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The ac properties of weakly coupled layered thin film superconducting systems are studied for cases of
isotropic and anisotropic pairing within a microscopic approach. It is shown that the shape of the ac charac-
teristics crucially depends on the type of symmetry of the anisotropic order parameter because of the sensitivity
of the induced ac Josephson current to the order parameter phase. The model suggests a reasonable micro-
scopical explanation forc-polarized far-infrared experiments on metal oxides.@S0163-1829~96!05522-1#

I. INTRODUCTION

A visible attention to thec-polarized far-infrared proper-
ties of metal oxide superconductors was initialized by obser-
vation of a resonance mode with a frequencyVps far below
the energy gap value1–3 2D. The phenomenological theory4

described this phenomenon in terms of the ac Josephson ef-
fect taking place between weakly coupled Cu-O layers.5

However, the simple models4,6 did not take into account the
peculiar dynamic character of the interaction between exter-
nal electromagnetic fields and the layered superconductors
~SC’s!. The interaction may strongly depend on the low-
energy electron excitation spectrum and on the coherent
property of the superfluid condensate as well7,8 similarly as it
takes place fors-wave homogeneous SC’s~see Ref. 7! and
for a single Josephson junction.8 The electrodynamics of a
layered SC is closely related also to another issue which is
under intensive discussion with respect to metal oxide SC’s.
Namely the matter is about the unconventional symmetry of
the SC order parameterD(p) (p is the electron momentum!
in these materials9 which was suggested by the recent direct
observation of the half-integer flux quantum effect9 on a tri-
crystal sample. The mentioned effect is based on the possi-
bility to form a so-called Josephsonp junction9 which may
take place between weakly coupled unconventional super-
conducting electrodes having an antiphase orientation of pet-
als of thed-wave SC order parameter (d petals!. Since the
superfluid component of the ac current is sensitive to the
phase ofD(p) while the ac quasiparticle current depends on
the density of electron states in the junction’s electrodes, one
may expect that the high-frequency properties of layered
SC’s are consanguineous to the symmetry ofD(p) as well.

A separate issue is concerned with the physical origin of
the aforementioned modeVps. Since the value ofVps corre-
sponds toe1(v5Vps!50 @e1(v) is the real part of the di-
electric function# it is usually interpreted4 as a Josephson
plasma frequency.6 However, the postulating of any interac-
tion between c-polarized infrared and electron density
oscillations10 ~low-frequency plasmons! seems to be artificial

due to the following. A simple physical reason is that the
electromagnetic wave is a transverse wave while the plasma
oscillation ~electron density oscillation! is a longitudinal
wave. Since the interaction between the purely transverse
and longitudinal waves in the limitk50 is prohibited by
selection rules, one has to introduce some special conditions
to achieve a sufficient strength of the interaction to be ob-
servable. In the normal metalvpl is very large,;1–10 eV,
and thus the skin penetration depth is very small, causing the
field to be very inhomogeneous near the metal surface, caus-
ing the interaction between the waves to be quite strong. In
metal oxides the situation is different because the longitudi-
nal plasma frequencyvpl ~if it exists! is several orders
smaller;0.1–10 meV. Therefore the field is fairly homoge-
neous far inside the sample~up to 300 nm in metal oxides
even at low temperatures! and thus thec-polarized infrared
oscillation does not interact with any longitudinal oscilla-
tions and the more essential effect is due to the induced
transverse screening current oscillations which we shall con-
sider in this paper. Due to Ref. 5 metal-oxide single-crystal
samples exhibit properties related to the Josephson effect in
the highly capacitive limit. This means that the longitudinal
plasma frequency@which in this system is related to the Jo-
sephson plasma frequencyvpl5(2eIc /\C)

1/2, where I c is
the interlayer critical current, andC is the interlayer capaci-
tance# should be very small~i.e., vpl!2D) while in
experiments1–3 Vps;D. Also vpl must depend on the geom-
etry of the sample, which does not follow from
experiments.1–3 Therefore here we shall pay main attention
to the transverse ac-current oscillations induced by the exter-
nal field.

In this paper we propose a microscopic theory of the ac
properties of the weakly coupled SC layered system exposed
to a far-infraredc-polarized electromagnetic field. In the next
section we derive the complete set of necessary equations
which consist of the equations of the electron spectrum~self-
consistency equations! and the expression for the kinetic
source. The obtained formulas are to be implemented then to
calculate the electric interlayer current. These equations are
simplified with the assumption of an explicit form of the
matrix interlayer tunneling element in the two limiting cases:
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~i! The electron momentump is exactly conserved while
interlayer tunneling takes place for an ideal ‘‘clean’’ periodic
layered SC;~ii ! p is completely not conserved~this happened
mostly for a single tunneling junction or in ‘‘dirty’’ layered
SC’s!.

Using the obtained general equations for additional sim-
plifying assumptions we derive simple expressions for the ac
conductivity, dielectric function, reflectivity, and transmis-
sivity. Such kinds of expressions are used then to calculate
the observable characteristics and compare them with known
far-infrared experiments on layered metal oxides. We pro-
pose to use the measurements of the reflectivity and trans-
missivity of an externalc-polarized electromagnetic wave
from a layered SC film of a finite thickness to test the
D(p) symmetry in metal oxides. We find a pronounced cor-
respondence between the ac properties of the layered SC and
the symmetry of the SC order parameter and show that these
experiments are unambiguous in distinguishing between dif-
ferent types of order parameter symmetry. Particularly we
arrive at a conclusion that the reflectivity and transmissivity
characteristics are qualitatively different fors-wave, aniso-
tropic s-wave, andd-wave layered SC’s.

