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Evolution from BCS superconductivity to Bose condensation:
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We consider a fermionic system at zero temperature interacting through an effective nonretarded potential of
the type introduced by Nozies and Schmitt-Rink, and calculate fhleasecoherence lengtnase(@ssociated
with the spatial fluctuations of the superconducting order paraimeyeexploiting a functional-integral for-
mulation for the correlation functions and the associated loop expansion. This formulation is especially suited
to follow the evolution of the fermionic system from a BCS-type superconductor for weak coupling to a
Bose-condensed system for strong coupling, since in the latter lidifeat mapping of the original fermionic
system onto an effective system of bosons with a residual boson-boson interaction can be established. Explicit
calculations are performed at the one-loop order. The phase coherence dgpgiiis compared with the
coherence lengt,,; for two-electron correlation, which is relevant to distinguish the wekké,,;>1) from
the strong{kg£pair<1) coupling limits (kg being the Fermi wave vectpas well asto follow the crossover in
between. It is shown thag;,,se cOiNcides with&p,, down to Ke&pai=10, &g in turn coinciding with the
Pippard coherence length. In the strong-coupling limit we find instead&thale> &nair, With &y, coinciding
with the radius of the bound-electron pair. From the mapping onto an effective system of bosons in the
strong-coupling limit we further relatg,,; with the “range” of the residual boson-boson interaction, which is
physically the only significant length associated with the dynamics of the bosonic sypEh63-
182996)02422-9

[. INTRODUCTION ing” diagrammatic approach to describe the interacting
Fermi system in the superconducting phase, whereby each
There has been recently renewed interest in the crossovemgle-particle Green’s function is self-consistently deter-
from BCS superconductivity to Bose-EinstdiBE) conden-  mined. It turns out that keeping the full self-consistency is
sation, following the discovery of the high-temperaturemost important in the intermediaterossover region of in-
superconductors:® In particular, the observation that these terest, in order to account correctly for the mixture of fermi-
(as well as other “exotic) superconductors have consider- onic and bosonic degrees of freeddm.
ably (i.e., 16—10" times shortercoherence lengtthan con- The approaches of Refs. 13 and (&5 well as the related
ventional superconductors has prompted the suggestion thatork of Refs. 1-8 rely on an approximation schengee.,
proper description of superconductivity in these material BCS mean field plus fluctuationsvhich is well established
might require arintermediateapproach between the two lim- in the weak-coupling limit. The fact that this procedure re-
its represented by BCS theory and BE condensatiorthis  sults in a sensible strong-coupling lintite., the noninteract-
context, it appears especially relevant to assess how the coig Bose gas of Ref. 13 or the weakly interacting Bose gas of
herence lengthiwhich can be determined experimentally Ref. 15 can be related to the structure of the BCS wave
from the spatial fluctuations of the order parameter andunction, which has built in the BE condensation as a limit-
which we shall consistently refer to gs,,scin the following  ing cas€'® There is, howevera priori no guarantee that the
crosses over between these two limits. The purpose of thigesults in the strong-coupling limit would always provide a
paper is to provide a detailed description of this crossdVer. satisfactory description of the limiting system of interacting
Evolution from weak- to strong-coupling superconductiv- bosons.
ity was addressed a few years ago by Noze and For these reasons, we prefer to approach the bosonization
Schmitt-Rink?! (hereafter referred to as N$Rfter the pio-  processin reverse that is, by setting up first a reliable ap-
neering work by Leggef? NSR follow this evolution by proximation for the bosonic system and then determining
increasing the coupling strength of an effective fermionichow the bosonization procedure of the original fermionic
attractive potential, and conclude that the evolution issystem maps that approximation back onto a description of
“smooth.” The inclusion of fluctuations beyond mean field the weak-coupling limit. In this way, we can focus directly
considered by NSR through the ladder approximation for then improving the description of the bosonic limit, which is
pairing susceptibility, however, has posed problems of physiadmittedly more difficult to deal with than the opposite
cal consistency® owing to the fact that the ladder approxi- weak-coupling limit, where the BCS approximation is ex-
mation is not “conserving.** This shortcoming was later pected to be invariably recovered as the fundamental starting
overcome by Haussmahtwho considered a fully “conserv- point.
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Focusing directly on the bosonic limit, however, leads uslation of the coherence length,; for two-electron correla-
to confront a long-standing problem in the theory of interact-tion reported previousl§! which ranges instead frorg, to
ing bosons. It has, in fact, long been known that conventionaihe bound-state radiug, in the two limits. In Ref. 24 it was
many-body(diagrammati methods for an interactingon- ~ also concluded thati) &, (through the dimensionless pa-
densedBose system can be quite generally organized withifameterkg&,,;) is the relevant variable téollow the cross-
approximation schemes that are consistittier with con-  over from BCS to BHand thus it does not serve to identify
servation lawg* d-derivable” approximationsor with the ~ Merely the two extreme BC&g £p5>1) and BE(K&par<1)
absence of a gap in the elementary excitations spectrufiinits], and(ii) this crossover occurs in practice in a limited
(“gapless” approximations’ This difficulty does not ap- 'ange of the variablég £, (beginning akg£o,~10 on the
pear in the corresponding scheme for self-consisteht « BCS side. The calculation of,.sereported here confirms

derivable” (conserving approximations for fermionic sys- ths relejg, bg;(r:]atl;]set we|W|IItI]|nd tthfbhastezgl?# dOV\t'.nttOf
tems (even in the superconducting phasé For these Fépair=10, Wi € two_engtns starting to difierentiate tor

reasons, when dealing with condensed bosonic systems ofl aller V?"“.es OKg£pair-—~ ONe can thus assomatecmglg .
prefers to abandon self-consistent schemes and resorts ipharacteristic length to a BCS-type superconductor, which is

stead to approximation procedures whereby diagrams are s (_aneri_cally identifiedeven f_or relative_ly strong couplingy .
lected in terms of arexternalsmall parametefiike the re- the existence of a well-defined Fermi surface. In the bosonic

duced densityt? limit, we will find instead tha‘fp_has&?§pain as expected, since
An approach formally alternative to conventional dia- the “size” of a single boson is by no means related to the

grammatic methods to set up a modified perturbation theor nge of the f!uctuaﬂqns_ of the order paramé’feWe_shalI
for a superfluid Bose system is the functional-integral urther show n this limit thatfy; IS assogated with the
method with the associated “loop” expansion, which allows range of theresidual boson-boson interaction, by mapping

for a unified description of superfluidity and :superconductiv—f[he original fermionic system onto an effective system of

ity in terms of collective variable® By this method interacting bosons. In this way, a sensible and consistent

bosonic-like collective variables are introduced at the outsegescrlptmn o.f the bosonlgatlon process results fro_m.our one-
in the description of the fermionic superconducting systerHOOp palqulaﬂon, at least in the zero-temperature limit we are
of interest via a Hubbard-Stratonovich transformation, incor_l_sr:der;ng' f1h is the following. In Sec. II i
terms of which a mean-field approximation and the associ—h elp ?r:_o € papetrtlﬁ € OI owmga n bec. Iv_ve Setup
ated fluctuation corrections can be defined. Specifically, th € calculation OBpnasedl the one-loop order, by relying on a
mean-field approximation recovers the NSR results obtaine nct|onal—.|nt(_agral representation of the correlation fu.nct|ons
at zero temperature, while systematic inclusion of fluctuatio or t‘f’l Iferfn:rl]on'l:c sy;t(tam dmte(rjagtlnNgstgro\ijgh an fa‘fec'luve po-
corrections by the loop expansion enables one to overco gnual of the type intro u_ceh y K : g provide asol_ana-
the problems of physical consistency mentioned above g}'yt'(f{ ex?resssmns”?‘fgfphasem t gdwea 3 a'.}. sl':ror;g-cmipmg
the NSR resulté® In this context, it is worth mentioning the 'M"S: 1N S€cC. We consider specifically thé strong-
recent work by Travet? who considered the interaction be- coupling limit and perform a mapping of the effective action

tween pair fluctuationgwhich are ignored by the standard qf the original fermiqnic system onto th(_a_corresponding ac-
Gaussian approximatiprand demonstrated that it removes tion of'a truly bO.SOU'C sysf[em, by exploiting .features Of. the
collective bosonic-like variables introduced in Sec. Il via a

the pathological behavior of the thermodynamic functions . .
obtained within the Gaussian approximation in two dimen_Hubba_rd-Stratonowch tran_sformatlon. In Sec. I\./ we present
umerical results fog,n,s.(in three and lower dimensions

sions, thus stabilizing the low-temperature superfluid phasen ; :
We have also to mention in this context that the loop expan9ver the w.hole range Of coupling, and especially across the
arrow region of the variablég £, Where the actual cross-

sion associated with the functional integral can be formall;)q ; ;
. P : over from BCS to BE takes place. Section V gives our con-
mapped® in the bosonic limit onto the low-density expan- . ' ; .
sion (which is conventionally used to select the relevant dia_c_luswns. De_ta|ls of the ca_lculatlons as w_eII as relateq addi-
grammatic structure for thdilute Bose ga¥). Keeping all tional glaterlatl) are grllvenhl? t?ehAppgndmes. In parthuLar,
: : o endix A obtains the shift of the order parameter which is
terms up to a given order n the expansion paramgter furthéror\eprl)Jired to make the NSR approach fuIIp consistent at the
guarantees that conservation laasd Ward identities are d | level in th pdp q hy dor in t
satisfied up to the same order. It is in this sense that thginrﬁéggizn?e)vﬁn ,Tppenedixcgn tt?er]s‘?univre)rsalt’a’chpve V\(')%
roblems originating from the “gapless” and &- . e . i At
Serivable” ap;?rloxirlne?tions are overcogmg by the “loop” ex- tained previously in Ref. 24 for the chemical potential versus
- : . Ke&,qir USing the NSR separable interaction, is discussed fur-
pansion. In the following, e shall apply the_fungtlonal— trfegrpailh theg context of tﬂe{three-dimensional negatived
integral method at the one-lodpe., the next-to-significant 9

order to the problem of the crossover between BCS and BEHubbard model and of the analytic two-dimensional solution
with the same-model Hamiltonian adopted by NSR. of Ref. 2.

Returning, specifically, to the calculation of the phase co-

herence lengtl,,.s.at zero temperature, we will show that Il. CALCULATION OF THE ZERO-TEMPERATURE

the one-Ioop])c cr?lculerl]tlon Ielads to'a conhglsrtlent plctufre for;he PHASE COHERENCE LENGTH FOR A

crossover of this physical quantity, which varies from the SUPERCONDUCTING FERMIONIC SYSTEM

Pippard coherence lengtp in the weak-coupling limit to the

known result (ztnB,uB)’l’2 for a dilute Bose gagwith mass In this section we consider the calculation of the spatial

mg and chemical potentialg) in the strong-coupling limit®  fluctuations of the order parametef (r)y(r)) for a super-
These results will be contrasted with ttreean-field calcu-  conducting fermionic systeiy,(r) being the fermionic field
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operator with spin projectionr], and follow their evolution where we have set
as the fermionic system is driven toward its bosonic counter-

part by increasing théeffective attractive fermionic inter- A=(e(R)). 2.3
action. To this endland for the reasons discussed in theThe relevant correlation functions for the operat@%) can
Introduction, we shall rely on a functional-integral represen- then be defined as follows:

tation of the correlation functions and the associated loop s

expansion. Since some confusion has sometimes arisen in ther!(R—R’) = J d(T Le(R,7)ey(R’,7=0)])— B|A|?,
literature between the inclusion of Gaussian fluctuations and 0

the consistency of the loop expansiolf, we shall discuss (2.49
the latter in some detail in the followingee also Appendix 8
A). FL(R—R’)=f d(T e, (R,7) ¢ (R, 7=0)]),

To identify the range of the spatial fluctuations of the 0
superconducting order parameter across the evolution from (2.4b
BCS to BE, we find it convenient to introduce the bosonic-whereT , is the imaginary-tim& -ordering operator, the ther-
type operator mal averagé---) is taken at the equilibrium temperatyse?,

and the Heisenberg representation for the field operators is
implemented below. Note that the unnecessary dependence
on the imaginary timer has been eliminated in the expres-
sions(2.4) by the time averaging.

