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ac properties of an anisotropic layered superconductor
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The ac properties of weakly coupled layered thin film superconducting systems are studied for cases of
isotropic and anisotropic pairing within a microscopic approach. It is shown that the shape of the ac charac-
teristics crucially depends on the type of symmetry of the anisotropic order parameter because of the sensitivity
of the induced ac Josephson current to the order parameter phase. The model suggests a reasonable micro-
scopical explanation foc-polarized far-infrared experiments on metal oxide&0163-182@06)05522-1

I. INTRODUCTION due to the following. A simple physical reason is that the
electromagnetic wave is a transverse wave while the plasma
A visible attention to thee-polarized far-infrared proper- O0scillation (electron density oscillationis a longitudinal
ties of metal oxide superconductors was initialized by obserWave. Since the interaction between the purely transverse
vation of a resonance mode with a frequerizy, far below and longitudinal waves in the limk=0 is prohibited by
the energy gap valde® 2A. The phenomenological thedry selec'u_on rules, one has to introduce some spe_C|aI conditions
. . . tp achieve a sufficient strength of the interaction to be ob-
described this phenomenon in terms of the ac Josephson

i ervable. In the normal metaly, is very large,~1-10 eV,
fect taking place between weakly coupled Cu-O layers. 5 thys the skin penetration depth is very small, causing the

However, the simple modét§ did not take into account the field to be very inhomogeneous near the metal surface, caus-
peculiar dynamic character of the interaction between extefing the interaction between the waves to be quite strong. In
nal electromagnetic fields and the layered superconductorsetal oxides the situation is different because the longitudi-
(SC’s). The interaction may strongly depend on the low-nal plasma frequencyn, (if it exists) is several orders
energy electron excitation spectrum and on the coherergmaller~0.1-10 meV. Therefore the field is fairly homoge-
property of the superfluid condensate as Wdimilarly asit ~ neous far inside the samplep to 300 nm in metal oxides
takes place fos-wave homogeneous SC(see Ref. Yand ~ €ven at low temperaturesind thus thee-polarized infrared

for a single Josephson juncti8riThe electrodynamics of a ©oScillation does not interact with any longitudinal oscilla-
layered SC is closely related also to another issue which iioNS and the more essential effect is due to the induced
under intensive discussion with respect to metal oxide scrsransverse screening current oscillations Wh'Ch we shall con-
Namely the matter is about the unconventional symmetry of 9€" Im th|shp§per. Due to Rff' 5dmetﬁI—OX|de sr;ngle—cfrfysta!
the SC order parameteéy(p) (p is the electron momentum samples exhibit properties related to the Josephson effect in
in these materiafswhich was suggested by the recent OIireCtthe highly capacmve_llm_lt. Thls means _that the longitudinal
observation of the half-integer flux quantum effeat a tri- plasma frequencjwhich in this system is related to the Jo-

) . sephson plasma frequen@yp|=(2eIC/ﬁC)1’2, wherel, is
crystal sample. The mentioned effect is based on the possipe interlayer critical current, an@ is the interlayer capaci-
bility to form a so-called Josephsan junctior® which may

: tancd should be very small(i.e., wy<2A) while in
take place between weakly coupled unconventional supelsyperiments3 Q,~A. Also w, must depend on the geom-
conducting electrodes having an antiphase orientation of pektry of the sample, which does not follow from
als of thed-wave SC order parameted (petal3. Since the experiment$:® Therefore here we shall pay main attention
superfluid component of the ac current is sensitive to theo the transverse ac-current oscillations induced by the exter-
phase ofA(p) while the ac quasiparticle current depends onnal field.
the density of electron states in the junction’s electrodes, one In this paper we propose a microscopic theory of the ac
may expect that the high-frequency properties of layeregroperties of the weakly coupled SC layered system exposed
SC'’s are consanguineous to the symmetnA@p) as well. to a far-infrarecc-polarized electromagnetic field. In the next
A separate issue is concerned with the physical origin okection we derive the complete set of necessary equations
the aforementioned mode ;. Since the value of) s corre-  which consist of the equations of the electron spectfseif-
sponds toe;(w=Q,J=0 [€;(w) is the real part of the di- consistency equationsand the expression for the kinetic
electric function it is usually interpretetias a Josephson source. The obtained formulas are to be implemented then to
plasma frequency However, the postulating of any interac- calculate the electric interlayer current. These equations are
tion between c-polarized infrared and electron density simplified with the assumption of an explicit form of the
oscillations® (low-frequency plasmonseems to be artificial matrix interlayer tunneling element in the two limiting cases:
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tions, w is the field frequency, anel.,, is the high-frequency

dielectric constant. The second term on the right-hand side of
this formula corresponds to the contribution of the interlayer
ac currents. With the assumption of specular boundary con-

