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We use the quasiclassical theory of superconductivity to calculate the electronic contribution to the thermal
conductivity. The theory is formulated for low temperatures when heat transport is limited by electron scat-
tering from random defects and for superconductors with nodes in the order parameter. We show that certain
eigenvalues of the thermal conductivity tensor are universal at low temperature,kBT!g, whereg is the
bandwidth of impurity bound states in the superconducting phase. The components of the electrical and
thermal conductivity also obey a Wiedemann-Franz law with the Lorenz ratioL(T)5k/sT given by the
Sommerfeld value ofLS5(p2/3)(kB /e)

2 for kBT!g. For intermediate temperatures the Lorenz ratio deviates
significantly fromLS , and is strongly dependent on the scattering cross section, and qualitatively different for
resonant vs nonresonant scattering. We include comparisons with other theoretical calculations and the thermal
conductivity data for the high-Tc cuprate and heavy fermion superconductors.

I. INTRODUCTION

In a normal metal at sufficiently low temperatures the
electrical and thermal conductivities are determined by the
scattering of electrons by lattice defects. The electrical con-
ductivity approaches a constant, while the heat conductivity
k(T);T is related to the electrical conductivity by Som-
merfeld’s result for the Lorenz ratio,k/(sT)→LS
5(p2/3)(kB /e)

2. In fact the Wiedemann-Franz~WF! law is
frequently used to estimate the phonon contribution tok by
subtracting off the expected electronic contributionsLST
from the measured heat conductivity.1

Superconductivity has dramatic effects on the electrical
and thermal conductivities in conventional (s-wave!
superconductors.2–9 In particular, the WF law is violated by
the formation of a coherent ground state and the opening of
a gap in the excitation spectrum everywhere on the Fermi
surface. In this article we investigate the behavior of the heat
current for superconductors with an order parameter of re-
duced symmetry for which there are gapless excitations even
for the pure superconductor. Such superconducting states
have been argued to exist both in the cuprates10 and the
heavy fermion systems.11 In particular, it is widely believed
that the order parameter for the heavy fermion superconduc-
tor UPt3 vanishes on a line in the basal plane,pfz50 ~e.g.,
see Ref. 12!. Similarly, one of the leading candidates for the
cuprates is theB1g or dx22y2 state, a singlet order parameter
with lines of zeros at the Fermi surface positions,
pfx56pfy ~for a review see Ref. 10!.

For acleansuperconductor with an order parameter that
vanishes along a line on the Fermi surface the density of
states is linear in the excitation energy,N(e);Nfe/D0 for
e,D0 .

13,14 However, this spectrum is altered by a random
distribution of impurities.15,16 A new energy scaleg devel-
ops, below which the density of states is approximately con-

stant and nonzero at zero energy. The energy scaleg is in-
terpreted as the bandwidth of quasiparticle states bound to
impurities.17–20 These impurity bound states develop below
the superconducting transition and are coherent superposi-
tions of particle and hole excitations. Such states are formed
by the constructive interference of particlelike and holelike
excitations that undergo Andreev scattering from the varia-
tions of the order parameter that occur as a result of uncon-
ventional pairing and potential scattering by the impurity.
For an order parameter with a line of nodes, the bandwidth
g and the density of Andreev bound states at zero energy,
N(0), arefinite for any finite concentration of impurities,
nimpÞ0.21 The energy scaleg and the density of states,
N(0), depend on both the impurity concentrationnimp and
the scattering phase shiftd0 . Thus,g provides a crossover
energy scale, below which the transport properties of an un-
conventional superconductor are dominated by the Andreev
bound states. For excitation energies aboveg the transport
properties are determined primarily by the scattering of con-
tinuum excitations.

The electrical conductivity for a superconductor with an
order parameter that vanishes along a line of nodes was
shown theoretically by Lee22 to have auniversal limiting
value s05 limv→0s(v,T50).e2Nfv f

2tD , where tD.\/
(pD0) is a universal transport time that is independent of
either the concentration or the scattering phase shift. This
result was obtained for a two-dimensional~2D! dx22y2 order
parameter of the formD(pW f)5D0cos(2w) and an isotropic
2D Fermi surfacepW f5pf(cosw,sinw). Calculations show that
the universal value of the conductivity is due to the phase
space for ‘‘optical’’ transitions within the band of impurity-
induced Andreev bound states.23,24The phase space require-
ments for a universal limit are determined by the variation
of the order parameter near the nodes,D(q);q2qnodefor a
line node in 3D or a point node in 2D, andD~q!
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;(q2qnode)
2 for a point node in 3D. The crossover to the

universality limit occurs forkBT&g and\v&g. Thus, the
universal limit is most easily realized in the strong scattering
~unitarity! limit. Since there is considerable evidence that
some of the heavy fermion superconductors have an order
parameter with a line of zeros, the experimental confirmation
of the universal result for the conductivity would provide an
important test of the argument~based on the Kondo lattice
model! that impurity scattering in heavy fermion metals is in
the unitarity limit.14,25 Unitarity scattering by impurities has
also been invoked in the high-Tc superconductors in order to
reconcile the often observedT2 dependence of the penetra-
tion depth at low temperatures with ad-wave order
parameter.26,27

Because electromagnetic fields penetrate only a distance
of the order of the London length into the superconductor,
surface effects can complicate the determination of the bulk
conductivity. On the other hand, the heat current is un-
screened and provides more direct access to the bulk excita-
tion spectrum. In this article, we investigate the low-
temperature behavior of the thermal conductivity tensor for
unconventional superconductors with line and point nodes in
the order parameter. One of the issues we address is whether
or not the universal behavior of the electrical conductivity
extends to the electronic heat conductivity at low tempera-
ture. We show that the components of the electronic thermal
conductivity tensorkJ corresponding to quasiparticles in the
vicinity of the line nodes are determined by the same scat-
tering rate as the electrical conductivity and are universal in
the limit T→0. Furthermore, the WF law is obeyed for the
ratio of the universal electrical and thermal conductivities in
the limit kBT!g. However, a significant temperature depen-
dence of the Lorenz ratio occurs over the temperature range,
T,Tc , even with purely elastic scattering. The universal
values for both the electrical and thermal conductivity result
from the cancellation between two factors:~i! the density of
Andreev bound states, which is proportional tog, and~ii ! the
reduction of phase space for scattering of gapless excitations,
which is proportional tog21, leading to an estimate for the
thermal conductivity, k;Nf(g/D0)kB

2Tv f
2(\/g);

Nfv f
2kB

2T(\/D0), which is independent of the defect density
or scattering phase shift. Perhaps the most surprising result is
that the ratio of the universal values for the thermal and
electrical conductivity gives the Sommerfeld value for the
Lorenz ratio,k/sT.LS 5(p2/3)(kB /e)

2. Thus, the differ-
ences in the coherence factors that determine the conductiv-
ity tensors kJ and sJ do not affect the Lorenz ratio
L(T)5k/sT for kBT!g and\v!g.

For temperatures above the crossover energy,kBT*g,
the Lorenz ratioL(T) deviates significantly from the Som-
merfeld value. Furthermore, we find that the temperature de-
pendence of the Lorenz ratio is very sensitive to the scatter-
ing phase shift. For nearly resonant scattering (d0'p/2),
L(T) is larger thanLS , except in a narrow region nearTc
associated with a coherence peak in the electrical conductiv-
ity for very clean superconductors. In the opposite limit of
weak scattering the Lorenz ratio is less thanLS except for the
~exponentially small! region kBT&g. Thus, measurements
of L(T) might be useful in distinguishing weak and strong
impurity scattering.

The rest of this paper is organized as follows. In Sec. II
we derive an equation for the thermal conductivity of a
Fermi liquid; the formulation includes unconventional pair-
ing and the effects of scattering by a random distribution of
defects. In Sec. III we evaluate the thermal conductivity ten-
sor in the limitT→0 for several models of the order param-
eter: ~i! the even-parityB1g state in tetragonal symmetry,

i.e., the dx22y2 state withD(pW f)5D0(pfx
2 2pfy

2 ), and, in
hexagonal systems,~ii ! the even-parityE1g ~‘‘hybrid-I’’ !