For a homogeneous system, it is further convenient to
éntroduce the Fourier transform of the operat®rl):

<p(R)=fdp¢(2p)¢T(R—p)¢¢(R+p), 2.1

where the(real) function ¢(p) is assumed to be “localized”
aboutp=0. The thermal averaggr(R)) can be then associ-
ated with the order parameter of the broken-symmetry phas
Since this order parameter {8 general complex, we can

1 .
further represent the operat(.1) via its longitudinal and o(q)=— f dRe IRp(R)
transverse components to the direction of broken \/5
symmetry?’
1 :; d(k)ci(k+a/2)c (—k+q/2), (2.5
<P||(R):m[A* e(R) +A¢"(R)], (2.23

where ¢(k) is the Fourier transform of the functiop(p) of

1 Eq. (2.1, c,(k) is the destruction operator of wave veckor
_ * At and sping, and(} is the volume occupied by the system. In

¢1(R) 2i|Al [ATe(R)=A¢T(R)], 225 terms of the operato2.5) we rewrite

1 . (B
F”'L(R—R’)=tm2 e'd(R-R >f dr{{T.Le(a,7)e(—a,7=0)]) =(T [e(q,7) ¢(q,7=0)"])
q 0

*

. o VA € D
(Tle(—a,7)'e(—0,7=0)]) +(T Le(—0a,7)'e(q,7=0)"])} > BIA%, (2.6

where the uppeflower) sign refers td=" (F*). Note that the  relevant to introduce an additional lengtsay, &pai) Which
r-averaging selects the zer@atsubara frequency compo- reduces to the size of the bound fermiompiair in the BE

nent of the correlation functions within braces in E.6).  limit. On general ground, information o, can be ex-
Note also that in Eq(2.6) we have eventually consideréd  tracted from the fermionic pair-correlation functiowith op-
to be real. posite sping

Below a critical temperature, one expects to identify a
finite coherence length for longitudinal correlations only. In 1 1
particular, the behavior fosmall q of the integrand in Eq. 9(r =2 (BP0, (0) (1)) — 7 @7
(2.6) is of interest whenever the correlation function
F'(R—R’) has a well-behavedexponential spatial decay. Wheren is the particle density and the constant Hartree term
Since the broken-symmetry condition resides ingghaseof ~ has been subtracted for convenience. For instance, at the
the order parametd.3), in the following we shall identify mean-field level Eq(2.7) becomes
as&;nasethe coherence length associated with Physically,
& provides an estimate of the spatial dimension over 1
which the phase fluctuations are correlated. In the strong- 9(N=1=2 Kelwl(nw](0)]@)P, 238
coupling(BE) limit one thus expectg,,s.to be much larger
than the typical size of the fermionic paifhich, in this  where|®) is the BCS ground state, arggl;, can be obtained
limit, constitute truly bosonic entitigsin this context, it is ag*
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5 [ drg(r)r? A. Functional-integral approach
Pair™ [ drg(r) - 2.9 As discussed in the Introduction, although we are origi-
nally considering a system of interacting fermions, we are
In the BE limit, &, obtained from Eq(2.9) coincides with  interested in treating properly the strong-coupling regime
the bound-state radius of the associated two-fermion probwhere the fermionic system gets mapped onto a system of
lem: At the mean-field level ainglelength enters the func- interacting bosons. To this end, it is relevant to introduce for
tion (2.8) since no correlation is established between boundnycoupling bosonic-likécollective) variables from the out-
pairs. Beyond the mean field, however, correlation betweeset, which turn eventually into truly bosonic fields in the
bound pairs should occur and the lendth.s.should affect ~ strong-coupling limit.
g(r). Nonetheless, in the BE limit we expect the magnitudes Functional integrals are especially suited for introducing
of the two lengthst,,;r and &;n,seto be widely separated, in  collective variables and, at the same time, for providing one
such a way thag; can still be extracted frong(r) by in- with conserving approximations even in the presence of
spection. For this reason, in the following we shall restrict incondensate® In this context, one obtains the relevant fer-
practice to the mean-field definitiq®.9) with g(r) given by  mionic correlation functions by differentiating the generating
Eq. (2.8). In the weak-coupling limit, on the other hand, we functionaf*
expect no difference betwe&ps.and &, (apart, possibly, -
from a trivial normalization ggctor due to the respective defi- 207 7] = J 7e e exp{—S— S 2.13
nitions). In other words, in the weak-coupling limitsingle ' I ¢ ¢ exp— S} ’
length ch_aracterlzes the co_rrelatlon W|th_|n a C_oppe_r aad with respect to the “sources’;(7), where
among different Cooper paifghe correlation originating es-
sentially from Pauli exclusion principle 8 o J
To proceed in the calculation @f,se(and &y,;) we need S=f dT( > ¢ (k,7) = Cc,(k,m)+H(7)| (2.19
a specific Hamiltonian to describe the interacting fermionic 0 ko T
system. To connect with previous work on the crossovegnd
from BCS to BE, we adopt the model Hamiltonian consid-
ered by NSR:

B . .
S fo ArS) [7a(ker)Colk, 1)+ Cylk, 7) 70 (k7).

k,o
2.1
H=2 &ch(e,()+ 2 V(kK)c(k+a/2) o _ (219
k.o kk’.q In these expressionsg,c) and (n,7n) are Grassmann vatri-

xcl(—k+a2c,(—k' +a/2)c,(k'+9/2) (210 ables, and
with &=k%2m— u (u being the chemical potentj® This H(1) =2 &C, (K, 1)Cy(k,7)+V> Aq,7).5(q,7)
Hamiltonian differs from the usual BCS reduced ko a 21
Hamiltonian!® in that it allows for finite values of the 2.19
(center-of-mags momentumq of the pair operatorc}‘clr with
while keeping the singlet spin pairing. Taking into account
finite values ofg is, in fact, necessary to represent the strong- Aq T)ZE w(k)c (—k+a/2,7)c.(k+a/2,7)
coupling limit in terms of interacting bosoRs. ' K . v ’

For convenience, we also take tkeffective attractive (2.17
mterfe\ctlon potential in Eq(2.10 of the separable form\M ig the Hamiltonian associated in the action with the operator
<0): (2.10 and the choicé2.11) for the interaction potentiaf

Bosonic-like variables are introduced via the Hubbard-
V(k,k")=Vw(k)w(k"). (2.1)  stratonovich transformation

In the usual BCS theoryw(k)=6(e.—|&|) specifies an — 1

abrupt cutoff about the Fermi surfaccﬁec| l§|eing the cutoff exp—VAQ, 1) Aq D=~ J db*(q,7)db(q,7)
energy. To treat the strong-coupling limit on the same foot-

ing of the weak-coupling limitw(k) should instead interpo- % b

late smoothly between small and large We take accord- SRV (a,7)

ingly
+b(q,7).4q,7)

2

w(k)=[1+ (k/kg)?]"” (2.12

+b*(q,7).ﬁ(q,7)] (2.18
with y>0. We have verified that the restriction ¥/4<3/4

ensures the relevant correlation functions to be well definethat holds for anyg and 7, where the variableb(qg,7) obey

via their Fourier transforms, as well as the bound-state radiueriodic boundary conditionb(q,7+8)=b(q,n.% It is fur-

for the associated two-body problem to vanish in the limitther convenient to introduce time Fourier transforms for
|V|—<0. In most of the following calculations we shall take Grassmann and bosonic variables, and make the change of
the valuey=1/2 considered by NS#. variables
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x1(k)=

(k) =—n;(k),

ci(k),  xa(k)=c (—k),

(2.19
& (k)= ﬁl(_k)

analogous to Nambu spinor transformation, with the short;

hand notatiork=(k,ws) wherew =27 (s+1/2)B"* (s inte-

functional (2.13 can thus be rewritten in the form

[ IX7x 0% 7b exp{—S' —Sp
[ Ox Zx Zb* Tb exg—S'}
(2.20

7[¢,é]=

where now
1
_ b 2
v 2 b

(Xl(k’)

+ 2 (a(K),x2 (KM (kK" x2<k'>) (2.21

Kk’
and

2
S«’m=§ ;1 [&0x 0+ (K&K (2.22

In Eq. (2.2), g=(q,w,) Wherew,,=277vﬁ_1 (v integey is a
bosonic Matsubara frequency, akt{k, k") is the 2<2 ma-
trix

M(k,k")
05 1 (k+k') ,
€(K) Sk » Ewa(k—k)
|l kR s
EW(T b(k —k), 6( ) k,k’
(2.23
with
e(K)=iws—&. (2.24
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Ref. 7 this procedure has been applied to derive the analog of
the time-dependent Ginzburg-Landau equation for the cross-
over problem from BCS to BE above the mean-field critical
temperaturelwhere b, vanishes identically For the zero-
temperature properties we are interested in, however, a
straightforward Gaussian expansion is known to be not fully

gconS|stent since it omits contributions that are formally of the

same order of the Gaussian contributions it¢eflf, e.g., Ref.
34 for the zero-temperature properties of a three-dimensional
dilute Bose gas and Ref. 22 for its two-dimensional counter-
par). To keep full consistency at each stage of the calcula-
tion, we introduce dformal) loop expansionn the generat-
ing functional(2.29 by (i) replacing the effective actioB«
with S.«/A where 6<\<1; (ii) regarding\ as the expansion
parameter of the theoi§o express, e.g., the correlation func-
tions as power series ix); (iii ) settingh=1 eventually at the
end of the calculation. In this way, expansion of the relevant
physical quantities up to a given order X\nguarantees con-
servation laws and Ward identities to be satisfied to the same
order in the expansioir. Note that, contrary to other cases
for which a “small” loop parameter naturally emerges from
the physics of the problem, the introduction of a loop param-
eter in the present context might at first look somewhat arti-
ficial. As mentioned in the Introduction, however, it can be
shown that the present loop expansion gets formally mapped
onto alow-densityexpansion in the bosonic linft.

To implement the loop expansion, we set

b(a)=B[Adq0+ VAb(a)], (2.289

where A, plays the role of §compleX bosonic condensate
andb of its fluctuating part. The matrix2.23 becomes ac-
cordingly

M, (kK )=Mg(k, k) +AMy(k k),  (2.29
where
ek)  W(k)AZ
M°(k’k'):(w<kmo —e<—|f>>5“’ (239

The Grassmann variables can be integrated out at thignd

point in Eg.(2.20, yielding
I Ib* Ib exp{ — Serr— Sy

i 7 v e e G
where
seﬁ:—iZ |b(q)[2—tr InM (2.26
BV “q
is the effectivebosonic action and
Shi=2> E EOOM kK0 &0 (K. (2.27)

kk'ii’=1

Note that the trace in Eq2.26) is performed over the four-

momentum k) and Nambu spini{ indices, and thaS.
formally contains all powers in the bosonic variables

o (k+k’>< 0 lg*(k—k’))
MikK)=W || b0 o
(2.31)

are independent af. Correspondingly, the effective action
reads

Seri B [1Aq]? . A%
T——v N +\/—_b( —0)+\/—b(q 0)
*_qyn
+2 [b (q)|2) M- 3, n)
q n=1
XA2 tr(Mg M )" (2.32

To proceed further, one usually considers a quadratidhe constanty, is determined, as usual, by requiring the

(Gaussiahn expansion of the effective actidi2.26) in terms

coefficients of the linear terms in(q=0) andb* (q=0) to

of (b—bgy) wherebg is a mean-field value. In particular, in vanish, yielding the BCS *“gap equation”
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with A(k)=Agw(k) and E(k) = \/§k2+ |A(K)|2.

Equation(2.32) is still exact. Approximations depend on
the number of powers\"? considered. In particular, the
Gaussian approximation foB.; results upon keeping the
next significant i=2) order in\, namely, by taking

AOZ

SCUCIE-CIR.

Set 1
Te= < BFo+ S (2.34
where
Aol 1
Foz - Vi - E tr |nM0 (235)

is the(?rand—canonicalfree energy at the mean-field ledl

andS{ is the quadratic form

1 A(q)  B(Q) b(q))
2)_— * _ ~
Sii=3 2 (0" (Q). q))(B*(q) A(—q))(b*(—Q)'

(2.39

In this expression

A(Q)=— é—Ek w(k—q/2)22(k) (g -k =A(-a)*,
(2.37

B<q>=2k w(k—q/2)27(k).7(q—k)=B(—q),

(2.38
where
o7 -1 6(_k)
AWM g @39
A(k
FK)=Mg(K)p= to (2.40

|e(k)[*+[A(K)[*?
are the ordinary Gorkov functiong\(q)+ 8/V and B(q)
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q-k
q q
- — = (D(A@+ B/V)
k
(a)
q-k k-q
q q
- —- =B(@
k *

(b)

FIG. 1. Normal (a) and anomalous (b) particle-particle bubbles.

Full lines represent single-particle Green’s functions
K k -k
[Ak)y= —»——, F(k)= —»—=—] and empty circles
represent the function w(k) of the separable potential (we have
ki —k; ~k; ky

assumed —w[(k;+ky)/2]= —4O»— = (=

even in its argument).

to be

not be expanded in powers bfsince all conserving require-
ments can be directly expressed within the grand-canonical
ensemble, the mapping betwegrandn being established at
the end of the calculation after having &et1 in the expres-
sion forF. Nonetheless, one may alternatively regards an
internal parameter of the theory and expand it in series of
at the outsetfor details cf. Appendix C of Ref. 391n the
following, we calculate the physical quantities of interest
keeping the value oft unspecified, and expandin series of

\ only in the final expressions.

represent normal and anomalous particle-particle bubbles, re-

spectively, as depicted in Fig.*{.