II. INTERACTION BETWEEN ac FIELD AND A
LAYERED SC SYSTEM

The calculations of the reflectivity and transmissivity in
this article are made for a layered SC film of finite thickness,
the geometry of which is sketched in Fig. 1. The electric field
vector E(t)5„E'(t),0,0… is parallel to thec axes and de-
pends on the boundary conditions as well as on the micro-
scopic properties of the layered SC while the electromag-
netic wave vectorq5(0,0,qz) is perpendicular to the surface
which consists of strips formed by the superconductingab
planes separated by insulating interplane layers. The dielec-
tric function is

e~v!5e`2
4p is~v!

v
, ~1!

wheres(v) is the linear response ac conductivity in thec
direction which is to be found from the microscopic calcula-

tions,v is the field frequency, ande` is the high-frequency
dielectric constant. The second term on the right-hand side of
this formula corresponds to the contribution of the interlayer
ac currents. With the assumption of specular boundary con-
ditions the expressions for the reflectivityR and for the
transmissivityT are4

R~v!5U ~12P2!~12e~v!!

@11Ae~v!#22@12Ae~v!#2P2U2,
T~v!5U 4PAe~v!

@11Ae~v!#22@12Ae~v!#2P2U2, ~2!

where

P5exp@ i ~v/c!Ae~v!d# ~3!

and whered is the thickness of the film;c is the light veloc-
ity.

A. Basic equations

The reflectivity and transmissivity of a thin film layered
system in the geometry of Fig. 1 are calculated here within a
weak-coupling model8 which was applied in Ref. 11 to ex-
amine the electromagnetic properties of granular supercon-
ductors. The mentioned model8,11 implies that only an inter-
action within nearest neighbor layers is important, and that
the field is concentrated inside the interlayer barriers and is
homogeneous on the scaleLg@c' (Lg is a scale where the
field can be considered as homogeneous,Lg<lfield , c' is the
lattice constant in thec direction, andlfield is the wavelength
of the external field! inside the sample as well. This allows
us to calculate the ac current across a single Josephson junc-
tion as well as through the stacked layered SC system~Fig.
1! for the unconventional symmetry of the order parameter
D(p) and in the presence of frequency dispersion effects. In
the case of anisotropic pairing the electron states are strictly
separated in momentum space becauseD(p) forms the petals
~see Fig. 2!, the phase being the same~e.g., for symmetry
dx2) or different ~e.g., for symmetrydx22y2, Fig. 2!. We
introduce thep factor cosg to distinguish between the out-
of-phase Josephson tunneling (g5p; see Fig. 2, arrows 1
and 3! and the ordinary in-phase one (g50; see Fig. 2, ar-
rows 2 and 4!. The calculations made here are related to the
electric current induced in the Josephson junction by the ap-
plied external ac fieldE(t) of constant amplitude.

B. Electron spectrum in a layered SC

The ac conductivitys(v) for the geometry of Fig. 1 is
calculated in a tunneling model which was previously ap-
plied in Refs. 11 and 12 to describe the electromagnetic
properties of inhomogeneous superconductors. The men-
tioned model allows one to calculate the ac currents across
the stacked system of Josephson junctions~see Fig. 1! for an
arbitrary amplitude of the ac field, applied a complex SC
order parameter symmetry, and in the presence of frequency
dispersion effects.

In this section we formulate the model which describes
the periodic multilayered superconductor as a set of weakly
coupledab planes. The electrons move freely in two dimen-

FIG. 1. The system of the stacked Josephson junctions biased by
the electromagnetic wave.
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sions within theab plane while they tunnel between differ-
ent planes. The electron part of the total Hamiltonian is

H5(
i
Hi
L1(

i j
Hi j
IL1(

i
Hi
ext. ~4!

Here

Hi
L5(

ps
ep

~ i !aps i
† aps i

† 1Hi
int , ~5!

where ep
( i ) is the kinetic energy of electrons with a two-

dimensional quasimomentump in SC layeri , aps i
† (aps i) is

the electron creation~annihilation! operator in layeri , and
Hi
int includes interactions in the system which cause the SC

pairing, mean field, and self-energy effects. The coupling of
electrons to bosonlike excitations in the system is included in
Hi
int and is also assumed to be responsible for the transfer

energy away from the considered structure.
The termHi j

IL describes interlayer~IL ! electron transfer:

Hi j
IL5 (

pp8s
$Tpp8

i j aps i
† ap8s j1c.c.%, ~6!

whereTpp8
i j is the electron IL tunneling matrix element.

With respect to the layered SC for simplicity we assume
that the field vector is parallel to thec direction and that the
field is homogeneous over theab planes. Such a situation
may be realized in the case of a striplike~shown in Fig. 1!
thin film with thicknessd.min$lL ,ls%, lL andls being the
field penetration depth and skin depth, respectively.

The influence of the external electromagnetic field is
taken into account by

Hi
ext~ t !5(

ps
e@m i~ t !2m0#aps i

† aps i , ~7!

wherem0 is the equilibrium chemical potential, andm i(t) is
the electrochemical potential of SC layeri which depends on
the timet due to presence of the external field. For the dif-
ferent layers we get the conditionm i(t)2m j (t)5Vi j (t). The
interlayer Josephson phase differencef i j (t) is determined as

f i j ~ t !52eE
2`

t

dtVi j ~t!, ~8!

where the ‘‘interlayer voltage’’Vi j (t) is introduced as

Vi j ~ t !5E
i

j

drE ~r ,t !'d'
BE~ t !, ~9!

whered'
B is the interlayer barrier thickness. In principle the

above expressions~8! and ~9! in combination with the cor-
responding formulas for the ac interlayer current are to be
implemented in the Maxwell equations to determine the
gauge-invariant microscopic intergrain field amplitudes
Vi j (t). Nevertheless, as we shall see for the linear case many
important characteristics can be inferred even without any
exact knowledge of the field distribution inside the sample
and a complicated solution of the whole set of equations is
not necessary.