~Ref. 28! state with D(pW f)52D0pfz(pfx1 ip f y), ~iii ! the

odd-parity A1u ~‘‘polar’’ ! state withDW (pW f)5D0ẑpf z , and
~iv! the odd-parity E2u ~‘‘hybrid-II’’ ! state

DW (pW f)5(3A3/2)D0ẑpf z(pfx1 ip f y)
2. The dx22y2 state has

been discussed extensively as a model for the high-Tc cu-
prates, and the latter three order parameters have been dis-
cussed as models for the low-temperature superconducting
phase of UPt3 . For the odd-parity states@cases~iii ! and~iv!#
ẑ specifies the quantization direction for the spins; the pairs
are in the triplet spin stateu↑↓1↓↑& relative to theẑ direc-
tion. The formulation and many of the results are applicable
to more general forms of anisotropic pairing with zeros in
the order parameter. A few other models are also discussed.
In Sec. IV we discuss the leading-order finite-temperature
corrections to the thermal and electrical conductivities. For
an order parameter with a line of nodes, or a point node in
which the gap opens quadratically, the thermal conductivity
tensor has components that are universal in the limitT→0,
and of the formk5LSsT(11O @T2/g2#), exhibiting both
the WF law forT→0 and the deviations that develop for
kBT;g!D0 . In Sec. V we present numerical results for the
thermal conductivity and the Lorenz ratio over the full tem-
perature range belowTc , and compare in Sec. VI the results
with low-temperature measurements of the thermal conduc-
tivity for several cuprate and heavy fermion superconduct-
ors.

II. QUASICLASSICAL TRANSPORT COEFFICIENTS

The microscopic theory of superconductivity was devel-
oped by Bardeen, Cooper, and Schrieffer31 at about the same
time that Landau published the microscopic basis of his
transport theory of normal Fermi liquids.32 These two theo-
ries were combined into what was called by Larkin and
Ovchinnikov33 the quasiclassical theoryof superconducting
Fermi liquids. The quasiclassical theory of superconductivity
is a complete theory of the low-energy properties of fermions
in the superconducting state. It was developed by
Eilenberger,34 Larkin and Ovchinnikov,33 and Eliashberg,35

and it covers essentially all thermodynamic, electrodynamic,
transport, and collective properties of superconductors. In
this section we start from the basic equations of the quasi-
classical theory of superconductivity, and derive the electri-
cal conductivity and the electronic contribution to the heat
conductivity of anisotropic superconductors with unconven-
tional pairing and scattering by random defects.36

The central physical objects of the quasiclassical theory
are the quasiclassical propagators, which obey quasiclassical
transportlike equations. We give a brief interpretation of
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their physical meaning, and establish our notation. We use
Keldysh’s formulation of nonequilibrium Green’s function
theory,37 and introduce three types of propagators:advanced
(A), retarded(R), andKeldysh(K). These three quasiclas-
sical propagators are 434 matrices whose components de-
scribe the quantum-mechanical internal degrees of freedom
of electrons and holes: the spin and particle-hole degrees of
freedom. Particle and hole excitations are incoherent in the
normal state, whereas the superconducting state is character-
ized by quantum coherence between particles and holes,
which is the origin of persistent currents and other nonclas-
sical superconducting effects. The quasiclassical propagators
describe the quantum statistical state of the internal degrees
of freedom. Nonvanishing off-diagonal elements in the
particle-hole index indicate superconductivity. A standard
notation for the matrix structure of the propagators~and the
self-energies! is38

ĝX5S gX1gWX•sW ~ f X1 fWX•sW !isy

isy~ f
X1 fWX•sW gX2sygW

X
•sW sy

D , ~1!

with XP$R,A,K%. The 16 matrix elements ofĝX are written
in terms of four spin scalars (gX, gX, f X, f X) and four spin

vectors (gWX, gWX, fWX, fWX). All matrix elements are functions

of the Fermi momentumpW f , the positionRW , the excitation
energy e, measured from the chemical potential, and the
time t. The diagonal spin scalarsgX, gX contain the spectral
and statistical information for spin-independent quantities
like the heat current density, while the spin vectorsgWX carry
the information on the spin magnetization, spin currents, etc.
The off-diagonal termsf X and fWX characterize the supercon-
ducting state; a finite value off K indicates singlet pairing,
and a nonvanishingfWK implies triplet pairing.

The redundant information provided in the definition of
the quasiclassical propagators in Eq.~1! can be eliminated
with the very general symmetries38

gA~pW f ;e!5gR~pW f ;e!* , gR~pW f ;e!5gA~2pW f ;2e!,
~2!

gWA~pW f ;e!5gWR~pW f ;e!* , gWR~pW f ;e!5gWA~2pW f ;2e!,

~3!

f A~pW f ;e!5 f R~pW f ;e!* , f R~pW f ;e!5 f A~2pW f ;2e!, ~4!

fWA~pW f ;e!5 fWR~pW f ;e!* , fWR~pW f ;e!52 fWA~2pW f ;2e!.
~5!

The electrical current density is obtained from the scalar
part of the Keldysh propagator, the Fermi velocityvW f , and
the density of states per spin,Nf , at the Fermi level,

jWe~RW ,t !52NfE dpW fE de

4p i
@evW f~pW f !#g

K~pW f ,RW ;e,t !, ~6!

where*dpW f(•••) stands for a normalized integral over the
Fermi surface. Similarly, the heat current density has the
form

jW«~RW ,t !52NfE dpW fE de

4p i
@evW f~pW f !#g

K~pW f ,RW ;e,t !.
~7!

For weak disturbances from equilibrium the current re-
sponse is linear in the applied field. In this paper we are
interested in the low-frequency, dissipative part of the elec-
trical current response, defined by the conductivity tensor

d jWe5sJ•EW v , ~8!

wheresJ5 limv→0ResJ (v,T),
39 and the thermal conductivity

tensor, defined by the linear response to a small temperature
gradient

d jW«52kJ•¹W T. ~9!

In the rest of this section we develop the linear response
equations forkJ and sJ from the quasiclassical theory. The
analysis and notation closely follows that for the current re-
sponse to an EM field given in Refs. 40 and 23. The ad-
vanced, retarded, and Keldysh propagators are calculated
from quasiclassical transport equations

@et̂32ŝext2ŝR,A,ĝR,A# +1 ivW f•¹W ĝ
R,A50 ~10!

and

~et̂32ŝext2ŝR!+ ĝK2ĝK + ~et̂32ŝext2ŝA!2ŝK + ĝA

1ĝR+ ŝK1 ivW f•¹W ĝ
K50 , ~11!

where all propagators and self-energies depend on the Fermi
momentumpW f , the positionRW , the excitation energye, and
the time t. We use the units\[kB[1, unless explicitly
stated. The+ product stands for a folding product in the
energy-time domain, and the commutator@ â,b̂# + is defined
by â + b̂2b̂ + â.38 The transport equations are supplemented
by the normalization conditions34,33

ĝR,A+ ĝR,A52p21̂, ~12!

ĝR+ ĝK1ĝK+ ĝA50. ~13!

The quasiclassical transport equations~10! and~11! together
with the normalization conditions~12! and ~13! and the
equations specifying the self-energiesŝX are the fundamen-
tal equations of the Fermi liquid theory of superconductivity.
They are the generalization of the Boltzmann-Landau trans-
port equation to the superconducting state. The transforma-
tions and approximations used to derive transport equations
are based on a systematic expansion to leading order in the
small parameters of Fermi liquid theory, e.g.,kBTc /Ef ,
\vD /Ef , \/tEf , etc. The accuracy and predictive power of
Fermi liquid theory is intimately connected with the small-
ness of these parameters.

The quasiclassical self-energy termsŝX in the transport
equations describe interactions between quasiparticles with
phonons, with impurities, and quasiparticles with each other.
We consider the low-temperature transport properties of su-
perconductors with unconventional pairing under conditions
where inelastic scattering by phonons and quasiparticles is
negligible compared to scattering from random defects.
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The quasiclassical self-energies depend on interaction
vertices which are phenomenological parameters of the
Fermi liquid theory of superconductivity. We consider the
weak-coupling limit40 in which electronic pairing interac-
tions are described by the verticesVpW f p

W
f8

s
andVpW f p

W
f8

t
, for the

spin-singlet and spin-triplet interactions, respectively. The
mean-field pairing self-energies are given by

DR,A~pW f ,RW ;t !5E de

4p i E dpW f8VpW f p
W
f8

s
f K~pW f8 ,RW ;e,t !, ~14!

DW R,A~pW f ,RW ;t !5E de

4p i E dpW f8VpW f p
W
f8

t
fWK~pW f8 ,RW ;e,t !, ~15!