In what follows, it is sufficient to retain the quadratic

action (2.34 only, but for the calculation of the shiff\; of
the mean-field parametay, for which it is necessary to keep
also cubic terms in the expansi¢.32 of the effective ac-
tion (see Appendix A In this way, the(grand-canonical

free energy acquires the following correction to the next sig

nificant order beyond mean fieff:

Fl:ﬁ > In(A(a)|*~B(a)?), (2.41

whereA, has been taken to be real and with the “stability”

conditions
|A(q)|—B(q)>0, (2.42)

The chemical potentiglk can be eventually eliminated in
favor of the particle densitp by solvingn=—(1/Q)dF/du

ReA(q)+B(qg)>0.

B. Calculation of &,.scat the one-loop order

There remains to combine the calculation of the longitu-
dinal (F") and transverseR") correlation functions(2.6)
with the loop expansion. For completeness, we report in the
following the main steps of the calculation which might also
serve for addressing additional correlation functions. For our

specific purposes the relevant result is Ej56) below.
We need to relate first the broken-symmetry parameter

(2.3 [cf. Eq.(2.5)]

A—l elQ= ——1E¢>kckc—k
’_Q< (9=0)) Q% (k)(ci(k)e (—k))
(2.43

with the mean-field valué\, and the one-loop fluctuation
contributionA;. To this end, we rely on the identitproven

with F=Fy+\F;. In principle, the chemical potential need in Appendix A
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Next, we express the averages of four-fermion operators

<l0(q=0)>seﬁ=VEk w(k)(ci(k)c;(=K))s, (2.44  in Eq. (2.6) [which are taken with actiofi2.14) within the
functional-integral formulatiohin terms of products of ma-
where the averages are taken, respectively, with actionsix elements of the inverse of the matri2.23 [which are
(2.26 and(2.14. Comparison of Eq(2.44 with the defini-  correspondingly averaged with acti¢2.26)]. We obtain
tion (2.43 then yields

1 llL ll,L (1+1) 2
A= B (b(q=0))s =Ao+ ﬁ(b(q=0)>seﬁ (2.49 FIi(R)=F5"(R)+FLY (R)— — BlA|?,
with the notation(2.28 and the choicep(k) = VaVW(K). (249
The relation(2.49 is still exact. At the one-loop order it
reduces taAA=A,+\A,, as shown in Appendix A. where

V2 A 1
FEH(R) = = > Ry w(k)w(k') ] 2 (Mo (k—a/2,s:k+0/2,5) My (K" +0/2,8 k' —a/2,8))s, .
q k,k’ s,s’

+ (M (k= /25K +0a/2,5)M 5 (k' +0/2,s" ;K = a/2,8"))s
+ (M, (K= q/2,5:k+0/2,5)Mo (K" +0/2,8" 1K = a/2,8"))s
+(M(k—a/2,s;k+q/2,5)M 5 (k' + /2,8 k' — a/2,8"))s (2.47

is the “direct” contribution, and

V2 : 1
Fe'(R)=F > eURY w(k)w(k") ] 2 (Mo (k—a2,5:k" = /2,8 )M (K’ +0/2,8";k+0/2,5))s,,
q k,k’ s,s’

+ (M, (K= a/2,5K = /2,8 )M (K’ + /2,8 ;k+0/2,9))s_,
(M (k= q/2,5K' = /2,8 )M, (K +0/2,8;K+0/2,9))s

(M, (k= /25K = /2,8 )M (K’ + 012,58 k+012,5))s, } (2.48

is the “exchange” counterpart. with Mg given by Eq.(2.30 (and A, taken eventually to be
The loop expansion emerges at this point from the exacteal. In this case the “direct” contributiori2.47) becomes
expressiong2.47) and (2.48 by interpreting the matrixv

therein as being the matrid, (2.29. In this way, its inverse L (1=1) [V 1 2
acquires the expansion Fg (R———8 EEK W(K)Mq “(K) 21
Mo5=(Mg ) as— YN (Mg *M1Mgh) 4 1=1)
L L L == BAy, (252
+A (Mg MiMg "M Mg ) gt (2.49
yielding for the required averages where use has been made of the gap equd®d83. This
contribution cancels the last term on the right-hand side of
(M_MIDH=(M_{M ) Eq. (2.46) sinceA—A, at the mean-field level. On the other

hand, the “exchange” contributiof2.48 becomes
(Mg *M1Mg ) 5(Mg "M1Mg 1) ys) ° .49
2

+(\¥?) (2.50 FE’L(R)H—;/—B > eRIA(q,0,=0)=B(q,w,=0)},
with the understanding that the produt¥ ,zXM ;) is a (253
evaluated at the relevant order i [In the expressions '
above, the indiceg, B, ... refer to the four-vectok and the  whereA(q) andB(q) are given by Eqs(2.37) and (2.38),
Nambu spinor componentin particular,at the mean-field respectively[Equation(2.53 holds apart from a local term
level Eq. (2.50 reduces to proportional to thes function of argumenR, which is con-

P . . sistently neglected in the followinpln particular, in the

(M gM 5= (Mg ) op(Mg ) s (25D zero-temperature limit Eq2.53 can be cast in the form
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V2 . w(k—q/2)?
72

F||.J_ R
E ( )—> k Ek"'Ek q

Ekbi—q+ AkAy g
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where the function to be summed owers well behaved for
all g and contributes a “short-range” function &. Expres-
sion (2.54) will be studied numerically in Sec. IV to deter-
mine its range explicitly.

The relevant “long-range” behavior iR results instead

x| 1+ , (2.54  atthe one-loop leveEntering Eq(2.50 into Eq.(2.47), we
ExEx—q obtain for the “direct” contribution
(1=1) V2 . B
L — 2 _ ig-R — ig-R
Fo (R)=—5— BA™+A 55 2, € ¥A(d.0,=0)£B(q0,=0)} + 5 2 ¢ G e.=0)=BG.0.=0)

(apart, again, from a term proportional taSdunction of R).
Note that the first term on the right-hand side of E255
results from the first term on the right-hand side of E450
together with Eqs(2.44) and(2.45 (cf. Appendix A). In this
term A is meant to contain also its one-loop shif (which

(2.595

Before discussing this behavior in detail, it is worth rep-
resenting graphically expressid@.47) at the order of the
approximation(2.50. This is done in Fig. 2 for the terms of
order\. It is evident from the figure that the bosonic propa-
gator (wiggly line) carries the externdfour) momentumg,

is real whem, is rea), making it to cancel with the last term such that any singularity of this propagator for small values
of Eq. (2.46). Note further that the second term on the right- of g will affect the spatial decay of the “direct” contribution

hand side of Eq(2.59 coincides formally(apart from a

sign) with the mean-field contributio2.53 once one sets

(2.47 to the correlation functions.
By contrast, in the “exchange” contributiof2.48 the

A=1, and thus shares the same “short-range” character. Thieosonic propagator does not carry the exter(fialiry mo-

last term on the right-hand side of E®.55, on the other
hand, yields the desired “long-range” behavior.

mentumgq since this propagator occurs entangled in the in-
ternal structure of the diagrantsf. Fig. 3. In this case the
singularity of the propagator for small momenta is smoothed
out by the internalfour) momentum integrations in the dia-
grams. For this reason, the “exchange” diagrams are not
expected to contribute to the “long-range” behavior of the
correlation function$2.46 and are accordingly neglected in
the following*°

In conclusion, at the ordex (one-loop we approximate
the correlation function$2.4) by the following expressions:

N o B
I ~ _ iq-R
FIRI=5 2 & G0, =0) T B(aw, =0
(2.56a
N o B
FL(R) == e'q'R
+<>+{>(®+ R 2§q: A(q,0,=0)-B(q,0,=0)
(2.56h
FIG. 2. (a) Graphical representation of a typical “direct” term . ~ q

of orderX in Eq. (2.47) beforeit is integrated over the wave vector

g [recall that, by our definition2.4) of the correlation functions,
g=(q,w,=0) in this term. For simplicity, arrows distinguishing
normal and anomalous single-particle Green’s functions are not in-
dicated. The wiggly line stands for tHeransposedmatrix of the

bosonic propagatc(r‘g(q)p*(q))s(ezfg, whereb(q) is the column vec-
tor of Eq. (2.36. This propagator is depicted ifb) (at the order

considered in the present papes an infinite series of the original
fermionic bubbleqdots represent the strength of the separable

potential (2.11)].

FIG. 3. Typical diagram of ordex occurring in the “exchange”
contribution(2.48). The internal(four) momentak andk’ are inte-
grated, and the momentug+(q,w,=0) is associated with the spa-
tial (R) dependence. Note that diagrams of this type vanish in the
“normal” phase (whenAy—0).
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with A(q) andB(q) given by Eqs(2.37) and(2.38, respec- 1 w(k)2&2 [ (£2-2A2) 3
tively. Note that in the normal phagéor which B(q)=0] b= am £5 [ 2¢ + > 7' (k)AZ
there is no distinction between longitudinal and transverse K k K
correlation functions. In the superconducting phase, on the 2 A2
other hand, a coherence length can be identified only for the +— ——5 [5&c+2' (K)(4AZ—6£2)
longitudinal correlation function, as expected. This is be- 6m &Ej
cause
+2'(K)2& (82— 4A2)+ 32" (K) &EL J (2.64
im [A(q, @, 0)— B(q,w,—0)] (k) “&w( €k k) (k) &kEi]
q—0
02 with the notation
1 W E
=—Bl=+> (k) tanf(ﬁﬂ (2.57)
VT 2E 2 ()= 2m dw(k) (k)= (2m)? d?w(k)
= , Z
vanishes owing to the gap equatith33. The other combi- w(k) dk? w(k) d(k?)?
nation A(q,w,=0)+B(q,w,=0) is instead finite forg—0. (2.69

If we restrict, in particular, to theero-temperature limit
we obtain

A(Q,0,=0)+B(q,w,=0)
_ 1 (URUk—q— VkVk—g)°
-B V+; w(k—q/2)? £ B g
=pf(a), (2.58
where
U= E 1+é—kk), V= \[2 (1—%) (259)

are the usual BCS parameters. Note thad="(|g|) and

2

A
lim f(q)=a=>, w(k)? —5>0
q—0 k 2Ek

(2.60

providedA,#0, owing again to the gap equatié®.33. For
small values ofj we can thus expand

f(q)=a+bg?+--- , (2.61)

and obtain the desired coherence length as follows:

b
3 phasé— a

provided bis also positive. In fact, entering the expansion
(2.67) into Eq. (2.563 yields for the leading “long-range”
behavior(in three dimensions

(2.62

1
a+bg?

:l Q eXp{_lRVgphasé
2 4mh IR]

FH(R)QE 2 gld'R
24
(2.63

with §phasegiven by Eq.(2.62. Consideration of the expan-
sion (2.6)) is obviously sufficient provided the functidiiq)
has no other singularit§:

Quite generally, all terms within braces in E8.64) contrib-

ute to the value ob for intermediate coupling and the sum
over the wave vector has correspondingly to be evaluated
numerically. This task will be performed in Sec. IV. In the
extreme (weak- and strong-couplinglimits, on the other
hand, only a single term within braces in EG.64 (albeit
different in the two casesontributes to the value df and

the sum over the wave vector can be evaluated analytically.

C. Analytic results in the BCS and BE limits

It is worth showing in detail how the coefficierssandb
of the expansionf2.61) can be evaluatednalytically in the
BCS and BE limits, by exploiting simplifying features of the
calculation. Specifically, the sum over the wave vector in
Egs.(2.60 and(2.64) will be evaluated with the approxima-
tion Ay/|u/<<1 that holds in both limitgalbeit with >0 and
u<0, respectively. The main results of this section are
given by Eqs(2.68 and(2.78 below.

In the weak-coupling (BCS Ilimit the term
(5/3)(k¥2m)(A,/E,)? within braces in Eq.2.64 provides
the dominant contributiof? yielding (in three dimensions

+ o

0

W(y)*(yAo+1)¥%?
[y?+W(y)?]?

1

mkew(ke)?
o (3keBo)?