The equations on the electron spectrum in the considered
periodic multilayered SC~Fig. 1! are derived from expres-
sion for the total electron self-energy:

Ŝ~ i !R,A,K5Ŝph
~ i !R,A,K1ŜT

~ i !R,A,K , ~10!

where the caret overŜ implies the matrix structure

Ŝ5S S1 S2

S2
1 S̄1

D . ~11!

Ŝph
( i )R,A,K is an ordinary self-energy15,16 which is responsible

for the Cooper pairing and renormalization of the electron
spectrum due to electron-phonon interaction in the layeri ,
the indicesR, A, and K correspond to retarded (R), ad-
vanced (A), or correlated (K) functions,14 andS1 andS2 are
the normal and anomalous components, respectively. The
second term in~10! is the self-energy in layeri due to the
interlayer electron transfer between different layers13 i , j
which is given by

ŜT
~ i !R,A,K~p,t,t8!5(

j ,p8
uTpp8

i j u2Ŝi j ~ t !Ĝp8
~ j !R,A,K

~ t,t8!Ŝi j
1~ t8!,

~12!

whereTpp8
i j is the matrix element of tunneling from layerj to

layer i andG( i )R,A,K(p,t,t8) denotes the Green function@re-
tarded (R), advanced (A), or correlated (K); see, for in-
stance, Ref. 15#. In ~12! the vertex factor11 is

Ŝi j ~ t !5 t̂3expH i t̂3E
2`

t

Vi j ~ t8!dt8J . ~13!

We take into account that

eı̇âcosvt[(
n

Jn~ â !eı̇nvt,

where Jn(a) is the Bessel function of ordern, â5 t̂3•a,
a5eVi j /v, and t i , i51, . . . ,3, are the Pauli matrices.
Then in case of harmonic alternationVi j (t)5Vi jcosvt one
can reduce~12! to

ŜT
~ i !R,A,K~p,e,e8!5(

j ,p
uTpp8

i j u2(
n,m

Jn~ â !Ĝ~ j !R,A,K

3~p8,e2nv,e82mv!Jm~ â !, ~14!

FIG. 2. The order parameterdx22y2 in adjacent layers for a
d-wave SC with petals having different phases.
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whereĜ andJn(â) mean

Ĝ5S G F

F1 Ḡ
D , Jn~ â !5S Jn~a! 0

0 Jn~2a!
D ,

whereG (or Ḡ) denotes an electron~or hole! normal Green
function whileF (or F1) is related to an anomalous func-
tion.

In order to simplify the following consideration we shall
restrict ourselves to second-order terms over the interlayer
interaction. Thus we assume that

Ḡ5^G i
~ j !& layers!Ē, ~15!

where ^•••& layers means averaging over the different layers
and a typical electron energy isĒ;max$D,v,T%. In this limit
all the terms that are nondiagonal over the energy variable
like Ge,e2nv , Se,e2nv , or De,e2nv (De,e2nv is a nonsta-
tionary contribution to the energy gap! have the additional
small parameterḠ/Ē!1 in comparison with diagonal sta-
tionary terms likeGe , Se , orDe . This means that the main
contribution to the electron kinetic characteristics is coming
from the electron energies;Ē; thus the terms containing the
above-mentioned nonstationary quantities are negligible in
comparison with stationary ones. Therefore when calculating
the kinetic characteristics one can for instance replace

E de1Ŝ~p,e,e1!Ĝ~p,e1 ,e!→Ŝ~e!Ĝ~p,e!1O~ Ḡ2/Ē2!,

~16!

whereO(h) means negligible terms to be small over param-
eter h. This allows us to express the final results through
time-averaged quantities like the energy gapD(e)
5^D(e,t)& t or the electron energyjp(e)5^jp(e,t)&

t.
Expanding the retarded self-energy over the Pauli matri-

ces as

Ŝ~ i !R~e!5@12Zi~e!#e1̂1x i~e!t̂31F i~e!t̂1 ~17!

@hereZi(e) is the renormalization function,x i(e) is the shift
of the electrochemical potential, andF i(e) is the Cooper
pairing potential# and using the equation forGR(e) ~see Ref.
14!,

@ĜR~e!#215@Ĝ0
R~e!#212ŜR~e!, ~18!

we get the following analytic expression for the averaged
over time ~diagonal over the energy variablee) retarded
Green function:16

Ĝi
R~p,e!5

Zi~e!e1̂1j i~p!t̂32F i~e!t̂1
@Zi~e!e#22j i

2~p!2F i
2~e!

. ~19!

Acting here in spite of Ref. 13 and using the explicit expres-
sion for Ŝ( i )R @formula ~14!# and expansion~17! one gets the
closed system of equations forZi(e) and for the averaged
over the time energy gap functionD i(e)5Zi

21(e)•F i(e),

@12Zi~e!#e5(
j ,p

uTpp8
i j u2(

n
Jn
2~a!G~ j !R~p8,e2nv!,

~20!

Zi~e!D i~e!5D i
c1(

j ,p
uTpp8

i j u2(
n

~21!nJn
2~a!

