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We use the quasiclassical theory of superconductivity to calculate the electronic contribution to the thermal
conductivity. The theory is formulated for low temperatures when heat transport is limited by electron scat-
tering from random defects and for superconductors with nodes in the order parameter. We show that certain
eigenvalues of the thermal conductivity tensor are universal at low temperéyirey, where y is the
bandwidth of impurity bound states in the superconducting phase. The components of the electrical and
thermal conductivity also obey a Wiedemann-Franz law with the Lorenz t4fig = x/oT given by the
Sommerfeld value of g= (72/3) (kg /€)? for kgT<y. For intermediate temperatures the Lorenz ratio deviates
significantly fromLg, and is strongly dependent on the scattering cross section, and qualitatively different for
resonant vs nonresonant scattering. We include comparisons with other theoretical calculations and the thermal
conductivity data for the high-. cuprate and heavy fermion superconductors.

I. INTRODUCTION stant and nonzero at zero energy. The energy sgatein-
terpreted as the bandwidth of quasiparticle states bound to
In a normal metal at sufficiently low temperatures theimpurities?’~2° These impurity bound states develop below
electrical and thermal conductivities are determined by theéhe superconducting transition and are coherent superposi-
scattering of electrons by lattice defects. The electrical contions of particle and hole excitations. Such states are formed
ductivity approaches a constant, while the heat conductivitypy the constructive interference of particlelike and holelike
x(T)~T is related to the electrical conductivity by Som- excitations that undergo Andreev scattering from the varia-
merfeld’s result for the Lorenz ratio,x/(cT)—Lg tions of the order parameter that occur as a result of uncon-
= (7?/3)(kg/€)?. In fact the Wiedemann-Frar(¥VF) law is  ventional pairing and potential scattering by the impurity.
frequently used to estimate the phonon contributiom oy =~ For an order parameter with a line of nodes, the bandwidth
subtracting off the expected electronic contributiohsT ¥ and the density of Andreev bound states at zero energy,
from the measured heat conductivity. N(0), arefinite for any finite concentration of impurities,
Superconductivity has dramatic effects on the electricalimp# 0" The energy scaley and the density of states,
and thermal conductivites in conventionalss¢ave  N(0), depend on both the impurity concentratiop,, and
superconductor®:® In particular, the WF law is violated by the scattering phase shi#,. Thus,y provides a crossover
the formation of a coherent ground state and the opening dinergy scale, below which the transport properties of an un-
a gap in the excitation spectrum everywhere on the Fermffonventional superconductor are dominated by the Andreev

surface. In this article we investigate the behavior of the hedpound states. For excitation energies abgvthe transport
current for superconductors with an order parameter of reProperties are determined primarily by the scattering of con-

duced symmetry for which there are gapless excitations eveffluum exutqﬂons. o .
for the pure superconductor. Such superconducting states The electrical conductlv_lty for a supercpnductor with an
have been argued to exist both in the cuprdtesid the order parameter that var(}éshes along a_llne of_n(_)(_jes was
heavy fermion systems.In particular, it is widely believed shown theqretlcally by Lee to Ea"ez auniversal limiting
that the order parameter for the heavy fermion supercondué’-alue ao=lim, oo(w,T=0)=e"Nwir,, where ry=A/
tor UPt; vanishes on a line in the basal plapg,=0 (e.g., (77A0) is a universal {ransport time th"?‘t IS mdependent OT
see Ref. 12 Similarly, one of the leading candidates for the either the congentratlon or thg scatt.erlng phase shift. This
cuprates is thd, or d,2_,2 state, a singlet order parameter result was obtained for a two-dimensioriaD) dxz—yz order
with lines of zeros at the Fermi surface positions,parameter of the formd(ps) =A,cos(2p) and an isotropic
Pix=* Pty (for a review see Ref. 10 2D Fermi surfacef)f= ps(cosp,sing). Calculations show that
For aclean superconductor with an order parameter thatthe universal value of the conductivity is due to the phase
vanishes along a line on the Fermi surface the density opace for “optical” transitions within the band of impurity-
states is linear in the excitation enerdy(e)~N¢e/A, for  induced Andreev bound stat&s2* The phase space require-
e<A,. 2 However, this spectrum is altered by a randomments for a universal limit are determined by the variation
distribution of impurities™>!® A new energy scales devel-  of the order parameter near the node&9) ~ 9 — 9 ogefor a
ops, below which the density of states is approximately conline node in 3D or a point node in 2D, and(d)
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~ (99— 9049 ? for a point node in 3D. The crossover to the ~ The rest of this paper is organized as follows. In Sec. Il
universality limit occurs foksT<y and%w=<+y. Thus, the Wwe derive an equation for the thermal conductivity of a
universal limit is most easily realized in the strong scattering=€rmi liquid; the formulation includes unconventional pair-
(unitarity) limit. Since there is considerable evidence thating and the effects of scattering by a random distribution of
some of the heavy fermion superconductors have an ordalefects. In Sec. Il we evaluate the thermal conductivity ten-
parameter with a line of zeros, the experimental confirmatiorsor in the limitT—0 for several models of the order param-
of the universal result for the conductivity would provide an eter: (i) the even-parityB,4 state in tetragonal symmetry,
important test of the argumeribased on the Kondo lattice i.e., thed,._,» state with A(Ps)=Ao(p? — pfzy), and, in
mode) that impurity scattering in heavy fermion metals is in hexagonal systemgji) the even-parityE;4 (“hybrid-I")
the unitarity I|m|t.14'_25Un|tar|ty scattering by impurities has (Ref. 29 state with A(p;)=2 AoPraPretipry). (i) the
also been invoked in the highs superconductors in order to . . . e A
i odd-parity A;, (“polar”) state with A(p;)=Aqzps,, and
reconcile the often observelf dependence of the penetra- . . w A
. . (iv) the odd-parity E,, (“hybrid-1I" )  state
tion depth at low temperatures with d-wave order . °. . , )
paramete?®?’ A(ps) =_(3ﬁ/2)A0zpfz(pfx+|pfy) . The dyz_,2 state has
Because electromagnetic fields penetrate only a distandd€n discussed extensively as a model for the fiigleu-
of the order of the London length into the superconductor,prates' and the latter three order parameters have been _dls-
surface effects can complicate the determination of the bullfussed as models for the low-temperature superconducting
conductivity. On the other hand, the heat current is unPhase of UP§. For the odd-parity statdsasediii) and(iv)]
screened and provides more direct access to the bulk excitg-SPecifies the quantization direction for the spins; the pairs
tion spectrum. In this article, we investigate the low-are in the triplet spin statef | + | T) relative to thez direc-
temperature behavior of the thermal conductivity tensor foion. The formulation and many of the results are applicable
unconventional superconductors with line and point nodes if0 more general forms of anisotropic pairing with zeros in
the order parameter. One of the issues we address is whettiée order parameter. A few other models are also discussed.
or not the universal behavior of the electrical conductivityln Sec. IV we discuss the leading-order finite-temperature
extends to the electronic heat conductivity at low temperacorrections to the thermal and electrical conductivities. For
ture. We show that the components of the electronic thermadn order parameter with a line of nodes, or a point node in
conductivity tensoric corresponding to quasiparticles in the which the gap opens quadratically, the thermal conductivity
vicinity of the line nodes are determined by the same scattensor has components that are universal in the [imit0,
tering rate as the electrical conductivity and are universal irand of the formx=LgsoT(1+ ¢ [T?/y?]), exhibiting both
the limit T—0. Furthermore, the WF law is obeyed for the the WF law forT—0 and the deviations that develop for
ratio of the universal electrical and thermal conductivities inkBTN y<Ay. In Sec. V we present numerical results for the
the limit kg T<y. However, a significant temperature depen-thermal conductivity and the Lorenz ratio over the full tem-
dence of the Lo_renz ratio occurs over the_ temperatur_e rangPerature range belo,, and compare in Sec. VI the results
T<T., even with purely elastic scattering. The universaly |ow-temperature measurements of the thermal conduc-
ttivity for several cuprate and heavy fermion superconduct-

from the cancellation between two facto(s: the density of ors

Andreev bound states, which is proportionahtoand(ii) the
reduction of phase space for scattering of gapless excitations,
which is proportional toy !, leading to an estimate for the
thermal conductivity,  k~N¢(y/Ag)k3Tv (7l y)~

