Ohmic resistivity.
Hc2

MF is not a thermodynamic phase transition, and so the vortex-
fluid phase is not a distinct phase from the normal state. In absence
of any disorder, the vortex fluid freezes into an Abrikosov vortex
lattice via a first-order transition atTm . For weak disorder and
small field this first-order melting transition remains and the system
enters the superconducting, pinned vortex-lattice phase, which we
propose is devoid of large-scale lattice dislocations at equilibrium.
For low temperatures atB.B* (T), the random pinning induces
dislocations and the system instead enters the amorphous vortex-
glass phase that we argue may be thermodynamically distinct from
the pinned vortex lattice. By increasing the microscopic disorder,
the vortex glass to pinned lattice phase boundaryB* (T) moves to
smaller fields, reducing the range ofB where the pinned lattice
exists and eventually eliminating this phase altogether for strong
enough pinning. At very low fields where the vortices are far apart
compared to the magnetic penetration length there is also an amor-
phous glass phase due to the vortex-vortex interactions becoming
small compared to the random pinning; this is indicated as ‘‘reen-
trant glass.’’ Here, for simplicity, we have shown the linesB* ,
Tg , andTm , all meeting at a multicritical point. Other topologies of
the phase diagram, including possibly the proposed ‘‘vortex slush’’
regime~Ref. 26!, are also possible~Ref. 24!.
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as expected for the melting of a vortex glass. For Bi-Sr-Ca-
Cu-O, a neutron-scattering study saw the lattice Bragg peaks
in the low-field regime but not in the high-field regime.30 A
similar field-driven transition has been observed in muon
spin resonance (mSR! experiments on Bi-Sr-Ca-Cu-O.31

This is all consistent with these samples having the pinned
vortex-lattice phase in the low-field regime and the amor-
phous vortex-glass phase in the high-field regime. Also,
similar to what has been found in Bi-Sr-Ca-Cu-O,31 recent
mSR results on YBa2Cu3O6.6 show a rapid modification of
themSR line shape above a critical field.32 Some signs of a
transition between these two superconducting phases have
recently been seen in the nonlinear transport properties
Y-Ba-Ca-O,33 and in DyBa2Cu3O7/~Y12xPrx!Ba2Cu3O7
superlattices.34 The neutron30 andmSR ~Refs. 31,32! results
have been interpreted in terms of a field-drivend53 to
d52 crossover as discussed by Glazman and Koshelev.2,35

However, in presence of disorder, this crossover makes the
effective pinning potential~relative to the vortex-vortex in-
teractions! change rapidly around the crossover field value,29

which may transform it into a true thermodynamic phase
transition. This transition, we argue, is characterized by the
proliferation of dislocations in the lattice, reducing it to the
amorphous vortex glass~see Fig. 5!. It is this transition that
is mimicked by the random-fieldXY model we have studied
here. In the ideal pure disorder-free system, there is no true
structural phase transition in the vortex lattice at the dimen-
sional crossover at zero temperature. So, in this sense, in the
presence of the disorder, the vortex-lattice to vortex-glass
transition observed experimentally23~b!,30–34 is more than
‘‘just’’ the d53 to d52 crossover.35 Finally, it has recently
been reported that the first-order melting in Y-Ba-Ca-O is

destroyed by point defects caused by electron irradiation,
giving rise to a second-order transition.36 Interestingly, the
critical exponents measured in these electron-irradiated
samples differ largely from those measured for the vortex-
glass transition.2 This may indicate that a sufficiently large
density of point defects have destroyed the first-order vortex-
lattice melting transition, and converted it into a second-
order transition from a vortex-liquid to pinned vortex-lattice,
as opposed to a vortex liquid to vortex glass transition that
would occur at even larger density of point defects~or at
larger applied magnetic fields!.

V. CONCLUSION

In conclusion, we have performed extensive Monte Carlo
simulations of thed52 andd53 random-fieldXY model.
In both dimensions, the spacing between static vortices
grows faster than the pinning length obtained from the
Imry-Ma argument as the random-field amplitude is de-
creased. Ind53, our results appear to be consistent with a
phase transition at nonzero critical random field into a topo-
logically ordered~vortex-free! phase with power-law decay
of the spin-spin correlation function. We have also discussed
the relationship between this possible phase transition and
the pinned vortex-lattice to vortex-glass transition in type-II
superconductors.
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