3F ~ j !R~p8,e2nv!, ~21!

whereD i
c depends on the pairing mechanism and in the case

of Cooper pairing satisfies the BCS equation

D i
c52Y i

c(
p
E de

p i
Tr$Ĝi

K~p,e!%, ~22!

whereĜK5(ĜR2ĜA)@122 f e#, Y i
c is the intralayer Cooper

pairing potential in the layeri , and f e is the electron distri-
bution function which has to be determined from the corre-
sponding kinetic equation.

The above general self-consistency equations are simpli-
fied with the assumption of an explicit form of the interlayer
tunneling matrix element. Below we consider two limiting
cases:~i! The electron momentum is conserved for interlayer
tunneling and we assume thatuTpp8

i j u25uTu2d(p2p8) which
takes place for a ‘‘clean’’ periodic layered SC;~ii ! there is no
conservation ofp and uTpp8

i j u25uTu2 ~this makes sense in the
case of a single tunnel junction or a ‘‘dirty’’ layered SC!.

In case~i! one has to take into account the periodicity of
the layered system. The electron spectrum of the double-
layer periodic normal/superconductor system was calculated
in Refs. 17–20. The calculations performed in the mentioned
articles were based on the matching of boundary conditions
for the electron wave functions in the neighboring layers
within the mean field approximation for superconductivity.
They predicted the appearance of subbands in the electron
spectrum due to Andreev reflection processes in such a peri-
odic system. The authors of Ref. 21 implemented a model of
the interlayer tunneling interaction22–24 and calculated the
electron spectrum of the multilayered superconducting sys-
tem with five different layers. Nevertheless, the direct con-
tribution of the interlayer interaction to the energy gap which
is responsible for the proximity effect13 as well as the dy-
namic renormalization of the electron spectrum due to retar-
dation effects and translation invariance of the system in the
simple model of Ref. 21 was neglected.

In this section we formulate the system of equations de-
scribing the electron spectrum of a layered periodic SC under
the influence of an external electromagnetic field. Since the
layers are assumed to be weakly coupled, we do not expect
any essential contribution to the electron spectrum from the
Andreev reflection processes as took place in Refs. 17–19.
Instead the role of the interlayer interaction in the develop-
ment of subbands in the quasiparticle excitation spectrum4 as
well as in the interlayer superconducting proximity effect13

seems to be important.
In calculations of the average quantities in higher orders

of perturbation theory translation invariance is taken into ac-
count in the model using the Bloch theorem

aj
†u&5exp$ ikm%aj1m

† u&, ~23!

wherem is period,k is the electron quasimomentum in the
c direction, and the ground state is denoted asu&. Thus splitting
the quantum mechanical and statistical averages^•••& at sec-
ond order over the interlayer interaction for instance one gets
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^M &5K (
i2 j 2

Ti2 j 2ai2
† aj 2aiai

†(
i1 j 1

Ti1 j 1
* ai1

† aj 1L 56 (
i1 j 1i2 j 2

^aj 2ai
†&^ai2

† aj 1&^aiai1
† &Ti2 j 2Ti1 j 1

*

56 (
l1l2l3l4

^ai1ml2
ai
†&^aj1ml1

† aj1ml4
&^aiai1ml3

† &Tj1ml1 ,i1ml2
Ti1ml3 , j1ml4
* , ~24!

where $ l 1l 2l 3l 4% are arbitrary integers. The last equality was written taking into account the fact that only correlators on
equivalent layers are not equal to zero, i.e.,^aj1ml1

† aj&5exp$ikml1%^aj
†aj&Þ0 while ^aj1ml1

† ai&5exp$ikml1%^aj
†ai&iÞj50. Thus in

~24! we have used that

i 25 j1ml1 , j 25 i1ml2 , i 15 i1ml3 , j 15 j1ml4 . ~25!

When making calculations of averages as in~24! a phase multiplier of the kind exp$ikml%Þ1 does not appear if one assumes
that only interlayer tunneling matrix elements between neighbor layers are nonzero while all the others are equal to zero, i.e.,
Tj ,i5Tj1ml,i1mlÞ0( j5 i61) while Tj1ml1 ,i1ml2

'0(l 1Þ l 2). This means that no electron quasimomentum appears in thec

direction in this limit. The last situation is similar to the case of a single tunnel junction formed by a couple of two-dimensional
electrodes. Another situation takes place ifTj1ml1 ,i1ml2

Þ0(l 1Þ l 2). Then the averages~24! gain the phase multiplier

^M &56 (
l1l2l3l4

exp$2 ikm~ l 22 l 12 l 31 l 4!%^aiai
†&^aj

†aj&^aiai
†&•Tj1ml1 ,i1ml2

Ti1ml3 , j1ml4
* , ~26!

which provides the final electron momentum along thec direction. In the simplified caseTj1ml1 ,i1ml2
5Tj ,i for arbitraryl 1 and

l 2 . Summarizing in~26! over the all layers we get for the phase multiplierbk the geometrical progression

bk5
12exp$ ikmN%

12exp$ ikm%
, ~27!

whereN is the number of periods in the sample. The external field causes an additional phase multiplier of the kind

(
n

JnSml1eVi j
v Deinvt, ~28!

which yields a small contribution forl 1Þ0.
Thus in the above-mentioned limiting case~i! the self-consistency equations are overwritten then as

@12Zi~k,p,e!#e5bk(
j ,n

Jn
2~a!

uTp
i j u2

Zj~e2nv!

e2nv

~e2nv!22 j̃ j
2~p,e2nv!2D j

2~e2nv!
, ~29!

x i~k,p,e!5bk(
j ,n

Jn
2~a!

uTp
i j u2

Zj~e2nv!

j̃ j~p,e2nv!