DK5DW K50 . ~16!

The effects of a random distribution of impurities are de-
scribed in Fermi liquid theory by an electron-impurity vertex
u(pW f ,pW f8) and the impurity concentrationnimp .

21 The impu-
rity self-energy is proportional to the single-impurityt̂ ma-
trix,

ŝ imp
X ~pW f ,RW ;e,t !5n imp t̂

X~pW f ,pW f ,RW ;e,t !, ~17!

where t̂X are obtained by solving the integral equations

t̂R,A~pW f ,pW f8 ,RW ;e,t !5u~pW f ,pW f8!1̂1NfE dpW f9 u~pW f ,pW f9!ĝR,A~pW f9 ,RW ;e,t !+ t̂R,A~pW f9 ,pW f8 ,RW ;e,t !, ~18!

t̂K~pW f ,pW f8 ,RW ;e,t !5NfE dpW f9 t̂
R~pW f ,pW f9 ,RW ;e,t !+ ĝK~pW f9 ,RW ;e,t !+ t̂A~pW f9 ,pW f8 ,RW ;e,t !. ~19!

The coupling of quasiparticles~with chargee) to an elec-
tric field is given by

ŝext52
e

c
vW f•AW t̂3 , ~20!

whereAW (qW ,v) is the vector potential describing the trans-
verse fieldEW 5( iv/c)AW . In order to calculate the conductiv-
ity we must solve the transport equations to linear order in
the perturbing field. We first linearize the transport equations
in the perturbations ofĝX and ŝX from their equilibrium
values. In the case of the heat transport the perturbation is the
temperature gradient¹W T. Thus, the linearization of the trans-
port equations is carried out in terms of the deviations from
local equilibrium specified by a thermal distribution function
with a local temperature,

F0~RW !5@122 f „e;T~RW !…#5tanhS e

2T~RW !
D . ~21!

The local equilibrium Keldysh propagator and self-energy
are determined by the retarded and advanced functions and
the thermal distribution function,

ĝ0
K5ĝ0

R+ F02F0+ ĝ0
A , ~22!

ŝ0
K5ŝ0

R+ F02F0+ ŝ0
A , ~23!

with retarded and advanced propagators that are given by the
solutions of

@et̂32ŝ0
R,A ,ĝ0

R,A#50 , ~24!

~ ĝ0
R,A!252p21̂, ~25!

and the self-consistency equations~14!–~19!. Note that the
+ product reduces to matrix multiplication for the local equi-

librium functions. The self-energy includes the mean-field
order parameterD̂(pW f ,RW ) and the impurity self-energy

ŝ imp
R,A(pW f ,RW ;e), which has both diagonal (Ŝ imp

R,A) and off-
diagonal (D̂imp

R,A) components in particle-hole space.
In this paper we consider only superconducting states

which are ‘‘unitary’’; i.e., the equilibrium mean-field order
parameter satisfies

D̂~pW f ,RW !252uD~pW f !u21̂, ~26!

where uDu2 stands for either the spin scalar productDD or
the spin vector productDW •DW . The unitary condition restricts
us to even-parity, spin-singlet pairing or to odd-parity, spin-
triplet states without spontaneous spin polarization. The odd-
parity states considered in this paper are unitary states that do
not break time-reversal symmetry in the spin degrees of free-
dom. However, time-reversal symmetry may still be broken
by the orbital motion of the Cooper pairs, which is the case
for theE1g andE2u ground states that we consider.41

The local equilibrium solutions to Eqs.~24! and ~25! for
unitary states in unconventional superconductors@with
*dpW fD̂(pW f)50# are42

ĝ0
R,A~pW f ,RW ;e!52p

ẽ R,At̂32D̂

AuDu22~ ẽ R,A!2
, ~27!

ẽR,A~pW f ,RW ;e!5e2
1

4
Tr@ t̂3Ŝ imp

R,A~pW f ,RW ;e!#. ~28!

These equilibrium functions are inputs to the linearized qua-
siclassical transport equations. The quasiclassical trans-
port equations and normalization conditions are solved
to linear order for the deviation of the propagators from their
local equilibrium values, dĝX(pW f ,RW ;e,t)5ĝX(pW f ,RW ;e,t)
2ĝ0

X(pW f ,RW ;e). The technical steps used to decouple the re-
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tarded, advanced, and Keldysh functions, and for inverting
the linearized transport equations are outlined in the Appen-
dix, and the solution fordĝK is given in Eq.~A20!. In the
following we use the general solution fordĝK and the self-
consistency equations for the impurity self-energy and order
parameter to obtain formulas for the electrical and thermal
conductivities for a superconductor with an unconventional
order parameter.

III. ELECTRICAL AND THERMAL CONDUCTIVITIES

Here we consider a superconductor with anisotropic sin-
glet pairing or unitary triplet pairing, and discuss the electri-
cal and thermal conductivities in the long-wavelength limit
q→0 and atT→0. For simplicity we assume isotropic im-
purity scattering. In this case the first-order corrections to the
current response functions from the impurity self-energy
dŝ imp and the order parameterdD̂ vanish for all listed pair-
ing states, except for the polar state~ii ! with current flow
along thec axis.16,43,44Self-energy corrections correspond-
ing to the excitation of collective modes of the order param-
eterdD̂ also vanish in the limitq→0 ~cf. Refs. 45 and 46!.
The self-energy corrections are the ‘‘vertex corrections’’ in
the language of the Green’s function formulation of the
Kubo response function.47 If we can neglect vertex correc-
tions, we obtain expressions for the electrical and thermal
conductivities that depend only on the equilibrium propaga-
tors and self-energies, and the external perturbations. For
spin-singlet states the thermal conductivity obtained from
Eqs.~7! and ~A20! becomes

k i j ~T!52
Nf

4pT2E deE dpW f@v f ,iv f , j #e
2sech2S e

2TD
3

C1
a ~pW f ;e!

p2C1
a ~pW f ;e!21D2

a ~e!2
@g0

A~pW f ;e!g0
R~pW f ;e!

2 f 0
A~pW f ;e! f 0

R~pW f ;e!1p2#. ~29!

In the case of spin-triplet pairing the off-diagonal spin scalar
Green’s functions in ~29! have to be replaced by
f 0
Af 0

R→ fW0
A
• fW0

R. Note, that only the anomalous part of the
propagator~see the Appendix! contributes to the thermal
conductivity. The retarded and advanced parts drop out after
taking the trace and applying the normalization condition,
i.e., Trĝ0

R,A¹W ĝ0
R,A50. Physically, this means that the devia-

tion of the quasiparticle distribution function due to a ther-
mal gradient contributes to the heat current, whereas changes
in the quasiparticle and Cooper pair spectrum do not. Equa-
tion ~29!, combined with the equilibrium propagators, impu-
rity self-energy, and order parameter, is the basic result for
the electronic contribution to the thermal conductivity tensor.
Note that we have used the shorthand notation
C1
R,A,a(pW f ;e), andD2

R,A,a(e), for the functions in Eq.~29! at
v50. It can be shown that Eq.~29! for k i j reduces to the
same expression for the thermal conductivity as reported pre-
viously by Schmitt-Rinket al.,25 Hirschfeld et al.,48,44 and
by Fledderjohann and Hirschfeld;49 except that these authors
appear to have dropped theD2

a term from the impurity self-
energy, which, however, vanishes in both Born and unitarity
limits.

Similarly, the electrical conductivity obtained from Eqs.
~6! and ~A20! for a spin-singlet state is given by

Res i j ~v,T!5
e2Nf

2pvE deE dpW f@v f ,iv f , j #F tanhS e1

2TD 2tanhS e2

2TD G
3ReH C1

R ~pW f ;e,v!

p2C1
R ~pW f ;e,v!21D2

R ~e,v!2
@g0

R~pW f ;e2!g0
R~pW f ;e1!1 f 0

R~pW f ;e2! f 0
R~pW f ;e1!1p2#

2
C1
a ~pW f ;e,v!

p2C1
a ~pW f ;e,v!21D2

a ~e,v!2
@g0

A~pW f ;e2!g0
R~pW f ;e1!1 f 0

A~pW f ;e2! f 0
R~pW f ;e1!1p2#J , ~30!

where e65e6v/2. For triplet pairing simply replace

f 0(e2) f 0(e1)→ fW0(e2)• fW0(e1). This result was obtained
earlier for magnetic scattering in conventional
superconductors,50 and for electron-phonon and impurity
scattering in strong-coupling superconductors,40 and for the
in-plane conductivity of layered superconductors.23 The for-
mula for the conductivity reduces to the well-known result of
Mattis and Bardeen for dirty,s-wave superconductors,2 and
to the result derived in Ref. 51 for the frequency and tem-
perature dependence of the conductivity of ad-wave super-
conductor with lines of nodes in the order parameter.