. ditions the expressions for the reflectivifg and for the
A transmissivity7 are
c-polarized wave
2
Rl (1-PH)(1-e(w) |
‘ [+ Ve(@) P~ [1- Ve(w) P?
b metal oxide 7_( ) 4P V E(w) ‘ 2 (2)
w)= ’
‘ [1+Ve(w) P~ [1— Ve(w) ?P?|
where
a
P=exdi(w/c)Ve(w)d] 3
FIG. 1. The system of the stacked Josephson junctions biased @nd whered is the thickness of the filnt; is the light veloc-
the electromagnetic wave. ity.
(i) The electron momenturp is exactly conserved while A. Basic equations

interlayer tunneling takes place for an ideal “clean” periodic

layered SCii) p is completely not conserveithis happened The reflectivity and transmissivity of a thin film layered

. L ; P system in the geometry of Fig. 1 are calculated here within a
mostly for a single tunneling junction or in “dirty” layered weak-coupling modélwhich was applied in Ref. 11 to ex-

SC's). X X |
Using the obtained general equations for additional sim@mine the electromagnetic properties of granular supercon-

plifying assumptions we derive simple expressions for the agutqtors. '-trr?'e mentlo?ed _mr(])t(?éil |Impl|es. th.at onlty atn mtgr-th ¢
conductivity, dielectric function, reflectivity, and transmis- action within nearest neighbor 1ayers 1S important, an a

sivity. Such kinds of expressions are used then to calculat e field is concentrated inside the interlayer barriers and is
the observable characteristics and compare them with kno omogeneous on the scdlg>c, (Lg is a scale where the

far-infrared experiments on layered metal oxides. We pro—'elfj can be considered as homogenedys: Meq, €, is the
pose to use the measurements of the reflectivity and trand@ttice constant in the direction, anchgq is the wavelength

missivity of an externak-polarized electromagnetic wave of the external fieltlinside the sample as well. This allows
from a layered SC film of a finite thickness to test the Us to calculate the ac current across a single Josephson junc

A(p) symmetry in metal oxides. We find a pronounced cor—tion as well as through the stacked layered SC sysféim

respondence between the ac properties of the layered SC a}lﬂzfor the _unconventmnal symmetry of the ordg r parameter
the symmetry of the SC order parameter and show that the% p) and in th? presence .O.f frequency dispersion effects.. In
experiments are unambiguous in distinguishing between gifthe case of anisotropic pairing the electron states are strictly
eseparated in momentum space becalig®) forms the petals
arrive at a conclusion that the reflectivity and transmissivity S€€ Fig: 2 the phase being the santeg., for symmetry

characteristics are qualitatively different ferwave, aniso- ,dxz) or different (e.g., for sym_m_etryqxz,yz, Fig. 2. We
tropic s-wave, andd-wave layered SC's introduce ther factor cog to distinguish between the out-

of-phase Josephson tunneling= ; see Fig. 2, arrows 1

and 3 and the ordinary in-phase ong+£0; see Fig. 2, ar-

rows 2 and 4 The calculations made here are related to the

electric current induced in the Josephson junction by the ap-
The calculations of the reflectivity and transmissivity in plied external ac fieldE(t) of constant amplitude.

this article are made for a layered SC film of finite thickness,

the geometry of which is sketched in Fig. 1. The electric field B. Electron spectrum in a layered SC

vector E(t) =(E, (1),0,0 is parallel to thec axes and de- o . .