N fkgT(%/Ao), which is independent of the defect density  The microscopic theory of superconductivity was devel-
or scattering phase shift. Perhaps the most surprising result éed by Bardeen, Cooper, and Schrieffet about the same
that the ratio of the universal values for the thermal andime that Landau published the microscopic basis of his
electrical conductivity gives the Sommerfeld value for thetransport theory of normal Fermi liquidé.These two theo-
Lorenz ratio,x/oT=Lg = (7?/3)(kg/e)%. Thus, the differ- ries were combined into what was called by Larkin and
ences in the coherence factors that determine the conducti@vchinnikov®® the quasiclassical theorpf superconducting
ity tensors kK and & do not affect the Lorenz ratio Fermiliquids. The quasiclassical theory of superconductivity
L(T)=«/oT for kgT<y andhw<vy. is a complete theory of the low-energy properties of fermions
For temperatures above the crossover enekgy,= vy, in the superconducting state. It was developed by
the Lorenz ratioL(T) deviates significantly from the Som- Eilenberger* Larkin and Ovchinnikov*® and Eliashberd®
merfeld value. Furthermore, we find that the temperature deand it covers essentially all thermodynamic, electrodynamic,
pendence of the Lorenz ratio is very sensitive to the scattetransport, and collective properties of superconductors. In
ing phase shift. For nearly resonant scatteridig~ w/2),  this section we start from the basic equations of the quasi-
L(T) is larger thanLg, except in a narrow region nedi;  classical theory of superconductivity, and derive the electri-
associated with a coherence peak in the electrical conductivcal conductivity and the electronic contribution to the heat
ity for very clean superconductors. In the opposite limit of conductivity of anisotropic superconductors with unconven-
weak scattering the Lorenz ratio is less thayexcept for the  tional pairing and scattering by random defetits.
(exponentially small region kgT=<1vy. Thus, measurements The central physical objects of the quasiclassical theory
of L(T) might be useful in distinguishing weak and strong are the quasiclassical propagators, which obey guasiclassical
impurity scattering. transportlike equations. We give a brief interpretation of

Il. QUASICLASSICAL TRANSPORT COEFFICIENTS
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their physical meaning, and establish our notation. We use _ _ . (de . . .o

Keldysh’s formulation of nonequilibrium Green’s function js(R,t)IZNfJ dpff ﬂ[fvf(pf)]gK(pf,R;é,t)-
theory®’ and introduce three types of propagat@dvanced m )

(A), retarded(R), andKeldysh(K). These three quasiclas-

sical propagators are>44 matrices whose components de-  For weak disturbances from equilibrium the current re-
scribe the quantum-mechanical internal degrees of freedoRponse is linear in the applied field. In this paper we are
of electrons and holes: the spin and particle-hole degrees @fiterested in the low-frequency, dissipative part of the elec-
freedom. Particle and hole excitations are incoherent in th&ical current response, defined by the conductivity tensor
normal state, whereas the superconducting state is character-

ized by quantum coherence between particles and holes, 5fe: & Ew, 8
which is the origin of persistent currents and other nonclas- o . 39 o
sical superconducting effects. The quasiclassical propagatoyéherea=lim,,_,Rer(w,T),” and the thermal conductivity
describe the quantum statistical state of the internal degredgnsor, defined by the linear response to a small temperature
of freedom. Nonvanishing off-diagonal elements in thegradient

particle-hole index indicate superconductivity. A standard R -

notation for the matrix structure of the propagattad the 0je=—k-VT. 9

self-energiesis™ In the rest of this section we develop the linear response
X x> X BX e equations fork and & from the quasiclassical theory. The
9" +g--o (7 +1%-a)ioy analysis and notation closely follows that for the current re-
iay(fX+FX~¢; gx_gyéx.(;gy ’ (1) sponse to an EM field given in Refs. 40 and 23. The ad-
- - = = vanced, retarded, and Keldysh propagators are calculated
with X e {R,A,K}. The 16 matrix elements @ are written  from quasiclassical transport equations
in terms of four spin scalarg(, g%, %, fX) and four spin

vectors 6%, g%, %, £X). All matrix elements are functions

of the Fermi momentunp;, the positionR, the excitation and

energy e, measured from the chemical potential, and the - - o Ak A .~ A - Ak A

; ; ; X : (eT3— 0 —UR)OgK—gKO(er -0 —O'A)—O'KogA

timet. The diagonal spin scalags, g* contain the spectral 3 Yext 3 Yext

and statistical information for spln-lndependenf guantities +gRo (}KHI;f,V*gK:O, (11)

like the heat current density, while the spin vectgfscarry . )
the information on the spin magnetization, spin currents, et¢vhere all propagators and self-energies depend on the Fermi
The off-diagonal term$* and f* characterize the supercon- momentumpy, the positionR, the excitation energy, and

ducting state; a finite value df¢ indicates singlet pairing, the timet. We use the unitsi=kg=1, unless explicitly
and a nonvanishingX implies triplet pairing stated. The- product stands for a folding product in the

The redundant information provided in the definition of €N€rgy-time domain, and the commutafab]. is defined

the quasiclassical propagators in Ed) can be eliminated by @cb—boa.*® The transport equations are supplemented

"=

[€73— Teu— NAGRM L +iv-VGRA=0  (10)

with the very genera| Symmetr@s by the normalization COﬂditiOﬁ 33
- - R - ARAARA_ _ 27
9"(pri0=0%(prie)*,  gR(Pria)=gh(—pri~e), g 12
@ g+ 5 §A=0. 13
g (prie)=aR(prie)*, agR(prie)=g(—p;;—e), The quasiclassical transport equati¢h6) and(11) together

3) with the normalization condition§12) and (13) and the
equations specifying the self-energie® are the fundamen-
A(R N fRZ Lk RIF -\ fA_ 2 tal equations of the Fermi liquid theory of superconductivity.
pee) =t p;e)*,  Fpre)=f(=psi—e€), (4 They are the generalization of the Boltzmann-Landau trans-

a > R e TR 2h, 2 port equation to the superconducting state. The transforma-

f2(ps;e)=1"(pr;e)*, f7(prie)=—17(—ps;—e). tions and approximations used to derive transport equations

- ) are based on a systematic expansion to leading order in the

_ o ) small parameters of Fermi liquid theory, e.gkgT./E;,

The electrical current density is obtained frorrl the scalarth/Ef, #17E; , etc. The accuracy and predictive power of
part of the Keldysh propagator, the Fermi veloaity, and  Fermi liquid theory is intimately connected with the small-
the density of states per spiN;, at the Fermi level, ness of these parameters.