27

(2.66

In the expressmn above, we have wgk) =w(kg )w(k) with
K k/kF and W(k=1)=1, &/u=&=K>~1 (since u
—kF/2m in the BCS limiy, AJ/u= W(k)A0 with AO

There remains to obtain an explicit expression for the co=W(Kg)Ao/u=Ay_/n, andy=¢/Aq. In addition, the last

efficientb of the expansiori2.61), for generic values of the
parameters characterizing the interaction pote#dll). To
this end, we expand E¢R.58 retaining all terms up to order
q2 and obtain(in three dimensions

line of Eq.(2.66 has been obtained by exploiting the BCS
condition Ay<1 as well as the normalizatiom(y=0)
=Ww(k=1)=1. By the same token, the coefficieatgiven
by Eq.(2.60 becomes in the BCS limi{in three dimensions
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o w(k)?
fecs= 3 w(* 262 L+V2 g, =0 2.73
Lo MRewke)? e W(y)(yAg+ 1)V and expand imy/e,
= T f‘Aal y [y2+W(y)2]3/2 AE
~0 mkew(kg)? J’+°°d 1 Bi=t 1+ 52+
B R (e Ve @
mkew(ke)? =l om Mo Ma T
=0 (2.67
2 )
X[ 1+ ! Ai n
Entering the result$2.66 and (2.67) into Eq. (2.62, we 2 (K2m— gy )2
obtain eventually 2
: S 2.7

I 1 B
BCS _ BCS: 26
fphase apcs 3kF’A=0' (2.68

where u, is solution to the bound-state equation

This result has to be compared with the BCS limit gg; w(k)2
[cf. Egs.(2.8) and (2.9)] obtained previously! namely, 1+VY, ——7—=0 (2.79
k /m_ 2,(1,0
£8CS— 1 (2.69 that givesuy,=—€y/2. Entering the approximatiof2.74 into
PaIr T 2keAy ' Eq. (2.73 and expanding furtheg, * at the relevant order
yields
Apart from a numerical factor of order unity due to a differ-
ent normalization in the respective definitiodg,,s.is thus w(k)? 1 Aﬁ wy
seen to coincide with,; in the (extreme BCS limit, as 0:1+V; S0 17527 ?‘JF
expected. What is less obviously expected, however, is the k & K
fact that the ratiogynasdépair Maintains its BCS value’2/3 V A2 v wW(k)2
~0.47 not only asymptoticallyi.e., for kg&pq~10°~10) =—— > w(k)? _ok3+'“1 -> (—02)+ .
but also down to kg&p,;=10 where bosonization starts to 4% k 2% K
occur, as we shall verify in Sec. IV by calculating the ex- 2.76

pressiond2.9) and(2.62 numerically.
In the opposite strong-couplin@®@E) limit, the term&/2  where use has been made of E2.75. Solving for the shift

within braces in Eq.2.64 provides instead the dominant w; we obtain eventually

contribution to the coefficiertv,*® yielding \

1 S w(k)X(AE)

l W k 2 M1= 2 ’ (277)
bae= g 2 2(§o_)2 (2.70 2 D wlHE]
“ as anticipated in Eq2.72.
with gE: k?/2m+ €,/2 [— €, being the(lowes) eigenvalue of The expressiof2.72) coincides formally with thésquare

the associated eigenvalue problem for two fermions interactof the) coherence length associated with a truly bosonic sys-
ing via the potential2.11)]. By the same token, we obtain teém in the limit of weak boson-boson interacti¢or low

for the coefficienta in the BE limit[cf. Eq. (2.60]: density, whereby 2,=v(0)ng [v(0) being the zero-
momentum component of the boson-boson interaction and
A2 ng the bosonic densify In Sec. lll we shall obtain an ex-
aBEzz w(k)? 03 (2.71 plicit expression for theresidual boson-boson interaction
k 28, which results upon bosonization of the original fermionic

system, and verify that the product of its zero-momentum
component times the bosonic density coincides with the ex-
0, .02 pression(2.77) for 2u, (at least, at the one-loop order we are
bge 1 w7 ] 1 considering in this papgrWe regard this result as being a
age  8m Ekw(k)z(Aﬁlgﬁs) ~ 8uy(2m)’ rather compelling check on our one-loop calculation to pro-
2.72 vide a consistent description of the dilut&eracting Bose
gas, obtained through bosonization of the original fermionic
we recognize the quantity, to be the(positive shift of the  system.
chemical potentialat the lowest significant order iAy/ep) The above results hold for any reasonable choice of the
with respect to the asymptotic valyg=—¢€,/2<0. To show functionw(k). With the specific form(2.12) and y=1/2, the
this, we resort to the mean-field equati@33 in the zero- integrals occurring in Eqs(2.75 and (2.77 can be per-
temperature limit formed analytically, yieldindin three dimensions

Upon taking the ratio

(éphasd’=
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37— We begin by considering again the effective bosonic ac-
(kaﬁﬁa532=a kof(c), (2.78  tion (2.26 and expand tr Nl therein in powers ofb(q)
_ aboutb=0, rather than about the broken-symmetry value
whereko=ko/Kg , c=[| uol/(k3/2m)]¥? and bo=BA, as we did in Eq(2.28. In addition, we shall not

introduce here the loop parametesince it is not relevant to

f(c)= the following arguments. We thus split

1+4c 279

M(k,k")=Mg(k,k")+Mg(k,k"), (3.9

is a monotonically increasing function ofboounded between
where now

f(c=0)=0 and f(c=w)=1. In particular, f(c=0.1)

=(.286. The appropriate value of[to be inserted in Eq. e(k) 0
(2.78)] is then provided by Eq(2.75, which in the present Ms(k,k'):( )5k K 3.2
context reads 0 —e(=k)/ ™
vamk, and
c=-— ypm -1 (2.80 1
) 0 —b*(k—k")

By our assumptions on how the BE limit is achieVetl Ref. Mg(k k’)=w< k+k ) B
43), the value ot is expected to be much smaller than unity, ’ 2 1 ,
and thusf(c) to be at most of the order 1/3, yielding B b(k’ k) 0
Vko/8 for the maximum attainable value RE£ppase (3.3

The dependence ofjf.c. on the interaction strength [cf. Eqs.(2.29—(2.31], and obtain

should be contrasted with the value §f;, obtained previ-
ously in the BE limit(namely, £55=r, o being the mean 1 =
radius of the bound-fermion pajr* such thatépf,ce épa: for Serr=—1tr INMg— —< >, [b(q)|2+ > = trX"
sensible choices df,.** Again, this result is consistent with BV % i=1 2n
what we had expected in the bosonic limit, where the “in-
ternal” sizer , of the bosons represents the smallest length iwith X=M g Mg
the problem and is certainly not related with the distance
over which the fluctuations of the order parameter correlate. b* (k—k")
+k' Be(k)
lll. MAPPING ONTO A BOSONIC SYSTEM X(k’k')zw(T> "
b(k’ —k)
IN THE STRONG-COUPLING LIMIT — m

One of the advantages for using the functional-integral (3.9
approach in the crossover from BCS to BE is that it allows
for a direct mapping of the original fermionic system in the
strong-coupling limit onto arnteractingbosonic system, at 1 1
the level of the effective action. The Hubbard-Stratonovich S2'=— > |b(q)|? ea—
decoupling (2.18 has, in fact, resulted in the effective B” g e(k)e(a—k)
bosonic action(2.26) for the boson-like complex variables (3.9
b(q), which resembles a truly bosonic action albeit with anin the place of Eq.(2.36), the expression within brackets
infinite number of couplings. Some caution, however, is incoinciding withA(q) given by Eq.(2.37 in the limit A,=0.
order since the single-particle propagator associated witReeping the same notation and performing the sum over the
b(q) lacks the characteristic equal-time step singularity thatermionic Matsubara frequencies, we obtain
is expected for a bosonic propagator owing to the bosonic
commutator p,b™=1. For this reason it will be necessary

(3.9

0

We retain first the quadratic terms in Eg.4), that give

B
- v—; w(k—q/2)2

_BB w(k—q/2)?

to reinterpret appropriately the fiel(q) in Eq. (2.26), in AlG2)=—y~ 5 -
order to recover a truly bosonic action in the strong-coupling
limit. [tanh( B£,/2) + tanh( B, _o/2)]
The purpose of this section is to carry out in detail the X bt Ex g2 37

mapping onto a bosonic systean the level of the effective .
action so as to obtain the residugfuartio interaction where we have also replaced the bosonic Matsubara fre-

among the composite bosons constituted by fermioni@uencyiw, by the complex frequency. Viewed as a func-
pairs*® This method will enable us to obtaiat the one-loop  tion of z, A(g,z) has a cut along the real frequency axis for
orded the phase coherence length for the limiting bosonicR€z=—2u and no other singularity on thhysica) com-
system directly in terms of the parameters of the residuaPlex plane. In addition, it vanishes foeal values ofz only
interaction, and to compare it with the result obtained for thavhen|V| is large enough. In this case, we consider the limit
BE limit in Sec. II. In this way, we will recover the expres- Bu——2 and replace E¢3.7) by

sion for the coherence length of an interactititute Bose

gas’® thus establishing a consistency check on the approach _ Y AQ,2)=1+V>

of Sec. Il. B k Kk

w(k)?
2Im+g°l4m—2u—2z

. (3.8
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Let w, be the solution to the equation PYGTRRRTO )
A(0,wg)=0 (3.9 s 1
for a givenq. Comparison with Eq(2.75 (where 2uy=—¢ 92937 G VA" () *A’(gp)* A’ (d3)A’ (q4)
is the bound-state enerpyields
o XZw o w5 2
wq:m—(z,wr €0)- (3.10
2k+204—Qs

It is then clear that the function XW 2

A(9,2) 1

A'(q,2)= (3.11 X , (31
wq-2 e Re(kt g ekt qpel ki g an’ O

for a givenq is regular also whez— wq and nonvanishing \yhere Eq.(3.13 has been used. Comparison with the stan-
over the wholez plane. This remark enables us to rewrite the y5,¢ expression for the quartic interacfiBthen yields
guadratic action(3.6) in the form

1 _ ceel,) =
ng)zﬁz % |b(q)|2(wq_iwV)A/(q,in), (312' ﬂQ UZ(ql q4) IZ(ql q4) (31@

It is clear from EQ.(3.15 thatv,(q;---q4) IS, in general, a

which suggests rescalirtg(q) by setting complicated function of its arguments. What is actually rel-

b(q) evant for our purposes, however, is knowitgthe typical
b’ (q)= VA (qiw,) ——. (3.13 “strength” v,(0) whenqg,;=---=q,=0 and(ii) the charac-
B teristic “range” of its Fourier transform in real space. The

Expressed in terms of the new variable€q), the quadratic latter will be examined in Appendix B in the limky— o
action(3.12 reduces to that of a noninteracting Bose systenivhere calculations get considerably simplified. The strength
with massmg=2m and chemical potentiakg=2u+ €. v,(0) can be evaluated directly from E.15 in the limit
Note that the rescaling3.13 is meaningful insofar as the Bu——:

solution w, to Eq. (3.9 can be foundi.e., for [V| strong

enough that the associated two-body problem possesses a _ 1 4 1
bound state, cf. Eq2.75]. In this case, the new field' (q) v2(0)=40 A’(O)2 EK w(k) E(k)ze(_k)z
acquires the meaning of a truly bosonic field from the 5
(iw,) ! decay of its(bare propagator for largéw,| (which, A1 S wik 4j*°°d 1
in turn, implies that the correct bosonic commutation rules T 2w A0 % wik)® | de (0?+E2)?
are recovered for this field
The rescaling3.13 obviously affects also the highen ( B 1 > w(k)* 31
>1) terms of the expansiof8.4), which correspond now to 4 AP E g (3179
the interacting part of the action for the effective bosonic
system with “free” action(3.12. In fact, contrary to an where[cf. Eq.(3.11)]
ordinary interacting Bose gas for which only the quarbé)(
interaction exists, bosonization of the original fermionic sys- , A(0) B w(k)?
tem has resulted in the infinite set*®(b® b®, ...) of inter- A'(0)= @ao 2 ; 2 (3.18

actions contained in E¢3.4). We shall, however, argue that,

in the asymptotic limit of adilute Bose gas obtained from at the leading order in themall parametefug|/€,. We thus
bosonization of the original fermionic system when the con-obtain

dition e/ ey<<1 is satisfied, it is sufficient to retain only the

guartic interaction to obtain all physical quantities of interest. (1Q) = Jw(k)¥ gff]
It is thus worth examining first the quartic interaction in v2(0)=4 22 (3.19
) (D) Z [ w(k) &)
some detail.
From Eq.(3.5 we obtain for the term witm=2 of Eq.  Note thatv,(0) is positive and corresponds torepulsive
(3.4): interaction between the composite bosons. The integrals in
Eq. (3.19 can be performed analytically wher=1/2 in Eq.
ng;f):% trx (2.12), yielding (in three dimensions
0) 327 1 (3.20
v = .
"2 q12q4 12(01°--04)D" (1) *b"(92)*b" (q3)b" (q4) ? 2mky f(c)