pends on the boundary conditions as well as on the micro- IThIe tag c_:ondlictlwtyllq(w) fodr tlhe hger(])metry of Fig. } IS i

scopic properties of the layered SC while the electromagf:‘;’.1 c(;;_ae '? a unnedmg mo g w .'g v;/]as pl)rewousy ap

netic wave vectog=(0,0,q,) is perpendicular to the surface plied in Re ‘;' .1& and 12 to describe tde eectro_lr_'r;]agnetlc

which consists of strips formed by the superconductirg properties of inhomogeneous superconductors. € men-

lanes separated by insulating interplane lavers. The dieleti_oned model allows one to calculate the ac currents across
'E)ric functiopn is y 9 P Yers. %he stacked system of Josephson juncti@es Fig. 1 for an

arbitrary amplitude of the ac field, applied a complex SC
Amio(w) order parameter symmetry, and in the presence of frequency
€(w)=€,— —, (1)  dispersion effects.
@ In this section we formulate the model which describes
where o(w) is the linear response ac conductivity in the the periodic multilayered superconductor as a set of weakly
direction which is to be found from the microscopic calcula-coupledab planes. The electrons move freely in two dimen-

II. INTERACTION BETWEEN ac FIELD AND A
LAYERED SC SYSTEM
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t

¢ij(t)=29j

deVij(T)1 (8)

where the “interlayer voltage'Vj;(t) is introduced as
i
v”(t)=f drE(r,t)~dPE(t), 9
I

wheredf5 is the interlayer barrier thickness. In principle the
above expression@) and (9) in combination with the cor-
responding formulas for the ac interlayer current are to be
implemented in the Maxwell equations to determine the
gauge-invariant microscopic intergrain field amplitudes
Vij(t). Nevertheless, as we shall see for the linear case many
important characteristics can be inferred even without any
exact knowledge of the field distribution inside the sample
s B and a complicated solution of the whole set of equations is
not necessary.

The equations on the electron spectrum in the considered
periodic multilayered SGFig. 1) are derived from expres-
sion for the total electron self-energy:

i(i)R,A,K:i(pigR,A,K_i_igri)R,A,K’ (10)

FIG. 2. The order parameteat._ .. in adjacent layers for a
d-wave SC with petals having different phases.

sions within theab plane while they tunnel between differ-

ent planes. The electron part of the total Hamiltonian is where the caret oveX implies the matrix structure

~ 21 22
H=2 HF+2X HE+ > HEX (4) Ez(y SR (11)
i ] i 2 2
Here SRAK is an ordinary self-enerdy'® which is responsible
. Dot ot - for the Cooper pairing and renormalization of the electron
Hi :; €p Apgidpgi THi, (5 spectrum due to electron-phonon interaction in the ldyer

the indicesR, A, andK correspond to retardedRj], ad-
where € is the kinetic energy of electrons with a two- vanced @), or correlated K) functions'* and3 ; ands, are
dimensional quasimomentumin SC layeri, aggi (Apoi) is the normal and anomalous components, respectively. The
the electron creatiofiannihilatior) operator in layei, and ~ Second term in(10) is the self-energy in layerr due to the
HI" includes interactions in the system which cause the Sdnterlayer electron transfer between different layér |
pairing, mean field, and self-energy effects. The coupling ofvhich is given by
electrons to bosonlike excitations in the system is included in . . A ~ i -
H™ and is also assumed to be responsible for the transfer2$)R'A'K(p’tvt’):2, I Topr 231(I)GS)R’A'K(U')Sﬁ(t,)*
energy away from the considered structure. 1P (12)
The termH; describes interlaye(iL) electron transfer: )
- whereT! | is the matrix element of tunneling from laygto
HiF= > {Tgp,aggiaprvﬁc.c.}, (6) layeri andGRAK(p t,t") denotes the Green functigre-
pp'o tarded R), advanced 4), or correlated K); see, for in-
whereT ), is the electron IL tunneling matrix element. stance, Ref. 15 In (12) the vertex factdr is
With respect to the layered SC for simplicity we assume A R . [t e
that the field vector is parallel to thedirection and that the Sj()= ¢3exp[ ! T3j_xvij(t )dt ] (13
field is homogeneous over theb planes. Such a situation
may be realized in the case of a striplikdhown in Fig. 2 We take into account that
thin film with thicknessd=min{\ A}, A\ and\, being the

field penetration depth and skin depth, respectively. eaoowt="3" 3 (g)en!,
The influence of the external electromagnetic field is n
taken into account by where J,(a) is the Bessel function of order, a= 75 a,
extyen B T a=eVj/w, and 7;, i=1,...,3, are the Pauli matrices.
H; (t)_% el ui() — rolapsidpoi » () Then in case of harmonic alternatiaf;(t) =V;j;coswt one

can reduce(12) to
where g is the equilibrium chemical potential, and(t) is

the electrochemical potential of SC layewhich depends on S (DRAK , o A

the timet due to presence of the external field. For the dif- (Y ):% oo Zgn Jn(@)GIRAL

ferent layers we get the conditiqn (t) — u;(t) =V;;(t). The ' ’

interlayer Josephson phase differeqgg(t) is determined as X(p',e—nNw,e —mw)J(a), (14
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whereG andJ, (&) mean .
" zi<e>Ai<e)=Af+§ ITo P2 (=D (@)