J The quasiclassical self-energy termd in the transport
I > € - s k> o= equations describe interactions between quasiparticles with
]e(R’t)_Zij dpff H[evf(pf)]g (pr.Riet), (6) phonons, with impurities, and guasiparticles with each other.
We consider the low-temperature transport properties of su-
where fdps(- - -) stands for a normalized integral over the perconductors with unconventional pairing under conditions
Fermi surface. Similarly, the heat current density has thevhere inelastic scattering by phonons and quasiparticles is
form negligible compared to scattering from random defects.
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The quasiclassical self-energies depend on interaction AK=AK=0 (16)
vertices which are phenomenological parameters of the
Fermi liquid theory of superconductivity. We consider the
weak-coupling limit® in which electronic pairing interac- The effects of a random distribution of impurities are de-
tions are described by the Verticv%fﬁf’ a”dvtﬁfﬁf' , for the scrjbefi in Fermi liquid theory by an electron-impurity vertex
spin-singlet and spin-triplet interactions, respectively. The!(Pr.Pt) and the impurity concentrationy, ! The impu-

trix,

R de - -, =
A o= [ g | diVE B Rien. a9

Trp(Pr o Ri€) =Ny (Pr Pr Rie),  (17)
de

ARAR, Rt)= | —— AVE - fKp! R .

ATpHRD f47riJ dpfvpfpf’f (pi.Riet), (19 wheret* are obtained by solving the integral equations

t*A(py,pf \R;€,t)=u(p; yf’f’)iJr fo dp? u(pr,p})GRAPY R; €,1) TRA(PY ,pf \Ri€ ), (18)

t(ps,pf \Rie,) =N f dpf tR(ps. P} Rie,)° G¥(p} R €,1)° TA(PT .} R €,1). (19

The coupling of quasiparticlgsvith chargee) to an elec-  librium functions. The self-energy includes the mean-field

tric field is given by order parameterA(p;,R) and the impurity self-energy
e aha(pr.R;e), which has both diagonal>@:h) and off-
Text™ ~ ¢ vy AT, (20) diagonal @Eﬁ"‘;‘) components in particle-hole space.

In this paper we consider only superconducting states
where A(g,w) is the vector potential describing the trans- Which are “unitary”; i.e., the equilibrium mean-field order

verse fieldE= (i w/c)A. In order to calculate the conductiv- Parameter satisfies
ity we must solve the transport equations to linear order in V- NTr
the perturbing field. We first linearize the transport equations A(ps,R)?=—]A(py)|?1, (26)
in the perturbations of* and ¢* from their equilibrium  where|A|? stands for either the spin scalar produch or

values. In the case (11‘ the heat transport the perturbation is thge spin vector produdk - A. The unitary condition restricts
temperature gradieMT. Thus, the linearization of the trans- us to even-parity, spin-singlet pairing or to odd-parity, spin-
port equations is carried out in terms of the deviations fromriplet states without spontaneous spin polarization. The odd-
local equilibrium specified by a thermal distribution function parity states considered in this paper are unitary states that do
with a local temperature, not break time-reversal symmetry in the spin degrees of free-
dom. However, time-reversal symmetry may still be broken
3\ 1 _ TR — € by the orbital motion of the Cooper pairs, which is the case
Po(R)=[1 2f(e,T(R))]—tan}‘( 3 ) @1 for the E;4 and E,, ground states that we consider.

o The local equilibrium solutions to Eq$24) and (25) for
The local equilibrium Keldysh propagator and self-energy,nitary states in unconventional superconductéveith

are determined by the retarded and advanced functions and, - < =, 2
the thermal distribution function, r]ddpfA(pf)—O] aré
Go=00° Po— P G5 (22) gxA(ps,R; €)= Eh-A (27)
N TN E
76 =050 Po—Poe 77, (23
with retarded and advanced propagators that are given by the 'ER'A(ﬁf Rie)=€— ‘l—lTr[}32 ﬁﬁﬁ(ﬁf R; €)]. (28
solutions of
~ ~RA ARA These equilibrium functions are inputs to the linearized qua-
[em3—00",00"]=0, 24 siclassical transport equations. The quasiclassical trans-
AR A2 02 port equations and normalization conditions are solved
(90" =—m1, (25 to linear order for the deviation of the propagators from their

and the self-consistency equatiofigh—(19). Note that the local equilibrium values, 83%(ps Rie,t) =3%(pr Riet)
o product reduces to matrix multiplication for the local equi- —g3(p; ,R;€). The technical steps used to decouple the re-
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tarded, advanced, and Keldysh functions, and for inverting N; . ) €

the linearized transport equations are outlined in the Appen- kij(T)=— WJ' dfj dpslvy,vy j]e’seck >T

dix, and the solution fogX is given in Eq.(A20). In the

following we use the general solution fégX and the self- Ci(ﬁf J€)
consistency equations for the impurity self-energy and order X 72C2 (pr )2+ D2 (
parameter to obtain formulas for the electrical and thermal +(Prs -
conductivities for a superconductor with an unconventional —tA(ps ;) FR(pr s ) + 2] (29)
order parameter. -

_L00(Pri0g5(Pr3e)

In the case of spin-triplet pairing the off-diagonal spin scalar
Green’'s functions in (29) have to be replaced by

AfR fA FR
IIl. ELECTRICAL AND THERMAL CONDUCTIVITIES fofo—Tfo-fo. Note, that only the anomalous part of the
propagator(see the Appendixcontributes to the thermal

Here we consider a superconductor with anisotropic sineonductivity. The retarded and advanced parts drop out after
glet pairing or unitary triplet pairing, and discuss the electri-taking the trace and applying the normalization condition,
cal and thermal conductivities in the long-wavelength limiti.e., TGRAVgR*=0. Physically, this means that the devia-
g—0 and atT—0. For simplicity we assume isotropic im- tion of the quasiparticle distribution function due to a ther-
purity scattering. In this case the first-order corrections to thénal gradient contributes to the heat current, whereas changes
current response functions from the impurity self-energyin the quasiparticle and Cooper pair spectrum do not. Equa-
85mp and the order parametéﬁ vanish for all listed pair- tion (29), combined with the equilibrium propagators, impu-

ing states, except for the polar stai with current flow rity self-energy, and order parameter, is the basic result for
9 e 1% 43,44 P . the electronic contribution to the thermal conductivity tensor.
along thec axis:™">"" Self-energy corrections correspond- Note  that we have used the shorthand notation

ing to the excitation of collective modes of the order param-

- o - CR*"?(p;;€), andDR*3(¢), for the functions in Eq(29) at
eter 5A also vanish in the limig—0 (cf. Refs. 45and 46 ) —( |t can be shown that Ed29) for «;; reduces to the

The self-energy corrections are the “vertex corrections” ingame expression for the thermal conductivity as reported pre-
the language of the Green’s function formulation of theviously by Schmitt-Rinket al,?® Hirschfeld et al,*®** and

Kubo response functiof!. If we can neglect vertex correc- by Fledderjohann and Hirschfef@:except that these authors
tions, we obtain expressions for the electrical and thermahppear to have dropped tB& term from the impurity self-
conductivities that depend only on the equilibrium propaga-energy, which, however, vanishes in both Born and unitarity
tors and self-energies, and the external perturbations. Fdimits.

spin-singlet states the thermal conductivity obtained from Similarly, the electrical conductivity obtained from Egs.
Egs.(7) and(A20) becomes (6) and (A20) for a spin-singlet state is given by

e’N; - €4 €_
Rafij(w,T)=—27wa dff dpf[l)f’il)f’j] tan ﬁ —tan E
“R Cﬁ(ﬁf,eyw) [gR(ﬁ > )gR(5 e )—I—fR(F_)) ‘e )fR(ﬁ e )+772]
72CR(pyie,0) 24 DR ()2 0 SO AR R ORE

_ Ci(pr:e,0)
72C2 (Pt €,0)2+ D% (6,0

)Z[gé@;e,>g§<5f;e+>+j’s<5f;e7>f§<5f;en+w2], (30

where e.=e+w/2. For triplet pairing simply replace In deriving Egs.(29) and(30) we have made use of sev-
fo(e_)fo(&r)_)?o(e_) . FO(E+)- This result was obtained e_ral relations which are consequences of the general symme-
earlier for magnetic scattering in conventional Ifies of the propagatatand self-energyin Egs.(2)—(5), the
superconductor? and for electron-phonon and impurity Parity of the order parameter, anxd the ipemf.lc symmetry of
scattering in strong-coupling superconduct8rand for the ~ the equilibrium Green’s functiogy = —gy, which directly
in-plane conductivity of layered superconduct®t@he for-  from Eq.(27). The basic functions defining the self-energy
mula for the conductivity reduces to the well-known result of@nd response functions obey the symmetfies

Mattis and Bardeen for dirtys-wave superconductofsand

to the result derived in Ref. 51 for the frequency and tem- ENe)=ERe*, ENe=-ER(—e), (31
perature dependence of the conductivity ad-avave super-

conductor with lines of nodes in the order parameter. CR(prie,)=CA (P €, )*, (32)
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Ca(ps;€,0)=Ca(Ps;e,— w)*,

DR(€,w)=D"(€,w)*,

D?(e,w)=—D?%(e,—w)*.