~e2nv!22 j̃ j
2~p,e2nv!2D j

2~e2nv!
, ~30!

Zi~e!D i~k,p,e!5D i
par1bk(

j ,n
~21!nJn

2~a!
uTp

i j u2

Zj~e2nv!

D j~e2nv!

~e2nv!22 j̃ j
2~p,e2nv!2D j

2~e2nv!
, ~31!

where j̃ i(k,p,e)5Zi
21(k,p,e)@j i(k,p,e)1x i(k,p,e…‡ is the renormalized electron energy. In the other case~ii ! the self-

consistency equations are written as

@12Zi~e!#e5(
j ,n

Jn
2~a!

G i
~ j !~e2nv!

AD j
2~e2nv!2~e2nv!2

, ~32!

Zi~e!D i~e!5D i
ph1(

j ,n
~21!nJn

2~a!
G i

~ j !D j~e2nv!

AD j
2~e2nv!2~e2nv!2

, ~33!
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whereG i
( j )5AuTu2Nj (0) is the tunneling rate from layerj to

layer i , A is the cross section of the sample, andNj (0) is the
electron density of states on the Fermi level in a layerj .

C. ac currents and anisotropic pairing

Here we derive also the necessary expressions for the
components of the ac current and then take the limit of a
weak field. The general solution for a limit of the intensive
field is quite complicated and some special cases will be
considered elsewhere. We calculate the interlayer tunneling
current on the space scale ofd'

G which satisfies
c'!d'

G!lfield . Since the interlayer tunneling current
J(t,T) is expressed through the correlators of the electron
creation and annihilation operators at different time moments
t and t8, it depends on the ‘‘difference’’ timet5(t2t8)/2
which describes the adiabatic switching of the interactions in
the system as well as the ‘‘summarized’’ timeT5(t1t8)/2
characterizing the alternation of the correlators in the real
time ~see Ref. 23!.

Taking the current at a certaint ~for instance att50)
and using the causality principle one arrives

J~t50,T!5eTrE de^Re$ Î T~e,T!%&p , ~34!

where we denoted the electron charge ase,
^•••&p5N(0)*djp(dVp/4p) means the averaging over the
angles of the electron momentum and integration over the
kinetic electron energyjp , N(0) is the electron density of
states, ‘‘Tr’’ means the trace operation, andÎ T(e,T) is the
nonequilibrium source,

Î T
~ i !~e,T!5E dte2 ı̇et Î T~t,T!, ~35!

which describes the electron tunneling into layeri from the
nonequivalent layers~for details see Refs. 11 and 15! in the
quantum kinetic equation for the electron distribution func-
tion f e ,

Ni~e!
] f e

]T 5^Tr$ Î ph
~ i !~e,T!1 Î int

~ i !~e,T!1 Î T
~ i !~e,T!%&p .

~36!

In the last formulaÎ ph
( i ) denotes the electron-phonon collision

integral responsible for the electron energy and momentum
relaxation andÎ int

( i ) takes into account some other possible
interactions in the system; the tunnel density of electron
states is

Ni~«!5ReH «

A«22D i
2~«!

J . ~37!

The sourceÎ T
( i ) is determined for the two time momentst and

t8 as

Î T
~ i !~ t,t8!5$ĜKŜT

A2ŜT
RĜK1ĜRŜT

K2ŜT
KĜA% t,t8. ~38!

The ‘‘product’’ in ~38! means

$AB% t,t85 È t

dt1A~ t,t1!B~ t1 ,t8!. ~39!

We emphasize that the upper limit of integration here is dif-
ferent from infinity, which is the consequence of the causal-
ity principle when calculating the total current and is an im-
portant point to avoid confusion, when calculating the
Josephson part of the current.

After taking the trace operation from expression~36! in
the absence of the charge imbalance24 one gets terms of the
two kinds I T

( i )5I qp
( i )1I Jos

( i ) :

I qp
~ i !~ t,t8!5@ Î qp

~ i !~ t,t8!#115$GKST
A2ST

RGK1GRST
K

2ST
KGA% t,t8,

I Jos
~ i ! ~ t,t8!5@ Î Jos

~ i ! ~ t,t8!#115$FKS2T
1A2S2T

R F1K1FRS2T
1K

2S2T
K F1A% t,t8. ~40!

From the last equations it is seen that for layeri the source
I qp
( i ) is proportional to the product of the normal Green func-
tions and normal self-energies and is attributed to the
photon-assisted quasiparticle IL tunneling. The termI Jos

( i )

which is proportional to the products of anomalous functions
is related to the IL Cooper pair tunneling that we shall con-
sider below. This sourceI Jos

( i ) takes into account the influence
of the external field on the Josephson current via the super-
fluid channel. Besides, if one could check if the dc voltage
were included, the obtained source would yield an ordinary
expression for the Shapiro steps in theI -V Josephson
curves.24

Here we also restrict ourselves to second-order terms over
the interlayer interaction. For the harmonically alternating
external fieldE'(zi ,t)5E0'

( i ) cos(vt) (E0'
( i ) is the field ampli-

tude in thei th layer! the quasiparticle~qp! part of the tun-
neling sourceÎ T

( i ) is written down in explicit form.12 For
example in the aforementioned limiting case~i!
uTpp8

i j u25uTu2d(p2p8) and the quasiparticle tunneling source
becomes

I qp
~ i !~e,T!5bk(

l ,m
(
j

uTp
i j u2Jl1m~a!Jm2 l~a!E de1H ImGp

~ i !R~e1!Gp
~ j !A~e2mv!