In deriving Eqs.~29! and ~30! we have made use of sev-
eral relations which are consequences of the general symme-
tries of the propagator~and self-energy! in Eqs.~2!–~5!, the
parity of the order parameter, and the specific symmetry of
the equilibrium Green’s functiong0

X52g0
X , which directly

from Eq. ~27!. The basic functions defining the self-energy
and response functions obey the symmetries38,40

ẽ A~e!5 ẽ R~e!* , ẽ A~e!52 ẽ R~2e!, ~31!

C1
R ~pW f ;e,v!5C1

A ~pW f ;e,v!* , ~32!
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C1
a ~pW f ;e,v!5C1

a ~pW f ;e,2v!* , ~33!

D2
R ~e,v!5D2

A ~e,v!* , ~34!

D2
a ~e,v!52D2

a ~e,2v!* . ~35!

A. Wiedemann-Franz law for T˜0

In the limit T→0 and v→0 the occupation factors
$tanh@(e1v/2)/2T#2tanh@(e2v/2)/2T#% and sech2(e/2T)
confine thee integrals in Eqs.~29! and ~30! to a small-e
region ~of orderT or v). Assuming that there exists an en-
ergy scalee*@T on which the propagators and self-energies
vary, we can sete50 in the slowly varying parts of the
integrands and obtain

Res i j ~v→0,T→0!5 lim
v→0

e2Nf

2pv
sinh

v

2TE de sech2S e

2TDReE dpW f@v f iv f j #

3S C1
R ~pW f !

p2C1
R ~pW f !

21D2
R ~0!2

@g0
R~pW f !g0

R~pW f !1 f 0
R~pW f ! f 0

R~pW f !1p2#

2
C1
a ~pW f !

p2C1
a ~pW f !

21D2
a ~0!2

@g0
A~pW f !g0

R~pW f !1 f 0
A~pW f ! f 0

R~pW f !1p2# D ~36!

and

k i j ~T→0!52
Nf

4pT2E de e2sech2S e

2TD E dpW f@v f iv f j #
C1
a ~pW f !

p2C1
a ~pW f !

21D2
a ~0!2

@g0
A~pW f !g0

R~pW f !2 f 0
A~pW f ! f 0

R~pW f !1p2#,

~37!

where the energies and frequencies are fixed to zero in the
arguments of the propagators and self-energies. Using the
symmetry relations~2!–~5! and ~31!–~35! and eliminating
the advanced and anomalous functions in Eqs.~36! and~37!,
we find

Res i j ~v→0,T→0!5
e2Nf

2pTE de sech2S e

2TD
3E dpW f@v f ,iv f , j #

g0
R~pW f !

2

p2C1
R ~pW f !

~38!

and

k i j ~T→0!5
Nf

2pT2E de e2 sech2S e

2TD
3E dpW f@v f ,iv f , j #

g0
R~pW f !

2

p2C1
R ~pW f !

. ~39!

We used the normalization conditiong0
R(pW f)

22

f 0
R(pW f) f 0

R(pW f)52p2, in addition to the symmetry relations,
in order to put the momentum integrals in Eqs.~38! and~39!
in identical form. It is useful to write our final results in
terms of an average Fermi velocity and a tensort i j , which
incorporates all of the coherence effects of superconductivity
at T→0 into aneffectivetransport scattering time. The en-
ergy integrals are standard, and so the conductivities for a
system withD dimensions reduce to

Res i j ~v→0,T→0!5e2
2

D
Nfv f

2t i j , ~40!

k i j ~T→0!5
p2

3

2

D
Nfv f

2Tt i j , ~41!

wherev f
25*dpW f uvW f(pW f)u2, and the effective transport time is

defined by the tensor

t i j52
D

2v f
2E dpW f

@v f ,i~pW f !v f , j~pW f !# ẽ R ~0!2

@DR~pW f !
22 ẽ R~0!2#3/2

. ~42!

For an isotropic normal metal one hasẽ R(0)5 i /2t0 , where
t0 is the quasiparticle lifetime due to impurity scattering in
the normal state. The transport lifetime in the normal state
reduces to t0 for isotropic impurity scattering, i.e.,
t i j5t0d i j . Note that Eq.~42! is applicable to the normal
state because the key assumption in deriving Eqs.~38! and
~39! was thatT is small compared withe* , wheree* is the
energy on which the propagators and self-energies vary.
Thus for the normal statee*;Ef , while for the supercon-
ducting statee*;g, whereg is the impurity bandwidth. In
some respect the impurity band states form a new low-
temperature metallic state deep in the superconducting
phase. This analogy is strengthened later in the paper when
we calculate the temperature corrections to the transport co-
efficients using a Sommerfeld expansion. However, the
‘‘metallic’’ band of impurity states has other properties that
differ significantly from those of conventional metals. The
special features of the impurity-induced metallic band reflect
the reduced dimensionality for the phase space of scattering
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and the energy dependence of the particle-hole coherence
factors, which define the impurity-induced band. These two
features lead to~i! universality forT→0 transport coeffi-
cients for excitation gaps with line nodes or quadratic point
nodes and~ii ! to the temperature dependence of the Lorenz
ratio for elastic scattering at 0,T,Tc .

However, forT→0, we note that one obtains from Eqs.
~40! and ~41! the Wiedemann-Franz law with Sommerfeld’s
result for the Lorenz number of an unconventional supercon-
ductor at very low temperatures,k i j5LSs i j T, with

LS5
p2

3 S kBe D 2. ~43!

We emphasize that Eqs.~40!, ~41! hold for gapless supercon-
ductors in which the leading contribution to the transport
current is that from quasiparticle excitations with energies
T,g!Tc . For superconductors with a gap the number of
quasiparticle excitations at low temperature is activated,
}exp(2D0 /T), and the transport coefficients in the limit
T!Tc are not described by Eqs.~40! and ~41!, and further-
more do not obey the Wiedemann-Franz law.

B. Universal limits for d-wave pairing

Lee has shown that forT→0 the electrical conductivity of
a d-wave superconductor is universal,22

s i~v→0,T→0!.e2Nfv f
2tD , ~44!

with the universal transport scattering time

tD. 1/~pD0!, ~45!

which is independent of the scattering rate of quasiparticle
excitations.

Our quasiclassical calculation reproduces Lee’s result for
isotropic systems,pW f5pf(cosw,sinw), and the standard
model ford-wave pairing, i.e.,D(pW f)5D0cos(2w). We ob-
tain the universal result in the limit,u ẽ R(0)u!D0 , where
D0 is the maximum gap. The transport lifetime tensor from
Eq. ~42! for the standardd-wave model reduces to
t i j5td i j ,

t5E dw

2p

cos2~w!g2

@D~w!21g2#3/2
, ~46!

whereg is the width of the impurity band,

g5Gu

^g~D21g2!21/2&
cot2d01^g~D21g2!21/2&2

, ~47!

and^•••&5*0
2p(dw/2p)(•••) , andGu5nimp /(pNf). For a

given impurity concentration this bandwidth is largest
in the limit of unitarity scattering, e.g., fordx22y2

pairing, g;ApD0Gu/2, while in the Born limit,
g;4D0exp(2pD0/2Gu). In either case we haveg!D0; oth-
erwise pair breaking by impurity scattering effectively sup-
presses the superconducting transition. Forg!D0 , Eq. ~46!
reduces tot.1/(pD0), and we obtain Lee’s universal result
in Eq. ~45!.

Since, according to Eq.~42!, the same transport lifetime
determines the electronic contribution to the thermal conduc-
tivity, it too becomes universal in the limitT→0, i.e., inde-
pendent of the impurity scattering rates. The universal, low-
temperature limits for the electrical and thermal
conductivities of a standardd-wave superconductor withD
}cos(2w) and scattering due to isotropic impurities also obey
the WF law. Although scattering by impurities is expected to
be the dominant scattering mechanism at low temperatures, it
is worth noting that these universal results also hold for

TABLE I. Symmetry classes, order parameters, and the asymptotic values of the thermal conductivity tensor. Note that we have neglected
the vertex corrections only fork' of the polar state.