(33

(34)

(35

A. Wiedemann-Franz law for T—0

In the limit T—0 and w—0 the occupation factors
{tant (e+ w/2)/2T]—tanH (e—w/2)/2T]} and sech(e/2T)
confine thee integrals in Eqs(29) and (30) to a smalle
region (of orderT or w). Assuming that there exists an en-
ergy scales* > T on which the propagators and self-energies
vary, we can set=0 in the slowly varying parts of the
integrands and obtain

[ gesech| 5 o] a
msmhz—_l_ € Sec >T el dpvfivgl

w—0
cE(py) Ros R N
= +f5(pr) fo(py) + 72
WZCFJE(pf)Z-l—D?(O)z[go(pf)go(pf) _o(pf) o(Pr) ]
C2(p) e
- - +0(pp) fR(ps) + 72 36
2CT (512 DR (02 90 (PEB(P) (B T5(P0) + 7] (36)
and
c (5
kij(T—0)= fdeesecﬁ< )fdp[v vl (P [96(Pr)GG(Ps) — ( Df6(pg) + 72,
ij 4 T2 2T fLUTIV ) an(pf)2+D (0)2 o\Mf/Yo\Mf o\ Mf ( 7)
3
|
where the energies and frequencies are fixed to zero in the ,2 ,
arguments of the propagators and self-energies. Using the Re 0ij(0—0,T—0)=e g Nri, (40)
symmetry relationg2)—(5) and (31)—(35) and eliminating
the advanced and anomalous functions in E88). and(37), 2
we find Kij(T=0)= 5 =NpfTr, (41

eZNf €
Reaij(w—>0,T—>0)=ﬁj de sech >

95(py)?

fdpf[vflvf]] 22CR(pr)
+(Ps

and

Kkij(T—0)= 5 Tzf de € secﬁ( )

g5(py)?

d i
j pf[Uf vijl SR 72CR(pp)

(39)

(39

We used the normalization conditiongg(ﬁf)z—

fe(pr) FR(ps) = — 72,

in addition to the symmetry relations,

in order to put the momentum integrals in E¢38) and(39)

in identical form. It is useful to write our final results in
terms of an average Fermi velocity and a tengpr which

3D

wherev?= [dps|vs(ps)|?, and the effective transport time is
defined by the tensor

f - [vg.i(ps Ufl(Pf)]? R(0)?
Tij_ 2

ARGz o

For an isotropic normal metal one Has?(0)=i/27,, where

7o 1S the quasiparticle lifetime due to impurity scattering in
the normal state. The transport lifetime in the normal state
reduces to rg for isotropic impurity scattering, i.e.,
7ij= 170 . Note that Eq.(42) is applicable to the normal
state because the key assumption in deriving E8@). and

(39 was thatT is small compared witle*, wheree* is the
energy on which the propagators and self-energies vary.
Thus for the normal state* ~E;, while for the supercon-
ducting statee* ~ vy, wherey is the impurity bandwidth. In
some respect the impurity band states form a new low-
temperature metallic state deep in the superconducting
phase. This analogy is strengthened later in the paper when
we calculate the temperature corrections to the transport co-
efficients using a Sommerfeld expansion. However, the

incorporates all of the coherence effects of superconductivitymetallic” band of impurity states has other properties that
at T—0 into aneffectivetransport scattering time. The en- differ significantly from those of conventional metals. The
ergy integrals are standard, and so the conductivities for apecial features of the impurity-induced metallic band reflect

system withD dimensions reduce to

the reduced dimensionality for the phase space of scattering
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TABLE I. Symmetry classes, order parameters, and the asymptotic values of the thermal conductivity tensor. Note that we have neglected
the vertex corrections only fat, of the polar state.

Symmetry ) KT ”_szz ) vaz -
Pairing state class(group A(py) Nodes T |37l T |37
Oyz_y2 B1g(Dan) (PE—ps2) 4 linear line nodes 2 —
WMAO
Polar A1.(Dgn) ZP¢, 1 linear line node 1 ~1 ( v )2 J
- - " |n_
2ulo ulo\plo)  y
Hybrid | E14(Dén) Pi(PixtiPty) 2 linear point nodes 1 y
1 .
1 linear line node 2uA, 1ZA2
Hybrid II E,.(Dgpn) ipfz(pfx+ipfy)2 2 quadratic point nodes 1 1
4 1i .
1 linear line node 2uA, 2120
Hybrid 11l A E1g(Déen) Pro(PrxtiPry) (Pt Pry) 2 cubic point nodes 1 0.47 ( ,LL3A0) 13
+ 1 linear line node 2uA, s\ y
Hybrid Il B Byt iB1g(Den) pfz(pfx+ipfy)3 2 cubic point nodes 1 0.47 (MsAo) 3
+ 1 linear line node m s\ y
- B1,(Dgpn) Elm(pfx+ipfy)3 2 cubic point nodes 3 ~10 (MsAo) s
+ 3 linear line nodes m s\ y

and the energy dependence of the particle-hole coherence Our quasiclassical calculation reproduces Lee’s result for

factors, which define the impurity-induced band. These twQsotropic systems,p;= p;(cosp,sing), and the standard
features lead tdi) universality for T—0 transport coeffi- model for d-wave pairing i.e.A(ﬁf)oncos(Zp). We ob-
cients for excitation gaps with line nodes or quadratic point_. "« universal result }n the limit;z R(0)|<A,, where
nodes andii) to the temperature dependence of the LorenzAO is the maximum gap. The transp;ort lifetime t’ensor from

ratio for elastic scattering at-0T<T,. . Eq. (42 for the standardd-wave model reduces to
However, forT—0, we note that one obtains from Eqgs.

’ ! =18

(40) and(41) the Wiedemann-Franz law with Sommerfeld’s Tii T T

result for the Lorenz number of an unconventional supercon- de cof(¢)y?

ductor at very low temperatures;; =L so; T, with T= f = 2 2932 (46)
27 [A(@)"+¥7]

L _77_2(@ z (43) where vy is the width of the impurity band,
=
3le

(Y(A2+9%) 712
We emphasize that Eq&l0), (41) hold for gapless supercon- y=Ty 2 22\ 12> 47
hasize . for. cof o+ (y(A%+ %))

ductors in which the leading contribution to the transport

current is that from quasiparticle excitations with energiesand(- - -)=[3"(dg/27)(- - -) , andl’y=nin,,/(7N¢). For a
T<y<T,. For superconductors with a gap the number ofgiven impurity concentration this bandwidth is largest
quasiparticle excitations at low temperature is activatedin the limit of unitarity scattering, e.g., ford,e_,2
xexp(—Ao/T), and the transport coefficients in the limit pairing, y~\7A,[,/2, while in the Born limit,
T<T, are not described by Eq&10) and(41), and further-  ~4A jexp(—wAy/2I',). In either case we have<A,; oth-

more do not obey the Wiedemann-Franz law. erwise pair breaking by impurity scattering effectively sup-
presses the superconducting transition. f#&rA,, Eq. (46)
B. Universal limits for d-wave pairing reduces tor=1/(mwA,), and we obtain Lee’s universal result
in Eq. (45).

