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We consider a fermionic system at zero temperature interacting through an effective nonretarded potential of
the type introduced by Nozie`res and Schmitt-Rink, and calculate thephasecoherence lengthjphase~associated
with the spatial fluctuations of the superconducting order parameter! by exploiting a functional-integral for-
mulation for the correlation functions and the associated loop expansion. This formulation is especially suited
to follow the evolution of the fermionic system from a BCS-type superconductor for weak coupling to a
Bose-condensed system for strong coupling, since in the latter limit adirectmapping of the original fermionic
system onto an effective system of bosons with a residual boson-boson interaction can be established. Explicit
calculations are performed at the one-loop order. The phase coherence lengthjphase is compared with the
coherence lengthjpair for two-electron correlation, which is relevant to distinguish the weak-~kFjpair@1! from
the strong-~kFjpair!1! coupling limits~kF being the Fermi wave vector! as well asto follow the crossover in
between. It is shown thatjphasecoincides withjpair down to kFjpair.10, jpair in turn coinciding with the
Pippard coherence length. In the strong-coupling limit we find instead thatjphase@jpair , with jpair coinciding
with the radius of the bound-electron pair. From the mapping onto an effective system of bosons in the
strong-coupling limit we further relatejpair with the ‘‘range’’ of the residual boson-boson interaction, which is
physically the only significant length associated with the dynamics of the bosonic system.@S0163-
1829~96!02422-8#

I. INTRODUCTION

There has been recently renewed interest in the crossover
from BCS superconductivity to Bose-Einstein~BE! conden-
sation, following the discovery of the high-temperature
superconductors.1–8 In particular, the observation that these
~as well as other ‘‘exotic’’! superconductors have consider-
ably ~i.e., 103–104 times! shortercoherence lengththan con-
ventional superconductors has prompted the suggestion that
proper description of superconductivity in these materials
might require anintermediateapproach between the two lim-
its represented by BCS theory and BE condensation.9 In this
context, it appears especially relevant to assess how the co-
herence length~which can be determined experimentally
from the spatial fluctuations of the order parameter and
which we shall consistently refer to asjphasein the following!
crosses over between these two limits. The purpose of this
paper is to provide a detailed description of this crossover.10

Evolution from weak- to strong-coupling superconductiv-
ity was addressed a few years ago by Nozie`res and
Schmitt-Rink11 ~hereafter referred to as NSR! after the pio-
neering work by Leggett.12 NSR follow this evolution by
increasing the coupling strength of an effective fermionic
attractive potential, and conclude that the evolution is
‘‘smooth.’’ The inclusion of fluctuations beyond mean field
considered by NSR through the ladder approximation for the
pairing susceptibility, however, has posed problems of physi-
cal consistency,13 owing to the fact that the ladder approxi-
mation is not ‘‘conserving.’’14 This shortcoming was later
overcome by Haussmann15 who considered a fully ‘‘conserv-

ing’’ diagrammatic approach to describe the interacting
Fermi system in the superconducting phase, whereby each
single-particle Green’s function is self-consistently deter-
mined. It turns out that keeping the full self-consistency is
most important in the intermediate~crossover! region of in-
terest, in order to account correctly for the mixture of fermi-
onic and bosonic degrees of freedom.15

The approaches of Refs. 13 and 15~as well as the related
work of Refs. 1–8! rely on an approximation scheme~i.e.,
BCS mean field plus fluctuations! which is well established
in the weak-coupling limit. The fact that this procedure re-
sults in a sensible strong-coupling limit~i.e., the noninteract-
ing Bose gas of Ref. 13 or the weakly interacting Bose gas of
Ref. 15! can be related to the structure of the BCS wave
function, which has built in the BE condensation as a limit-
ing case.16 There is, however,a priori no guarantee that the
results in the strong-coupling limit would always provide a
satisfactory description of the limiting system of interacting
bosons.

For these reasons, we prefer to approach the bosonization
processin reverse, that is, by setting up first a reliable ap-
proximation for the bosonic system and then determining
how the bosonization procedure of the original fermionic
system maps that approximation back onto a description of
the weak-coupling limit. In this way, we can focus directly
on improving the description of the bosonic limit, which is
admittedly more difficult to deal with than the opposite
weak-coupling limit, where the BCS approximation is ex-
pected to be invariably recovered as the fundamental starting
point.
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Focusing directly on the bosonic limit, however, leads us
to confront a long-standing problem in the theory of interact-
ing bosons. It has, in fact, long been known that conventional
many-body~diagrammatic! methods for an interactingcon-
densedBose system can be quite generally organized within
approximation schemes that are consistenteither with con-
servation laws~‘‘ F-derivable’’ approximations! or with the
absence of a gap in the elementary excitations spectrum
~‘‘gapless’’ approximations!.17 This difficulty does not ap-
pear in the corresponding scheme for self-consistent ‘‘F-
derivable’’ ~conserving! approximations for fermionic sys-
tems ~even in the superconducting phase!.18 For these
reasons, when dealing with condensed bosonic systems one
prefers to abandon self-consistent schemes and resorts in-
stead to approximation procedures whereby diagrams are se-
lected in terms of anexternalsmall parameter~like the re-
duced density!.19

An approach formally alternative to conventional dia-
grammatic methods to set up a modified perturbation theory
for a superfluid Bose system is the functional-integral
method with the associated ‘‘loop’’ expansion, which allows
for a unified description of superfluidity and superconductiv-
ity in terms of collective variables.20 By this method,
bosonic-like collective variables are introduced at the outset
in the description of the fermionic superconducting system
of interest via a Hubbard-Stratonovich transformation, in
terms of which a mean-field approximation and the associ-
ated fluctuation corrections can be defined. Specifically, the
mean-field approximation recovers the NSR results obtained
at zero temperature, while systematic inclusion of fluctuation
corrections by the loop expansion enables one to overcome
the problems of physical consistency mentioned above for
the NSR results.21 In this context, it is worth mentioning the
recent work by Traven22 who considered the interaction be-
tween pair fluctuations~which are ignored by the standard
Gaussian approximation! and demonstrated that it removes
the pathological behavior of the thermodynamic functions
obtained within the Gaussian approximation in two dimen-
sions, thus stabilizing the low-temperature superfluid phase.
We have also to mention in this context that the loop expan-
sion associated with the functional integral can be formally
mapped23 in the bosonic limit onto the low-density expan-
sion ~which is conventionally used to select the relevant dia-
grammatic structure for thedilute Bose gas19!. Keeping all
terms up to a given order in the expansion parameter further
guarantees that conservation lawsand Ward identities are
satisfied up to the same order. It is in this sense that the
problems originating from the ‘‘gapless’’ and ‘‘F-
derivable’’ approximations are overcome by the ‘‘loop’’ ex-
pansion. In the following, we shall apply the functional-
integral method at the one-loop~i.e., the next-to-significant!
order to the problem of the crossover between BCS and BE,
with the same-model Hamiltonian adopted by NSR.

Returning, specifically, to the calculation of the phase co-
herence lengthjphaseat zero temperature, we will show that
the one-loop calculation leads to a consistent picture for the
crossover of this physical quantity, which varies from the
Pippard coherence lengthj0 in the weak-coupling limit to the
known result (4mBmB)

21/2 for a dilute Bose gas~with mass
mB and chemical potentialmB! in the strong-coupling limit.19

These results will be contrasted with the~mean-field! calcu-

lation of the coherence lengthjpair for two-electron correla-
tion reported previously,24 which ranges instead fromj0 to
the bound-state radiusr 0 in the two limits. In Ref. 24 it was
also concluded that~i! jpair ~through the dimensionless pa-
rameterkFjpair! is the relevant variable tofollow the cross-
over from BCS to BE@and thus it does not serve to identify
merely the two extreme BCS~kFjpair@1! and BE~kFjpair!1!
limits#, and~ii ! this crossover occurs in practice in a limited
range of the variablekFjpair ~beginning atkFjpair.10 on the
BCS side!. The calculation ofjphasereported here confirms
this result, because we will find thatjphase.jpair down to
kFjpair.10, with the two lengths starting to differentiate for
smaller values ofkFjpair.

25 One can thus associate asingle
characteristic length to a BCS-type superconductor, which is
generically identified~even for relatively strong coupling! by
the existence of a well-defined Fermi surface. In the bosonic
limit, we will find instead thatjphase@jpair, as expected, since
the ‘‘size’’ of a single boson is by no means related to the
range of the fluctuations of the order parameter.26 We shall
further show in this limit thatjpair is associated with the
range of theresidual boson-boson interaction, by mapping
the original fermionic system onto an effective system of
interacting bosons. In this way, a sensible and consistent
description of the bosonization process results from our one-
loop calculation, at least in the zero-temperature limit we are
considering.

The plan of the paper is the following. In Sec. II we set up
the calculation ofjphaseat the one-loop order, by relying on a
functional-integral representation of the correlation functions
for a fermionic system interacting through an effective po-
tential of the type introduced by NSR. We provide also ana-
lytic expressions ofjphasein the weak- and strong-coupling
limits. In Sec. III we consider specifically the strong-
coupling limit and perform a mapping of the effective action
of the original fermionic system onto the corresponding ac-
tion of a truly bosonic system, by exploiting features of the
collective bosonic-like variables introduced in Sec. II via a
Hubbard-Stratonovich transformation. In Sec. IV we present
numerical results forjphase~in three and lower dimensions!
over the whole range of coupling, and especially across the
narrow region of the variablekFjpair where the actual cross-
over from BCS to BE takes place. Section V gives our con-
clusions. Details of the calculations as well as related addi-
tional material are given in the Appendixes. In particular,
Appendix A obtains the shift of the order parameter which is
required to make the NSR approach fully consistent at the
one-loop level in the condensed phase~or in two
dimensions22!. In Appendix D the ‘‘universal’’ curve, ob-
tained previously in Ref. 24 for the chemical potential versus
kFjpair using the NSR separable interaction, is discussed fur-
ther in the context of the~three-dimensional! negative-U
Hubbard model and of the analytic two-dimensional solution
of Ref. 2.

II. CALCULATION OF THE ZERO-TEMPERATURE
PHASE COHERENCE LENGTH FOR A

SUPERCONDUCTING FERMIONIC SYSTEM

In this section we consider the calculation of the spatial
fluctuations of the order parameter^c↑~r !c↓~r !& for a super-
conducting fermionic system@cs~r ! being the fermionic field
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operator with spin projections#, and follow their evolution
as the fermionic system is driven toward its bosonic counter-
part by increasing the~effective! attractive fermionic inter-
action. To this end~and for the reasons discussed in the
Introduction!, we shall rely on a functional-integral represen-
tation of the correlation functions and the associated loop
expansion. Since some confusion has sometimes arisen in the
literature between the inclusion of Gaussian fluctuations and
the consistency of the loop expansion,7,13 we shall discuss
the latter in some detail in the following~see also Appendix
A!.

To identify the range of the spatial fluctuations of the
superconducting order parameter across the evolution from
BCS to BE, we find it convenient to introduce the bosonic-
type operator

w~R!5E dr f~2r!c↑~R2r!c↓~R1r!, ~2.1!

where the~real! functionf~r! is assumed to be ‘‘localized’’
aboutr50. The thermal averagêw~R!& can be then associ-
ated with the order parameter of the broken-symmetry phase.
Since this order parameter is~in general! complex, we can
further represent the operator~2.1! via its longitudinal and
transverse components to the direction of broken
symmetry:27

w i~R!5
1

2uDu @D*w~R!1Dw†~R!#, ~2.2a!

w'~R!5
1

2i uDu @D*w~R!2Dw†~R!#, ~2.2b!

where we have set

D5^w~R!&. ~2.3!

The relevant correlation functions for the operators~2.2! can
then be defined as follows:

F i~R2R8!5E
0

b

dt^Tt@w i~R,t!w i~R8,t50!#&2buDu2,

~2.4a!

F'~R2R8!5E
0

b

dt^Tt@w'~R,t!w'~R8,t50!#&,

~2.4b!

whereTt is the imaginary-timeT-ordering operator, the ther-
mal averagê•••& is taken at the equilibrium temperatureb21,
and the Heisenberg representation for the field operators is
implemented below. Note that the unnecessary dependence
on the imaginary timet has been eliminated in the expres-
sions~2.4! by the time averaging.

For a homogeneous system, it is further convenient to
introduce the Fourier transform of the operator~2.1!:

w~q!5
1

AV
E dRe2 iq•Rw~R!