~122 f e1
!e2 i lvT

e2e12 lv2 id

2ImGp
~ i !R~e2 lv!Gp

~ j !R~e1!
~122 f e2 lv!eilvT

e2e12mv2 id
1Gp

~ i !R~e1!ImGp
~ j !A~e2mv!

~122 f e2mv!e2 i lvT

e2e12 lv2 id

2Gp
~ i !A~e2 lv!ImGp

~ j !R~e1!
~122 f e1

!eilvT

e2e12mv2 id J , ~41!

whered→0 and is taking into account the causality requirements in the ac Josephson effect. In this case one can find also the
expressions for the quasiparticle and for Josephson components of the ac current. Using the dispersion relations16 for the
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functionsGp
R(A)(k,p,e) the quasiparticle component of the ac current is written as

Jqp
~ i !~T!5e(

j ,k,p
bkuTp

i j u2(
l ,m

Jl1m~a!Jm2 l~a!E de8de^Ai~k,p,e8!Aj~k,p,e!&p@ f e82 f e#
e2 i lvT

e2e82~m2 l !v2 id
, ~42!

where

Ai~k,p,e!5Im$Gi
R~k,p,e!%, ~43!

while for the Josephson~superfluid! part one finds

JJos
~ i ! ~T!5e(

j ,k,p
bkuTp

i j u2(
l ,m

Jl1m~a!Jl2m~a!E de8de^Bi~k,p,e8!Bj~k,p,e!&p@ f e82 f e#
e2 imvT

e2e81~m2 l !v2 id
, ~44!

where

Bi~k,p,e!5Im$Fi
R~k,p,e!%. ~45!

In the opposite limiting case~ii ! uTpp8
i j u25uTu2 one obtains

^I qp
~ i !~e,T!&p5(

j
G i

~ j !(
l ,m

Jl1m~a i j !Jm2 l~a i j !E de1F Im $g~ i !R~e1!%g
~ j !A~e2mv!

~122 f e1
!e2 i lvT

e2e11 lv2 id

2Im $g~ i !R~e2 lv!%g~ j !R~e1!
~122 f e2 lv!eilvT

e2e12mv2 id
1g~ i !R~e1!Im $g~ j !A~e2mv!%

~122 f e2mv!e2 i lvT

e2e11 lv2 id

2g~ i !A~e2 lv!Im $g~ j !R~e1!%
~122 f e1

!eilvT

e2e12mv2 id
G , ~46!

where g( i )R(A)(e)5*djp^Gi
R(A)(p,e)&p , jp is the electron

kinetic energy, G i is the virtual tunneling rate,13 and
a i j5eE0'

( i ) d'
Bu i2 j u/v. In many applications, when strong

anisotropy of the electron spectra is present the electron
states are strictly separated in momentum space. For instance
in the case of anisotropic pairing the SC order parameter
forms petals~see Fig. 2! having the same~i.e., for symmetry
dx2) or different~i.e., for symmetrydx22y2; Fig. 2! superfluid
phase. Thus we distinguish the cases when the Josephson
tunneling is happening either between the out-of-phase petals
~see Fig. 2, arrows 1 and 3 correspondly! or between the
in-phase petals~see Fig. 2, arrows 2 and 4! introducing the
p factor exp(ig). Then the integration over the angles of
electron momentum in formulas~36!, ~42!, and~44! as well
as in the corresponding expression for the self-energyŜ ~see
Refs. 11 and 12! is restricted within the petals having the
same phase. The Josephson term gets thep factor
cosg561 for in-phase~upper sign! or out-of-phase~lower
sign! tunneling processes. The expression~46! for the qp
source as well as an analogous expression for the Josephson
source allow us to find formulas for the quasiparticle and for
the Josephson components of the interlayer ac current which
are naturally derived from the quantum kinetic equation~36!.
Below we restrict ourselves to consider the dirty case~ii !
leaving the clean case for a detailed description elsewhere.
Using the dispersion relation

gR~A!~«!5
1

pE dz
Im $gR~z!%

z2«6 id
, ~47!

where the upper sign is attributed to indexR while the lower
sign to indexA for the quasiparticle component of the ac
current, Eq.~42!, one obtains

Jqp
~ i !~T!5(

j

1

peRi j
(
l ,m

Jl1m~a i j !Jm~a i j !

3E de8deLe8,e
i j Re H e2 i lvT

e2e82~m1 l !v2 id J ,
~48!

with

Le8,e
i j

5Im $g~ i !R~e8!%Im $g~ j !R~e!%~ f e2 f e8!, ~49!

while for the Josephson~superfluid! part, Eq.~44!, one finds

JJos
~ i ! ~T!5(

j

cosg

peRi j
(
l ,m

~21!mJl1m~a i j !Jm~a i j !

3E de8deM e8,e
i j Re H e2 i lvT

e2e82~m1 l !v2 id J ,
~50!

with

M e8,e
i j

5Im $F~ i !R~e8!%Im $F~ j !R1~e!%~ f e2 f e8!. ~51!

In formula ~50!, F( i )R(A)(e)5*djp^Fi
R(A)(p,e)&p andRi j is

the interlayer resistivity. The above formulas obtained de-
scribe the ac current induced in the layered SC system by the
applied external stationary ac field with the assumption that
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the interlayer voltage is alternating harmonically. These for-
mulas also are appropriate to take into account many-body or
depairing effects as well as the different symmetry of the SC
order parameter. BecauseJJos

( i ) is sensitive to the phase of the
order parameter, this allows us to indicate the contribution of
thep junctions which distinguish thed-wave case from the
anisotropics-wave case.