Lee has shown that far— 0 the electrical conductivity of

a d-wave superconductor is univergal, Since, according to Eq42), the same transport lifetime

determines the electronic contribution to the thermal conduc-
tivity, it too becomes universal in the limk—0, i.e., inde-

2 2
7(0—0T=0)=eNwirs, (44 pendent of the impurity scattering rates. The universal, low-
with the universal transport scattering time temperature limits for the electrical and thermal
conductivities of a standard-wave superconductor with
ma= U(mAy), (45) «c0os(2p) and scattering due to isotropic impurities also obey

the WF law. Although scattering by impurities is expected to
which is independent of the scattering rate of quasiparticlde the dominant scattering mechanism at low temperatures, it
excitations. is worth noting that these universal results also hold for
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electron-electron scattering or electron-phonon scatteasg, y—O0, the integrand diverges a®— /2| ~! near the line

long as vertex corrections can be neglected node, and as) 2 near the point nodes. Thus the integral is
dominated by the contribution from the point nodeste,
IV. LOW-TEMPERATURE LIMITS EOR SEVERAL however, thaty is mainly determined by the line node.in-
UNCONVENTIONAL PAIRING STATES earizing the gap near the point nodg9)=pu,A,9, we

o obtain for the low-temperature limit of theaxis component
A. Zero-temperature limit of the thermal conductivity,
We evaluate the eigenvalues of ths in the T— 0 limit
for the specific pairing states listed in Table | for uniaxial o
superconductors. For heat flow in the basal plane the two KL(T)z?NfoTm’ (50)
eigenvalues of;; are identical, and we drop the subscripts
for these directions and write|= ko= Kkpp, andx; =x¢.  Which is nonuniversal, and generally much less tkarby a
for the c-axis transport coefficient. factor of order (/Ay). To differentiate gaps with point
First, consider thel,>_,2 pairing state. For a cylindrical nodes of different orders we classify them by their first non-
Fermi surface and the heat flow in thé plane, the angular vanishing derivative at the nodal point§.e., for an

2

average in Eq(46) for the transport time reduces to nth-order point node\ = u,Ay3").
In the case of the hybrid-lIl gap the-axis transport is
1 4 J de , A2 2)-302 more subtle. The gap opens quadratically with angle near the
774X nod2 T (A% %) 7% point nodes at the poles, i.e.A(9)=u,A,9?, and once

again we obtain a universal result for the zero-temperature
There are four line nodes and the integral is reduced to onghermal conductivity,

guadrant containing one node. FerA, the integral is

dominated by the region near the node; thus, we can approxi- 2 1

mateA(¢)=ulAqe', wheree' = 7/4— ¢ and the parameter Kk (T)= ?vafTﬂ- (5)

4 measures the slope of the gap at the node, i.e., #220
w=(1/A0)|dA(¢)/de[, . This slope parameter also deter- The ground state for thi,, modef* of UPt; is an example
mines the low-energy density of statésf. Ref. 523. The  of a hybrid-1I state. Thus, an important feature of this model
result for the low-temperature limit of the thermal conduc-is that both components of the thermal conductivity tensor
tivity is universal but depends on the slope paramgter have universal values in the limlt— 0. If we use the poly-

) nomial form for the E,, order parameter, A (ps) ~

p (T)zW—N 02T 2 _ (49) pfz(pfx+ipfy)2, then the slope of the gap at the line node

I 3 T muA, and the curvature of the gap at the point node are identical,
r,{._LE,LL2:3\/§/2. Thus, for a spherical Fermi surface we find

hat all the eigenvalues ok are identical in the limit
T—0. This result is consistent with the result reported in
é?ef. 49. However, the isotropy of;; is a peculiarity of the
polynomial basis functions for the,,, representation, and of
course the spherical Fermi surface.

The dependence of the universal value of the thermal co
ductivity on the slope of the excitation gap reflects the im-
portance of the low-energy continuum states WitkA, in
the formation of the zero-energy impurity bound states. Not
that this result is valid fos-wave scattering angt<<A, with

corrections typically of the ordery{Ay)2. A similar calcu- : : . . :
lation for the in-plane conductivity gives Be(T,w—0) Finally, we consider a gap with cubic point nodes at the

. . 3 ; L
zZeszvfz/(w,qu), in agreement with Lee for the standard poles, i.e.,A(9)=usAod". An example is the hybrid-Ill A

d-wave model withy=2. state with E;q symmetry, A(pf)=1§/(3\/§)Aopr(pfx+

For the three pairing states listed in Table | containing aPfy) (PsxtiPty), which has a linear line node in the basal
line node in the basal plar@olar, hybrid I, hybrid 1), the ~ Plane, but also cubic point nodes #&t=0,7. The B,y and
relevant angular average for heat flow in the basal plane B2y States of a hexagonal crystal possess cubic point nodes

(yzﬁff(A2+ yz)—3/2> with Jf=vff;f  which becomes along thec axis if one assumes an analytic expansio df

1Trd9sint91(A%+ ) 32 The integral is dominated by terms ofp;. The odd-parityB, andB,, states also possess
the contribution near the line node, i.e.9~ /2. For cubic point nodes if we restrict the spin quantization axis to
y<A,, we linearize the gap in the neighborhood of the lined=C; however, more general spin states do not possess cubic

node, A(9)=uAy(m/2— ), and the integral reduces to Pointnodes. Itis also worth noting that cubic point nodes are
L[ ooad® Y (nAgd")2+ 2]~ 32 again leading to a uni- expected for a large number of superpositions of two 1D

versal result for|, representations, as in the “accidental degeneracy” mdtlels
for UPt; (cf. Refs. 54 and 41 There is an important differ-
w2 o 1 ence between the 2D hybrid-Ill A state and the various 1D
K\\(T)szfvam- (49 representations of the hexagonal group. The cubic point

nodes of the 1D or mixed-symmetry ground states are gen-
For heat flow along the axis the results for these same erally combined with line nodes connecting the point nodes
pairing states differ significantly. First consider the hybrid-l at opposite polefan exception is the degenerdig,+iB
state. The angular average now reduces tdhybrid-lll B) statd. Thus, there is a higher density of exci-
3/ 5d9sindcog9y?(A%+y?) 32 The gap opens up linearly tations for the 1D states than for the hybrid-Ill A state in the
at the positions of the point nodes at the poles. In the limitvicinity of the cubic point nodes. The large density of gap-
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less excitations in the vicinity of a cubic point node leads tothe zero-temperature limit only the density of states and
a relatively large nonuniversal value for the low-temperaturé=ermi velocities at the appropriate nodes are involved. Thus,
limit of the thermal conductivity in the direction. For the the results for the zero-temperature slopes of the thermal

case of a pure cubic point node we obtain conductivity are easily extended to include Fermi surface
anisotropy by replacinglfvf by the value of this quantity at

. (T)= TF_ZN 2T 273 paho| (52  the position of the node or the relevant one-dimensional av-
+ 3 27usA L (T2 Y erage in the case of a line node.

in the limit T—0. Note that the slope of the-axis thermal
conductivity is enhanced relative to the universal limit of the B. Low-temperature corrections

. . 1/3 . .
quadratic point node byusAo /)™ Of course this value is Impurity scattering in an unconventional superconductor