5(
k

f~k!c↑~k1q/2!c↓~2k1q/2!, ~2.5!

wheref~k! is the Fourier transform of the functionf~r! of
Eq. ~2.1!, cs~k! is the destruction operator of wave vectork
and spins, andV is the volume occupied by the system. In
terms of the operator~2.5! we rewrite

F i ,'~R2R8!56
1

4V (
q
eiq•~R2R8!E

0

b

dt$^Tt@w~q,t!w~2q,t50!#&6^Tt@w~q,t!w~q,t50!†#&

6^Tt@w~2q,t!†w~2q,t50!#&1^Tt@w~2q,t!†w~q,t50!†#&%2
~161!

2
buDu2, ~2.6!

where the upper~lower! sign refers toF i (F'). Note that the
t-averaging selects the zero-~Matsubara! frequency compo-
nent of the correlation functions within braces in Eq.~2.6!.
Note also that in Eq.~2.6! we have eventually consideredD
to be real.

Below a critical temperature, one expects to identify a
finite coherence length for longitudinal correlations only. In
particular, the behavior forsmall q of the integrand in Eq.
~2.6! is of interest whenever the correlation function
F i~R2R8! has a well-behaved~exponential! spatial decay.
Since the broken-symmetry condition resides in thephaseof
the order parameter~2.3!, in the following we shall identify
asjphasethe coherence length associated withF

i. Physically,
jphase provides an estimate of the spatial dimension over
which the phase fluctuations are correlated. In the strong-
coupling~BE! limit one thus expectsjphaseto be much larger
than the typical size of the fermionic pairs~which, in this
limit, constitute truly bosonic entities!. In this context, it is

relevant to introduce an additional length~say, jpair! which
reduces to the size of the bound fermionicpair in the BE
limit. On general ground, information onjpair can be ex-
tracted from the fermionic pair-correlation function~with op-
posite spins!

g~r !5
1

n2
^c↑

†~r !c↓
†~0!c↓~0!c↑~r !&2

1

4
, ~2.7!

wheren is the particle density and the constant Hartree term
has been subtracted for convenience. For instance, at the
mean-field level Eq.~2.7! becomes

g~r !5
1

n2
z^Fuc↓

†~r !c↓
†~0!uF& z2, ~2.8!

whereuF& is the BCS ground state, andjpair can be obtained
as24

15 170 53F. PISTOLESI AND G. C. STRINATI



jpair
2 5

* dr g~r !r2

* dr g~r !
. ~2.9!

In the BE limit, jpair obtained from Eq.~2.9! coincides with
the bound-state radius of the associated two-fermion prob-
lem: At the mean-field level asingle length enters the func-
tion ~2.8! since no correlation is established between bound
pairs. Beyond the mean field, however, correlation between
bound pairs should occur and the lengthjphaseshould affect
g~r !. Nonetheless, in the BE limit we expect the magnitudes
of the two lengthsjpair andjphaseto be widely separated, in
such a way thatjpair can still be extracted fromg~r ! by in-
spection. For this reason, in the following we shall restrict in
practice to the mean-field definition~2.9! with g~r ! given by
Eq. ~2.8!. In the weak-coupling limit, on the other hand, we
expect no difference betweenjphaseandjpair ~apart, possibly,
from a trivial normalization factor due to the respective defi-
nitions!. In other words, in the weak-coupling limit asingle
length characterizes the correlation within a Cooper pairand
among different Cooper pairs~the correlation originating es-
sentially from Pauli exclusion principle!.

To proceed in the calculation ofjphase~andjpair! we need
a specific Hamiltonian to describe the interacting fermionic
system. To connect with previous work on the crossover
from BCS to BE, we adopt the model Hamiltonian consid-
ered by NSR:

H5(
k,s

jkcs
†~k!cs~k!1 (

k,k8,q
V~k,k8!c↑

†~k1q/2!

3c↓
†~2k1q/2!c↓~2k81q/2!c↑~k81q/2! ~2.10!

with jk5k2/2m2m ~m being the chemical potential!.28 This
Hamiltonian differs from the usual BCS reduced
Hamiltonian,16 in that it allows for finite values of the
~center-of-mass! momentumq of the pair operatorc↑

†c↓
†

while keeping the singlet spin pairing. Taking into account
finite values ofq is, in fact, necessary to represent the strong-
coupling limit in terms of interacting bosons.29

For convenience, we also take the~effective! attractive
interaction potential in Eq.~2.10! of the separable form (V
,0):

V~k,k8!5Vw~k!w~k8!. ~2.11!

In the usual BCS theory,w~k!5u~ec2ujku! specifies an
abrupt cutoff about the Fermi surface~ec being the cutoff
energy!. To treat the strong-coupling limit on the same foot-
ing of the weak-coupling limit,w~k! should instead interpo-
late smoothly between small and largek. We take accord-
ingly

w~k!5@11~k/k0!
2#2g ~2.12!

with g.0. We have verified that the restriction 1/4,g,3/4
ensures the relevant correlation functions to be well defined
via their Fourier transforms, as well as the bound-state radius
for the associated two-body problem to vanish in the limit
uVu→`. In most of the following calculations we shall take
the valueg51/2 considered by NSR.30

A. Functional-integral approach

As discussed in the Introduction, although we are origi-
nally considering a system of interacting fermions, we are
interested in treating properly the strong-coupling regime
where the fermionic system gets mapped onto a system of
interacting bosons. To this end, it is relevant to introduce for
anycoupling bosonic-like~collective! variables from the out-
set, which turn eventually into truly bosonic fields in the
strong-coupling limit.

Functional integrals are especially suited for introducing
collective variables and, at the same time, for providing one
with conserving approximations even in the presence of
condensates.20 In this context, one obtains the relevant fer-
mionic correlation functions by differentiating the generating
functional31

Z@h̄,h#5
* D c̄Dc exp$2S2Sint%

* D c̄Dc exp$2S%
~2.13!

with respect to the ‘‘sources’’h(h̄), where

S5E
0

b

dtS (
k,s

c̄s~k,t!
]

]t
cs~k,t!1H~t! D ~2.14!

and

Sint5E
0

b

dt(
k,s

@h̄s~k,t!cs~k,t!1 c̄s~k,t!hs~k,t!#.

~2.15!

In these expressions, (c,c̄) and (h,h̄) are Grassmann vari-
ables, and

H~t!5(
k,s

jkc̄s~k,t!cs~k,t!1V(
q
B̄~q,t!B~q,t!

~2.16!

with

B~q,t!5(
k
w~k!c↓~2k1q/2,t!c↑~k1q/2,t!

~2.17!

is the Hamiltonian associated in the action with the operator
~2.10! and the choice~2.11! for the interaction potential.32

Bosonic-like variables are introduced via the Hubbard-
Stratonovich transformation

exp$2VB̄~q,t!B~q,t!%52
1

pV E db* ~q,t!db~q,t!

3expH 1V Ub~q,t!U2
1b~q,t!B̄~q,t!

1b* ~q,t!B~q,t!J ~2.18!

that holds for anyq andt, where the variablesb~q,t! obey
periodic boundary conditionsb~q,t1b!5b~q,t!.33 It is fur-
ther convenient to introduce time Fourier transforms for
Grassmann and bosonic variables, and make the change of
variables
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x1~k!5 c̄↑~k!, x2~k!5c↓~2k!,
~2.19!

j1~k!52h̄↑~k!, j2~k!5h↓~2k!,

analogous to Nambu spinor transformation, with the short-
hand notationk5~k,vs! wherevs52p(s11/2)b21 ~s inte-
ger! is a fermionic Matsubara frequency. The generating
functional ~2.13! can thus be rewritten in the form

Z@ j̄,j#5
* D x̄DxDb*Db exp$2S82Sint8 %

* D x̄DxDb*Db exp$2S8%
,

~2.20!

where now

S852
1

bV (
q

ub~q!u2

1(
k,k8

„x̄1~k!,x̄2~k!…M ~k,k8!S x1~k8!

x2~k8! D ~2.21!

and

Sint8 5(
k

(
i51

2

@ j̄ i~k!x i~k!1x̄ i~k!j i~k!#. ~2.22!

In Eq. ~2.21!, q5~q,vn! wherevn52pnb21 ~n integer! is a
bosonic Matsubara frequency, andM (k,k8) is the 232 ma-
trix

M ~k,k8!

5S e~k!dk,k8 ,
1

b
wS k1k8

2 Db* ~k2k8!

1

b
wS k1k8

2 Db~k82k!, 2e~2k!dk,k8
D

~2.23!
with

e~k!5 ivs2jk . ~2.24!

The Grassmann variables can be integrated out at this
point in Eq.~2.20!, yielding

Z@ j̄,j#5
* Db*Db exp$2Seff2Sint9 %

* Db*Db exp$2Seff%
, ~2.25!

where

Seff52
1

bV (
q

ub~q!u22tr lnM ~2.26!

is theeffectivebosonic action and

Sint9 5(
k,k8

(
i ,i 851

2

j̄ i~k!M21~k,k8! i ,i 8j i 8~k8!. ~2.27!

Note that the trace in Eq.~2.26! is performed over the four-
momentum (k) and Nambu spin (i ) indices, and thatSeff
formally contains all powers in the bosonic variablesb.

To proceed further, one usually considers a quadratic
~Gaussian! expansion of the effective action~2.26! in terms
of (b2b0) whereb0 is a mean-field value. In particular, in

Ref. 7 this procedure has been applied to derive the analog of
the time-dependent Ginzburg-Landau equation for the cross-
over problem from BCS to BE above the mean-field critical
temperature~where b0 vanishes identically!. For the zero-
temperature properties we are interested in, however, a
straightforward Gaussian expansion is known to be not fully
consistent since it omits contributions that are formally of the
same order of the Gaussian contributions itself~cf., e.g., Ref.
34 for the zero-temperature properties of a three-dimensional
dilute Bose gas and Ref. 22 for its two-dimensional counter-
part!. To keep full consistency at each stage of the calcula-
tion, we introduce a~formal! loop expansionin the generat-
ing functional~2.25! by ~i! replacing the effective actionSeff
with Seff/l where 0,l<1; ~ii ! regardingl as the expansion
parameter of the theory~to express, e.g., the correlation func-
tions as power series inl!; ~iii ! settingl51 eventually at the
end of the calculation. In this way, expansion of the relevant
physical quantities up to a given order inl guarantees con-
servation laws and Ward identities to be satisfied to the same
order in the expansion.35 Note that, contrary to other cases
for which a ‘‘small’’ loop parameter naturally emerges from
the physics of the problem, the introduction of a loop param-
eter in the present context might at first look somewhat arti-
ficial. As mentioned in the Introduction, however, it can be
shown that the present loop expansion gets formally mapped
onto alow-densityexpansion in the bosonic limit.23

To implement the loop expansion, we set

b~q!5b@D0dq,01Alb> ~q!#, ~2.28!

whereD0 plays the role of a~complex! bosonic condensate
andb> of its fluctuating part. The matrix~2.23! becomes ac-
cordingly

Ml~k,k8!5M0~k,k8!1AlM1~k,k8!, ~2.29!

where

M0~k,k8!5S e~k! w~k!D0*

w~k!D0 2e~2k!
D dk,k8 ~2.30!

and

M1~k,k8!5wS k1k8

2 D S 0 b> * ~k2k8!

b> ~k82k! 0 D
~2.31!

are independent ofl. Correspondingly, the effective action
reads

Seff
l

52
b

V S uD0u2

l
1

D0

Al
b> * ~q50!1

D0*

Al
b> ~q50!

1(
q

ub> ~q!u2D 2
1

l S tr lnM02 (
n51

`
~21!n

n

3ln/2 tr~M0
21M1!

nD . ~2.32!

The constantD0 is determined, as usual, by requiring the
coefficients of the linear terms inb> (q50) andb> * (q50) to
vanish, yielding the BCS ‘‘gap equation’’
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D052V(
k

D~k!w~k!

2E~k!
tanhS bE~k!

2 D ~2.33!

with D~k!5D0w~k! andE(k)5Ajk
21uD(k)u2.

Equation~2.32! is still exact. Approximations depend on
the number of powersln/2 considered. In particular, the
Gaussian approximation forSeff results upon keeping the
next significant (n52) order inl, namely, by taking

Seff
l

5
1

l
bF01Seff

~2! , ~2.34!

where

F052
uD0u2

V
2
1

b
tr lnM0 ~2.35!

is the~grand-canonical! free energy at the mean-field level36

andSeff
~2! is the quadratic form

Seff
~2!5

1

2 (
q
„b> * ~q!,b> ~2q!…S A~q! B~q!

B* ~q! A~2q!
D S b> ~q!

b> * ~2q! D .
~2.36!