Pairing state
Symmetry
class~group! D(pW f) Nodes

ki~T!

T Sp2

3
Nfvf

2
iD21 k'~T!

T Sp2

3
Nfvf

2
'D21

dx22y2 B1g(D4h) (pfx
22pfy

2) 4 linear line nodes 2

pmD0

—

Polar A1u(D6h) ẑpf z 1 linear line node 1

2mD0

;1

mD0
S g

mD0
D2lnmD0

g

Hybrid I E1g(D6h) pfz(pfx1 ip f y) 2 linear point nodes
1 1 linear line node

1

2mD0

g

m1
2D0

2

Hybrid II E2u(D6h) ẑpf z(pfx1 ip f y)
2 2 quadratic point nodes

1 1 linear line node
1

2mD0

1

2m2D0

Hybrid III A E1g(D6h) pfz(pfx1 ip f y)(pfx
21pfy

2) 2 cubic point nodes
1 1 linear line node

1

2mD0

0.47

m3D0
S m3D0

g D 1/3
Hybrid III B B2g1 iB1g(D6h) pfz(pfx1 ip f y)

3 2 cubic point nodes
1 1 linear line node

1

2mD0

0.47

m3D0
S m3D0

g D 1/3
– B1u(D6h) ẑIm(pfx1 ip f y)

3 2 cubic point nodes
1 3 linear line nodes

3

2mD0

;10

m3D0
S m3D0

g D 1/3
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electron-electron scattering or electron-phonon scattering,as
long as vertex corrections can be neglected.

IV. LOW-TEMPERATURE LIMITS FOR SEVERAL
UNCONVENTIONAL PAIRING STATES

A. Zero-temperature limit

We evaluate the eigenvalues of thekJ ’s in theT→0 limit
for the specific pairing states listed in Table I for uniaxial
superconductors. For heat flow in the basal plane the two
eigenvalues ofk i j are identical, and we drop the subscripts
for these directions and writek uu5kaa5kbb , andk'5kcc
for the c-axis transport coefficient.

First, consider thedx22y2 pairing state. For a cylindrical
Fermi surface and the heat flow in theab plane, the angular
average in Eq.~46! for the transport time reduces to

1

2
343E

node

dw

2p
g2~D21g2!23/2.

There are four line nodes and the integral is reduced to one
quadrant containing one node. Forg!D0 , the integral is
dominated by the region near the node; thus, we can approxi-
mateD(w).mD0w8, wherew85p/42w and the parameter
m measures the slope of the gap at the node, i.e.,
m5(1/D0)udD(w)/dwuwnode. This slope parameter also deter-
mines the low-energy density of states~cf. Ref. 52!. The
result for the low-temperature limit of the thermal conduc-
tivity is universal but depends on the slope parameterm,

k uu~T!.
p2

3
Nfv f

2T
2

pmD0
. ~48!

The dependence of the universal value of the thermal con-
ductivity on the slope of the excitation gap reflects the im-
portance of the low-energy continuum states withe!D0 in
the formation of the zero-energy impurity bound states. Note
that this result is valid fors-wave scattering andg!D0 with
corrections typically of the order (g/D0)

2. A similar calcu-
lation for the in-plane conductivity gives Res i(T,v→0)
.2e2Nfv f

2/(pmD0), in agreement with Lee for the standard
d-wave model withm52.

For the three pairing states listed in Table I containing a
line node in the basal plane~polar, hybrid I, hybrid II!, the
relevant angular average for heat flow in the basal plane is

^g2v̂ f x
2(D21g2)23/2& with vW f5v f v̂ f , which becomes

1
4 *0

pdqsin3qg2(D21g2)23/2. The integral is dominated by
the contribution near the line node, i.e.,q'p/2. For
g!D0 , we linearize the gap in the neighborhood of the line
node, D(q).mD0(p/22q), and the integral reduces to
1
4 *nodedq8g2@(mD0q8)21g2#23/2, again leading to a uni-
versal result fork uu ,

k i~T!.
p2

3
Nfv f

2T
1

2mD0
. ~49!

For heat flow along thec axis the results for these same
pairing states differ significantly. First consider the hybrid-I
state. The angular average now reduces to
1
2*0

pdqsinqcos2qg 2(D21g 2)23/2. The gap opens up linearly
at the positions of the point nodes at the poles. In the limit

g→0, the integrand diverges asuq2p/2u21 near the line
node, and asq22 near the point nodes. Thus the integral is
dominated by the contribution from the point nodes~note,
however, thatg is mainly determined by the line node!. Lin-
earizing the gap near the point nodeD(q).m1D0q, we
obtain for the low-temperature limit of thec-axis component
of the thermal conductivity,

k'~T!.
p2

3
Nfv f

2T
g

m1
2D0

2 , ~50!

which is nonuniversal, and generally much less thank uu by a
factor of order (g/D0). To differentiate gaps with point
nodes of different orders we classify them by their first non-
vanishing derivative at the nodal points~i.e., for an
nth-order point nodeD.mnD0q

n).
In the case of the hybrid-II gap thec-axis transport is

more subtle. The gap opens quadratically with angle near the
point nodes at the poles, i.e.,D(q).m2D0q

2, and once
again we obtain a universal result for the zero-temperature
thermal conductivity,

k'~T!.
p2

3
Nfv f

2T
1

2m2D0
. ~51!

The ground state for theE2u model
41 of UPt3 is an example

of a hybrid-II state. Thus, an important feature of this model
is that both components of the thermal conductivity tensor
have universal values in the limitT→0. If we use the poly-
nomial form for the E2u order parameter,D(pW f);
pfz(pfx1 ip f y)

2, then the slope of the gap at the line node
and the curvature of the gap at the point node are identical,
m[m253A3/2. Thus, for a spherical Fermi surface we find
that all the eigenvalues ofkJ are identical in the limit
T→0. This result is consistent with the result reported in
Ref. 49. However, the isotropy ofk i j is a peculiarity of the
polynomial basis functions for theE2u representation, and of
course the spherical Fermi surface.

Finally, we consider a gap with cubic point nodes at the
poles, i.e.,D(q).m3D0q

3. An example is the hybrid-III A
state with E1g symmetry, D(pW f)516/(3A3)D0pfz(pfx

2 1

pfy
2 )(pfx1 ip f y), which has a linear line node in the basal

plane, but also cubic point nodes atq50,p. The B1g and
B2g states of a hexagonal crystal possess cubic point nodes
along thec axis if one assumes an analytic expansion ofD in
terms ofpW f . The odd-parityB1u andB2u states also possess
cubic point nodes if we restrict the spin quantization axis to
d̂5 ĉ; however, more general spin states do not possess cubic
point nodes. It is also worth noting that cubic point nodes are
expected for a large number of superpositions of two 1D
representations, as in the ‘‘accidental degeneracy’’ models53

for UPt3 ~cf. Refs. 54 and 41!. There is an important differ-
ence between the 2D hybrid-III A state and the various 1D
representations of the hexagonal group. The cubic point
nodes of the 1D or mixed-symmetry ground states are gen-
erally combined with line nodes connecting the point nodes
at opposite poles@an exception is the degenerateB2g1 iB1g
~hybrid-III B! state#. Thus, there is a higher density of exci-
tations for the 1D states than for the hybrid-III A state in the
vicinity of the cubic point nodes. The large density of gap-
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less excitations in the vicinity of a cubic point node leads to
a relatively large nonuniversal value for the low-temperature
limit of the thermal conductivity in thec direction. For the
case of a pure cubic point node we obtain

k'~T!.
p2

3
Nfv f

2T
2pA3p

27m3D0G~ 2
3 !G~ 5

6 !
S m3D0

g D 1/3 ~52!

in the limit T→0. Note that the slope of thec-axis thermal
conductivity is enhanced relative to the universal limit of the
quadratic point node by (m3D0 /g)

1/3. Of course this value is
limited at largeg by the normal state value.