(3.14) with f(c) defined by Eq.2.79. This result enables us to
' eliminatef(c) in favor of v,(0) from Eq.(2.78 and rewrite
with & rasein the form
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ture ~¢y). Implementing the bosonization critericn<¢
(éphas ZZW (3.2)  has required us to introduce, in addition, the BE critical tem-
B1BY2 perature(<e,) and to verify the bosonization criterion in
as anticipated in Sec. Il, wherg;=n/2=k2/(67°) is the  distinct temperature regimes.
bosonic density. For completeness, we shall verify below There remains to verify that the interaction terms with
that expressioK3.21) coincides with the result obtained for a n>2 in Eqg. (3.4) can be neglected in comparison with the
dilute Bose gas with repulsive interactia{0)=uv,(0). quartic interactionii=2), whenever the bosonization condi-
Before proceeding further and considering the remainingion e-<¢, is satisfied. To this end, we write in analogy to
interaction termgwith n>2) of Eq. (3.4), it is relevant to  Egs.(3.14—(3.16,
discuss thebosonization condition(sjvhich we have ex-

ploited in the previous and present sectiénamely,Ay<<|u] om_ L o
with u<0, see Ref. 43, anflug|<e€,, in the ordey to reach Seif ~on trX
the BE limit. (The additional conditioru|<k3/2m intro-
duced in Ref. 43 is instead related to the specific form of the (g e
interaction potentialcf. Egs.(2.11) and(2.12], which pro- ~ T Q12q2n Un(d1 - 020)b'(g1)* -0’ (qy)
hibits probing length scalesuch as the bound-state radius
ro) smaller thark o * (cf. also Ref. 30 From virial theorem XDb"(An+1) D" (A2n), (3.28
it follows, in fact, thate,~r 9_2’ from whichr >k * can be : o :
implemented by requiring 2/2ms e,=2|x|.) The simplest and consider only the casg =---=0,=0, for which
icsrlterlon for dealing withnonoverlappingcomposite bosons ) (0):(_1)n(ﬁ)n 1 L)Zn

" A'(0)] BQ K [e(k)e(=k)]™

ro<kg?! (3.22 (3.29

(ke* identifying the average interparticle distancérom  Note that appropriate powers Bf) have been introduced in
which it follows that ez<e,. At zero temperature in the the definition ofv,,, in accordance with the standard require-
broken-symmetry state, criteriof3.22 is equivalent to ment on the Fourier transform of a generic interaction poten-
Ao<|u|. To show this, we assume thAg<|u| and approxi- tial in perturbation theoryno care has, however, been paid
mate the(mean-field expression for thelensity (in dimen-

sionsd<4) as follows:

2n

1 5 &\ A3 w(k)> L, 2n-1
o< (1_E_k):2_!l k E—ﬁNAOM
(3.23

for sufficiently largek,. This verifies our assumption consis-
tently, since

AS €r dr2

—~|—] <1 (3.29

© onthe (a)
At finite temperature, on the other hand, we may use either

the Bogolubov resuliug~nuv,(0) for temperatures lower
than the (BE) critical temperature, or the ideal gas value
|,uB|~n2’d for temperatures not too larger than the critical
temperature. Taking into account E§.19, we obtain in the
first case

1-dP2 er |2
| el ~nwl*” ~|M|( ) (3.29
|l
that gives
|/-LB| €F dz
E_ON E_o <1. (3.26

6—0~6—0~6—0<1. (3.27 (b)

Recall that Eqs(3.8) and(3.17) have been obtained with the

condition Bu— —oo (which is equivalent to considering tem- G 4. Comparison ofa) then-body interactior ,(0) with (b)
peratures much smaller than the pair dissociation temperane “effective” n-boson interactior.,, constructed fromv,(0).
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to symmetrizingv,). In this way, the expressiof8.29 is vn(0) | |02+ " 921
finite in the limitsQQ— and/org—c [cf. Eq.(3.18]. To get L ([T g [2 71 ~l— <1
an estimateof v,(0), we consider the casa(k)=1 and n ® L 0 (3.33

perform the frequency sum in the limiu— —oc: L o
for n=3 and d<4, whenever the bosonization criterion

er<<e¢g is satisfied. In this case it is clear that all physical

1 1\™"1 +oo 1 guantities can be obtained by retaining the quartic interaction
vn(0)~ ( Z 2 ) a > f do (W28 (v,) only. Below the critical temperature, on the other hand,
K . K the Bogolubov propagator has to be used in B3] in the
1 1111 place of the bare bosonic propagator. This replacement leads
N(_ 2 _) 2 gl 2n to (infrared divergent integrals, which have to be handled by
Q% & K a suitable renormalization procedure. Although one might
argue that afnfinite constant of proportionality on the right-
~ (| ] 92=2) 7 N| | 220+ 2 hand side of Eg.(3.32 would make the condition
v,(0)/L,<1 be satisfieda fortiori, consideration of the
=|p|(@2A-m+1 (3.30 renormalization procedure is beyond the purposes of the
present paper. This gives a clear warning that a complete
description of the crossover from BCS to BE unavoidably
in d dimensiong® requires one to face the peculiar problems arising in the
Neglecting the interactions,(0) with n>2 with respect bosonic limit.
to v,(0) relies on the following argument. Consider the “ef-  In conclusion, we have shown that the acti@m) can be

fective” n-boson interactior.,, depicted in Fig. 4, which is reduced in the bosonization limit to the simpler form:
assembled from>2 (bare bosonic propagators arranged in

. . 1
a loop andn interactionsv,(0): 2
2 Ser= 22 [0 () (wq—iw,) + 555

L= (05(0)) iﬂz (331 X 3 st qb'(a)*B' ()" D' (@b’ (6
q 1°""Ug

(3.39

with wy given by Eq«(3.10 andug<0. For temperatures not (apart from the constant termtr InM g), wherev,(q;- - -dy)
too larger than thé€BE) critical temperaturéfor which Eq.  depends on its arguments in a complicated ey Eq.
(3.27 holdg, it can be readily shown that (3.19]. Nonetheless, for many purposes it should be possible
to neglect “retardation” effects and replaag,(q;---q.)
with v,(0) given by Eq.(3.19. In that case, thenappingof
1 1 o _ the original fermionic systeronto a truly bosonic systeim
B2 =BT el (332 qyly established”
There remains to recall how the expressi@2l) for

(lw, —wq)n

iw,—wg)"

&nasc@t zero temperature in the bosonic limit can be obtained
with a finite constant of proportionalityNote that the result cf irectly from the bosonic action3.34) with a constant
(3.32 could have been guessed directly from dimensionab,(0). To this end, we set, as usua’(q)= \/,BQaéqo

analysis] Comparison with Eq(3.30 yields eventually +b’(q) and expand3.34 up to quadratic order i’ (q):
|
q2
——iwy+|a|202(0), azvz(O)
~ 2 1 2 1 X3 ’ 2mB
Ser=p0 af?| 3 v2(0)]af?~ up| + 5 2 (0™ (0).0'(~0) ¢
a*?v,(0), 2—mB+iw,,+|a|2v2(O)
b’ (q) )
X{ h , .
(p *(-q) (339

where the Bogolubov self-consistency conditieg=v,(0)|«|? has been used. The single-particle bosonic propagators can
then be readily obtained by inverting the Gaussian matrix in(BE®5), yielding (in matrix form):

2
-_— i _ 2
<( b’(a) )b,* o > ! ZmB+|wy+|a|202(0) @?v,(0) N
b/*(_q) (~ (q):~ (_Q)) < —FES 5 ( ' 6)

o —@ 20,00 Sl —iw,+af%,(0)
B
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with  the Bogolubov  quasiparticle  dispersionE, 102 e
=(g%/2mg)*+ 2| a|?v,(0)g*/2mg. We are actually inter- E
ested in the longitudinal and transverse correlation functions, B ]
defined agcf. Egs.(2.4)] 10t // -
Gl(a)=(b{ (b (~ ), (3.373 . 5 :
> 1k _
G*(@)=(b (@bl (~q)), (3.37b 5 ) -
I - e 3 g
where[cf. Egs.(2.2)] F 107 ? , -
bl(a)= 51 [@*b'(a)+ ab’* (~q)],  (3.383 g ° |
DT bR AT AR T, 102 & E
b’(q):i[a*b’(q)_ab’*(_q)] (338[:) 10-2 :\lllHl Lol Ll I ]
- 2ilal -7 * - 0.1 1 10
In terms of the propagator8.36) we obtain(for real a) Kt pair

2
q°/(4mg)
Gla)=——2—7, (3.399
o, +Eg
N 9%/ (4mg) + a®v,(0)
GHa)= (3:39
v g

In particular, the zero-frequency correlation functions read

&l 0 1 o 1 1
1(1)1/: = —5 = 1
q AMg B2 4mgu’ 1+ 0% naee
403
q2/(4mB)+a202(0) azvz(O)
GL(q,wyzo): EZ = UZ 2
q sd
(3.40D

FIG. 5. Range lf/a’)? of the function(4.1) (in units ofk 1)
calculated in three dimensions &,y for y=1/2 and several
values ofkg/ke (defined by 187! with N=1,2,...,5. The line
Ke€pair is also shown for comparisdashed ling

To this end, the mean-field parameterand A, need to
be obtained first. In Appendix @ and A, are conveniently
expressed in terms of the variatkeé,,,; in the special case
ko=2. A similar scheme can be used fiimite values ofky,
for which x andA, dependalsoon the parametéqy/kg . The
behavior ofu vs ke &4 for a wide range of values dfy/ke
has been already given in Ref. 24 and is reported for the sake
of comparison in Appendix D foky=c°.

The only mean-field quantity to be discussed here is the
expression(2.54) for the longitudinal correlation function.

. . . . ., Since the quantity within brackefsvith the choice of the
with the approximate expressions on the right-hand side,n s sign in Eq. (2.54 coincides with twice the square of
holding in the smalfy limit, whereby the coherence factofu,u,_q—vvi—q) entering expression

2.58), it is evident by inspection that
EqEUS|q| \/1+q2§§hase (3.41) (259 y P

. . 12
Here vs=\a?v,(0)/mg is the Bogolubov sound velocity

V2 i 1 VZ .
FL(R)= ry % e'q'R( - v—f(q))wg ; eld-R

and &nase[4mga“v,(0)] Y2 is the desired coherence a’ +bg?
length for longitudinal correlations. Recalling further that the 4.1
“condensate” density? coincides with the particle density ,

ng in the Bogolubov approximation, expressigh2l) (ob-  With f(a) given by Eq.(2.61 and

tained in the bosonization limits eventually recovered. This 5

completes our mapping. In the next section we will show a,:z w(k)2 i 4.2

numerically how the crossover f@f,scprogresses from the K 2E;"

BCS value(2.68 to the BE valug(3.21). o N o .
This identifies the characteristic “range” of the function

FL(R) with (b/a’)¥? [cf. Eq. (2.62 and Ref. 41, which is
reported vskg&py, in Fig. 5 for the choicey=1/2 in Eq.

In Sec. Il we have identified the coherence lengfhso (2.12. As anticipated in Sec. IF L(R) can be considered to
associated with the phase-phase correlation function of a sipe a “short-range” function oR, since its range never ex-
perconducting fermionic system with attractive interactionceedsi,; in the BE limit and vanishes wheg— . For this
(2.11), as given by Eq(2.62 together with Eqs(2.60 and  reason, the coherence lengffi.scCannot be identified at the
(2.64). In that section we have also evaluated analytically themean-field level.

asymptotic expressions @f,sein the extreme(weak- and The “long-range” coherence length of interest can be
strong-couplinglimits. There remains to obtain the behavior identified instead by the one-loop calculation of Sec. Il ac-
of & nasein the intermediate-coupling regime, which is espe-cording to Eq.(2.62. In Fig. 6 Ke&pnasels Shown VSKe & o,
cially relevant for the crossover between the two limits. Infor y=1/2 and several values d/k: (full lines). Also
this regime Eqs(2.60 and(2.64) have to be evaluated nu- shown in the figure aréa) the asymptotic curvéthick line)
merically. corresponding to th&,=c calculation of Appendix C{b)

IV. NUMERICAL RESULTS AND DISCUSSION
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0.1 1 10
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FIG. 6. Keéphase VS Keépair for y=1/2 and several values of
ko/ke [defined by 107 with N=0,1,..,10, such that the “re-
duced” density is ko/kg) “3=10"N]. Values ofN label different
full curves. Additional conventions are specified in the text.

the boundary(dashed-dotted lineof the “physical” region
identified byc=1/4 with ¢ defined after Eq(2.78); (c) the
curve corresponding ta=0 (dotted ling where any remnant
of the Fermi surface has definitely disappearell;the ex-
trapolation forky= of the analytic BCS and BE results
obtained in Sec. Il Qdashed ling Note that the values of
&nase Nave been uniformly multiplied by the factor
to make§ynaseCoinciding with &, in the BCS limit, taking
into account their different definitions.

Note also the following features from Fig. 6.