In this expression

A~q!52
b

V
2(

k
w~k2q/2!2G ~k!G ~q2k!5A~2q!* ,

~2.37!

B~q!5(
k
w~k2q/2!2F ~k!F ~q2k!5B~2q!,

~2.38!

where

G ~k!5M0
21~k!115

e~2k!

ue~k!u21uD~k!u2
, ~2.39!

F ~k!5M0
21~k!215

D~k!

ue~k!u21uD~k!u2
, ~2.40!

are the ordinary Gorkov functions.A(q)1b/V and B(q)
represent normal and anomalous particle-particle bubbles, re-
spectively, as depicted in Fig. 1.37

In what follows, it is sufficient to retain the quadratic
action ~2.34! only, but for the calculation of the shiftD1 of
the mean-field parameterD0 for which it is necessary to keep
also cubic terms in the expansion~2.32! of the effective ac-
tion ~see Appendix A!. In this way, the~grand-canonical!
free energy acquires the following correction to the next sig-
nificant order beyond mean field:38

F15
1

2b (
q

ln„uA~q!u22B~q!2…, ~2.41!

whereD0 has been taken to be real and with the ‘‘stability’’
conditions

uA~q!u2B~q!.0, ReA~q!1B~q!.0. ~2.42!

The chemical potentialm can be eventually eliminated in
favor of the particle densityn by solvingn52(1/V)]F/]m
with F5F01lF1 . In principle, the chemical potential need

not be expanded in powers ofl since all conserving require-
ments can be directly expressed within the grand-canonical
ensemble, the mapping betweenm andn being established at
the end of the calculation after having setl51 in the expres-
sion forF. Nonetheless, one may alternatively regardm as an
internal parameter of the theory and expand it in series ofl
at the outset~for details cf. Appendix C of Ref. 39!. In the
following, we calculate the physical quantities of interest
keeping the value ofm unspecified, and expandm in series of
l only in the final expressions.

B. Calculation of jphaseat the one-loop order

There remains to combine the calculation of the longitu-
dinal (F i) and transverse (F') correlation functions~2.6!
with the loop expansion. For completeness, we report in the
following the main steps of the calculation which might also
serve for addressing additional correlation functions. For our
specific purposes the relevant result is Eq.~2.56! below.

We need to relate first the broken-symmetry parameter
~2.3! @cf. Eq. ~2.5!#

D5
1

AV
^w~q50!&5

1

AV
(
k

f~k!^c↑~k!c↓~2k!&

~2.43!

with the mean-field valueD0 and the one-loop fluctuation
contributionD1. To this end, we rely on the identity~proven
in Appendix A!
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^b~q50!&Seff5V(
k
w~k!^c↑~k!c↓~2k!&S , ~2.44!

where the averages are taken, respectively, with actions
~2.26! and ~2.14!. Comparison of Eq.~2.44! with the defini-
tion ~2.43! then yields

D5
1

b
^b~q50!&Seff5D01Al^b> ~q50!&Seff ~2.45!

with the notation~2.28! and the choicef(k)5AVVw(k).
The relation~2.45! is still exact. At the one-loop order it
reduces toD5D01lD1, as shown in Appendix A.

Next, we express the averages of four-fermion operators
in Eq. ~2.6! @which are taken with action~2.14! within the
functional-integral formulation# in terms of products of ma-
trix elements of the inverse of the matrix~2.23! @which are
correspondingly averaged with action~2.26!#. We obtain

F i ,'~R!5FD
i ,'~R!1FE

i ,'~R!2
~161!

2
buDu2,

~2.46!

where

FD
i ,'~R!56

V2

4 (
q
eiq•R(

k,k8
w~k!w~k8!

1

b (
s,s8

$^M21
21~k2q/2,s;k1q/2,s!M21

21~k81q/2,s8;k82q/2,s8!&Seff

6^M21
21~k2q/2,s;k1q/2,s!M12

21~k81q/2,s8;k82q/2,s8!&Seff

6^M12
21~k2q/2,s;k1q/2,s!M21

21~k81q/2,s8;k82q/2,s8!&Seff

1^M12
21~k2q/2,s;k1q/2,s!M12

21~k81q/2,s8;k82q/2,s8!&Seff% ~2.47!

is the ‘‘direct’’ contribution, and

FE
i ,'~R!57

V2

4 (
q
eiq•R(

k,k8
w~k!w~k8!

1

b (
s,s8

$^M21
21~k2q/2,s;k82q/2,s8!M21

21~k81q/2,s8;k1q/2,s!&Seff

6^M22
21~k2q/2,s;k82q/2,s8!M11

21~k81q/2,s8;k1q/2,s!&Seff

6^M11
21~k2q/2,s;k82q/2,s8!M22

21~k81q/2,s8;k1q/2,s!&Seff

1^M12
21~k2q/2,s;k82q/2,s8!M12

21~k81q/2,s8;k1q/2,s!&Seff% ~2.48!

is the ‘‘exchange’’ counterpart.
The loop expansion emerges at this point from the exact

expressions~2.47! and ~2.48! by interpreting the matrixM
therein as being the matrixMl ~2.29!. In this way, its inverse
acquires the expansion

Mab
215~M0

21!ab2Al~M0
21M1M0

21!ab

1l~M0
21M1M0

21M1M0
21!ab1••• , ~2.49!

yielding for the required averages

^Mab
21Mgd

21&5^Mab
21&^Mgd

21&

1l^~M0
21M1M0

21!ab~M0
21M1M0

21!gd&

1O ~l3/2! ~2.50!

with the understanding that the product^M ab
21&^M gd

21& is
evaluated at the relevant order inl. @In the expressions
above, the indicesa, b, . . . refer to the four-vectork and the
Nambu spinor component.# In particular,at the mean-field
levelEq. ~2.50! reduces to

^Mab
21Mgd

21&→~M0
21!ab~M0

21!gd ~2.51!

with M0 given by Eq.~2.30! ~andD0 taken eventually to be
real!. In this case the ‘‘direct’’ contribution~2.47! becomes

FD
i ,'~R!→

~161!

2
bSVb (

k
w~k!M0

21~k!21D 2
5

~161!

2
bD0

2, ~2.52!

where use has been made of the gap equation~2.33!. This
contribution cancels the last term on the right-hand side of
Eq. ~2.46! sinceD→D0 at the mean-field level. On the other
hand, the ‘‘exchange’’ contribution~2.48! becomes

FE
i ,'~R!→2

V2

2b (
q
eiq•R$A~q,vn50!6B~q,vn50!%,

~2.53!

whereA(q) andB(q) are given by Eqs.~2.37! and ~2.38!,
respectively.@Equation~2.53! holds apart from a local term
proportional to thed function of argumentR, which is con-
sistently neglected in the following.# In particular, in the
zero-temperature limit Eq.~2.53! can be cast in the form
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FE
i ,'~R!→

V2

4 (
q
eiq•R(

k

w~k2q/2!2

Ek1Ek2q

3F11
jkjk2q7DkDk2q

EkEk2q
G , ~2.54!

where the function to be summed overq is well behaved for
all q and contributes a ‘‘short-range’’ function ofR. Expres-
sion ~2.54! will be studied numerically in Sec. IV to deter-
mine its range explicitly.

The relevant ‘‘long-range’’ behavior inR results instead
at the one-loop level. Entering Eq.~2.50! into Eq.~2.47!, we
obtain for the ‘‘direct’’ contribution

FD
i ,'~R!5

~161!

2
bD21l

V2

2b (
q
eiq•R$A~q,vn50!6B~q,vn50!%1

l

2 (
q
eiq•R

b

A~q,vn50!6B~q,vn50!
~2.55!

~apart, again, from a term proportional to ad function ofR!.
Note that the first term on the right-hand side of Eq.~2.55!
results from the first term on the right-hand side of Eq.~2.50!
together with Eqs.~2.44! and~2.45! ~cf. Appendix A!. In this
termD is meant to contain also its one-loop shiftD1 ~which
is real whenD0 is real!, making it to cancel with the last term
of Eq. ~2.46!. Note further that the second term on the right-
hand side of Eq.~2.55! coincides formally~apart from a
sign! with the mean-field contribution~2.53! once one sets
l51, and thus shares the same ‘‘short-range’’ character. The
last term on the right-hand side of Eq.~2.55!, on the other
hand, yields the desired ‘‘long-range’’ behavior.

Before discussing this behavior in detail, it is worth rep-
resenting graphically expression~2.47! at the order of the
approximation~2.50!. This is done in Fig. 2 for the terms of
orderl. It is evident from the figure that the bosonic propa-
gator ~wiggly line! carries the external~four! momentumq,
such that any singularity of this propagator for small values
of q will affect the spatial decay of the ‘‘direct’’ contribution
~2.47! to the correlation functions.

By contrast, in the ‘‘exchange’’ contribution~2.48! the
bosonic propagator does not carry the external~four! mo-
mentumq since this propagator occurs entangled in the in-
ternal structure of the diagrams~cf. Fig. 3!. In this case the
singularity of the propagator for small momenta is smoothed
out by the internal~four! momentum integrations in the dia-
grams. For this reason, the ‘‘exchange’’ diagrams are not
expected to contribute to the ‘‘long-range’’ behavior of the
correlation functions~2.46! and are accordingly neglected in
the following.40

In conclusion, at the orderl ~one-loop! we approximate
the correlation functions~2.4! by the following expressions:

F i~R!>
l

2 (
q
eiq•R

b

A~q,vn50!1B~q,vn50!
,

~2.56a!

F'~R!>
l

2 (
q
eiq•R

b

A~q,vn50!2B~q,vn50!
~2.56b!

FIG. 2. ~a! Graphical representation of a typical ‘‘direct’’ term
of orderl in Eq. ~2.47! beforeit is integrated over the wave vector
q @recall that, by our definition~2.4! of the correlation functions,
q5~q,vn50! in this term#. For simplicity, arrows distinguishing
normal and anomalous single-particle Green’s functions are not in-
dicated. The wiggly line stands for the~transposed! matrix of the
bosonic propagator̂b> (q)b>†(q)&S

eff
(2), whereb> (q) is the column vec-

tor of Eq. ~2.36!. This propagator is depicted in~b! ~at the order
considered in the present paper! as an infinite series of the original
fermionic bubbles@dots represent the strengthV of the separable
potential~2.11!#.

FIG. 3. Typical diagram of orderl occurring in the ‘‘exchange’’
contribution~2.48!. The internal~four! momentak andk8 are inte-
grated, and the momentumq5~q,vn50! is associated with the spa-
tial ~R! dependence. Note that diagrams of this type vanish in the
‘‘normal’’ phase ~whenD0→0!.
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with A(q) andB(q) given by Eqs.~2.37! and~2.38!, respec-
tively. Note that in the normal phase@for which B(q)50#
there is no distinction between longitudinal and transverse
correlation functions. In the superconducting phase, on the
other hand, a coherence length can be identified only for the
longitudinal correlation function, as expected. This is be-
cause

lim
q→0

@A~q,vn50!2B~q,vn50!#

52bF 1V1(
k

w~k!2

2Ek
tanhS bEk

2 D G ~2.57!

vanishes owing to the gap equation~2.33!. The other combi-
nationA~q,vn50!1B~q,vn50! is instead finite forq→0.

If we restrict, in particular, to thezero-temperature limit,
we obtain

A~q,vn50!1B~q,vn50!

52bF 1V1(
k
w~k2q/2!2

~ukuk2q2vkvk2q!
2

Ek1Ek2q
G

[b f ~q!, ~2.58!

where

uk5A1

2 S 11
jk
Ek

D , vk5A1

2 S 12
jk
Ek

D ~2.59!

are the usual BCS parameters. Note thatf ~q!5f ~uqu! and

lim
q→0

f ~q!5a5(
k
w~k!2

Dk
2

2Ek
3.0 ~2.60!

providedD0Þ0, owing again to the gap equation~2.33!. For
small values ofq we can thus expand

f ~q!5a1bq21••• , ~2.61!

and obtain the desired coherence length as follows:

jphase5Ab

a
~2.62!

provided b is also positive. In fact, entering the expansion
~2.61! into Eq. ~2.56a! yields for the leading ‘‘long-range’’
behavior~in three dimensions!

F i~R!'
l

2 (
q
eiq•R

1

a1bq2
5

l

2

V

4pb

exp$2uRu/jphase%
uRu

~2.63!

with jphasegiven by Eq.~2.62!. Consideration of the expan-
sion ~2.61! is obviously sufficient provided the functionf ~q!
has no other singularity.41

There remains to obtain an explicit expression for the co-
efficientb of the expansion~2.61!, for generic values of the
parameters characterizing the interaction potential~2.11!. To
this end, we expand Eq.~2.58! retaining all terms up to order
q2 and obtain~in three dimensions!

b5
1

8m (
k

w~k!2jk
2

Ek
5 H ~jk

222Dk
2!