“mgﬁﬂoatf Iﬁrgv?h?(/éhzon?;T:;;Jﬂzgiﬁ'sotm ic of c Iin_with line nodes leads to a finite density of zero-energy exci-
. gn P YiN4ations. The bandwidth of these impurity bound states is of
drical Fermi surface, many of the results are more general, o

simply extended to include uniaxial anisotropy. Also, one&der v. The leading-order finite-temperature corrections to

. . ; ; the transport coefficients are obtained by a Sommerfeld ex-
can generahze t_he reSl_JIts_ to an arbltrary_anlsotroplc I:ermﬂansion of Egs(29) and (30) for the thermal and electrical
surface with anisotropic impurity scattering of the form

- >, -7 . ) conductivities. The key point is that the impurity-
Ug,p; =Uo7(Pr) 7(Pt), Where 5(py) is any basis function renormalized excitation spectrum has according to the sym-
with the full symmetry of the Fermi surface. In addition, for metry relation(31) a low-energy expansion of the form

T RAe)=xi(y+Dbe?) +ae, (53

with real coefficientsa,b and 0<y<A,. Expanding the integrands in Eq29) and (30) to 7 [ €?] gives the Sommerfeld
expansion for the components ef; ando;; ,

Nv? € 5 5
Kii(T): Wf d€ Ezsecﬁ<ﬁ) [ ’}/zl 3/2+ 62 2’yb|3/2+ Eaz’)/z_gb'}/s) |5/2_ §a2y4| 7/2:|] y (54)
2 2
e“Nsvt € 15 15
Re O'ii(T,(J)—>O)2 4T f d6 Secﬁ(ﬁ) ( ‘)/2|3/2+ 62 2‘yb|3/2+ ?a272_3b'}’3> |5/2_ ?az'y‘ll 7/2:| ] y (55)

where |,=(02,(A%+ y?) ") for the in-plane components ing state. Note that Eq(57) agrees with the result of
and I,=(5%(A%+4?) ") for the c-axis components. The Hirschfeld et al. in the resonant limit* In the Born limit
different numerical coefficients for the terms involviag ~— @=mulo7o/2 for thed,2_ 2 state, anda=2u A, for the
are due to the difference in the coherence factors for electriother statesignoring the special case of quadratic or cubic
cal and thermal transport. For=3/2 these integrals have Pointnodes Since we assum&o7o>1, we always have for
been evaluatedtz;,=2/(mAgy?) for the d,2_,2 state and Weak scattering>1.

l3,=1/(2A0y%) for the states with a line of nodes at Finally, note that the finite-temperature correction to the
9=m/2. We find in all caseslg,/lz,=2/3y> and Wiedemann-Franz ratio becomes
I2;/13,=8/15y*. It is remarkable thab always drops out. RS 22 4272

After performing thee integrals — [de €?"secl(e/2T) L(T)= K] — S( L 27 ) (58)
—b, 2" T2 L with by=4, b;=4/3, b,=28/15 — we T Reo|(T,w—0) 15 2 )
obtain for thed,2_,2 state

which increases with temperature fér<T* ~ . This be-

2 2vaf2 72 a2T? havior arises from two sourcesi) the density of states,

K”(T)Z?T A ( ST (56)  which is finite ate=0 with N(0)~N¢(y/A,) and depends

THE0 Y strongly on energy foe= vy, and (ii) the difference in the

and coherence factors for thermal and electrical conduction,
which also depend oa. Note that if scattering is weak, or if
the material is very clean, then the very-low-temperature re-

. (67 gime may be difficult to achieve in practice.

2Nv? w2 a?T?
ReUH(T,w—>0)zez + 3 7

TulAg

to leading order i T/y. For the other pairing statépolar,
hybrid I, hybrid 1l) the in-plane transport coefficients are
obtained from Eqs(56) and(57) by multiplying by /4. The More detailed information can be obtained from numeri-
coefficienta is strongly dependent on the phase shift. Forcal evaluations of the transport coefficients over the full tem-
resonant scattering=1/2, independent of the specific pair- perature range below.. The numerical results reported

V. NUMERICAL RESULTS
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FIG. 1. Thermal conductivity vs temperature for unconven-
tional superconductors in the unitarity limir& 1) with a dimen-
sionless scattering rate=0.01. The different pairing states are:
dy2_y2, (ii) polar,(iii) hybrid I, and(iv) hybrid Il as described in the
text. For comparison the result for an isotropic BCS superconductor
is shown. Pane(a) displays the in-plane or basal plargnormal-
ized to its value al ;. Panel(b) displays the ratio| /T normalized
to its value afT.. Note the finite intercept ok /T for the uncon-
ventional pairing states.

K"(T) / K”(Tc)

here were obtained by computing the equilibrium propaga-
tor, self-energy, and order parameter self-consistently for the
four pairing models —€2_2, polar, hybrid I, and hybrid II
— then using these results as input to numerically evaluate
Egs.(29) and(30) for the transport coefficients. We assumed
a spherical Fermi surface except for the @[3, state for
which we used a cylindrical Fermi surface.

Our numerical results agree with those of previous FIG. 2. Thermal conductivity of a 2[l._,>-wave supercon-

authorg®#851:4455-54n those cases where a direct compari-ductor. The temperature dependencecfT) Tc/x(Tc) T vs T/T.
son is possible. is displayed in (a) for different scattering cross sections

Figure 1 shows the results of the in-plane thermal conduc?=Sit&, and for a fixed scattering rate=0.01. In panelb) the

tivity for the four pairing states in the resonant scatteringtﬁmpe_rf‘twe lqege”_dfi‘%e |stIottIed)for 3'f$re”t f;\:attenng nai;es
limit, i.e., for a normalized scattering cross section € unitarity limit (o= 1.0). Panelsc) and(d) are the same calcu-

of o=sirf&,=1. All curves exhibit the qualitative behavior !atlons as pangl(;a) and(b), respectively, plotted on a log-log scale
f duct ith i f nod di d bln order to exhibit the low-temperature power laws and crossovers.
o a superconductor wi INeS Of NOUES as CISCUSSed DYy yhick dotted lines are guidelines Toand T2 power laws.

many authors. It is remarkable that the curves for the 2D
d,2_,2 state and the 3[E,, state are essentially identical. _ . _
In Fig. 2 we plot for a d,_,. pairing state temper'ature regions and for different scatt.erln'g rates and
[ (T)Te/x)(Te)TT vs T/ T, for several(normalized scat- ~ Scattering cross sections, we shey(T)/ «(T) in Figs. 2c)
tering cross sections = sir‘, and (normalized scattering and 2d) in a log-log plot for the same parameters as in Figs.
ratesa=1/(2mT.o7,). A consequence of the universal limit 2(&) and 2b), respectively. The temperature dependence of

for T—0 is that the ratio the electronic thermal conductivity obeys & variation
above a critical temperatufé ~ v in clean superconductors
K”(T)TC~ 1 2T and in the strong-scattering regime. BeldW it approaches

T'TO k(To)T "~ 7oA o(0) - aAO(O) 59 the limiting T behavior. Weak scattering leads to an approxi-
mately linear temperature dependence over a large portion of
scales linearly with the scattering rate parameteprovided  the temperature range. However, the rakp/T changes

«a is significantly less than the critical pair-breaking valuedrastically in clean superconductors below the exponentially
(ae~0.28), and is independent of the scattering strengtlsmall crossover temperatufé, where it approaches its lin-

o. At T=T* and for weak scattering Arfet al>®® have ear low-temperature asymptote.