(i) &nasecoincides withg,;, (irrespectiveof ko) not only
asymptotically in the BCS limit bualsodown tokg£p,;=10,
where|&nase &pail/épair<0.03 for the values df, reported in
the figure.

(ii) For ke&pair=10 there appears a dependencekgn
which becomes quite pronounced in the BE limit.

(iii) For givenkg, the minimum value ofé;,,c OCCUrS
(approximately at u=0 (dotted line.

(iv) The “physical” boundary(dashed-dotted lineand
the asymptotik,= o curve (thick line) delimit a rather nar-
row strip for §;nase

(v) There exists an accumulation poiftenoted byP in
the figure to which the results foru=0 converge when
ko— 0. P belongs also to the “physical” boundary.

(vi) The extrapolation foky— oo of the analytic BCS and
BE results(dashed lingcoincides with the asymptotlg,= oo
curve (thick line) except fora rather narrow region about
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FIG. 7. KeéphaseVS Keépair for (8 y=0.4 and(b) y=0.6. Con-
ventions are as in Fig. 6.

they depart from the “physical” boundary. In this sense, the
value y=1/2 (considered by NSRappears to be special.

All results reported above hold specifically in three di-
mensions. Results & &pnaseVs Kepair for smaller values of
the dimensionality (2d=3) can be obtained by the method
of Appendix C in the cask,=o and are reported in Fig. 8.
The results ford=2, however, have to be interpreted with
caution since fluctuation effectever and above those con-
sidered in the present paparre especially effective in low
dimensionality. Note, finally, from Fig. 8 that the value
Keépair=10 is still special, since it igapproximately where
the results obtainedwith given value ofk,) for different

K €pair=1 (0or £=0). The region where the two curves depart dimensionalities begin to deviate from each other.

from each other coincides approximately with the “interme-
diate” region identified in three dimensions from Fig. 11 in

Appendix D.

Figure 6 summarizes the main results of this section. For

V. CONCLUDING REMARKS

In this paper we have described the zero-temperature be-

completeness, we also report in Fig. 7 the behavior ohavior of the lengthé,n,scassociated with the fluctuations of

Kr€phaseVS Kr €pair USiNg two different valueéy=0.4, 0.6 for
the exponent of Eq2.12. Note that the conclusior(g)—(vi)
drawn above fory=1/2 remain valid, the main difference
among results with different values ¢fresiding in the way

the superconducting order parameter, following its crossover
from BCS to BE limits. Since the breaking of the gauge
symmetry is the phenomenon underlying both superconduc-
tivity and superfluidity}® determining hOw& ,,scCrosses over
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S LA ) e e ) the longitudinal correlator. It is known, however, that the
longitudinal correlator is strongly coupled to tkgingulay
transverse correlator already at thext order of the loop
expansiorf® As a consequence, the longitudinal correlator
itself develops singularities for small momentaNeverthe-
less, it can be argued thét least in the bosonic limita
characteristic length can still be extracted from the longitu-
] dinal correlator, this length being identified with ofgase>*
For these reasons, our results §g,seVs &,qir are expected to
be essentially correct, both lengths being stable against the
inclusion of higher-order fluctuations.

Following our approach to the bosonization problem

i szz 1 stated in the Introduction, a deeper understanding of the BE
L 1 limit should greatly help describing also the crossover prob-
= ”'O"l - l — "i‘o ’ lem. As mentioned above, proper treatment of the

interacting-boson problem requires special care, owing to the
Kpé o occurrence of infrared singularities that strongly affect the
calculation of physical quantities. The study of the large-

FIG. 8. ke &phaseVS Kr &pair fOr ko =2 and intermediate values of scale behavior of the bosonic propagator, together with the
the dimensionalityd (in steps of 0.2 occurrence of intrinsic infrared singularities, then naturally
leads us to consider a renormalization-group approach for
handling these singularities. Work along these lines is still
required for a full understanding of the interacting-boson

problem. Such an approach, besides being useful for treating
he original bosonization problem in the crossover region,

as also renewed interest on its own after the recent discov-

ery of a Bose-condensed systé.

between the two limits is of definite relevance.

éohase NAs been contrasted with the particle-correlation
length &, Which serves to identify the BCS and BE limits
as well as to specify the dynamical evolution in between. W
have found that,sc coincides withg;, in the BCS limit
and thatéy,as& &pair in the BE limit, with an interesting be-
havior in between.

In our calculation we have identifiegl,,secand &, Using ACKNOWLEDGMENTS
definitions which are valid, in both cases, at the respective _ . _
significant orders. Specificall,,;, has been obtained at the =~ We are indebted to C. Castellani and C. Di Castro for
mean-field level and,y,scat the one-loop order. Some final stimulating <_j|scu53|ons, and to G F. Bassani for continuous
comments on this procedure, which deals Wifhyseand&,,, ~ SUPport during the course of this work. One of (BP)
on a different footing, are in order. gratefully acknowledges receipt of financial support from

&,qir can be extracted from the fermionic pair-correlation Europa-Metalli-LMI S.p.A.
function g(r) defined by Eq.(2.7). Knowledge of&q, in
turn, exhausts all relevant information contained gfr)
whenever the underlying dynamical problem possesses a
single characteristic length. We have verified that this is the
case wherg(r) is calculated at the mean-field leeif. Eq. In this Appendix we prove the identit{2.44), relating the
(2.8)], wherebyé,,;, reduces to the bound-state radiysin  broken-symmetry parametér[cf. Eq.(2.43] of the original
the BE limit. This property, however, might not remain true fermionic system to the average of the=0 component of
when fluctuations are included, i.e., by calculaty(g) at the  the bosonic-like variableb(q) introduced via the transfor-
one-loop order via Eq(2.7). In this case, in fact, a second mation(2.18. We shall also obtain an explicit expression for
characteristic lengtinamely,&,n,sd iS €xpected to appear in the shiftA, of A at the one-loop order. Although the explicit
g(r). Unfortunately, it is not possible to verify explicitly how value of A, is irrelevant for the calculation of the phase
éonase€Ntersg(r) at the one-loop level by the method of Sec. coherence length of Sec. W, enters in general the expres-
Il for evaluating the fermionic-correlation functions. It is, in sions of thermodynamic quantities and correlation functions
fact, known from the work of Ref. 5 that determining the other than(2.4), for which omitting A; might lead to
densityresponse functiofiof which g(r) is a particular cae inconsistencie$>%2
requires one to include also the coupling between the density The identity (2.44) is proved by adding to the original
and phase-amplitude fluctuations, thus enlarging the Gausgermionic action(2.14) the following bosonic-like source
ian matrix of Eq.(2.36. Taking into account this coupling term:
exceeds the purposes of the present paper. In any event, it
should be sufficient for our purposes to identgy,, at the
mean-fle_ld level, since on physical ground no qppreuablegS:_JOE W(k)CT(k)CL(_k)_J(’)‘E w(k)c,(—k)c; (k)
change is expected for the smallest length scale in the prob- k k
lem when including fluctuations. (A1)

We have further argued thd}y,,se ON the other hand,
cannot be defined at the mean-field level, requiring one téwith k=(k,w)]. In this way, one obtains from the resulting
consider explicitly the(one-loop fluctuation corrections to generating functional analogous (.13:

APPENDIX A: BROKEN-SYMMETRY PARAMETER
AT THE ONE-LOOP ORDER
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K)c (—k)c (k) ) =————
; w(k)c, (—k)ci(k) . 53 - &
n=n=

0
(A2)

where the average on the left-hand side is evaluated with the (a)
action (2.14. On the other hand, when introducing the

Hubbard-Stratonovich transformatioi2.18 the additional

term (Al) can be reabsorbed by shifting the integration vari-

able b(q) with =0, ie., by setting b’(q=0)

=b(q=0)+ BJ,. In this way, one readily obtains

— q=0
_\_/(b(q—O))seﬂ——éJ3 3p=3t=0" (A3)
n=71=0
where now the average on the left-hand side is evaluated (b)

with the action(2.26). Comparison ofA3) with (A2) yields

eventually the resul(t2.44). . . . FIG. 9. (a) Graphical representation of a typical term of Eq.
The calculation of theone-loop ?h'ft A, is thus equiva-  (ag) (conventions are as in Fig):ab) zero-momentum insertion of
lent to that of the(one-loop shift by=pgA; of (b(d  Eq. (a10).

=O)>Seﬁ. According to a general procedure of functional in-
tegrals(cf., e.g., Appendix C of Ref. 39this shift is given (§=0"), and the order parametdrin the form
by

~ 9F1/d|by| v
= _gigog 2 170U A=— 2, w(k){c,(k)c,(—k)
bl e ¥o &ZFO/a|bO|2’ (A4) 18 Ek < T L( >S
whereg is the phase of the sourdg in Eq.(Al), Fy andF, \Y B
are given by Egs.(2.35 and (2.41), respectively, and :_E; w(k)(M 1(k’k)21>seff' (A7)

b0: BAO .

Alternatively, A; can be evaluated in terms of the dia- Approximations are introduced at this point in the usual way,
grammatic structure for the original fermionic system via thepy (i) replacingS,s— Ser/A, (i) implementing thex expan-
definition (2.44). This procedure has been used in derivingsion via Egs.(2.29 and (2.29, and (iii) expanding the re-

Eq. (2.59, where the first term on the right-hand side wassulting expressions in powers af To the first significant

obtained from the first term on the right-hand side of Eq.order in\ beyond mean field we obtain

(2.50. It is interesting to show explicitly the equivalence of

the two procedures at the one-loop order. Besides providing .

a nontrivial consistency check on our one-loop calculation,  (Mx “(K.K")iir}s

the following results may also serve, e.g., to obtain the one- )

loop correction to the chemical potential over and above its = 5k'k,|\/|51(k)“,+)\<[M51M1M51M1|\/|51]:('|;,>S(2>

mean-field value. e

We begin by writing the single-particle fermionic Green'’s A
functions in the form -3 ([Mg 'M1Mg T tr(Mg *M1)%)s2),  (A8)
~ — -1

(cr(k)ci(k))s=—(MH(k,K)1p)s whereS@ is the(\ independentquadratic actior{2.36 and

the trace is performed over the indicksandi. In deriving

(cy(k)e (K)s=(M ™=k, —K)2a)s (A5)  Eq. (A8) we have used the expansi¢2.49 for M;* and
included consistently the cubim&3) term in Eq.(2.32.
(ci(k)c (—k))s= —(M‘l(k,k)ZI)Seﬁ, We shall verify that the first term of order on the right-

hand side of Eq(A8) represents a nontrivial self-energy cor-
whereM " is the inverse of the matrig2.23. We can then  rection to the bare propagativry 2, while the second term of
express the particle density in the form order N results by shifting the mean-field parameter
Ag—Ag+A; in Mgt
1 o There remains to evaluate the contractions entering Eg.
n= 30 2 e"”55<ca(k)cg(k))s (A8). To this end, it is convenient to supplement the Gauss-
A ko ian action (2.36 by the source termV~[Jyb’(q=0)*
1 . +J35b’(g=0)] [which is equivalent to EqA1)], in order to
=50 g e’ (M (k,K)1)s,,— (M~ (—k,—K)a)s,)  avoid spurious divergencies due to the presence of the Gold-
stone mode aj=0, allowingJ, to vanish at the end of the
(AB) calculation. We eventually obtain



15186 F. PISTOLESI AND

<[M51M1M51M1M511Ek3>sgg=fwMa%km[; w<k+q/2>2Mal<k+q)21<b*<q)p*<—q)kgg}Mal(k)zw

+Mg (k)| X w(k+
L g

+Mg Y (K)ip }q} w(k+

+Mg (k)i

E w(k+
L a

depicted schematically in Fig(&, and
1 -1 —1qii’ -1 3
_§<[Mo M1Mg e (Mg "M1)%)s2
-1 -1
Mg “(K)ji» Mg “(K)ji

- 5"""[ by bg

depicted in Fig. th), with b; given by Eq.(A4).

In particular, wheni=2 andi’=1, entering(A9) and
(A10) into (A8) with A=1 and the resulting expression into
(A7) yields

1

bl} (A10)

*

V.oVv[ by Bl b
A_AO__Eh+E B(q—O)?'i‘ A(q_0)+\—/ E

_b vV h—[|B(q=0)|+A(q=0) o (A11)

=3B [I1B(a= (q= ]B’

where we have set

2
w(k—g/2)2 > (—1)iti'+t
jj'=1

h=2> w(k)>,
k q

XM (K)2iMo (0= K); (AL (e) b Mo (k) 2
(A12)

and made use of Eq§2.37) and(2.38. Upon manipulating
the derivatives in Eq(A4), it can be finally shown that the
expression within brackets on the right-hand side of Eq
(A11) vanishes identically. EquatiofA1l) thus reduces to
A—A,=A;=hb,/B, as expected.