2jk
1
3

2
z8~k!Dk

2

1
k2

6m

Dk
2

jkEk
2 @5jk1z8~k!~4Dk

226jk
2!

1z8~k!2jk~jk
224Dk

2!13z9~k!jkEk
2#J ~2.64!

with the notation

z8~k!5
2m

w~k!

dw~k!

dk2
, z9~k!5

~2m!2

w~k!

d2w~k!

d~k2!2
.

~2.65!

Quite generally, all terms within braces in Eq.~2.64! contrib-
ute to the value ofb for intermediate coupling and the sum
over the wave vector has correspondingly to be evaluated
numerically. This task will be performed in Sec. IV. In the
extreme ~weak- and strong-coupling! limits, on the other
hand, only a single term within braces in Eq.~2.64! ~albeit
different in the two cases! contributes to the value ofb and
the sum over the wave vector can be evaluated analytically.

C. Analytic results in the BCS and BE limits

It is worth showing in detail how the coefficientsa andb
of the expansion~2.61! can be evaluatedanalytically in the
BCS and BE limits, by exploiting simplifying features of the
calculation. Specifically, the sum over the wave vector in
Eqs.~2.60! and~2.64! will be evaluated with the approxima-
tion D0/umu!1 that holds in both limits~albeit withm.0 and
m,0, respectively!. The main results of this section are
given by Eqs.~2.68! and ~2.78! below.

In the weak-coupling ~BCS! limit the term
~5/3!~k2/2m!~Dk/Ek!

2 within braces in Eq.~2.64! provides
the dominant contribution,42 yielding ~in three dimensions!

bBCS5
5

24m (
k
w~k!2

k2

2m

jk
2Dk

2

Ek
7

5V
5kFw~kF!2

48p2mD̃0
2 E

2D̃0
21

1`

dy
w̃~y!4~yD̃011!3/2y2

@y21w̃~y!2#7/2

>V
5kFw~kF!2

48p2mD̃0
2 E

2`

1`

dy
y2

~y211!7/2

5V
mkFw~kF!2

2p2

1

~3kFD̃0!
2 . ~2.66!

In the expression above, we have setw(k)5w(kF)w̃( k̃) with
k̃5k/kF and w̃( k̃51)51, jk /m5 j̃ k̃5 k̃221 ~since m
5k F

2/2m in the BCS limit!, Dk/m5w̃( k̃)D̃0 with D̃0
5w(kF)D0 /m5DkF

/m, and y5 j̃/D̃0 . In addition, the last
line of Eq. ~2.66! has been obtained by exploiting the BCS
condition D̃0!1 as well as the normalizationw̃(y50)
5w̃( k̃51)51. By the same token, the coefficienta given
by Eq.~2.60! becomes in the BCS limit~in three dimensions!
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aBCS5(
k
w~k!2

Dk
2

2Ek
3

5V
mkFw~kF!2

4p2 E
2D̃0

21

1`

dy
w̃~y!4~yD̃011!1/2

@y21w̃~y!2#3/2

>V
mkFw~kF!2

4p2 E
2`

1`

dy
1

~y211!3/2

5V
mkFw~kF!2

2p2 . ~2.67!

Entering the results~2.66! and ~2.67! into Eq. ~2.62!, we
obtain eventually

jphase
BCS5AbBCS

aBCS
5

1

3kFD̃0
. ~2.68!

This result has to be compared with the BCS limit forjpair
@cf. Eqs.~2.8! and ~2.9!# obtained previously,24 namely,

jpair
BCS5

1

A2kFD̃0

. ~2.69!

Apart from a numerical factor of order unity due to a differ-
ent normalization in the respective definitions,jphaseis thus
seen to coincide withjpair in the ~extreme! BCS limit, as
expected. What is less obviously expected, however, is the
fact that the ratiojphase/jpair maintains its BCS value&/3
.0.47 not only asymptotically~i.e., for kFjpair'103–104!
but also down to kFjpair.10 where bosonization starts to
occur, as we shall verify in Sec. IV by calculating the ex-
pressions~2.9! and ~2.62! numerically.

In the opposite strong-coupling~BE! limit, the termjk/2
within braces in Eq.~2.64! provides instead the dominant
contribution to the coefficientb,43 yielding

bBE5
1

8m (
k

w~k!2

2jk
02

~2.70!

with jk
05k2/2m1e0/2 @2e0 being the~lowest! eigenvalue of

the associated eigenvalue problem for two fermions interact-
ing via the potential~2.11!#. By the same token, we obtain
for the coefficienta in the BE limit @cf. Eq. ~2.60!#:

aBE5(
k
w~k!2

Dk
2

2jk
03
. ~2.71!

Upon taking the ratio

~jphase
BE !25

bBE
aBE

5
1

8m

(k@w~k!2/jk
02#

(kw~k!2~Dk
2/jk

03!
[

1

8m1~2m!
,

~2.72!

we recognize the quantitym1 to be the~positive! shift of the
chemical potential~at the lowest significant order inD0/e0!
with respect to the asymptotic valuem052e0/2,0. To show
this, we resort to the mean-field equation~2.33! in the zero-
temperature limit

11V(
k

w~k!2

2Ek
50 ~2.73!

and expand inD0/e0

Ek5jkF11
Dk
2

2jk
2 1•••G

5S k22m2m02m11••• D
3F11

1

2

Dk
2

~k2/2m2m02m11••• !2
1•••G

.S k22m2m0D 1
1

2

Dk
2

~k2/2m2m0!
2m1 , ~2.74!

wherem0 is solution to the bound-state equation

11V(
k

w~k!2

k2/m22m0
50 ~2.75!

that givesm052e0/2. Entering the approximation~2.74! into
Eq. ~2.73! and expanding furtherEk

21 at the relevant order
yields

0511V(
k

w~k!2

2jk
0 F12

1

2

Dk
2

jk
02

1
m1

jk
0 1•••G

52
V

4 (
k
w~k!2

Dk
2

jk
03

1m1

V

2 (
k

w~k!2

jk
02

1••• ,

~2.76!

where use has been made of Eq.~2.75!. Solving for the shift
m1 we obtain eventually

m15
1

2

(kw~k!2~Dk
2/jk

03!

(k@w~k!2/jk
02#

, ~2.77!

as anticipated in Eq.~2.72!.
The expression~2.72! coincides formally with the~square

of the! coherence length associated with a truly bosonic sys-
tem in the limit of weak boson-boson interaction~or low
density!, whereby 2m15v(0)nB @v(0) being the zero-
momentum component of the boson-boson interaction and
nB the bosonic density#. In Sec. III we shall obtain an ex-
plicit expression for theresidual boson-boson interaction
which results upon bosonization of the original fermionic
system, and verify that the product of its zero-momentum
component times the bosonic density coincides with the ex-
pression~2.77! for 2m1 ~at least, at the one-loop order we are
considering in this paper!. We regard this result as being a
rather compelling check on our one-loop calculation to pro-
vide a consistent description of the diluteinteractingBose
gas, obtained through bosonization of the original fermionic
system.

The above results hold for any reasonable choice of the
functionw~k!. With the specific form~2.12! andg51/2, the
integrals occurring in Eqs.~2.75! and ~2.77! can be per-
formed analytically, yielding~in three dimensions!
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~kFjphase
BE !25

3p

64
k̃0f ~c!, ~2.78!

wherek̃05k0/kF , c5[ um0u/(k 0
2/2m)] 1/2, and

f ~c!5
4c

114c
~2.79!

is a monotonically increasing function ofc bounded between
f (c50)50 and f (c5`)51. In particular, f (c50.1)
.0.286. The appropriate value ofc @to be inserted in Eq.
~2.78!# is then provided by Eq.~2.75!, which in the present
context reads

c52
VVmk0
4p

21. ~2.80!

By our assumptions on how the BE limit is achieved~cf. Ref.
43!, the value ofc is expected to be much smaller than unity,
and thus f (c) to be at most of the order 1/3, yielding
Ap k̃0/8 for the maximum attainable value ofkFj phase

BE .
The dependence ofjphase

BE on the interaction strength
should be contrasted with the value ofjpair obtained previ-
ously in the BE limit~namely,jpair

BE5r 0 , r 0 being the mean
radius of the bound-fermion pair!,24 such thatjphase

BE @jpair
BE for

sensible choices ofk0 .
44 Again, this result is consistent with

what we had expected in the bosonic limit, where the ‘‘in-
ternal’’ sizer 0 of the bosons represents the smallest length in
the problem and is certainly not related with the distance
over which the fluctuations of the order parameter correlate.

III. MAPPING ONTO A BOSONIC SYSTEM
IN THE STRONG-COUPLING LIMIT

One of the advantages for using the functional-integral
approach in the crossover from BCS to BE is that it allows
for a directmapping of the original fermionic system in the
strong-coupling limit onto aninteractingbosonic system, at
the level of the effective action. The Hubbard-Stratonovich
decoupling ~2.18! has, in fact, resulted in the effective
bosonic action~2.26! for the boson-like complex variables
b(q), which resembles a truly bosonic action albeit with an
infinite number of couplings. Some caution, however, is in
order since the single-particle propagator associated with
b(q) lacks the characteristic equal-time step singularity that
is expected for a bosonic propagator owing to the bosonic
commutator [b,b†]51. For this reason it will be necessary
to reinterpret appropriately the fieldb(q) in Eq. ~2.26!, in
order to recover a truly bosonic action in the strong-coupling
limit.

The purpose of this section is to carry out in detail the
mapping onto a bosonic systemat the level of the effective
action, so as to obtain the residual~quartic! interaction
among the composite bosons constituted by fermionic
pairs.45 This method will enable us to obtain~at the one-loop
order! the phase coherence length for the limiting bosonic
system directly in terms of the parameters of the residual
interaction, and to compare it with the result obtained for the
BE limit in Sec. II. In this way, we will recover the expres-
sion for the coherence length of an interactingdilute Bose
gas,19 thus establishing a consistency check on the approach
of Sec. II.

We begin by considering again the effective bosonic ac-
tion ~2.26! and expand tr lnM therein in powers ofb(q)
about b50, rather than about the broken-symmetry value
b05bD0 as we did in Eq.~2.28!. In addition, we shall not
introduce here the loop parameterl since it is not relevant to
the following arguments. We thus split

M ~k,k8!5MS~k,k8!1MR~k,k8!, ~3.1!

where now

MS~k,k8!5S e~k! 0

0 2e~2k!
D dk,k8 ~3.2!

and

MR~k,k8!5wS k1k8

2 D S 0
1

b
b* ~k2k8!

1

b
b~k82k! 0

D
~3.3!

@cf. Eqs.~2.29!–~2.31!#, and obtain

Seff52tr lnMS2
1

bV (
q

ub~q!u21 (
n51

`
1

2n
trX2n

~3.4!

with X5M S
21MR :

X~k,k8!5wS k1k8

2 D S 0
b* ~k2k8!

be~k!

2
b~k82k!

be~2k!
0

D .

~3.5!

We retain first the quadratic terms in Eq.~3.4!, that give

Seff
~2!5

1

b2 (
q

ub~q!u2F2
b

V
2(

k
w~k2q/2!2

1

e~k!e~q2k!G
~3.6!

in the place of Eq.~2.36!, the expression within brackets
coinciding withA(q) given by Eq.~2.37! in the limit D050.
Keeping the same notation and performing the sum over the
fermionic Matsubara frequencies, we obtain

A~q,z!52
b

V
2

b

2 (
k
w~k2q/2!2

3
@ tanh~bjk/2!1tanh~bjk2q/2!#

jk1jk2q2z
, ~3.7!

where we have also replaced the bosonic Matsubara fre-
quencyivn by the complex frequencyz. Viewed as a func-
tion of z, A~q,z! has a cut along the real frequency axis for
Rez>22m and no other singularity on the~physical! com-
plex plane. In addition, it vanishes forreal values ofz only
whenuVu is large enough. In this case, we consider the limit
bm→2` and replace Eq.~3.7! by

2
V

b
A~q,z!511V(

k

w~k!2

k2/m1q2/4m22m2z
. ~3.8!

15 178 53F. PISTOLESI AND G. C. STRINATI



Let vq be the solution to the equation

A~q,vq!50 ~3.9!

for a givenq. Comparison with Eq.~2.75! ~where 2m052e0
is the bound-state energy! yields

vq5
q2

4m
2~2m1e0!. ~3.10!