~ G F N Jn(a@) 0
=g+ g WMO= o o) XFOR(p' e—nw), (21

whereG (or G) denotes an electraior hole normal Green  whereA? depends on the pairing mechanism and in the case
function whileF (or F*) is related to an anomalous func- of Cooper pairing satisfies the BCS equation
tion.

In. order to simplify the following consideration we shall AC= _YicE f d—éTr{GiK(p,e)}, (22)
restrict ourselves to second-order terms over the interlayer P l
interaction. Thus we assume that R o
whereGX=(GR-G"[1-2f_], Y{ is the intralayer Cooper
pairing potential in the layerr, andf, is the electron distri-
bution function which has to be determined from the corre-
sponding kinetic equation.
The above general self-consistency equations are simpli-
d with the assumption of an explicit form of the interlayer
tunneling matrix element. Below we consider two limiting
cases(i) The electron momentum is conserved for interlayer
tunneling and we assume that! |2=|T|28(p—p’) which

I‘=<I‘i(j)>latyers<Ev (15)

where (- - - )jayers Means averaging over the different layers

and a typical electron energy i~ maxA,w,T}. In this limit

all the terms that are nondiagonal over the energy variablg

like G e—nws Zece-nws OF Accnw (Acc—no IS @ NONSta-

tionary contribution to the energy gapave the additional

small parametel’/E<1 in comparison with diagonal sta-

i i i i PP

tionary terms likeG,, 3, Oréf' .Th's means_th_at the main  akes place for a “clean” periodic layered S@;) there is no

contribution to the electron kinetic characteristics is coming . i 2 2 .
N o conservation op and|T_ ,|=]|T|* (this makes sense in the

from the electron energiesE; thus the terms containing the £ 2 sinale t IPP . cdirty | d 8C

above-mentioned nonstationary quantities are negligible iif2S€ Of @ single tunnel junction or a “dirty” layered 5

comparison with stationary ones. Therefore when calculatincI;h Inl case(é) one has _trohtak(T into account the pfr'lf])d'g'ty t())lf
the kinetic characteristics one can for instance replace e layered system. The electron spectrum of the double-
layer periodic normal/superconductor system was calculated

« - P - in Refs. 17—-20. The calculations performed in the mentioned
f de X(p,€,€1)G(p, €;,€)—2(€)G(p,€) + O(IY/E?), articles were based on the matching of boundary conditions
(16) for the electron wave functions in the neighboring layers
within the mean field approximation for superconductivity.
whereO(7) means negligible terms to be small over param-They predicted the appearance of subbands in the electron
eter ». This allows us to express the final results throughspectrum due to Andreev reflection processes in such a peri-
time-averaged quantities like the energy gap(e) odic system. The authors of Ref. 21 implemented a model of

= (A(e,0))! or the electron energg,(e)=(&y(e, D). the interlayer tunneling interactién?* and calculated the
Expanding the retarded self-energy over the Pauli matri€lectron spectrum of the multilayered superconducting sys-
ces as tem with five different layers. Nevertheless, the direct con-

o R tribution of the interlayer interaction to the energy gap which
SOR(e)=[1-Z,(e)]el+ xi(e) T3+ Di(e)7, (17) s responsible for the proximity efféctas well as the dy-
namic renormalization of the electron spectrum due to retar-

[hereZ;(e) is the renormalization functiory;(e) is the shift  dation effects and translation invariance of the system in the
of the electrochemical potential, anbl(e) is the Cooper simple model of Ref. 21 was neglected.

pairing potential and using the equation f@"(¢) (see Ref. In this section we formulate the system of equations de-
14), scribing the electron spectrum of a layered periodic SC under
“R 1 AR 1 <R the influence of an external electromagnetic field. Since the
[G ()] "=[Ggle)] "—=Z"(e), (18 |ayers are assumed to be weakly coupled, we do not expect