shown that the rati@KH(T)TC]/[KH(TC)T]o<(1—cr_) strongly As T—0, we indeed find the universal behavior as dis-
depends on the scattering phase shift This explains(i) cussed in the previous section. To show the approach to the
the sudden drop dfx| (T)Tc]/[«(T)]T in Fig. 2@) at ul-  universal limits at low temperatures, we computed the elec-

tralow temperatures for weak scattering, where the universdtical and thermal conductivity at low and ultralow tempera-
limit is achieved only folT<sT* ~ Ay exp(—1/a), and(ii) the  tures for an intermediate scattering rate-0.1, chosen be-
scaling of the zero-temperature intercept in Fih)2To ad-  cause the temperature range of universality is exponentially
dress the various power-law behaviorsig{T) in different ~ small for weak scatteringxexp(-1/e). The results are
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FIG. 3. Transport coefficients Re(T,w—0) and«(T) vs T

of a 2D d,2_,2-wave superconductor for different scattering cross VI. COMPARISON WITH EXPERIMENTS

sections ¢=0,...,1) and a fixed intermediataormalized scat-

tering rate =0.1. (@ The normalized electrical conductivity A. High-T cuprates

Re o)(T,w)/ o at a very small frequency<Ay(0). (b) The nor- Several measurements of the thertd& and

malized thermal conductivity(T)/xo(T). (c) The normalized Lo-
renz ratioL(T)/Lg. Note the significant difference in(T)/Lg for
unitarity vs Born scattering. Inset: blowup of thaiversalbehavior
at ultralow temperatures showing the approach ¢at T—0.

electricaf’®? conductivity on single crystals of highz cu-
prates have been reported. In-plane thermal conductivity
measurements show the presence of a “low-temperature”
T2 term, which has been interpreted as boundary scattering
of phonons on crystal faces, as well as a linear term at very
low temperatures, which has been attributed to uncondensed
shown in Fig. 3 where the electrical and thermal conductivi-charge carriergfor a review see Ref.)1
ties have been normalized by their corresponding universal In Table Il we list the material parameters for the cuprate
limits, o¢=0(T—0,0—0) and xo(T)=T(dx/dT)(0). superconductors which we used to estimate the slope of the
The corresponding Lorenz ratio is shown in Fi¢c)3Notice  thermal conductivity at zero temperature. In the analysis we
the logarithmic scale in temperature. In agreement with thaeised the Drude plasma frequency to deternﬂnefz, ie.,
analytical results, numerical calculations show thatw§:47-re2Nfuf2, the weak-coupling d-wave gap ratio
Re O'H(T,a)HO), KH(T)/T, andL (T) increasewith tempera- Ao(0)=2.14KkgT,, and the universal lifetime
ture nearT=0. The crossover temperature to the universalr,~1/(wAg) to rewrite the universal limit of the electrical
regime is exponentially small for small phase shifts, and theonductivity as
Lorenz number quickly drops for these smaller phase shifts
after the initial rise. wiTA

In Fig. 4 we show the Lorenz ratio(T)/Lg over the full o0= - (60)
temperature range for scattering in both the wéBkrn)
limit and the resonanfunitarity) limit. The deviations from This enables us to estimate the slope of the thermal conduc-
the Sommerfeld valué g are clearly separated between thetivity from the WF law,
Born and unitarity limits. This effect is most pronounced in
nearly pure systems. At temperatures clos&tpand in the lim[x(T)/T]=0ooLs. (62)
clean limit with strong scattering, the Lorenz ratio is slightly =0
reduced due to a small coherence peak in the electrical con- . )
ductivity. In the Born limitL(T)/Ls is always less than the O Y-Ba-Cu-Qsgs the conductivity atT—0 estimated
normal state limit, which is opposite to that for unitarity ffom microwave exper|mentsil|sa~0.5 (2 m) o3 along
scattering. At sufficiently low temperatures all curves con-th€a axis ando,~0.7 () m)~" along theb axis.* These
verge to the samaniversallimit.

In superconductors with a large concentration(ieso-

TABLE Il. Material parameters of optimally doped cuprate

nany scatterers the Wiedemann-Franz law is fulfilled samples.
throughout the entire temperature range, a result which i

) 2 e T, (K V Refs.
obvious from the fact that nonmagnetic impurities lead to&ompound c K @p (V) e
pair breaking in unconventional superconductors, and as thea-Sr-Cu-0 35 0.8 -0.9 71,72
impurity lifetime 7, approaches the critical pair-breaking y-Ba-Cu-O 92 14-15 63,73,74
value, the transport properties approach those of the normaji-sr-ca-cu-0 86 1.1-1.2 73,75

metal.
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TABLE lil. Slopes of the low-temperature thermal conductivity the anisotropy ratio in Eq62). Thus, we can use the formu-
for the cuprates. The theoretical value is the universal slope calcuas derived for an isotropic Fermi surface; the anisotropy is
lated for ad,z_,2 pairing state in the limit of resonant scattering then determined by the anisotropy of the superconducting

(see Sec. VI gap as defined by the gap anisotropy parametersu,
M2, which measure the slope or curvature of the gap at a line
[&/Tlr—0 . or point node on the Fermi surfa8®.
(MW/K?m) La-Sr-Cu-O  Y-Ba-Cu-O  Bi-Sr-Ca-Cu-O The anisotropy ratios for the various order parameters are
Theor. 10 — 13 11 — 14 8- 10 obtained from Table I. Th&,y andE,, models have been
Expt. 100 — 150 5_12 40 —6 discussed by many authors as models for the Ilow-
Refs. 26.77 160 1 temperature phases of UPE/#868894L12 gr the E) g
' ' (hybrid-1) state the anisotropy ratio is nonuniversal and given
by

values are close to the universal value obtained from ).

and Table I1,00=0.5-0.6 (u{2 m)~%, and provide reason- _ = 2yp (Esg). 63)
able agreement between the slope of the thermal conductiv- JIETAYY

ity obtained from the Wiedemann-Franz rat@l) and the
experimental values listed in Table fi.However, the ex- FOE the stahdard Eig order parameter
perimental coefficients vary by as much as a factor-@@  A(P)=2A0PiAPrctipty), we havep=yu,=2, and hence
among different samples of Y-Ba-Cug@s. The theoretical a=7Y/Ao. Assuming the unitarity limit and,=0.1T., we
values for lim_ o« /T lie in the range of experimental val- Obtainr,~0.2. We can account for the experimental value
ues except for La-Sr-Cu-O. Thus, if La-Sr-Cu-O is aOf ra by adjustingu and/oru,. AlthoughI',=0.1T is con-
d-wave superconductor, resolution of this discrepancy wouldiStent with Ref. 29 and other normal state measurements, it
require weak scattering. In this case it would be very difficultPredicts a flattening ok, for T<0.2T¢, which is experi-

to determine theiniversalzero-temperature slope af, be- ~ mentally not observed. A smaller scattering rate
cause the region whete shows universal behavior is expo- 'v=0.01T. does a better job in accounting for the low-
nentially small. Thus, for Born scattering the low- temperature behavior ok); hence we obtairr,~0.04.

temperature extrapolation ok/T will overestimate the Thus, it is not possible to account for the observed anisot-
universal limit. ropy ratior ,=0.4 (Ref. 30 without a large ratiqu/u?. (For

a detailed analysis of the thermal conductivities of YBee
Ref. 70 and references thergin.