It is then clear that the function

A8~q,z![
A~q,z!

vq2z
~3.11!

for a givenq is regular also whenz→vq and nonvanishing
over the wholez plane. This remark enables us to rewrite the
quadratic action~3.6! in the form

Seff
~2!5

1

b2 (
q

ub~q!u2~vq2 ivn!A8~q,ivn!, ~3.12!

which suggests rescalingb(q) by setting

b8~q!5AA8~q,ivn!
b~q!

b
. ~3.13!

Expressed in terms of the new variablesb8(q), the quadratic
action~3.12! reduces to that of a noninteracting Bose system
with massmB52m and chemical potentialmB52m1e0 .
Note that the rescaling~3.13! is meaningful insofar as the
solution vq to Eq. ~3.9! can be found@i.e., for uVu strong
enough that the associated two-body problem possesses a
bound state, cf. Eq.~2.75!#. In this case, the new fieldb8(q)
acquires the meaning of a truly bosonic field from the
( ivn)

21 decay of its~bare! propagator for largeuvnu ~which,
in turn, implies that the correct bosonic commutation rules
are recovered for this field!.

The rescaling~3.13! obviously affects also the higher (n
.1) terms of the expansion~3.4!, which correspond now to
the interacting part of the action for the effective bosonic
system with ‘‘free’’ action ~3.12!. In fact, contrary to an
ordinary interacting Bose gas for which only the quartic (b4)
interaction exists, bosonization of the original fermionic sys-
tem has resulted in the infinite set (b4,b6,b8, . . .) of inter-
actions contained in Eq.~3.4!. We shall, however, argue that,
in the asymptotic limit of adilute Bose gas obtained from
bosonization of the original fermionic system when the con-
dition eF/e0!1 is satisfied, it is sufficient to retain only the
quartic interaction to obtain all physical quantities of interest.
It is thus worth examining first the quartic interaction in
some detail.

From Eq.~3.5! we obtain for the term withn52 of Eq.
~3.4!:

Seff
~4!5

1

4
trX4

5
1

2 (
q1•••q4

I 2~q1•••q4!b8~q1!* b8~q2!* b8~q3!b8~q4!

~3.14!

with

I 2~q1•••q4!

5dq11q2 ,q31q4

1

AA8~q1!*A8~q2!*A8~q3!A8~q4!

3(
k
wS 2k1q2

2 DwS 2k1q4
2 DwS 2k12q22q3

2 D
3wS 2k12q42q1

2 D
3

1

e~2k!e~k1q2!e~k1q4!e~2k1q12q4!
, ~3.15!

where Eq.~3.13! has been used. Comparison with the stan-
dard expression for the quartic interaction20 then yields

1

bV
v2~q1•••q4!5I 2~q1•••q4!. ~3.16!

It is clear from Eq.~3.15! that v2(q1•••q4) is, in general, a
complicated function of its arguments. What is actually rel-
evant for our purposes, however, is knowing~i! the typical
‘‘strength’’ v2(0) whenq15•••5q450 and~ii ! the charac-
teristic ‘‘range’’ of its Fourier transform in real space. The
latter will be examined in Appendix B in the limitk0→`
where calculations get considerably simplified. The strength
v2(0) can be evaluated directly from Eq.~3.15! in the limit
bm→2`:

v2~0!5bV
1

A8~0!2 (
k
w~k!4

1

e~k!2e~2k!2

5
b2V

2p

1

A8~0!2 (
k
w~k!4E

2`

1`

dv
1

~v21jk
2!2

5
b2V

4

1

A8~0!2 (
k

w~k!4

jk
3 , ~3.17!

where@cf. Eq. ~3.11!#

A8~0!5
A~0!

vq50
5

b

4 (
k

w~k!2

jk
2 ~3.18!

at the leading order in thesmallparameterumBu/e0 . We thus
obtain

v2~0!54
~1/V!(k@w~k!4/jk

3#

~~1/V!(k@w~k!2/jk
2# !2

. ~3.19!

Note thatv2(0) is positive and corresponds to arepulsive
interaction between the composite bosons. The integrals in
Eq. ~3.19! can be performed analytically wheng51/2 in Eq.
~2.12!, yielding ~in three dimensions!

v2~0!5
32p

2mk0

1

f ~c!
~3.20!

with f (c) defined by Eq.~2.79!. This result enables us to
eliminatef (c) in favor of v2(0) from Eq.~2.78! and rewrite
jphase
BE in the form
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~jphase
BE !25

1

4mBnBv2~0!
~3.21!

as anticipated in Sec. II, wherenB5n/25k F
3/(6p2) is the

bosonic density. For completeness, we shall verify below
that expression~3.21! coincides with the result obtained for a
dilute Bose gas with repulsive interactionv(0)5v2(0).

Before proceeding further and considering the remaining
interaction terms~with n.2! of Eq. ~3.4!, it is relevant to
discuss thebosonization condition(s)which we have ex-
ploited in the previous and present sections~namely,D0!umu
with m,0, see Ref. 43, andumBu!e0 , in the order! to reach
the BE limit. „The additional conditionumu!k 0

2/2m intro-
duced in Ref. 43 is instead related to the specific form of the
interaction potential@cf. Eqs.~2.11! and ~2.12!#, which pro-
hibits probing length scales~such as the bound-state radius
r 0! smaller thank 0

21 ~cf. also Ref. 30!. From virial theorem
it follows, in fact, thate0;r 0

22, from whichr 0@k 0
21 can be

implemented by requiringk 0
2/2m@e052umu.… The simplest

criterion for dealing withnonoverlappingcomposite bosons
is

r 0!kF
21 ~3.22!

~k F
21 identifying the average interparticle distance!, from

which it follows that eF!e0 . At zero temperature in the
broken-symmetry state, criterion~3.22! is equivalent to
D0!umu. To show this, we assume thatD0!umu and approxi-
mate the~mean-field expression for the! density~in dimen-
sionsd,4! as follows:

n5
1

V (
k

S 12
jk
Ek

D>
D0
2

2V (
k

w~k!2

jk
2 ;D0

2umud/222

~3.23!

for sufficiently largek0 . This verifies our assumption consis-
tently, since

D0
2

m2;S eF
e0

D d/2!1. ~3.24!

At finite temperature, on the other hand, we may use either
the Bogolubov resultmB;nv2(0) for temperatures lower
than the~BE! critical temperature, or the ideal gas value
umBu;n2/d for temperatures not too larger than the critical
temperature. Taking into account Eq.~3.19!, we obtain in the
first case

umBu;numu12d/2;umuS eF
umu D

d/2

~3.25!

that gives

umBu
e0

;S eF
e0

D d/2!1. ~3.26!

In the second case we obtain instead

umBu
e0

;
n2/d

e0
;

eF
e0

!1. ~3.27!

Recall that Eqs.~3.8! and~3.17! have been obtained with the
conditionbm→2` ~which is equivalent to considering tem-
peratures much smaller than the pair dissociation tempera-

ture ;e0!. Implementing the bosonization criterioneF!e0
has required us to introduce, in addition, the BE critical tem-
perature~!e0! and to verify the bosonization criterion in
distinct temperature regimes.

There remains to verify that the interaction terms with
n.2 in Eq. ~3.4! can be neglected in comparison with the
quartic interaction (n52), whenever the bosonization condi-
tion eF!e0 is satisfied. To this end, we write in analogy to
Eqs.~3.14!–~3.16!,

Seff
~2n!5

1

2n
trX2n

5
~bV!12n

n (
q1•••q2n

vn~q1•••q2n!b8~q1!* •••b8~qn!*

3b8~qn11!•••b8~q2n!, ~3.28!

and consider only the caseq15•••5q2n50, for which

vn~0!5~21!nS bV

A8~0! D
n 1

bV (
k

w~k!2n

@e~k!e~2k!#n
.

~3.29!

Note that appropriate powers ofbV have been introduced in
the definition ofvn , in accordance with the standard require-
ment on the Fourier transform of a generic interaction poten-
tial in perturbation theory~no care has, however, been paid

FIG. 4. Comparison of~a! then-body interactionvn(0) with ~b!
the ‘‘effective’’ n-boson interactionLn constructed fromv2(0).
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to symmetrizingvn!. In this way, the expression~3.29! is
finite in the limitsV→` and/orb→` @cf. Eq.~3.18!#. To get
an estimateof vn(0), we consider the casew(k)51 and
perform the frequency sum in the limitbm→2`:

vn~0!;S 1V (
k

1

jk
2D 2n 1

V (
k

E
2`

1`

dv
1

~v21jk
2!n

;S 1V (
k

1

jk
2D 2n 1

V (
k

jk
122n

;~ umud/222!2numud/222n11

5umu~d/2!~12n!11 ~3.30!

in d dimensions.46

Neglecting the interactionsvn(0) with n.2 with respect
to v2(0) relies on the following argument. Consider the ‘‘ef-
fective’’ n-boson interactionLn depicted in Fig. 4, which is
assembled fromn.2 ~bare! bosonic propagators arranged in
a loop andn interactionsv2(0):

Ln5„v2~0!…n
1

bV (
q

1

~ ivn2vq!
n ~3.31!

with vq given by Eq.~3.10! andmB,0. For temperatures not
too larger than the~BE! critical temperature@for which Eq.
~3.27! holds#, it can be readily shown that

1

bV (
q

1

~ ivn2vq!
n;bn2d/221;umBud/22n11 ~3.32!

with a finite constant of proportionality.@Note that the result
~3.32! could have been guessed directly from dimensional
analysis.# Comparison with Eq.~3.30! yields eventually

vn~0!

Ln
;

umud/2~12n!11

~ umu12d/2!numBud/22n11;UmB

e0
Un2d/221

!1

~3.33!

for n>3 and d,4, whenever the bosonization criterion
eF!e0 is satisfied. In this case it is clear that all physical
quantities can be obtained by retaining the quartic interaction
(v2) only. Below the critical temperature, on the other hand,
the Bogolubov propagator has to be used in Eq.~3.31! in the
place of the bare bosonic propagator. This replacement leads
to ~infrared! divergent integrals, which have to be handled by
a suitable renormalization procedure. Although one might
argue that aninfinite constant of proportionality on the right-
hand side of Eq. ~3.32! would make the condition
vn(0)/Ln!1 be satisfieda fortiori, consideration of the
renormalization procedure is beyond the purposes of the
present paper. This gives a clear warning that a complete
description of the crossover from BCS to BE unavoidably
requires one to face the peculiar problems arising in the
bosonic limit.

In conclusion, we have shown that the action~3.4! can be
reduced in the bosonization limit to the simpler form:

Seff5(
q

ub8~q!u2~vq2 ivn!1
1

2bV

3 (
q1•••q4

v2~q1•••q4!b8~q1!* b8~q2!* b8~q3!b8~q4!

~3.34!

~apart from the constant term2tr lnMS!, wherev2(q1•••q4)
depends on its arguments in a complicated way@cf. Eq.
~3.15!#. Nonetheless, for many purposes it should be possible
to neglect ‘‘retardation’’ effects and replacev2(q1•••q4)
with v2(0) given by Eq.~3.19!. In that case, themappingof
the original fermionic systemonto a truly bosonic systemis
fully established.47

There remains to recall how the expression~3.21! for
jphaseat zero temperature in the bosonic limit can be obtained
directly from the bosonic action~3.34! with a constant
v2(0). To this end, we set, as usual,b8(q)5AbVadq,0
1b> 8(q) and expand~3.34! up to quadratic order inb> 8(q):

Seff>bVuau2S 12 v2~0!uau22mBD1
1

2 (
q
„b> 8* ~q!,b> 8~2q!…S q2

2mB
2 ivn1uau2v2~0!, a2v2~0!

a* 2v2~0!,
q2

2mB
1 ivn1uau2v2~0!

D
3S b> 8~q!

b> 8* ~2q! D , ~3.35!

where the Bogolubov self-consistency conditionmB5v2(0)uau2 has been used. The single-particle bosonic propagators can
then be readily obtained by inverting the Gaussian matrix in Eq.~3.35!, yielding ~in matrix form!:

K S b> 8~q!

b> 8* ~2q! D ~b> 8* ~q!,b> 8~2q!!L
Seff

5
1

vn
21Eq

2 S q2

2mB
1 ivn1uau2v2~0! 2a2v2~0!

2a* 2v2~0!
q2

2mB
2 ivn1uau2v2~0!