Ay essential contribution to the electron spectrum from the
Andreev reflection processes as took place in Refs. 17-19.
Instead the role of the interlayer interaction in the develop-
ment of subbands in the quasiparticle excitation spectasn

we get the following analytic expression for the average
over time (diagonal over the energy variabl® retarded
Green functiont®

~R Zi(e)el+ &(p) 73— Di(e) Ty well as in the interlayer superconducting proximity efféct
Gi(p,e)= > Y (199 seems to be important.
[Zi(€)e]"= &7 (p) = Pi(e) In calculations of the average quantities in higher orders

Acting here in spite of Ref. 13 and using the explicit expres-Of perturbation theory translation invariance is taken into ac-

sion for SR [formula(14)] and expansioil7) one gets the count in the model using the Bloch theorem
closed system of equations f&(e) and for the averaged a}‘|)=exp{ikm}a}r+ml>, (23
over the time energy gap functian(e)=zi’1(e)~<bi(e),
wherem is period,k is the electron quasimomentum in the
_7 - ij |2 2 (IR’ - c direction, and the ground state is denotef a$hus splittin
[1-z(e)]e % |Tpp' En: (@GP’ e no), the quantum mechgnical and statistical a%erages} rEl)t secg-
(20 ond order over the interlayer interaction for instance one gets
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_ t N T S PR ty(at t x
(M)= EZ Ti,j,20,),8i8; El T80, = iimEizjz (aj,ai Xag,a; (@a ) Ti, Ti ),

Y2 T
il ;I <ai+mlzai><aj+m|laj+m|4><aiai+m|3>Tj+mI1,i+mI2Ti*+m|3,j+m|4v (24)
1'2'3'4

where{l,l,l5l,} are arbitrary integers. The last equality was written taking into account the fact that only correlators on
equivalent layers are not equal to zero, e,y ;) =exp{ikmi;Ka/a;)+0 while (af_ ; a;) = exp{ikmii}(afa).;=0. Thus in
(24) we have used that

ir,=j+mly, jo=i+ml,, i;=i+mlz, j;=j+ml,. (25

When making calculations of averages a¢2d) a phase multiplier of the kind efgml}#1 does not appear if one assumes
that only interlayer tunneling matrix elements between neighbor layers are nonzero while all the others are equal to zero, i.e.,
Tii=Titmi+m#0(j=1%1) while Ti+m,1,i+m,2~0(ll¢lz). This means that no electron quasimomentum appears io the

direction in this limit. The last situation is similar to the case of a single tunnel junction formed by a couple of two-dimensional
electrodes. Another situation takes placé'jitm|l,i+m|27& 0(l,#1,). Then the average®24) gain the phase multiplier

(M)== > expl{—ikm(lo=11~lat 1) Naal)aja)(@al) Tjsm, iem, Tiemiy i m, (26)

1l2l3la
which provides the final electron momentum alongdtdirection. In the simplified Caskj i mi i+ml,= Tj,i for arbitraryl,; and

I,. Summarizing in(26) over the all layers we get for the phase multipli@&rthe geometrical progression

_ 1-explikmN}

KT 1—exp(ikm} @7

whereN is the number of periods in the sample. The external field causes an additional phase multiplier of the kind

z Jn(w> einwt, (28)

n w

which yields a small contribution fdr, # 0.
Thus in the above-mentioned limiting caGgthe self-consistency equations are overwritten then as

. B z 3 |Tipj|2 €e—Nw 29
[ i( ’p'e)]e_ﬁkj,n n(a)zj(e_nw) (E_nw)z_gjz(p'e—nw)—Ajz(é_nw)’ 29
(epe)=BS Fa) T f(peno) (30
X, Y Z (e no) (e=Nw)’=&(p,e~Nw)—Af(e—nw)’
| T2 Ai(e—nw)
(A _ AP —1)nJ2 . :
Z,(G)Al(k,p,e) AI +ﬂk% ( 1) Jn(a') Zj(e_nw) (e—nw)2—§j2(p,6_nw)_Aj2(5_nw)' (31)

wheregi(k,p,e)=Zi‘1(k,p,e)[§i(k,p,e)+Xi(k,p,e)] is the renormalized electron energy. In the other céisethe self-
consistency equations are written as