We remark finally that, wheA,=0, Eq.(A11) reduces to
A(g=0)b,;=0, since in this case=0 identically. This im-
plies thatA;=0, too.

APPENDIX B: MOMENTUM DEPENDENCE
OF THE INTERACTION POTENTIAL
FOR COMPOSITE BOSONS

In Sec. Il we have mapped the original fermionic system

interacting via an attractive-potential onto an effective sys-

tem of composite bosons, in the limit of strong fermionic
attraction. We have also determined the “strength” of the
effectiveresidualinteractions among the composite bosons,
which led us to conclude that retaining only the quartic in-
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a/2)’Mg *(k+ Q)22<b(—Q)D*(‘@)s@?}’\/‘al(k)li/
a/2)*Mg *(k+ Q)11<D(Q)D*(Q)>s§f)}'v|o1(k)2i'

a/2)*Mg *(k+0)1£b(a)b(—a))s2 Mol(k)lw] (A9)

teraction is sufficient to describe the bosonization limit. In
this Appendix we study thenomentundependence of the
quartic interaction, from which we will conclude thd,;
identifies the characteristic length scale of the boson-boson
interaction.

To this end, it is convenient to simplify the expression
(3.19 by settingw(k=1), that corresponds to takirlg,= oo
from the outset in Eq(2.12. It is then clear from dimen-
sional analysis of Eq3.15), together with Eqs(3.8)—(3.11)
in the limits ky=00 and Bu— —, that|x| and (2n|u|) =2
constitute the only energy and length scales in the problem,
respectively. For scattering processes among the composite
bosons which involvgMatsubara frequenciessmall com-
pared to|u/, one can thus set alexterna) bosonic frequen-
cies equal to zero in Eq3.15 because to this limit there
corresponds a well-defindihite value of the interaction po-
tential, as we have verified in Sec. Ill. We shall consistently
not be particularly interested in the frequency dependence of
the effective boson-boson potential. Regarding instead its
momentum dependence, we would expedtrdy bosonic
potential to be cast in thesymmetrized form:

v2(01*+0a) = 8, +q,,q5+q,L U(A1—03) T U(d1—0a) ],
(B1)

u(q) being the Fourier transform of the two-body interaction
potential. In fact, we shall verify below that E¢B1) holds
approximatelyonly for |q;|(2m|u|) "Y2<1(i=1,...,4) with
u(gq)=const. In other words, the residual boson-boson poten-
tial can itself be approximated by a “contact” potentmb-
videdonly small-momentum scattering processes are consid-
ered.

To verify to what extent Eq(B1) is valid, we consider
explicitly two degenerate cases with 4,=q,=03=04=q
and (i) q;=—09,=q and q3=0q,=0, for which Eq.(B1)
would give v,(d,q9,9,9)=2u(q=0) and v,(g,—q,0,0)
=2u(q), respectively. In the first case, we obtain for the
(four) momentum sum in Eq.3.15 (in three dimensions

s 1 1 (2m|pu|)*?
T e(k)2e(q—k)? 16w (2[u))®
q2 . 1 —3/2
X|1+ am lw, m .

(B2)
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In the second case we obtain instead

5
>(\) T T T T T T T T T T T T T T ]
2 1 ~ 1 _
k e(k)e(—k)e(k—q)e(q—k) 2 C ]
= i ]
B 1 l, 0.8 N -
== - +c.c., B3 = L .
2% BE o &) ®9 = :
which for w,=0 and in three dimensions reduces to g 06 B
® |- -
1 @emu)h*® 1 S04l .
7T (2lu))® 9%(4+7%) E“ - .
2 2 T 02 r ]
SN2 4 S = _ = o i ]
X[ (4+9%9) -1 - arctar{q/2) — arctarqzla)} g - | | | | B
R O L 1 L i { | L | 1 | 1 1 1 1 1
(B4) S0 2 4 6 8 10
with g=|qg|(2m|u|) "2 The desired value,(q,q,q,q)
andv,(q,—q,0,0) are obtained eventually upon dividing the ala,
results (B2) and (B3), respectively, by|A’(q)|?> and
|A’(g)|A’(0). FIG. 10. Graphical representation of E¢R9) (dashed lingand

It is clear from the definition3.11) of A’(q) [together (B10 (full line) vs G=|qlas. The characteristic decay of the two
with (3.8 of A(q)] that its computation requires a suitable functions for largeq is indicated.
(ultravioley regularization of the momentum integral when
w(k)=1. We follow here a standard procedure in the litera-
ture and introduce the scattering amplituedefined via the  With & defined via Eq(3.10. In this way we obtain from

equatio*® Eq. (3.11)
m m Vi 2 2 2 -1
——2—2 B85 A@ie) 1k KL,
4mag, QV 20 0 ; +60 g 2e—iw
in the center-of-mass reference frame of the two fermions. a2 2 : 112
The (ultraviolet divergent sum on the right-hand side of Eq. 1 %7 [1+(q /24m— ! f"V)1/2|'“|] -1
(B5) results in a finite value of by letting V—0 in a AT € (g°/2m—iw,)1/2 u| '
suitable way A(q,i w,) given by Eq.(3.8) becomes accord- (B8)
ingly
A(io,) 1 m (K2 ¢ -1 where the last equality holds in three dimensions and
’Q - a > [P ( + g 2u—io, ) } 2= — €, Within our approximations.
B k m m According to Egs(3.15 and(3.16), we obtain eventually
m for w,=0 (in three dimensions
B 4rag (B6)
- - - v2(9,6,9,9) 1 q'
Solution of Eq.(3.9), in turn, yields Z (B9)
, ) v2(0) 2 (44§D A+ P 2)?
1 m [k -
o> [P‘ (w © |TZma. 0 B 44
|
v2(0,-9,0,0  4[(4+G%) M~ 1~ (2/m)arctanG/2) - (2/m)arctari 2/q) ] (610

va0) (4+5%) (V4+T~2)

with G defined after Eq(B4). The behavior of the expres- v,(0)4ag %/(g?+4a;?). These results imply that the com-

sions(B9) and(B10) versusq is depicted in Fig. 10. Sinc  posite nature of the bosons prevents E&() from holding

can be also written as the prod from Egs.(B9) and ; “ " ;
(B10) we conclude thafi) vzp(q ngtgf 2u(q= g) (cor:stant strictly for “large” momenta(and energies Nevertheless,

can be approximately true only fo¢q|<as , while our finding thatvz(q_,l—q,0,0) decays more rapidly than
v,(9,0,q,0) decays aglqlay) ~* for |g[>az; (i) the depen-  v2(0,0,0,0) for [g[>a¢ " makes assumptio(B1) valid in a
dence ofv,(q,—q,0,0 on |g| is (approximately given by  “weak” sense.
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A final comment is in order. Although we have introduced
the scattering amplitudeg via Eq. (B5) to comply with a
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“contact” potential in real space. This potential has already
been considered in Appendix B to simplify the calculations;

standard procedure in the literature, it is clear that there exn that context, we have adopted a standard regularization

ists asingle characteristic length in the bosonic limit, which
(in three dimensionscan be identified alternatively withy,

procedure in terms of the scattering amplitiade Here we
shall avoid introducingas and use§,,, instead. Setting

&oair» O T (1o being the bound-state radius for the associated, =2 from the outset will also make some approximations

two-fermion probleny the three lengths differing at most by
numerical constants of order unity. With the “contact” po-
tential VQ 6(r) adopted in this Appendix, in fact, we readily
find for the solution of the two-fermion Schitimger equation
in momentum space:

V/Q (0
d(K)=— Wﬁ(eo) (B11)
where
B 1 E B E 1
¢(0)=\/_5 2 d(k)=—V¢(0) = Kmt e
(B12)

plays the role of the bound-state equation. Eliminatham
favor of a4 via Eq.(B5), we find eventuallyin three dimen-
sions:

1

“nd (B13)

€0
By the same token, the bound-state radiyss given by
2

r222k|vk¢(k)|2 _ &
O Sk 27

where the last equality holds in three dimensions. Since w
also know thatr, coincides withé,,;, in the BE limit** the
results of this Appendix could be expressed in termggf
instead ofas. This procedure will consistently be adopted in
Appendix C also in the BCS regime. Our preferencedqy,
overa, stands from the fact thaj,,; is (at least, in principlg
experimentally accessible, since it pertains to the physic
problem of interesfwhile as is a fictitious parameter of the

(B14)

theory). Besides, we shall find in Appendix C that expressing

the relevant physical quantities in terms §f;; from the
outset requires no explicit regularization of divergent expres
sions.

APPENDIX C: &yhase VS &pair
FOR A CONTACT POTENTIAL

In the text we have adopted a fermionic interaction poten
tial of the (separableform (2.11) with w(k) given by Eq.
(2.12. By doing so, we have introduced an intrinsic length
scale ko 1) for the potential, which we have exploited to
simplify the regularization procedure and to explore the den

sity dependence of the results. This additional flexibility has

enabled us to verify the independence frkgrof the relevant
results in the BCS limit, although physical restrictions limit
ko to “large” values (cf. Refs. 30 and 483 For this reason
we have sometimes considered in the text the likgit oo
for the final expressions, where they get considerably simpli
fied (see also Ref. 44

The purpose of this Appendix is to studirectly the case
ko=oe, for which w(k)=1 and the interaction reduces to a

used in the text for analytic calculations more transparent.
We begin by evaluating;; according to Egs(2.8) and
(2.9 in d dimensions:

» SV 1 Jgdk(kTIETED)

PRI S (K7 M [rdk(kTYER)
where nowg(k) = 1/E, = (&+Af) Y2 Here&,y; is a func-
tion of uw andAg only. Ay, in turn, can be related ta via the

(zero-temperature mean-field expression of thember den-
sity (or, alternatively, vigkg):
=

(27)%K 4 being the area of the unit spheredndimensions.
The expression of,,s6iS still given by Eq.(2.62, where

(CD

&k

]

2 © o
n a deg:KdJO kd 1 E_ (CZ)

now
_AdKs fmolkE (c3)
2 Jo  E;
and
b Ko [Fq G @280 sac ke
16m Jo = & dm EZ|’

?\Iote that the interaction strength does not appear explic-
ity in Eqgs. (CD)—(C4) (this remains true even for
w(k)#cons].

Inversion of Eqs(C1) and(C2) yields x andA, as func-
tions of ke and &, without invoking the gap equation

412-33. The lack of an intrinsic lengtitsuch askal) in the

potential enables us to write further:

(CH

k
m=u(ke ’fpair) = m h(M)(kFSPaif)

and

2

KE | a0
Ao=A(ke vgpair): °m h%o (kngair)l (Co)

whereh® andh(*o are functions of the dimensionless vari-
able keépar only (this is not true, however, when
w(k)#cons}. As a consequence, we write from Eq&3)
and (C4):

kaphase: h(g)(kapair) (C7)

whereh® is an additional function oRg&,4; Only.

Quite generally, Eqs(C5—(C7) can be solved numeri-
cally (in spatial dimensionsi<<4) for any desired value of
Kg&pair- This procedure has been used in Sec. IV to deter-
mine the limiting curves fok,=< as well as the dependence
of &ynaseON dimensionality. In the rest of this Appendix we
discuss the analytic BCS and BE limits.
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We consider first the BCS limit and note that the integrals

in Egs.(C1)—(C4) can be cast in the form
gm
E(O"

where (m,n) are nonnegative integers ahl{¢) is a smooth

+oo
Iz‘w,Ao):f dEH () 9
—u

function of ¢ which, by assumption, does not spoil the ultra-
violet convergence of the integral and remains finite for

£—0. In the BCS limit,A;—0 and the integralC8) develops
an infrared singularity when—m=1. Equation(C8) is then
manipulated as follows:

m

E(é)“
H(0)>

In(w,80) = H(O)j dé =—n

+ oo

o

§m+1

E(H™

H($)—
3

dé (C9
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where now the first integral on the right-hand side can be

evaluated analytically, yielding

ym
dy [z yme=H(0)A5" SRV

+ oo

H(0)Ag " f

—ulAg

(C10
with
m_ [T y"
JHEJ_ dy(—QT)nQ (Cll)

since u/Ay— in the BCS limit. Concerning the second in-
tegral on the right-hand side of E(C9), it may or may not
converge in the infrared when,—0. If it does converge,
this term can be safely neglected in comparisofiG0) for
n—m>1; otherwise, the procedure followed in EG9) can
be iterated for the functiobl’ (&¢)=[H(£)—H(0)]/¢ in the

15189
2 14(d)
(épai’= Ml T(d)’ (C19
= (@m*Aul** 21yd),  (C19
|M| I5(d)
2_
phasg 8mA B(d), (C17)
with (d<4)
(= y**t  T[(d+2)/2]T[(6—d)/2]
Il(d)=f0 dy (y2+1)4_ 12 ’
(C183
[ y'™ ! T(diT[(4-d)/2]
|2(d)=fo dy (y2+1)2_ 2 )
(C18b
(= y'™t  T(d/2T[(6—d)/2]
|3(d):f0 dy (y2+1)3_ 4 ’
(C189

r bemg the Euler's gamma function. Expressjpgin terms
of ¢35 pair from (C15) and A in terms ofn (and thus ofkg)
from (C16), and entering the results into E@C17), we ob-
tain in the BE limit

d 15(d)? (
6 15(d)

41,(d)
I2(d)

d2—-1
(knghasgz_ ) (kngalr

(C19

Note that ford=3 this expression coincides with the result
obtained previously in the limik,—x (cf. Ref. 44. Note
also that, contrary to the BCS resu€14) which depends
weakly ond, the BE expressiofC19 depends markedly on

place ofH (&), until the resulting integral converges. In any d and shows a peculiar behavior fdr-2.
event, the terms generated in this way are subleading with
respect tqC10 asA,—0, and can be neglected in the limit.