. However, for theE,, (hybrid-Il) state the anisotropy ratio
For UPt; and heat flow in the basal plane the thermalpecomes

conductivity in the normal state obeys
ko(T)/T=1/(a+bT?, with a=0.25 m K W™ and ra=uluy (Epy), (64)
b=1.0 m W1, and it is believed that the thermal conduc-
tivity is almost entirely electroni€’ and that theb term

B. Heavy fermion superconductor UPY

which is universal and independentpf Thus, we can easily

arises from electron-electron scattering. If we take the exfit/ the experimdeﬂtal v;lue' of fotr) T_)g t;)y cr;_oosinr?
perimental data reported by Lussier, Ellman, and Tailféfer #/#2~0.4, and then adjusting to obtain the best it to the

for UPt; with T,~0.5 K, an average Fermi velocity Iow-.ter‘r|1|perature behr?vi(?r foﬂl(T)'b. . des the th
0(=55 kmis and a transport mean-free path Finally, we note that for the cubic point nodes the theo-

l,=220 nm i.e., a transport time of,=40 ps), and com- retical prediction for the normalized anisotropy ratio would

bine it with the theoretical value for be

limy_, ok (T)/T~0.6 [Tc/uAg(0)]xn(Tc)/Te, We can pre-

dict the universal low-temperature slope. For tag, state razi(ﬂsAo/’)’)lB (hybrid 11). (65)
we estimate a slope of  lim,ox(T)/T~ M3

0.1kn(Te)/ Te~2 mW K™ cm™*, while the corresponding  Therefore we generally expeat,>1, which clearly dis-
ratio for theE, state is smaller by 20%. These estimatedagrees with experiment unless one chooses a very large
theoretical values ok /T at T=0 are of the same magnitude ,,.—10. Barring this unlikely scenario we can conclude that
as the experimental data al~0.1T.=50mK with  the anisotropy ratio rules out cubier higher-order point
K Tlexpr=2 MW K~2 cm™%.% nodes for the gap in URt

To distinguish these different pairing states it is necessary
to probe a symmetry-dependent quantity such as the nonlin-
ear Meissner effe@®®? or the m/3-phase-shift Josephson
effect*! Here we analyze the anisotropy ratio of the thermal In conclusion we have examined in detail the low-
conductivity. The experimentally observed anisotropy ratio temperature behavior of the thermal and electrical conduc-
tivities and the Lorenz ratio for superconductors with line
nodes. We considered several unconventional pairing states
and found for some of the eigenvalues of the thermal con-
ductivity tensor auniversalvalue asT—0, similar to the
approaches,=0.4 for T—0.% For an ellipsoidal Fermi sur- electrical conductivity. Furthermore, we showed that the
face the normal state anisotropy, e, #v¢|, drops out of ~Wiedemann-Franz law is restored below a crossover tem-

VII. CONCLUSION

. KK
r,=Ilim

T o(&1/K|)n 2
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peratureT*. In clean systems we havE* <T,., while in  joint support from the Alexander von Humboldt Stiftung and
“dirty” superconductors the crossover temperature can behe DFG.
an appreciable fraction of .

The estimates of theniversalslope limq_ ox/T, which APPENDIX: SOLUTIONS TO THE LINEARIZED
we derived for the cuprates based od,a 2 order param- QUASICLASSICAL TRANSPORT EQUATIONS
eter, and for UP4, with a hybrid-1 or -1l gap, are comparable
with experimentally reported values, except for the The deviations from local equilibriumg*=g*— gy and
La-Sr-Cu-O materials. Assuming that La-Sr-Cu-O is an un-06*=0"—a3 with Xe{R,A K}, satisfy the linearized
conventional superconductor, the difference between thegquations
retically and experimentally extrapolated values might be at- N
tributec)i/ to Wegk scattere}/rs in E[)his system. In EJFthe [8G7A,hRAL.=1095 "+ 85", Text 65741, (A1)
anisotropy ratia ;= limy_,o(«, /x))/(x, /x||) is consistent
with an E,, gap and a universal value for, or with an
E,y gap and a nonuniversal value foy determined by the hRogg -89 KohA— 5K 5089”+ 8gFo
impurity concentration. Further experiments on Ymith

and

controlled impurity concentrations should easily distinguish = —iﬂ§§+(&ext+ 5(}R)ogg+ 5(}Kogé\
these two models.
Note added in proofAfter this paper was submitted the _ggo(&extJr 5&A)_@505&K, (A2)

work of Sun and Maki on the thermal conductivity of a 2D
dy2_,2 superconductor was published in Europhys. L&®.  where hRA= er3— o}® and 9= vs- V. Note that the equa-
355(1995. tion for the Keldysh propagataigX is coupled to the devia-
tions of the retarded and advanced functi@g&”. We de-
ACKNOWLEDGMENTS couple these equations by using the equilibrium relations,
Egs.(22) and(23), and by introducing Eliashberg’s anoma-

We would like to thank M. Palumbo for discussions andIous propagatosg? and self-energyso defined by

for valuable contributions to the numeric, and also Yu.

Barash for important discussions on the thermal conductivity 89K = 8GR o — D e8G + 592, (A3)
of unconventional superconductors. This research was par-
tially supported by the National Science Foundation through 56K = 55Ro® y— B o5+ 552, (A%)

the Northwestern University Materials Science Center, Grant

No. DMR 91-20521, the Science and Technology Center foAfter ellmlnatlnglagO andlagO using Eq.(66), the transport
Superconductivity, Grant No. DMR 91-20000, and the Deut-equation forsgX is transformed into a transport equation for
sche Forschungsgemeinschaft. D.R. and J.A.S. acknowledgig?,

hRo 5§ — 8§%h"+ gfe(i 0D o) — (19D g) oG + B 562~ 55%Ff+ [ Text, Pol.0F6+ GRel Po, Textl.
={(hR+ GR)ody— Do (hA+ 65) 0 89" — 8GR (hR+ GR)ody— Do (hA+ 57)}. (A5)

The terms on the right-hand side of H&5) vanish identi- ARA=CR. AgRA DRAL (A9)
cally because
R . where
hA+ 69 =hR+ GR=€T5. (AB) L
- A _ = A2~ RA2
Thus, the equation for the anomalous propagaig? be- ChA= W\/|AR AP (R (A10)

comes _ - S
and the function& RA, ARA andDRA are defined in terms

hRo 532 — 542 hA= (i 9 o)A — GRo (i 9D y) + 552 GA— G- of the equilibrium self-energy

©86°—[0ext,Pol 0G0~ 96°L Po, Tex- - oRA=(e—E R T, +ARA+DRA1 (A11)

(A7) Finally, Eq. (A7) is solved by using the normalization con-

The transport equations f@ig?*2 are solved by noting that dition for 5g2,
the local equilibrium propagators have the form

080 697+ 6970y = 0, (A12)
ra € R'AS-3—ZR'A and the relations fohRA in Eq. (A9), to move 532 to the
9o = crRA (A8)  right in the second term on the left side of H&7). Then

(A7) turns into a form which can be solved by matrix inver-
and that sion,
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897=[Ca g5+ D?] Lo{(i9dg)°05 — Gge(i dPo) + 552G

— 06086 —[ T ext, Poleo05 — G5°[ Po, T e},  (AL3)
where

C2(pr;e,0)=CR(psie,) +CAPrie ), (Al

D?(ps;e,0)=DR(p;e,)—DA(Prie ), (AL5)

with €. =€+ w/2. Using the normalization conditio(25)
we write the inverse matrix as

Co”-D

[CQS'A+D]_1=—;QEQ+—D2. (AlG)
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Furthermore, it is useful to introduce the functions
CRA(Pr;€,0)=CRA(Pr;e,) +CRA(prren), (AL7)

DRA(ps;€,0)=D*A(pg;e,)~DRA(pre ),
(A18)
to obtain the solutions fosg®* by analogous steps,
8GR =[CTAGE A+ DAt —iagE "
+[ Oexrt 074,351} (A19)

When combined with5g® in Eg. (A13) according to22) we
obtain the general result faigX,

SGK=[CRAG+ D] Lo =i 99§ + [ Text 507,051} Po— e[ C1 G5+ DA *o{ 1300+ [ Text 65°,351.}

+[CE R+ D2 ]~ %o{(idDg)oGh— Ao (i D) + 6525 — GRo 852~ [ Texey Pol.006 — IR Do, Texdl.}-

(A20)
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