D ~3.36!
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with the Bogolubov quasiparticle dispersionEq

5A(q2/2mB)
212uau2v2(0)q2/2mB. We are actually inter-

ested in the longitudinal and transverse correlation functions,
defined as@cf. Eqs.~2.4!#

Gi~q!5^b> i8~q!b> i8~2q!&, ~3.37a!

G'~q!5^b>'8 ~q!b>'8 ~2q!&, ~3.37b!

where@cf. Eqs.~2.2!#

b> i8~q!5
1

2uau @a* b> 8~q!1ab> 8* ~2q!#, ~3.38a!

b>'8 ~q!5
1

2i uau @a* b> 8~q!2ab> 8* ~2q!#. ~3.38b!

In terms of the propagators~3.36! we obtain~for reala!

Gi~q!5
q2/~4mB!

vn
21Eq

2 , ~3.39a!

G'~q!5
q2/~4mB!1a2v2~0!

vn
21Eq

2 . ~3.39b!

In particular, the zero-frequency correlation functions read

Gi~q,vn50!5
1

4mB

q2

Eq
2 >

1

4mBvS
2

1

11q2jphase
2 ,

~3.40a!

G'~q,vn50!5
q2/~4mB!1a2v2~0!

Eq
2 >

a2v2~0!

vS
2q2

~3.40b!

with the approximate expressions on the right-hand side
holding in the small-q limit, whereby

Eq>vSuquA11q2jphase
2 . ~3.41!

Here vS5Aa2v2(0)/mB is the Bogolubov sound velocity
and jphase5[4mBa2v2(0)]

21/2 is the desired coherence
length for longitudinal correlations. Recalling further that the
‘‘condensate’’ densitya2 coincides with the particle density
nB in the Bogolubov approximation, expression~3.21! ~ob-
tained in the bosonization limit! is eventually recovered. This
completes our mapping. In the next section we will show
numerically how the crossover forjphaseprogresses from the
BCS value~2.68! to the BE value~3.21!.

IV. NUMERICAL RESULTS AND DISCUSSION

In Sec. II we have identified the coherence lengthjphase,
associated with the phase-phase correlation function of a su-
perconducting fermionic system with attractive interaction
~2.11!, as given by Eq.~2.62! together with Eqs.~2.60! and
~2.64!. In that section we have also evaluated analytically the
asymptotic expressions ofjphase in the extreme~weak- and
strong-coupling! limits. There remains to obtain the behavior
of jphasein the intermediate-coupling regime, which is espe-
cially relevant for the crossover between the two limits. In
this regime Eqs.~2.60! and ~2.64! have to be evaluated nu-
merically.

To this end, the mean-field parametersm andD0 need to
be obtained first. In Appendix Cm andD0 are conveniently
expressed in terms of the variablekFjpair in the special case
k05`. A similar scheme can be used forfinite values ofk0 ,
for whichm andD0 dependalsoon the parameterk0/kF . The
behavior ofm vs kFjpair for a wide range of values ofk0/kF
has been already given in Ref. 24 and is reported for the sake
of comparison in Appendix D fork05`.

The only mean-field quantity to be discussed here is the
expression~2.54! for the longitudinal correlation function.
Since the quantity within brackets~with the choice of the
minus sign! in Eq. ~2.54! coincides with twice the square of
the coherence factor(ukuk2q2vkvk2q) entering expression
~2.58!, it is evident by inspection that

FE
i
~R!5

V2

8 (
q
eiq•RS 2

1

V
2 f ~q! D'

V2

8 (
q
eiq•R

a82

a81bq2

~4.1!

with f ~q! given by Eq.~2.61! and

a85(
k
w~k!2

jk
2

2Ek
3 . ~4.2!

This identifies the characteristic ‘‘range’’ of the function
F E

i ~R! with (b/a8)1/2 @cf. Eq. ~2.62! and Ref. 41#, which is
reported vskFjpair in Fig. 5 for the choiceg51/2 in Eq.
~2.12!. As anticipated in Sec. II,F E

i ~R! can be considered to
be a ‘‘short-range’’ function ofR, since its range never ex-
ceedsjpair in the BE limit and vanishes whenk0→`. For this
reason, the coherence lengthjphasecannot be identified at the
mean-field level.

The ‘‘long-range’’ coherence length of interest can be
identified instead by the one-loop calculation of Sec. II ac-
cording to Eq.~2.62!. In Fig. 6 kFjphaseis shown vskFjpair
for g51/2 and several values ofk0/kF ~full lines!. Also
shown in the figure are~a! the asymptotic curve~thick line!
corresponding to thek05` calculation of Appendix C;~b!

FIG. 5. Range (b/a8)1/2 of the function~4.1! ~in units of kF
21!

calculated in three dimensions vskFjpair for g51/2 and several
values ofk0/kF ~defined by 10N21 with N51,2,...,5!. The line
kFjpair is also shown for comparison~dashed line!.
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the boundary~dashed-dotted line! of the ‘‘physical’’ region
identified byc51/4 with c defined after Eq.~2.78!; ~c! the
curve corresponding tom50 ~dotted line! where any remnant
of the Fermi surface has definitely disappeared;~d! the ex-
trapolation fork05` of the analytic BCS and BE results
obtained in Sec. II C~dashed line!. Note that the values of
jphase have been uniformly multiplied by the factor 3/A2
to makejphasecoinciding withjpair in the BCS limit, taking
into account their different definitions.

Note also the following features from Fig. 6.
~i! jphasecoincides withjpair ~irrespectiveof k0! not only

asymptotically in the BCS limit butalsodown tokFjpair.10,
whereujphase2jpairu/jpair,0.03 for the values ofk0 reported in
the figure.

~ii ! For kFjpair&10 there appears a dependence onk0 ,
which becomes quite pronounced in the BE limit.

~iii ! For given k0 , the minimum value ofjphase occurs
~approximately! at m50 ~dotted line!.

~iv! The ‘‘physical’’ boundary~dashed-dotted line! and
the asymptotick05` curve~thick line! delimit a rather nar-
row strip for jphase.

~v! There exists an accumulation point~denoted byP in
the figure! to which the results form50 converge when
k0→0. P belongs also to the ‘‘physical’’ boundary.

~vi! The extrapolation fork0→` of the analytic BCS and
BE results~dashed line! coincides with the asymptotick05`
curve ~thick line! except fora rather narrow region about
kFjpair.1 ~or m50!. The region where the two curves depart
from each other coincides approximately with the ‘‘interme-
diate’’ region identified in three dimensions from Fig. 11 in
Appendix D.

Figure 6 summarizes the main results of this section. For
completeness, we also report in Fig. 7 the behavior of
kFjphasevskFjpair using two different values~g50.4, 0.6! for
the exponent of Eq.~2.12!. Note that the conclusions~i!–~vi!
drawn above forg51/2 remain valid, the main difference
among results with different values ofg residing in the way

they depart from the ‘‘physical’’ boundary. In this sense, the
valueg51/2 ~considered by NSR! appears to be special.

All results reported above hold specifically in three di-
mensions. Results ofkFjphasevs kFjpair for smaller values of
the dimensionality (2<d<3) can be obtained by the method
of Appendix C in the casek05` and are reported in Fig. 8.
The results ford52, however, have to be interpreted with
caution since fluctuation effects~over and above those con-
sidered in the present paper! are especially effective in low
dimensionality. Note, finally, from Fig. 8 that the value
kFjpair510 is still special, since it is~approximately! where
the results obtained~with given value ofk0! for different
dimensionalities begin to deviate from each other.

V. CONCLUDING REMARKS

In this paper we have described the zero-temperature be-
havior of the lengthjphaseassociated with the fluctuations of
the superconducting order parameter, following its crossover
from BCS to BE limits. Since the breaking of the gauge
symmetry is the phenomenon underlying both superconduc-
tivity and superfluidity,48 determining howjphasecrosses over

FIG. 6. kFjphase vs kFjpair for g51/2 and several values of
k0/kF @defined by 10N/3 with N50,1,...,10, such that the ‘‘re-
duced’’ density is (k0/kF)

235102N#. Values ofN label different
full curves. Additional conventions are specified in the text.

FIG. 7. kFjphasevs kFjpair for ~a! g50.4 and~b! g50.6. Con-
ventions are as in Fig. 6.
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between the two limits is of definite relevance.
jphase has been contrasted with the particle-correlation

lengthjpair, which serves to identify the BCS and BE limits
as well as to specify the dynamical evolution in between. We
have found thatjphasecoincides withjpair in the BCS limit
and thatjphase@jpair in the BE limit, with an interesting be-
havior in between.

In our calculation we have identifiedjphaseandjpair using
definitions which are valid, in both cases, at the respective
significant orders. Specifically,jpair has been obtained at the
mean-field level andjphaseat the one-loop order. Some final
comments on this procedure, which deals withjphaseandjpair
on a different footing, are in order.

jpair can be extracted from the fermionic pair-correlation
function g~r ! defined by Eq.~2.7!. Knowledge ofjpair, in
turn, exhausts all relevant information contained ing~r !
whenever the underlying dynamical problem possesses a
singlecharacteristic length. We have verified that this is the
case wheng~r ! is calculated at the mean-field level@cf. Eq.
~2.8!#, wherebyjpair reduces to the bound-state radiusr 0 in
the BE limit. This property, however, might not remain true
when fluctuations are included, i.e., by calculatingg~r ! at the
one-loop order via Eq.~2.7!. In this case, in fact, a second
characteristic length~namely,jphase! is expected to appear in
g~r !. Unfortunately, it is not possible to verify explicitly how
jphaseentersg~r ! at the one-loop level by the method of Sec.
II for evaluating the fermionic-correlation functions. It is, in
fact, known from the work of Ref. 5 that determining the
densityresponse function@of which g~r ! is a particular case#
requires one to include also the coupling between the density
and phase-amplitude fluctuations, thus enlarging the Gauss-
ian matrix of Eq.~2.36!. Taking into account this coupling
exceeds the purposes of the present paper. In any event, it
should be sufficient for our purposes to identifyjpair at the
mean-field level, since on physical ground no appreciable
change is expected for the smallest length scale in the prob-
lem when including fluctuations.

We have further argued thatjphase, on the other hand,
cannot be defined at the mean-field level, requiring one to
consider explicitly the~one-loop! fluctuation corrections to

the longitudinal correlator. It is known, however, that the
longitudinal correlator is strongly coupled to the~singular!
transverse correlator already at thenext order of the loop
expansion.49 As a consequence, the longitudinal correlator
itself develops singularities for small momenta.50 Neverthe-
less, it can be argued that~at least in the bosonic limit! a
characteristic length can still be extracted from the longitu-
dinal correlator, this length being identified with ourjphase.

34

For these reasons, our results forjphasevs jpair are expected to
be essentially correct, both lengths being stable against the
inclusion of higher-order fluctuations.

Following our approach to the bosonization problem
stated in the Introduction, a deeper understanding of the BE
limit should greatly help describing also the crossover prob-
lem. As mentioned above, proper treatment of the
interacting-boson problem requires special care, owing to the
occurrence of infrared singularities that strongly affect the
calculation of physical quantities. The study of the large-
scale behavior of the bosonic propagator, together with the
occurrence of intrinsic infrared singularities, then naturally
leads us to consider a renormalization-group approach for
handling these singularities. Work along these lines is still
required for a full understanding of the interacting-boson
problem. Such an approach, besides being useful for treating
the original bosonization problem in the crossover region,
has also renewed interest on its own after the recent discov-
ery of a Bose-condensed system.51
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APPENDIX A: BROKEN-SYMMETRY PARAMETER
AT THE ONE-LOOP ORDER

In this Appendix we prove the identity~2.44!, relating the
broken-symmetry parameterD @cf. Eq. ~2.43!# of the original
fermionic system to the average of theq50 component of
the bosonic-like variablesb(q) introduced via the transfor-
mation~2.18!. We shall also obtain an explicit expression for
the shiftD1 of D at the one-loop order. Although the explicit
value of D1 is irrelevant for the calculation of the phase
coherence length of Sec. II,D1 enters in general the expres-
sions of thermodynamic quantities and correlation functions
other than ~2.4!, for which omitting D1 might lead to
inconsistencies.13,22

The identity ~2.44! is proved by adding to the original
fermionic action ~2.14! the following bosonic-like source
term:

dS52J0(
k
w~k!c̄↑~k!c̄↓~2k!2J0*(

k
w~k!c↓~2k!c↑~k!

~A1!