Although we have so far assumed an isotropic or cylin-
drical Fermi surface, many of the results are more general, or
simply extended to include uniaxial anisotropy. Also, one
can generalize the results to an arbitrary anisotropic Fermi
surface with anisotropic impurity scattering of the form
upW f pW f85u0h(pW f)h(pW f8), where h(pW f) is any basis function

with the full symmetry of the Fermi surface. In addition, for

the zero-temperature limit only the density of states and
Fermi velocities at the appropriate nodes are involved. Thus,
the results for the zero-temperature slopes of the thermal
conductivity are easily extended to include Fermi surface
anisotropy by replacingNfv f

2 by the value of this quantity at
the position of the node or the relevant one-dimensional av-
erage in the case of a line node.

B. Low-temperature corrections

Impurity scattering in an unconventional superconductor
with line nodes leads to a finite density of zero-energy exci-
tations. The bandwidth of these impurity bound states is of
orderg. The leading-order finite-temperature corrections to
the transport coefficients are obtained by a Sommerfeld ex-
pansion of Eqs.~29! and ~30! for the thermal and electrical
conductivities. The key point is that the impurity-
renormalized excitation spectrum has according to the sym-
metry relation~31! a low-energy expansion of the form

ẽ R,A~e!'6 i ~g1be2!1ae, ~53!

with real coefficientsa,b and 0,g!D0 . Expanding the integrands in Eqs.~29! and ~30! to O @e2# gives the Sommerfeld
expansion for the components ofk i j ands i j ,

k i i ~T!.
Nfv f

2

4T2 E de e2sech2S e

2TD H g2I 3/21e2F2gbI3/21S 52 a2g223bg3D I 5/22 5

2
a2g4I 7/2G J , ~54!

Res i i ~T,v→0!.
e2Nfv f

2

4T E de sech2S e

2TD H g2I 3/21e2F2gbI3/21S 152 a2g223bg3D I 5/22 15

2
a2g4I 7/2G J , ~55!

where I n5^v̂ f x
2 (D21g2)2n& for the in-plane components

and I n5^v̂ f z
2 (D21g2)2n& for the c-axis components. The

different numerical coefficients for the terms involvinga2

are due to the difference in the coherence factors for electri-
cal and thermal transport. Forn53/2 these integrals have
been evaluated:I 3/252/(pD0g

2) for the dx22y2 state and
I 3/251/(2D0g

2) for the states with a line of nodes at
q5p/2. We find in all cases I 5/2/I 3/252/3g2 and
I 7/2/I 3/258/15g4. It is remarkable thatb always drops out.
After performing thee integrals — *de e2nsech2(e/2T)
5bnp

2nT2n11, with b054, b154/3, b2528/15 — we
obtain for thedx22y2 state

k i~T!.
p2

3
T
2Nfv f

2

pmD0
S 11

7p2

15

a2T2

g2 D ~56!

and

Res i~T,v→0!.e2
2Nfv f

2

pmD0
S 11

p2

3

a2T2

g2 D , ~57!

to leading order inaT/g. For the other pairing states~polar,
hybrid I, hybrid II! the in-plane transport coefficients are
obtained from Eqs.~56! and~57! by multiplying byp/4. The
coefficienta is strongly dependent on the phase shift. For
resonant scatteringa51/2, independent of the specific pair-

ing state. Note that Eq.~57! agrees with the result of
Hirschfeld et al. in the resonant limit.51 In the Born limit
a5pmD0t0/2 for thedx22y2 state, anda52mD0t0 for the
other states~ignoring the special case of quadratic or cubic
point nodes!. Since we assumeD0t0@1, we always have for
weak scatteringa@1.

Finally, note that the finite-temperature correction to the
Wiedemann-Franz ratio becomes

L~T!5
k i~T!

T Res i~T,v→0!
.LSS 11

2p2

15

a2T2

g2 D , ~58!

which increases with temperature forT!T*;g. This be-
havior arises from two sources:~i! the density of states,
which is finite ate50 with N(0);Nf(g/D0) and depends
strongly on energy fore*g, and ~ii ! the difference in the
coherence factors for thermal and electrical conduction,
which also depend one. Note that if scattering is weak, or if
the material is very clean, then the very-low-temperature re-
gime may be difficult to achieve in practice.

V. NUMERICAL RESULTS

More detailed information can be obtained from numeri-
cal evaluations of the transport coefficients over the full tem-
perature range belowTc . The numerical results reported
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here were obtained by computing the equilibrium propaga-
tor, self-energy, and order parameter self-consistently for the
four pairing models —dx22y2, polar, hybrid I, and hybrid II
— then using these results as input to numerically evaluate
Eqs.~29! and~30! for the transport coefficients. We assumed
a spherical Fermi surface except for the 2Ddx22y2 state for
which we used a cylindrical Fermi surface.

Our numerical results agree with those of previous
authors25,48,51,44,55–58in those cases where a direct compari-
son is possible.

Figure 1 shows the results of the in-plane thermal conduc-
tivity for the four pairing states in the resonant scattering
limit, i.e., for a normalized scattering cross section
of s̄5sin2d0[1. All curves exhibit the qualitative behavior
of a superconductor with lines of nodes as discussed by
many authors. It is remarkable that the curves for the 2D
dx22y2 state and the 3DE2u state are essentially identical.

In Fig. 2 we plot for a dx22y2 pairing state
@k uu(T)Tc /k uu(Tc)T# vs T/Tc for several~normalized! scat-
tering cross sectionss̄5sin2d0 and ~normalized! scattering
ratesa51/(2pTc0t0). A consequence of the universal limit
for T→0 is that the ratio

lim
T→0

k i~T!Tc
k i~Tc!T

.
1

pt0D0~0!
5a

2 Tc0
D0~0!

~59!

scales linearly with the scattering rate parametera, provided
a is significantly less than the critical pair-breaking value
(acr'0.28), and is independent of the scattering strength
s̄. At T*T* and for weak scattering Arfiet al.56 have
shown that the ratio@k i(T)Tc#/@k i(Tc)T#}(12s̄) strongly
depends on the scattering phase shiftd0 . This explains~i!
the sudden drop of@k uu(T)Tc#/@k uu(Tc)#T in Fig. 2~a! at ul-
tralow temperatures for weak scattering, where the universal
limit is achieved only forT&T*;D0exp(21/a), and~ii ! the
scaling of the zero-temperature intercept in Fig. 2~b!. To ad-
dress the various power-law behaviors ofk i(T) in different

temperature regions and for different scattering rates and
scattering cross sections, we showk i(T)/k i(Tc) in Figs. 2~c!
and 2~d! in a log-log plot for the same parameters as in Figs.
2~a! and 2~b!, respectively. The temperature dependence of
the electronic thermal conductivity obeys aT3 variation
above a critical temperatureT*;g in clean superconductors
and in the strong-scattering regime. BelowT* it approaches
the limitingT behavior. Weak scattering leads to an approxi-
mately linear temperature dependence over a large portion of
the temperature range. However, the ratiok i /T changes
drastically in clean superconductors below the exponentially
small crossover temperatureT* , where it approaches its lin-
ear low-temperature asymptote.

As T→0, we indeed find the universal behavior as dis-
cussed in the previous section. To show the approach to the
universal limits at low temperatures, we computed the elec-
trical and thermal conductivity at low and ultralow tempera-
tures for an intermediate scattering ratea50.1, chosen be-
cause the temperature range of universality is exponentially
small for weak scattering,}exp(21/a). The results are

FIG. 1. Thermal conductivityk i vs temperature for unconven-
tional superconductors in the unitarity limit (s̄51) with a dimen-
sionless scattering ratea50.01. The different pairing states are:~i!
dx22y2, ~ii ! polar,~iii ! hybrid I, and~iv! hybrid II as described in the
text. For comparison the result for an isotropic BCS superconductor
is shown. Panel~a! displays the in-plane or basal planek i normal-
ized to its value atTc . Panel~b! displays the ratiok i /T normalized
to its value atTc . Note the finite intercept ofk i /T for the uncon-
ventional pairing states.

FIG. 2. Thermal conductivity of a 2Ddx22y2-wave supercon-
ductor. The temperature dependence ofk i(T)Tc /k i(Tc)T vs T/Tc
is displayed in ~a! for different scattering cross sections
s̄5sin2d0, and for a fixed scattering ratea50.01. In panel~b! the
temperature dependence is plotted for different scattering ratesa in
the unitarity limit (s̄51.0). Panels~c! and ~d! are the same calcu-
lations as panels~a! and~b!, respectively, plotted on a log-log scale
in order to exhibit the low-temperature power laws and crossovers.
The thick dotted lines are guidelines toT andT3 power laws.
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shown in Fig. 3 where the electrical and thermal conductivi-
ties have been normalized by their corresponding universal
limits, s0[s i(T→0,v→0) and k0(T)[T(dk i /dT)(0).
The corresponding Lorenz ratio is shown in Fig. 3~c!. Notice
the logarithmic scale in temperature. In agreement with the
analytical results, numerical calculations show that
Res i(T,v→0), k i(T)/T, andL(T) increasewith tempera-
ture nearT50. The crossover temperature to the universal
regime is exponentially small for small phase shifts, and the
Lorenz number quickly drops for these smaller phase shifts
after the initial rise.