Since we are interested in the characteristics for which
mostly the energy range 0,e,Ē.max(D,T,v) is relevant,
we include the superconducting correlations using the ordi-
nary stationary expressions for the electron Green’s
function16 entering~49!–~51!. In addition we assume that the
superconductivity is described within the simplest model
with a three-dimensional energy gap. The different symme-
try of the SC order parameterD(u,f) ~whereu andf are
the angles between the electron momentum and the quanti-
zation axes! is considered assuming the BCS pairing to be of
s-wave or ofd-wave like. For the case ofs-wave pairing
D is isotropic while thed-wave case for example for the
orthorhombic symmetry of the crystal lattice~e.g.,
YBa2Cu3O72d) is described by the point symmetry group
D2h ~see for instance Refs. 25 and 26!.

Thus the Green functions calculated in the pole approxi-
mation are written as

gi
R~«!5 ipK «

A«22D i
2~u,f!

L
u,f

,

gi
R~«!5@gi

A~«!#* ,

gi
R~«!2gi

A~«!52p iRe$gi
R~«!%,

FiR~A!5 ipK D i~u,f!

A«22D i
2~u,f!

L
u,f

, ~52!

where ^•••&u,f means the averaging over the angles of the
electron momentum within the samed petal. Besides, since
the double integrals incorporated in formulas~42!–~44! and
~48!–~50! are expressed through the retarded@advanced#
functionsgR(A)(«) @f R(A)(«)#, they are reduced to single in-
tegrals using their analytic properties8 in the following way:

Ii j ~z!5PE d«1d«2Im $g«1

~ i !R%Im $g«2

~ j !R%
f «1

2 f «2

«12«22z
⇒E d«1K«1 ,z

i j ~122 f u«1u!,

K«1 ,z
i j 5Re$g«12z

~ i !R %Im $g«1

~ j !R%1Im $g«1

~ i !R%Re$g«11z
~ j !R %. ~53!

In the above formulaP means the Cauchy principal value of the integral. In the case of a weak external field one may linearize
the expressions over the field amplitudeE'(t) using the Josephson relationw(t)52ed'

B*dtE'(t). For the quasiparticleJqp
( i )

3(t) and JosephsonJJos
( i ) (t) current then one finds

Jqp
~ i !~ t !5(

j

1

eRi j

a i j

2
@cosvtIqpi j ~v!2sinvtIqp,1i j ~v!#,

JJos
~ i ! ~ t !5(

j

1

eRi j
cosg

a i j

2
@cosvtIJos,2i j ~v!2sinvtIJos,1i j ~v!#, ~54!

whereg50 for the ordinary junctions whileg5p for p junctions, i , j are the indices of the adjacent layers,Ri j is the
interlayer normal state resistance. The functions in~54! are

Iqpi j ~v!5E deIm $g~ i !R~e2v!%Im $g~ j !A~e!%~ f e2v2 f e!,

Iqp,1i j ~v!5E de@Re$g«2v
~ i !R %Im $g«

~ j !R%1Im $g«
~ i !R%Re$g«1v

~ j !R %#~122 f u«u!,

IJos,1i j ~v!5E de@Re$F«2v
~ i !R %Im $F`

«
~ j !R%1Im $F«

~ i !R%Re$F`
«1v
~ j !R %#~122 f u«u!,

IJos,2i j ~v!5E deIm $F~ i !R~e2v!%Im $F`~ j !A~e!%~ f e2v2 f e!. ~55!
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For the real and imaginary components of the ac conductiv-
ity from ~54! one obtains

s1~v!5
sN'

v
@Iqpi j ~v!1cosgIJos,2i j ~v!#,

s2~v!52
sN'

v
@Iqp,1i j ~v!1cosgIJos,1i j ~v!#, ~56!

wheresN' is the normal state conductivity in thec direction.

III. RESULTS OF THE NUMERICAL CALCULATION

We calculate numerically the dielectric function, the re-
flectivity, and transmissivity for thes-wave ~isotropic and
anisotropic! andd-wave junctions using the above formulas.

In order to make an analogy to the case of a single Jo-
sephson junction8 we calculate the different components of
the quasiparticle and Josephson currents for the anisotropic
case. In Fig. 3 one can compare the mentioned components
Iqpi j (v) ~see curve 1!, Iqp,1i j (v) ~curve 2!, IJos,1i j (v) ~curve 3!,
and IJos,2i j (v) ~curve 4! computed for the case of in-phase
tunneling andd-wave symmetry of the order parameter with
the classics-wave case presented in the inset to Fig. 3 where
curves I, II, III, and IV correspond to the analogous compo-
nents Iqpi j (v), Iqp,1i j (v), IJos,1i j (v), and IJos,2i j (v), respec-
tively. From these figures one can infer that in the former
case no distinguished gap features are exhibited atv.2D
contrary to what takes place for the last case. Instead the
amplitudes of the quasiparticleIqpi j , JosephsonIJos,1i j , and
interferenceIJos,2i j currents become of the same order of value
already atv.D, causing a visible modification of all the ac
characteristics.