@with k5~k,vs!#. In this way, one obtains from the resulting
generating functional analogous to~2.13!:

FIG. 8. kFjphasevs kFjpair for k05` and intermediate values of
the dimensionalityd ~in steps of 0.2!.
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K (
k
w~k!c↓~2k!c↑~k!L

S

5
dZ@h̄,h;J0* ,J0#

dJ0* U J05J
0*50

h5 h̄50
~A2!

where the average on the left-hand side is evaluated with the
action ~2.14!. On the other hand, when introducing the
Hubbard-Stratonovich transformation~2.18! the additional
term ~A1! can be reabsorbed by shifting the integration vari-
able b(q) with q50, i.e., by setting b8(q50)
5b(q50)1bJ0 . In this way, one readily obtains

2
1

V
^b~q50!&Seff5

dZ@h̄,h;J0* ,J0#

dJ0* U J05J
0*50

h5 h̄50

, ~A3!

where now the average on the left-hand side is evaluated
with the action~2.26!. Comparison of~A3! with ~A2! yields
eventually the result~2.44!.

The calculation of the~one-loop! shift D1 is thus equiva-
lent to that of the ~one-loop! shift b15bD1 of ^b(q
50)&Seff. According to a general procedure of functional in-
tegrals~cf., e.g., Appendix C of Ref. 39!, this shift is given
by

b152eiw0
]F1 /]ub0u

]2F0 /]ub0u2
, ~A4!

wherew0 is the phase of the sourceJ0 in Eq. ~A1!, F0 andF1
are given by Eqs.~2.35! and ~2.41!, respectively, and
b05bD0 .

Alternatively, D1 can be evaluated in terms of the dia-
grammatic structure for the original fermionic system via the
definition ~2.44!. This procedure has been used in deriving
Eq. ~2.55!, where the first term on the right-hand side was
obtained from the first term on the right-hand side of Eq.
~2.50!. It is interesting to show explicitly the equivalence of
the two procedures at the one-loop order. Besides providing
a nontrivial consistency check on our one-loop calculation,
the following results may also serve, e.g., to obtain the one-
loop correction to the chemical potential over and above its
mean-field value.

We begin by writing the single-particle fermionic Green’s
functions in the form

^c↑~k!c̄↑~k!&S52^M21~k,k!11&Seff,

^c↓~k!c̄↓~k!&S5^M21~2k,2k!22&Seff, ~A5!

^c↑~k!c↓~2k!&S52^M21~k,k!21&Seff,

whereM21 is the inverse of the matrix~2.23!. We can then
express the particle density in the form

n5
1

bV (
k,s

eivsd^c̄s~k!cs~k!&S

5
1

bV (
k
eivsd

„^M21~k,k!11&Seff2^M21~2k,2k!22&Seff…

~A6!

~d501!, and the order parameterD in the form

D5
V

b (
k
w~k!^c↑~k!c↓~2k!&S

52
V

b (
k
w~k!^M21~k,k!21&Seff. ~A7!

Approximations are introduced at this point in the usual way,
by ~i! replacingSeff→Seff/l, ~ii ! implementing thel expan-
sion via Eqs.~2.28! and ~2.29!, and ~iii ! expanding the re-
sulting expressions in powers ofl. To the first significant
order inl beyond mean field we obtain

^Ml
21~k,k8! i i 8&Seff /l

>dk,k8M0
21~k! i i 81l^@M0

21M1M0
21M1M0

21#kk8
i i 8 &S

eff
~2!

2
l

3
^@M0

21M1M0
21#kk8

i i 8 tr~M0
21M1!

3&S
eff
~2!, ~A8!

whereSeff
~2! is the~l independent! quadratic action~2.36! and

the trace is performed over the indicesk and i . In deriving
Eq. ~A8! we have used the expansion~2.49! for M l

21 and
included consistently the cubic (n53) term in Eq.~2.32!.
We shall verify that the first term of orderl on the right-
hand side of Eq.~A8! represents a nontrivial self-energy cor-
rection to the bare propagatorM 0

21, while the second term of
order l results by shifting the mean-field parameter
D0→D01D1 in M 0

21.
There remains to evaluate the contractions entering Eq.

~A8!. To this end, it is convenient to supplement the Gauss-
ian action ~2.36! by the source termV21@J0b8(q50)*
1J0* b8(q50)# @which is equivalent to Eq.~A1!#, in order to
avoid spurious divergencies due to the presence of the Gold-
stone mode atq50, allowingJ0 to vanish at the end of the
calculation. We eventually obtain

FIG. 9. ~a! Graphical representation of a typical term of Eq.
~A9! ~conventions are as in Fig. 2!; ~b! zero-momentum insertion of
Eq. ~A10!.
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^@M0
21M1M0

21M1M0
21#kk8

i i 8 &S
eff
~2!5dk,k8HM0

21~k! i1F(
q

w~k1q/2!2M0
21~k1q!21̂ b> * ~q!b> * ~2q!&S

eff
~2!GM0

21~k!2i 8

1M0
21~k! i1F(

q
w~k1q/2!2M0

21~k1q!22̂ b> ~2q!b> * ~2q!&S
eff
~2!GM0

21~k!1i 8

1M0
21~k! i2F(

q
w~k1q/2!2M0

21~k1q!11̂ b> ~q!b> * ~q!&S
eff
~2!GM0

21~k!2i 8

1M0
21~k! i2F(

q
w~k1q/2!2M0

21~k1q!12̂ b> ~q!b> ~2q!&S
eff
~2!GM0

21~k!1i 8J ~A9!

depicted schematically in Fig. 9~a!, and

2
1

3
^@M0

21M1M0
21#kk8

i i 8 tr~M0
21M1!

3&S
eff
~2!

5dk,k8H ]M0
21~k! i i 8
]b0*

b1*1
]M0

21~k! i i 8
]b0

b1J ~A10!

depicted in Fig. 9~b!, with b1 given by Eq.~A4!.
In particular, wheni52 and i 851, entering~A9! and

~A10! into ~A8! with l51 and the resulting expression into
~A7! yields

D2D052
V

b
h1

V

b FB~q50!
b1*

b
1SA~q50!1

b

VD b1
b G

5
b1
b

2
V

b Fh2@ uB~q50!u1A~q50!#
b1
b G , ~A11!

where we have set

h[(
k
w~k!(

q
w~k2q/2!2 (

j , j 851

2

~21! j1 j 811

3M0
21~k!2 jM0

21~q2k! j 8 j^b> ~q!b>†~q!&S
eff
~2!
j 8 j M0

21~k! j 81

~A12!

and made use of Eqs.~2.37! and ~2.38!. Upon manipulating
the derivatives in Eq.~A4!, it can be finally shown that the
expression within brackets on the right-hand side of Eq.
~A11! vanishes identically. Equation~A11! thus reduces to
D2D0[D15b1/b, as expected.

We remark finally that, whenD050, Eq.~A11! reduces to
A(q50)b150, since in this caseh50 identically. This im-
plies thatD150, too.

APPENDIX B: MOMENTUM DEPENDENCE
OF THE INTERACTION POTENTIAL

FOR COMPOSITE BOSONS

In Sec. III we have mapped the original fermionic system
interacting via an attractive-potential onto an effective sys-
tem of composite bosons, in the limit of strong fermionic
attraction. We have also determined the ‘‘strength’’ of the
effective residual interactions among the composite bosons,
which led us to conclude that retaining only the quartic in-

teraction is sufficient to describe the bosonization limit. In
this Appendix we study themomentumdependence of the
quartic interaction, from which we will conclude thatjpair
identifies the characteristic length scale of the boson-boson
interaction.

To this end, it is convenient to simplify the expression
~3.15! by settingw~k51!, that corresponds to takingk05`
from the outset in Eq.~2.12!. It is then clear from dimen-
sional analysis of Eq.~3.15!, together with Eqs.~3.8!–~3.11!
in the limits k05` andbm→2`, that umu and (2mumu)21/2

constitute the only energy and length scales in the problem,
respectively. For scattering processes among the composite
bosons which involve~Matsubara! frequenciessmall com-
pared toumu, one can thus set all~external! bosonic frequen-
cies equal to zero in Eq.~3.15! because to this limit there
corresponds a well-definedfinite value of the interaction po-
tential, as we have verified in Sec. III. We shall consistently
not be particularly interested in the frequency dependence of
the effective boson-boson potential. Regarding instead its
momentum dependence, we would expect atruly bosonic
potential to be cast in the~symmetrized! form:

v2~q1•••q4!5dq11q2 ,q31q4
@u~q12q3!1u~q12q4!#,

~B1!

u~q! being the Fourier transform of the two-body interaction
potential. In fact, we shall verify below that Eq.~B1! holds
approximatelyonly for uqi u(2mumu)21/2!1(i51,...,4) with
u~q!5const. In other words, the residual boson-boson poten-
tial can itself be approximated by a ‘‘contact’’ potentialpro-
videdonly small-momentum scattering processes are consid-
ered.

To verify to what extent Eq.~B1! is valid, we consider
explicitly two degenerate cases with~i! q15q25q35q45q
and ~ii ! q152q25q and q35q450, for which Eq. ~B1!
would give v2(q,q,q,q)52u~q50! and v2(q,2q,0,0)
52u~q!, respectively. In the first case, we obtain for the
~four! momentum sum in Eq.~3.15! ~in three dimensions!:

(
k

1

e~k!2e~q2k!2
5

1

16p
bV

~2mumu!3/2

~2umu!3

3F11S q24m2 ivnD 1

2umuG
23/2

.

~B2!
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In the second case we obtain instead

(
k

1

e~k!e~2k!e~k2q!e~q2k!

5
b

2 (
k

1

jk@jk2q
2 2~ ivn2jk!

2#
1c.c., ~B3!

which for vn50 and in three dimensions reduces to

1

p
bV

~2mumu!3/2

~2umu!3
1

q̃2~41q̃2!

3F ~41q̃2!1/2212
2

p
arctan~ q̃/2!2

2

p
arctan~2/q̃!G

~B4!

with q̃5uqu(2mumu)21/2. The desired valuesv2(q,q,q,q)
andv2(q,2q,0,0) are obtained eventually upon dividing the
results ~B2! and ~B3!, respectively, by uA8(q)u2 and
uA8(q)uA8(0).

It is clear from the definition~3.11! of A8(q) @together
with ~3.8! of A(q)# that its computation requires a suitable
~ultraviolet! regularization of the momentum integral when
w~k!51. We follow here a standard procedure in the litera-
ture and introduce the scattering amplitudeas defined via the
equation7,15

m

4pas
5

1

VV
1

1

V (
k

m

k2
~B5!

in the center-of-mass reference frame of the two fermions.
The ~ultraviolet! divergent sum on the right-hand side of Eq.
~B5! results in a finite value ofas by letting V→0 in a
suitable way.A~q,ivn! given by Eq.~3.8! becomes accord-
ingly

A~q,ivn!

bV
5

1

V (
k

Fmk22S k2m1
q2

4m
22m2 ivnD 21G

2
m

4pas
. ~B6!

Solution of Eq.~3.9!, in turn, yields

1

V (
k

Fmk22S k2m1e0D 21G2
m

4pas
50 ~B7!

with e0 defined via Eq.~3.10!. In this way we obtain from
Eq. ~3.11!

A8~q,ivn!

bV
5

1

V (
k

S k2m1e0D 21S k2m1
q2

4m
22m2 ivnD 21

5
1

4p

m3/2

e0
1/2

@11~q2/4m2 ivn!1/2umu#1/221

~q2/2m2 ivn!1/2umu
,

~B8!

where the last equality holds in three dimensions and
2m52e0 within our approximations.

According to Eqs.~3.15! and~3.16!, we obtain eventually
for vn50 ~in three dimensions!

v2~q,q,q,q!

v2~0!
5
1

2

q̃4

~41q̃2!3/2~A41q̃222!2
~B9!

and

v2~q,2q,0,0!

v2~0!
5
4@~41q̃2!1/2212~2/p!arctan~ q̃/2!2~2/p!arctan~2/q̃!#

~41q̃2!~A41q̃222!
~B10!

with q̃ defined after Eq.~B4!. The behavior of the expres-
sions~B9! and~B10! versusq̃ is depicted in Fig. 10. Sinceq̃
can be also written as the productuquas , from Eqs.~B9! and
~B10! we conclude that~i! v2~q,q,q,q!52u~q50!5constant
can be approximately true only foruqu!a s

21, while
v2~q,q,q,q! decays as~uquas)

21 for uqu@a s
21; ~ii ! the depen-

dence ofv2~q,2q,0,0! on uqu is ~approximately! given by

v2(0)4a s
22/~q214a s

22!. These results imply that the com-
posite nature of the bosons prevents Eq.~B1! from holding

strictly for ‘‘large’’ momenta ~and energies!. Nevertheless,

our finding that v2~q,2q,0,0! decays more rapidly than
v2~q,q,q,q! for uqu@a s

21 makes assumption~B1! valid in a

‘‘weak’’ sense.