In Fig. 4 we show the Lorenz ratioL(T)/LS over the full
temperature range for scattering in both the weak~Born!
limit and the resonant~unitarity! limit. The deviations from
the Sommerfeld valueLS are clearly separated between the
Born and unitarity limits. This effect is most pronounced in
nearly pure systems. At temperatures close toTc , and in the
clean limit with strong scattering, the Lorenz ratio is slightly
reduced due to a small coherence peak in the electrical con-
ductivity. In the Born limitL(T)/LS is always less than the
normal state limit, which is opposite to that for unitarity
scattering. At sufficiently low temperatures all curves con-
verge to the sameuniversallimit.

In superconductors with a large concentration of~reso-
nant! scatterers the Wiedemann-Franz law is fulfilled
throughout the entire temperature range, a result which is
obvious from the fact that nonmagnetic impurities lead to
pair breaking in unconventional superconductors, and as the
impurity lifetime t0 approaches the critical pair-breaking
value, the transport properties approach those of the normal
metal.

VI. COMPARISON WITH EXPERIMENTS

A. High-Tc cuprates

Several measurements of the thermal59,60 and
electrical61,62 conductivity on single crystals of high-Tc cu-
prates have been reported. In-plane thermal conductivity
measurements show the presence of a ‘‘low-temperature’’
T3 term, which has been interpreted as boundary scattering
of phonons on crystal faces, as well as a linear term at very
low temperatures, which has been attributed to uncondensed
charge carriers~for a review see Ref. 1!.

In Table II we list the material parameters for the cuprate
superconductors which we used to estimate the slope of the
thermal conductivity at zero temperature. In the analysis we
used the Drude plasma frequency to determineNfv f

2 , i.e.,
vp
254pe2Nfv f

2 , the weak-coupling d-wave gap ratio
D0(0)52.14kBTc , and the universal lifetime
tD.1/(pD0) to rewrite the universal limit of the electrical
conductivity as

s0.
vp
2tD

4p
. ~60!

This enables us to estimate the slope of the thermal conduc-
tivity from the WF law,

lim
T→0

@k~T!/T#.s0LS . ~61!

For Y-Ba-Cu-O6.95 the conductivity atT→0 estimated
from microwave experiments issa'0.5 (mV m)21 along
thea axis andsb'0.7 (mV m)21 along theb axis.63 These

FIG. 3. Transport coefficients Res i(T,v→0) andk i(T) vs T
of a 2D dx22y2-wave superconductor for different scattering cross
sections (s̄50, . . . ,1) and a fixed intermediate~normalized! scat-
tering rate a50.1. ~a! The normalized electrical conductivity
Res i(T,v)/s0 at a very small frequencyv!D0(0). ~b! The nor-
malized thermal conductivityk i(T)/k0(T). ~c! The normalized Lo-
renz ratioL(T)/LS . Note the significant difference inL(T)/LS for
unitarity vs Born scattering. Inset: blowup of theuniversalbehavior
at ultralow temperatures showing the approach toLS at T→0.

FIG. 4. The normalized Lorenz ratioL(T)/LS of a 2D
dx22y2-wave superconductor for different~normalized! scattering
ratesa in the Born (s̄50) and unitarity (s̄51) limit. L(T)/LS
clearly separates between scattering in the weak limit~lower four
curves! and the strong limit~upper four curves!.

TABLE II. Material parameters of optimally doped cuprate
samples.

Compound Tc ~K! vp ~eV! Refs.

La-Sr-Cu-O 35 0.8 – 0.9 71,72
Y-Ba-Cu-O 92 1.4 – 1.5 63,73,74
Bi-Sr-Ca-Cu-O 86 1.1 – 1.2 73,75
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values are close to the universal value obtained from Eq.~60!
and Table II,s0.0.520.6 (mV m)21, and provide reason-
able agreement between the slope of the thermal conductiv-
ity obtained from the Wiedemann-Franz ratio~61! and the
experimental values listed in Table III.64 However, the ex-
perimental coefficients vary by as much as a factor of;8
among different samples of Y-Ba-Cu-O6.95. The theoretical
values for limT→0k i /T lie in the range of experimental val-
ues except for La-Sr-Cu-O. Thus, if La-Sr-Cu-O is a
d-wave superconductor, resolution of this discrepancy would
require weak scattering. In this case it would be very difficult
to determine theuniversalzero-temperature slope ofk i , be-
cause the region wherek i shows universal behavior is expo-
nentially small. Thus, for Born scattering the low-
temperature extrapolation ofk i /T will overestimate the
universal limit.

B. Heavy fermion superconductor UPt3

For UPt3 and heat flow in the basal plane the thermal
conductivity in the normal state obeys
kn(T)/T51/(a1bT2), with a50.25 m K2 W21 and
b51.0 m W21, and it is believed that the thermal conduc-
tivity is almost entirely electronic,29 and that theb term
arises from electron-electron scattering. If we take the ex-
perimental data reported by Lussier, Ellman, and Taillefer29

for UPt3 with Tc.0.5 K, an average Fermi velocity
v f55.5 km/s and a transport mean-free path of
l 05220 nm ~i.e., a transport time oft0540 ps), and com-
bine it with the theoretical value for
limT→0k i(T)/T'0.6 @Tc /mD0(0)#kn(Tc)/Tc , we can pre-
dict the universal low-temperature slope. For theE2u state
we estimate a slope of limT→0k i(T)/T'
0.1kn(Tc)/Tc'2 mW K22 cm21, while the corresponding
ratio for theE1g state is smaller by 20%. These estimated
theoretical values ofk i /T atT50 are of the same magnitude
as the experimental data atT'0.1 Tc.50 mK with
k i /Tuexpt.2 mW K22 cm21.30

To distinguish these different pairing states it is necessary
to probe a symmetry-dependent quantity such as the nonlin-
ear Meissner effect,65,52 or the p/3-phase-shift Josephson
effect.41 Here we analyze the anisotropy ratio of the thermal
conductivity. The experimentally observed anisotropy ratio

r a[ lim
T→0

k' /k uu

~k' /k uu!n
~62!

approachesr a.0.4 forT→0.30 For an ellipsoidal Fermi sur-
face the normal state anisotropy, e.g.,v f'Þv f uu , drops out of

the anisotropy ratio in Eq.~62!. Thus, we can use the formu-
las derived for an isotropic Fermi surface; the anisotropy is
then determined by the anisotropy of the superconducting
gap as defined by the gap anisotropy parametersm, m1 ,
m2 , which measure the slope or curvature of the gap at a line
or point node on the Fermi surface.66

The anisotropy ratios for the various order parameters are
obtained from Table I. TheE1g andE2u models have been
discussed by many authors as models for the low-
temperature phases of UPt3 .

67,48,68,69,41,12 For the E1g
~hybrid-I! state the anisotropy ratio is nonuniversal and given
by

r a.
2gm

m1
2D0

~E1g!. ~63!

For the standard E1g order parameter
D(pW )52D0pfz(pfx1 ip f y), we havem5m152, and hence
r a.g/D0 . Assuming the unitarity limit andGu50.1 Tc , we
obtain r a;0.2. We can account for the experimental value
of r a by adjustingm and/orm1 . AlthoughGu50.1Tc is con-
sistent with Ref. 29 and other normal state measurements, it
predicts a flattening ofkb for T&0.2Tc , which is experi-
mentally not observed. A smaller scattering rate
Gu50.01Tc does a better job in accounting for the low-
temperature behavior ofk uu ; hence we obtainr a;0.04.
Thus, it is not possible to account for the observed anisot-
ropy ratior a.0.4 ~Ref. 30! without a large ratiom/m1

2 . ~For
a detailed analysis of the thermal conductivities of UPt3 see
Ref. 70 and references therein.!