The same procedure has been used in the text to obtain the

APPENDIX D: BEHAVIOR OF THE CHEMICAL

results(2.66 and (2.67).

With the above approximations, we obtain from the lead-

ing terms of Eqs(C1), (C3), and(C4) in the BCS limit:

2

2p Jg w
BCS\2_ 6 _
(€)™ =12 37~ amaz’ (€12
2
BCSQz Spu 97 M (13
Sonasd = 74maZ 30~ GamaZ’

which recover Eqs(2.69 and (2.68), respectively, in the
limit ky—o andd=3. We can thus write in the BCS limit

[2
kFE,'f»?aieF 3d kpiﬁgf’-

(C14

In the BE limit, on the other hand, the approximation

ulAy——c0 applies and the integrals {C1)—(C4) are con-

POTENTIAL VS K &pair

In Ref. 24 it was found that the crossover between the
BCS and BE regimes occurs in a ratmarrow range of the
parameteke ., by examining the behavior of the chemi-
cal potential VSKe €y, at the mean-field level. This finding
has been confirmed in the present paper by looking at the
behavior ofke&ynaseVs Keépair With the inclusion of fluctua-
tions. The purpose of this Appendix is to investigate to what
extent the behavior of the chemical potential kit is
“universal,” in the sense that it is sufficiently independent
from the specific model Hamiltonian and from the dimen-
sionality (at least at the mean-field leyel

To this end, we shall examing) the continuum model
Hamiltonian(2.10—(2.12) in the limit ky=c (“contact” po-
tential, for which simplifications occur, at intermediate val-
ues of the dimensionality (d=<3); (ii) the negatived
Hubbard model on a cubidE& 3) lattice.

The equations determining the chemical potentigdnd
the gap parametek, vs Keép,;, for ko= and intermediate

veniently evaluated by expanding their integrands in powedimensionality are reported in Appendix[€f., in particular,

of Ay/|u|. One obtains to leading order

Egs.(C1) and(C2)]. Their numerical solution yields the be-
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FIG. 11. Chemical potentighk vs kg &4 (at zero temperatuye FIG. 12. Chemical potential Vis: &,y for the d=3 negativel

for ky== and 2<d=3. Different curves are labeled by the values Hubbard model at the mean-field level. Values of band filling label
of d (in steps of 0.2 Positive values ofu are normalized by the different curves(f=0.01, 0.1, 0.2, 0.3, 0.4, 0.45, and 0.49 from
Fermi energyer=k#/2m, while negative values of. by half the  right to left). Energies are measured from the bottom of the single-
magnitudee, of the eigenvalue of the two-body problemdndi-  particle band. The curve witi=3 from Fig. 11 is shown for com-
mensions. parison(dotted ling. Normalization ofu is as in Fig. 11, except for
the replacement of the Fermi energy by the Hartree-Fock chemical
havior of u vs Kgép,r Shown in Fig. 11 for 2d<3. The potentialuye.
curve ford=3 coincides with the curve reported in Fig. 1 of
Ref. 24 in the limit of low reduced density, and the curve for

d.=2 (;oincides with the two—dimensional analytic results™ 15 chemical potential Vi £, for thed=3 negativey
given in Ref. 2(once expressed in terms BE&yq). NOt€ 1y hharg model is shown in Fig. 12 for several band fillings.
also from Fig. 11 that, at the mean-field level, there is Nop 54 shown for comparison is the curve fb=3 reproduced
significant difference between the results for 2 andd=3.  fom Fig. 11 (dotted ling. The comparison evidences the
The crossover from BCS to BE for the=3 negatived  peculiar behavior of the Hubbard model near half fillinfg (
Hubbard model was originally discussed in Ref. 11 in terms=1/2), while the continuum-model results are recovered in
of the interaction strengttd. Here we repeat this mean-field the low-density limit f<1). Note that the qualitative behav-
calculation, by takingg &4 (in the place ofU) as the vari-  jor for the Hubbard model looks similar to that for the con-
able driving the crossover. The calculation proceeds simitinuum model even at intermediate fillings.
larly to that for the continuum modebut for the additional Notwithstanding these similarities, a warning on the na-
inclusion of (normal-statg Hartree-Fock terms in the mean- ture of the bosonic limit for the negatiud-Hubbard model
field decoupling® These terms are now relevant since theyis in order. Contrary to what happens for the continuum
provide a sizable shift of the chemical potential near halfmodel(or else, in the low-density limift<1), the gap equa-
filling of the electronic band, where they signal the occur-tion does not reduce to the bound-state equation for the two-
rence of a liquid-gas phase separation through a nonmondermion problem wherkg§,,,<1, since near half filling one
tonic behavior of the chemical potential vs band filling. As finds A=|u| and the conditiom\<|u| cannot be satisfied. As
the inclusion of pairing restores the correct increase of tha consequence, the broken-symmetry state is not a BE con-
chemical potential with filling, a Maxwell construction is densate in the conventional sense, as discussed in Ref. 11.
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(namely, &, of the present papewas calculated at the mean-

field level for a momentum-independent gap energy and com-
pared with available experimental data on cuprate superconduct-

ors. Since the data refer §,scinstead, a comparison of this
kind is meaningful as far agnase=&pair» Which we show in the
present paper to hold providég &,,;=10.

Strinati, Phys. Rep241, 291 (1994.

“OBesides the diagrams depicted in Fig. 3, the “exchange” contri-

bution(2.48 contains also terms with the structure of E2153),
where the fermionic bubble® andB) are calculated with the
“dressed” version of the single-particle fermionic Green’s func-
tions that include corrections of ordeicf. the first term on the
right-hand side of Eq(2.50]. Despite this replacement, this
contribution is expected to maintain the “short-range” character
of the mean-field expressiq2.53 and is accordingly neglected
in the following.

?’See, e.g., D. ForsteHydrodynamic Fluctuations, Broken Sym- “I'More precisely, the characteristic spatial “range” associated with

metry, and Correlation FunctiongBenjamin, MA, 1975,
Chaps. 10 and 12; see also P. B. Weichman, Phys. R&8, B
8739(1988.

28\We setfi=1 throughout.

29A Hamiltonian similar to (2.10 results from the so-called
negatived Hubbard model in a lattice, whereb#(k k') is re-

a (non-negativefunction F(r), whose Fourier transforfa(q) is
well defined, can be determined by
AL F(Nr? _ —VaF(@lg-o
JdrE(r) F(q=0)
This justifies retaining the quadratic expansi@®61) only for
the calculation ofpase

placed by the constaht, & by the band dispersion relation, and “*The BCS limit is identified by the condition_<u with u>0.

the wave vectors are restricted to the Brillouin zone. In Appen-
dix D we consider this model Hamiltonian at the mean-field
level.

30The Hamiltonian(2.10) is, in general, invariant under a global but

not a local gauge transformation. Local gauge invariance is suit-

ably recovered whenever the interaction potentigk k') de-
pends weakly ork and k’, i.e., in the limit ky—c for the
choices(2.11) and(2.12.

In this limit one can assume, in addition, trm;F<kS/2m for
any givenk, [ko being the characteristic wave vector of the
interaction potential, cf. Eq(2.12], provided one takes the
strengthV sufficiently small[cf. Eq. (2.11)]. With these two
conditions, one verifies that the nonvanishing contributions to
expression (2.64) [other than the contribution(2.66] are
smaller than the dominant contributiof2.66 by factors
(A /) (A, Tk§/2m) or (Ay_/k5/2m)?. For the approximations
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used to derive the right-hand side of E¢®.66) and(2.67), see
also Appendix C.

“3The BE limit is achieved when the conditidq<|u| with ©<0 is
satisfied. In this limit, however, the characteristic wave vekgor
of the interaction plays an important role contrast with the
BCS limit discussed in Ref. 42, for which the value kf is
irrelevan). The point is that increasing the valy¥| of the
interaction strength makeg| increase accordingly, and thizg
becomes eventually larger th&/2m for any initial choice of
ko. Expression(2.64 for the coefficientb, in turn, depends
crucially on the ratig u|/(k§/2m) and different values are ob-
tained depending on which of the two conditiofia|<k3/2m
or |u|>k3/2m) is satisfied. We have thus to impose sorae
strictionson the bosonization procedure according to the follow-
ing scheme. For giveky, |V/| is increased to reach the bosoniza-
tion condition Ag<<|u| with u<0, paying attention thatul
remains much smaller thdq%/Zm. If this is the case, there is no
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in Ref. 7 in terms of the scattering amplitude for the two-
fermion problem.

45A related problem has been addressed in Ref. 15 using conven-

tional diagrammatic techniques, where the two-fermion correla-
tion function has been shown to reduce to the Bogolubov propa-
gator in the strong-coupling limit. The functional-integral
approach enables us to go further and study higher-order effects
such as multiple-boson interactions.

“8n the broken-symmetry state at zero temperature, the quadratic

action (2.36 can be expanded in series of the small parameter
A¥u? in the BE limit[cf. Eq.(3.24)]. In the absence of loops for
the bosonic propagators, retaining the lowest significant order in
A¥u? is equivalent to keeping,(0) only out of the seb,(0)
given by Eq.(3.29. In bosonic language, in fact, increasing

by one unit introduces in the self-energy two additiocahden-
satelines proportional td(b’ (q=0))|?~ BQ| u|Y?(A g/ 1)? [cf.
Egs.(2.45, (3.13, and(3.18)].

need to increaspv| any further and the bosonization condition 4'The bosonization criteriof8.22), which is exploited to obtain the

haseffectivelybeen achieved. Otherwise,|jf| needs to become
comparable to or even larger th&g/2m to reach the bosoniza-
tion conditionAy<|u| with w<0, the calculation might produce
inconsistent results, such as negative values for the coeffizient
We shall thus impose thiarther condition| x| <k3/2m on the
BE limit (which is equivalent to a low-density condition for the
Bose gas With this condition, one verifies that the terms of the
expression(2.64) [other than the contributio(®.70] are smaller
than the dominant contributiof2.70 by factors(Ay/|u|) and/or
(Ao/k3/2m) and their powers.

“4It is interesting to derive from Eq$2.78 and(2.79 the limiting
value of £phsefor kg— o0, whereby the interaction potentiéih
real spacgreduces to a “contact” potential. Implementing this
limit requires one to keegﬁaﬁr constant, in such a way thhi|
remains also constant ad-0 in Eq.(2.79. One then obtains
(Kréphasd®= (37/16)\uol/ € with ex=kE/2m. Alternatively,
relating |uol to &g (cf. Appendix Q one rewrites
(K& hhasd®=(3m16v2) (ke £55) %, which coincidegapart possi-
bly for a numerical factor of order unixyvith the result reported

effective bosonic action from the original fermionic action, en-
sures also that the resulting bosonic systerdiliste. From the
analysis of Appendix B one, in fact, obtains in three dimensions
that the bound-state radiug coincides with the scattering am-
plitude a, for the two-fermion problentapart from a numerical
factor of order unity. Condition(3.22) is thus equivalent to the
standard criterionand/3<1 for a dilute Bose gas, where

aB=2a, andng=n/2.

48Cf., e.g., P. NozZiees, inBose-Einstein Condensatioadited by

A. Griffin, D. W. Snoke, and S. StringatCambridge University
Press, Cambridge, 199%. 15.

“3The coupling between longitudinal and transverse fluctuations has

been formulated via the general principle of “conservation of
the modulus” by A. Z. Patashinskii and V. L. Pokrovskii, Zh.
Eksp. Teor. Fiz.64, 1445 (1973 [Sov. Phys. JETRB7, 733
(1973].

50yu. A. Nepomnyashchii and A. A. Nepomnyashchii, Zh. Eksp.

Teor. Fiz.75, 976 (1978 [Sov. Phys. JETRS8, 493(1978].
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