In Fig. 4 we show the frequency dependence of the imagi-
nary part of the dielectric functione2(v) calculated in ac-
cordance with~1!, ~56! for the s-waveo junction’s system8

~curve 1!, for thed-waveg junction’s system~curve 2! with
in-phase tunneling and for thed-wavep junction’s system
~curve 3! with out-of-phase tunneling atT50.12 @all tem-
perature and energy units here are expressed in values of the
order parameter amplitudeD(0) at T50; particularly, in

these units sN'50.7 which corresponds to the value
1.6 V21 cm21# and e`523. The contribution of the pos-
sible depairing effects as well as inelastic collisions was
taken into account by introducing an imaginary addition to
the energy gaph(T)50.02D(T). From Fig. 4~curve 1! one
can see that for the chosen parameters a visible threshold
takes place atv<2D, being only a few percent less than the
predicted Mattis-Bardeen theory7 value atv52D for a ho-
mogeneous isotropic SC. This threshold is caused by break-
ing off the Cooper pairs and by a contribution of the excited
quasiparticles. Curve 2 in the same Fig. 4 showse2(v) cal-
culated for ag junction. One can see that in this case
e2(v)Þ0 already at low frequenciesv→0 because of a
contribution of the quasiparticles located along the lines and
points of nodes in the anisotropic gapD(p). In contradiction
to the previous curve 1 the energy gap value atv52D0
(D0 is the amplitude of the gap! is not pronounced in this
case. Curve 3 of the same figure showse2(v) computed for
a Josephsonp junction at the same parameters as before.

Figure 5 shows the frequency dependencese1(v) for the
sameD(p) symmetries and the same parameters as before.
One can see that the value ofVps(T) is determined by a

FIG. 3. The different components of the quasiparticle and Jo-
sephson currents for the anisotropic case.

FIG. 4. The frequency dependence of the imaginary part of the
dielectric functione2(v).

FIG. 5. The frequency dependencese1(v) for the sameD(p)
symmetries and the same parameters as before.
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crossing ofe1(v) with thev axes~similarly as takes place
for the definition of the ordinary plasma frequency!. Never-
theless, the resonance frequencyVps(T) is established here
by a balance between the quasiparticle and Josephson cur-
rents. Thus in our caseVps(T) corresponds to transverse
oscillations while the Josephson plasma frequency is related
rather to longitudinal density oscillations.

Since the measurements of the reflectivity and transmis-
sivity are more spectacular, we present the computation of
these values ofR(v) andT(v) in accordance with formulas
~2! in Fig. 6 and Fig. 7. The calculations are performed for a
thin film of thicknessd. Curve 1 in Fig. 6 is the reflectivity
R(v) calculated atd50.7c\/D0 for the classics-wave case
and coincides with the result obtained in Ref. 4 while curve
2 corresponds to thedx22y2 symmetry ofD(p) for the case
of in-phase IL tunneling. Curve 3 is attributed todx22y2 sym-
metry as well but is for the out-of-phase Josephson tunneling
between adjacent layers~see Fig. 2!. The curves for the
transmissivityT(v) ~see Fig. 7! were obtained for the same
parameters as before and the curves with the same numbers
as in Fig. 6 correspond to the same order parameter’s sym-

metry and type of tunneling as in that figure. Comparing
curves 1, 2, and 3 in both Fig. 6 and Fig. 7 one can infer that
theR(v) and T(v) curves are quite sensitive to the order
parameter symmetry and to the type of tunneling as well.

In order to see how the above effect depends on the nor-
mal interlayer conductivity sN' we present a three-
dimensional plot of the reflectivityR(v) for thedx22y2 sym-
metry ofD(p) and for the case of in-phase IL tunneling in
Fig. 8. This figure demonstrates that the reflectivityR(v)
depends on the value ofsN' in quantitative way: AssN'

decreases the reflectivity thresholdVps is diminished and the
oscillatory behavior ofR(v) at v.Vps becomes more pro-
nounced.

From the above results one can see that the ac properties
of the layered SC are quite sensitive to the order parameter
symmetry because~i! the energy gap has lines and points of
nodes along the Fermi surface; therefore the quasiparticle
excitations exist untilT→0; this causes a visible quasiparti-
cle contribution to the total ac current already at smallT and
v as takes place in the homogeneous anisotropic
superconductor;27 ~ii ! due to the gap anisotropy effect the
interference componentIJos,2i j (v) becomes comparable to the
value with the quasiparticle componentIqpi j (v) already at
v;D; ~iii ! the Josephson current is sensitive to the order
parameter phase and this may contribute to the ac properties
as well;~iv! the reflectivity and transmissivity characteristics
are very sensitive to the shape of thes(v) curves. They
show striking undamped oscillatory behavior for the case of
anisotropic pairing~in-phase tunneling! which itself may
serve as an independent test for the unconventional super-
conductivity in the layered SC.

IV. CONCLUSIONS

Finally one can conclude that the large valuee`523 as
well as the small c-axis normal state conductivity
sN'51.6 V21 cm21 used above are not sufficient to ex-
plain the low value ofVps in metal oxides within an isotropic
pairing model. The consistency is improved if one assumes
that the order parameter is anisotropic. It causes the quasi-
particle contribution to the total current even at low tempera-
tures and frequencies which itself may reduce the value
of Vps. However, the analysis made here shows that

FIG. 6. The results of computation of the reflectivityR(v) for
the s-wave ~curve 1! and d-wave ~curves 2, 3! order parameter’s
symmetry. Curve 2 corresponds to the in-phase tunneling while the
curve 3 is for the out-of-phase tunneling.

FIG. 7. The transmissivityT(v) for the same order parameter
symmetries and types of tunneling as in the previous figure.

FIG. 8. Three-dimensional plot of the reflectivityR versus the
field frequencyv and thec-axis normal state conductivitysN' .
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fairly closer agreement with known experiments may be
achieved if one accepts thed-wave symmetry of the order
parameter. In the last case the reflectivity and transmissivity
characteristics~which in general are qualitatively different

for the s-wave, anisotropics-wave, andd-wave layered
SC’s! show an undamped oscillatory behavior which may
serve as an independent test for this kind of pairing in the
layered SC.
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