However, for theE2u ~hybrid-II! state the anisotropy ratio
becomes

r a.m/m2 ~E2u!, ~64!

which is universal and independent ofg. Thus, we can easily
fit the experimental value ofr a for T→0 by choosing
m/m2;0.4, and then adjustingg to obtain the best fit to the
low-temperature behavior fork uu(T).

Finally, we note that for the cubic point nodes the theo-
retical prediction for the normalized anisotropy ratio would
be

r a.
m

m3
~m3D0 /g!1/3 ~hybrid III!. ~65!

Therefore we generally expectr a.1, which clearly dis-
agrees with experiment unless one chooses a very large
m3;10. Barring this unlikely scenario we can conclude that
the anisotropy ratio rules out cubic~or higher-order! point
nodes for the gap in UPt3 .

VII. CONCLUSION

In conclusion we have examined in detail the low-
temperature behavior of the thermal and electrical conduc-
tivities and the Lorenz ratio for superconductors with line
nodes. We considered several unconventional pairing states
and found for some of the eigenvalues of the thermal con-
ductivity tensor auniversal value asT→0, similar to the
electrical conductivity. Furthermore, we showed that the
Wiedemann-Franz law is restored below a crossover tem-

TABLE III. Slopes of the low-temperature thermal conductivity
for the cuprates. The theoretical value is the universal slope calcu-
lated for adx22y2 pairing state in the limit of resonant scattering
~see Sec. VI!.

@k/T#T→0

(mW/K2m) La-Sr-Cu-O Y-Ba-Cu-O Bi-Sr-Ca-Cu-O

Theor. 10 – 13 11 – 14 8 – 10
Expt. 100 – 150 5 – 12, 40 ;6
Refs. 76,77 1,60 1
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peratureT* . In clean systems we haveT*!Tc , while in
‘‘dirty’’ superconductors the crossover temperature can be
an appreciable fraction ofTc .

The estimates of theuniversalslope limT→0k/T, which
we derived for the cuprates based on adx22y2 order param-
eter, and for UPt3 , with a hybrid-I or -II gap, are comparable
with experimentally reported values, except for the
La-Sr-Cu-O materials. Assuming that La-Sr-Cu-O is an un-
conventional superconductor, the difference between theo-
retically and experimentally extrapolated values might be at-
tributed to weak scatterers in this system. In UPt3 the
anisotropy ratior a5 limT→0(k' /k uu)/(k' /k uu)n is consistent
with an E2u gap and a universal value forr a , or with an
E1g gap and a nonuniversal value forr a determined by the
impurity concentration. Further experiments on UPt3 with
controlled impurity concentrations should easily distinguish
these two models.

Note added in proof. After this paper was submitted the
work of Sun and Maki on the thermal conductivity of a 2D
dx22y2 superconductor was published in Europhys. Lett.32,
355 ~1995!.
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APPENDIX: SOLUTIONS TO THE LINEARIZED
QUASICLASSICAL TRANSPORT EQUATIONS

The deviations from local equilibrium,dĝX5ĝX2ĝ0
X and

dŝX5ŝX2ŝ0
X with XP$R,A,K%, satisfy the linearized

equations

@dĝR,A,ĥR,A# +5 i ]ĝ0
R,A1@ ĝ0

R,A ,ŝext1dŝR,A# + ~A1!

and

ĥR+dĝK2dĝK+ĥA2ŝ0
K+dĝA1dĝR+ŝ0

K

52 i ]ĝ0
K1~ ŝext1dŝR!+ĝ0

K1dŝK+ĝ0
A

2ĝ0
K+~ ŝext1dŝA!2ĝ0

R+dŝK, ~A2!

where ĥR,A5et̂32ŝ0
R,A and ]5vW f•¹W . Note that the equa-

tion for the Keldysh propagatordĝK is coupled to the devia-
tions of the retarded and advanced functionsdĝR,A. We de-
couple these equations by using the equilibrium relations,
Eqs.~22! and ~23!, and by introducing Eliashberg’s anoma-
lous propagatordĝa and self-energydŝa defined by

dĝK5dĝR+F02F0+dĝ
A1dĝa, ~A3!

dŝK5dŝR+F02F0+dŝA1dŝa. ~A4!

After eliminatingi ]ĝ0
R andi ]ĝ0

A using Eq.~66!, the transport
equation fordĝK is transformed into a transport equation for
dĝa,

ĥR+dĝa2dĝa+ĥA1ĝ0
R+~ i ]F0!2~ i ]F0!+ĝ0

A1ĝ0
R+dŝa2dŝa+ĝ0

A1@ŝext,F0# ++ĝ0
A1ĝ0

R+@F0 ,ŝext# +

5$~ ĥR1ŝ0
R!+F02F0+~ ĥ

A1ŝ0
A!%+dĝA2dĝR+$~ ĥR1ŝ0

R!+F02F0+~ ĥ
A1ŝ0

A!%. ~A5!

The terms on the right-hand side of Eq.~A5! vanish identi-
cally because

ĥA1ŝ0
A5ĥR1ŝ0

R5et̂3 . ~A6!

Thus, the equation for the anomalous propagatordĝa be-
comes

ĥR+dĝa2dĝa+ĥA5~ i ]F0!+ĝ0
A2ĝ0

R+~ i ]F0!1dŝa+ĝ0
A2ĝ0

R

+dŝa2@ŝext,F0#s+ĝ0
A2ĝ0

R+@F0 ,ŝext# + .

~A7!

The transport equations fordĝR,A,a are solved by noting that
the local equilibrium propagators have the form

ĝ0
R,A5

ẽ R,At̂32 D̃̂R,A

CR,A ~A8!

and that

ĥR,A5CR,Aĝ0
R,A1DR,A1̂, ~A9!

where

CR,A52
1

p
AuD̃R,Au22~ ẽ R,A!2, ~A10!

and the functionsẽ R,A, D̃R,A, andDR,A are defined in terms
of the equilibrium self-energy

ŝ0
R,A5~e2 ẽ R,A!t̂31 D̃̂R,A1DR,A1̂. ~A11!

Finally, Eq. ~A7! is solved by using the normalization con-
dition for dĝa,

ĝ0
R+dĝa1dĝa+ĝ0

A5 0, ~A12!

and the relations forĥR,A in Eq. ~A9!, to movedĝa to the
right in the second term on the left side of Eq.~A7!. Then
~A7! turns into a form which can be solved by matrix inver-
sion,
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dĝa5@C1
a ĝ0

R1D2
a #21+$~ i ]F0!+ĝ0

A2ĝ0
R+~ i ]F0!1dŝa+ĝ0

A

2ĝ0
R+dŝa2@ŝext,F0# ++ĝ0

A2ĝ0
R+@F0 ,ŝext# +%, ~A13!

where

C1
a ~pW f ;e,v!5CR~pW f ;e1!1CA~pW f ;e2!, ~A14!

D2
a ~pW f ;e,v!5DR~pW f ;e1!2DA~pW f ;e2!, ~A15!

with e65e6v/2. Using the normalization condition~25!
we write the inverse matrix as

@Cĝ0
R,A1D#2152

Cĝ0
R,A2D

p2C21D2 . ~A16!

Furthermore, it is useful to introduce the functions

C1
R,A~pW f ;e,v!5CR,A~pW f ;e1!1CR,A~pW f ;e2!, ~A17!

D2
R,A~pW f ;e,v!5DR,A~pW f ;e1!2DR,A~pW f ;e2!,

~A18!

to obtain the solutions fordĝR,A by analogous steps,

dĝR,A5@C1
R,Aĝ0

R,A1D2
R,A#21+$2 i ]ĝ0

R,A

1@ŝext1dŝR,A,ĝ0
R,A# +%. ~A19!

When combined withdĝa in Eq. ~A13! according to~22! we
obtain the general result fordĝK,

dĝK5@C1
R ĝ0

R1D2
R #21+$2 i ]ĝ0

R1@sext1dŝR,ĝ0
R# +%+F02F0+@C1

A ĝ0
A1D2

A #21+$2 i ]ĝ0
A1@ŝext1dŝA,ĝ0

A# +%

1@C1
a ĝ0

R1D2
a #21+$~ i ]F0!+ĝ0

A2ĝ0
R+~ i ]F0!1dŝa+ĝ0

A2ĝ0
R+dŝa2@ŝext,F0# ++ĝ0

A2ĝ0
R+@F0,ŝext# +%.

~A20!
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