FIG. 10. Graphical representation of Eqs.~B9! ~dashed line! and
~B10! ~full line! vs q̃5uquas . The characteristic decay of the two
functions for largeq̃ is indicated.
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A final comment is in order. Although we have introduced
the scattering amplitudeas via Eq. ~B5! to comply with a
standard procedure in the literature, it is clear that there ex-
ists asinglecharacteristic length in the bosonic limit, which
~in three dimensions! can be identified alternatively withas ,
jpair, or r 0 ~r 0 being the bound-state radius for the associated
two-fermion problem!, the three lengths differing at most by
numerical constants of order unity. With the ‘‘contact’’ po-
tentialVVd~r ! adopted in this Appendix, in fact, we readily
find for the solution of the two-fermion Schro¨dinger equation
in momentum space:

f~k!52
VAVf~0!

k2/m1e0
, ~B11!

where

f~0![
1

AV
(
k

f~k!52Vf~0!(
k

1

k2/m1e0
~B12!

plays the role of the bound-state equation. EliminatingV in
favor of as via Eq.~B5!, we find eventually~in three dimen-
sions!:

e05
1

mas
2 . ~B13!

By the same token, the bound-state radiusr 0 is given by

r 0
25

(ku¹kf~k!u2

(kuf~k!u2
5
as
2

2
, ~B14!

where the last equality holds in three dimensions. Since we
also know thatr 0 coincides withjpair in the BE limit,24 the
results of this Appendix could be expressed in terms ofjpair
instead ofas . This procedure will consistently be adopted in
Appendix C also in the BCS regime. Our preference forjpair
overas stands from the fact thatjpair is ~at least, in principle!
experimentally accessible, since it pertains to the physical
problem of interest~while as is a fictitious parameter of the
theory!. Besides, we shall find in Appendix C that expressing
the relevant physical quantities in terms ofjpair from the
outset requires no explicit regularization of divergent expres-
sions.

APPENDIX C: jphaseVS jpair
FOR A CONTACT POTENTIAL

In the text we have adopted a fermionic interaction poten-
tial of the ~separable! form ~2.11! with w~k! given by Eq.
~2.12!. By doing so, we have introduced an intrinsic length
scale (k 0

21) for the potential, which we have exploited to
simplify the regularization procedure and to explore the den-
sity dependence of the results. This additional flexibility has
enabled us to verify the independence fromk0 of the relevant
results in the BCS limit, although physical restrictions limit
k0 to ‘‘large’’ values ~cf. Refs. 30 and 43!. For this reason
we have sometimes considered in the text the limitk0→`
for the final expressions, where they get considerably simpli-
fied ~see also Ref. 44!.

The purpose of this Appendix is to studydirectly the case
k05`, for which w~k!51 and the interaction reduces to a

‘‘contact’’ potential in real space. This potential has already
been considered in Appendix B to simplify the calculations;
in that context, we have adopted a standard regularization
procedure in terms of the scattering amplitudeas . Here we
shall avoid introducingas and usejpair instead. Setting
k05` from the outset will also make some approximations
used in the text for analytic calculations more transparent.

We begin by evaluatingjpair according to Eqs.~2.8! and
~2.9! in d dimensions:

jpair
2 5

(ku¹kf~k!u2

(kuf~k!u2
5

1

m2

*0
`dk~kd11jk

2/Ek
6!

*0
`dk~kd21/Ek

2!
, ~C1!

where nowf(k)51/Ek5(jk
21D0

2)21/2. Herejpair is a func-
tion of m andD0 only.D0, in turn, can be related tom via the
~zero-temperature mean-field expression of the! number den-
sity ~or, alternatively, viakF!:

n[
2

d
KdkF

d5KdE
0

`

kd21S 12
jk
Ek

D ~C2!

(2p)dKd being the area of the unit sphere ind dimensions.
The expression ofjphaseis still given by Eq.~2.62!, where

now

a5
D0
2Kd

2 E
0

`

dk
kd21

Ek
3 ~C3!

and

b5
Kd

16m E
0

`

dk
kd21jk

2

Ek
5 F ~jk

222D0
2!

jk
1
5D0

2

dm

k2

Ek
2G . ~C4!

Note that the interaction strengthV does not appear explic-
itly in Eqs. ~C1!–~C4! ~this remains true even for
w~k!Þconst!.

Inversion of Eqs.~C1! and~C2! yieldsm andD0 as func-
tions of kF and jpair, without invoking the gap equation
~2.33!. The lack of an intrinsic length~such ask 0

21! in the
potential enables us to write further:

m5m~kF ,jpair!5
kF
2

2m
h~m!~kFjpair! ~C5!

and

D05D0~kF ,jpair!5
kF
2

2m
h~D0!~kFjpair!, ~C6!

whereh(m) andh(D0) are functions of the dimensionless vari-
able kFjpair only ~this is not true, however, when
w~k!Þconst!. As a consequence, we write from Eqs.~C3!
and ~C4!:

kFjphase5h~j!~kFjpair! ~C7!

whereh(j) is an additional function ofkFjpair only.
Quite generally, Eqs.~C5!–~C7! can be solved numeri-

cally ~in spatial dimensionsd,4! for any desired value of
kFjpair. This procedure has been used in Sec. IV to deter-
mine the limiting curves fork05` as well as the dependence
of jphaseon dimensionality. In the rest of this Appendix we
discuss the analytic BCS and BE limits.
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We consider first the BCS limit and note that the integrals
in Eqs.~C1!–~C4! can be cast in the form

I n
m~m,D0!5E

2m

1`

dj H~j!
jm

E~j!n
, ~C8!

where (m,n) are nonnegative integers andH(j) is a smooth
function of j which, by assumption, does not spoil the ultra-
violet convergence of the integral and remains finite for
j→0. In the BCS limit,D0→0 and the integral~C8! develops
an infrared singularity whenn2m>1. Equation~C8! is then
manipulated as follows:

I n
m~m,D0!5H~0!E

2m

1`

dj
jm

E~j!n

1E
2m

1`

djSH~j!2H~0!

j D jm11

E~j!n
, ~C9!

where now the first integral on the right-hand side can be
evaluated analytically, yielding

H~0!D0
m2n11E

2m/D0

1`

dy
ym

~y211!n/2
>H~0!D0

m2n11Jn
m

~C10!

with

Jn
m[E

2`

1`

dy
ym

~y211!n/2
~C11!

sincem/D0→` in the BCS limit. Concerning the second in-
tegral on the right-hand side of Eq.~C9!, it may or may not
converge in the infrared whenD0→0. If it does converge,
this term can be safely neglected in comparison to~C10! for
n2m.1; otherwise, the procedure followed in Eq.~C9! can
be iterated for the functionH8(j)5[H(j)2H(0)]/j in the
place ofH(j), until the resulting integral converges. In any
event, the terms generated in this way are subleading with
respect to~C10! asD0→0, and can be neglected in the limit.
The same procedure has been used in the text to obtain the
results~2.66! and ~2.67!.

With the above approximations, we obtain from the lead-
ing terms of Eqs.~C1!, ~C3!, and~C4! in the BCS limit:

~jpair
BCS!25

2m

mD0
2

J6
2

J2
0 5

m

4mD0
2 , ~C12!

~jphase
BCS !25

5m

4dmD0
2

J7
2

J3
0 5

m

6dmD0
2 , ~C13!

which recover Eqs.~2.69! and ~2.68!, respectively, in the
limit k0→` andd53. We can thus write in the BCS limit

kFjphase
BCS5A 2

3d
kFjpair

BCS. ~C14!

In the BE limit, on the other hand, the approximation
m/D0→2` applies and the integrals in~C1!–~C4! are con-
veniently evaluated by expanding their integrands in power
of D0/umu. One obtains to leading order

~jpair
BE !25

2

mumu
I 1~d!

I 2~d!
, ~C15!

n5
Kd

2
~2m!d/2D0

2umud/222I 2~d!, ~C16!

~jphase
BE !25

umu
8mD0

2

I 2~d!

I 3~d!
, ~C17!

with (d,4)

I 1~d![E
0

`

dy
yd11

~y211!4
5

G@~d12!/2#G@~62d!/2#

12
,

~C18a!

I 2~d![E
0

`

dy
yd21

~y211!2
5

G~d/2!G@~42d!/2#

2
,

~C18b!

I 3~d![E
0

`

dy
yd21

~y211!3
5

G~d/2!G@~62d!/2#

4
,

~C18c!

G being the Euler’s gamma function. Expressingumu in terms
of jpair

BE from ~C15! andD0 in terms ofn ~and thus ofkF!
from ~C16!, and entering the results into Eq.~C17!, we ob-
tain in the BE limit

~kFjphase
BE !25

d

16

I 2~d!2

I 3~d! S 4I 1~d!

I 2~d! D d/221

~kFjpair
BE !22d.

~C19!

Note that ford53 this expression coincides with the result
obtained previously in the limitk0→` ~cf. Ref. 44!. Note
also that, contrary to the BCS result~C14! which depends
weakly ond, the BE expression~C19! depends markedly on
d and shows a peculiar behavior ford→2.

APPENDIX D: BEHAVIOR OF THE CHEMICAL
POTENTIAL VS kFjpair

In Ref. 24 it was found that the crossover between the
BCS and BE regimes occurs in a rathernarrow range of the
parameterkFjpair, by examining the behavior of the chemi-
cal potential vskFjpair at the mean-field level. This finding
has been confirmed in the present paper by looking at the
behavior ofkFjphasevs kFjpair with the inclusion of fluctua-
tions. The purpose of this Appendix is to investigate to what
extent the behavior of the chemical potential vskFjpair is
‘‘universal,’’ in the sense that it is sufficiently independent
from the specific model Hamiltonian and from the dimen-
sionality ~at least at the mean-field level!.

To this end, we shall examine~i! the continuum model
Hamiltonian~2.10!–~2.12! in the limit k05` ~‘‘contact’’ po-
tential!, for which simplifications occur, at intermediate val-
ues of the dimensionality (2<d<3); ~ii ! the negative-U
Hubbard model on a cubic (d53) lattice.

The equations determining the chemical potentialm and
the gap parameterD0 vs kFjpair for k05` and intermediate
dimensionality are reported in Appendix C@cf., in particular,
Eqs.~C1! and~C2!#. Their numerical solution yields the be-
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havior of m vs kFjpair shown in Fig. 11 for 2<d<3. The
curve ford53 coincides with the curve reported in Fig. 1 of
Ref. 24 in the limit of low reduced density, and the curve for
d52 coincides with the two-dimensional analytic results
given in Ref. 2~once expressed in terms ofkFjpair!. Note
also from Fig. 11 that, at the mean-field level, there is no
significant difference between the results ford52 andd53.

The crossover from BCS to BE for thed53 negative-U
Hubbard model was originally discussed in Ref. 11 in terms
of the interaction strengthU. Here we repeat this mean-field
calculation, by takingkFjpair ~in the place ofU! as the vari-
able driving the crossover. The calculation proceeds simi-
larly to that for the continuum model,but for the additional
inclusion of ~normal-state! Hartree-Fock terms in the mean-
field decoupling.38 These terms are now relevant since they
provide a sizable shift of the chemical potential near half
filling of the electronic band, where they signal the occur-
rence of a liquid-gas phase separation through a nonmono-
tonic behavior of the chemical potential vs band filling. As
the inclusion of pairing restores the correct increase of the
chemical potential with filling, a Maxwell construction is

required to determine the normal-state value of the chemical
potential only.

The chemical potential vskFjpair for thed53 negative-U
Hubbard model is shown in Fig. 12 for several band fillings.
Also shown for comparison is the curve ford53 reproduced
from Fig. 11 ~dotted line!. The comparison evidences the
peculiar behavior of the Hubbard model near half filling (f
51/2), while the continuum-model results are recovered in
the low-density limit (f!1). Note that the qualitative behav-
ior for the Hubbard model looks similar to that for the con-
tinuum model even at intermediate fillings.

Notwithstanding these similarities, a warning on the na-
ture of the bosonic limit for the negative-U Hubbard model
is in order. Contrary to what happens for the continuum
model~or else, in the low-density limitf!1!, the gap equa-
tion does not reduce to the bound-state equation for the two-
fermion problem whenkFjpair!1, since near half filling one
findsD5umu and the conditionD!umu cannot be satisfied. As
a consequence, the broken-symmetry state is not a BE con-
densate in the conventional sense, as discussed in Ref. 11.
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