F-(j)(e—nw)
—_ . = 2 !
[1-Zi(e)]e %%(a)wﬁe_nw)_(e_nw)z, (32
T'VA (e—now)
Zi(e)Ai(e)=AP" —1)"2 S , 33
(98 =Af"+ 2 (-1) “(“)mf(e—nw)—(e—nw)z (33
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wherel'" = 4| T|2N;(0) is the tunneling rate from laygrto e
layeri, A is the cross section of the sample, and0) is the Ni(e)=R N mmerad b (37
electron density of states on the Fermi level in a layer Ve©—Af(e)
The sourcé!! is determined for the two time momertand
C. ac currents and anisotropic pairing t’ as
Here we derive also the necessary expressions for the  1{)(t,t')={GK3A—SRGK+GRSK-3SKGA .. (38

components of the ac current and then take the limit of a
weak field. The general solution for a limit of the intensive
field is quite complicated and some special cases will be _ [t p

considered elsewhere. We calculate the interlayer tunneling {AB}w = xdtlA(t’tl)B(tl’t )- (39)
current on the space scale of® which satisfies

The “product” in (38) means

. . . We emphasize that the upper limit of integration here is dif-
< G < - . .« . .
C, <d<Afeiq- Since the interlayer tunneling current o gom infinity, which is the consequence of the causal-

J(T’Y.) IS expresggd t.hrough the corre!ators Of the electror?ty principle when calculating the total current and is an im-
creation and annihilation operators at different time moment ortant point to avoid confusion, when calculating the

t andt’, it depends on the “difference” time=(t—t')/2 Josephson part of the current.

which describes the adiabatic switching of the interactions in g taking the trace operation from expressia) in

the system as well as the “summarized™ t'rﬂé(tﬂl)lz he absence of the charge imbalatfaene gets terms of the

characterizing the alternation of the correlators in the re Wwo kinds | ® =1 @) 4@ -

time (see Ref. 2B T ap " Jost
Taking the current at a certain (for instance atr=0) I“)(t,t’)=[f(i)(t,t’)]11={GK2$—2$GK+GRE$

and using the causality principle one arrives » »

~ _2$GA}t,t'v
J(7=0, =eTrfd Re{l (e, , 34 i 1y ,
(=0 “ARellr(eDhlo: B9 ) = [T ) ]y= (PRS- SHF K+ FRE
where we denoted the electron charge as —SKFHAL L. (40)

(- )p=N(0)fdép(dQ/4m) means the averaging over the
angles of the electron momentum and integration over th
kinetic electron energy,, N(0) is the electron density of
states, “Tr” means the trace operation, ahf{e,7) is the

Erom the last equations it is seen that for layehe source
Ig'g is proportional to the product of the normal Green func-
tions and normal self-energies and is attributed to the

nonequilibrium source, photon-assisted quasiparticle IL tunneling. The tergﬁs
which is proportional to the products of anomalous functions
ig)(e,ﬂ:f dre"'”TT( 7.7, (35) is related to the IL Cooper pair tunneling that we shall con-

sider below. This sourck). takes into account the influence
which describes the electron tunneling into laydrom the  of the external field on the Josephson current via the super-
nonequivalent layeréfor details see Refs. 11 and )1 the  fluid channel. Besides, if one could check if the dc voltage
quantum kinetic equation for the electron distribution func-were included, the obtained source would yield an ordinary

tion f, expression for the Shapiro steps in thev Josephson
of curves?
Ni(e) (9;_: <Tr{fgg(e,7j +11(e, D +f$)(e,7)})p. Here we also restrict ourselves to second-order terms over
(36) the interlayer interaction. For the harmonically alternating

external fieldE, (z; ,t)=E{) cos@t) (E{) is the field ampli-

In the last formuldl () denotes the electron-phonon collision tude in theith layey the quasiparticléqp) part of the tun-
integral responsible for the electron energy and momenturneling sourcel{) is written down in explicit form'? For
relaxation andl{!) takes into account some other possible€xample in the aforementioned limiting caséi)
interactions in the system; the tunnel density of electror T, |*=|T|?6(p—p’) and the quasiparticle tunneling source
states is becomes

|
|grz(6,7):,3k% 2 |Tg|2J|+m(a)Jm_|(a)f del{ lmGg)R('El)G(pj)A(E—mw)

(1-2f )77
e—e1—lw—ié

(1-2f _p,)e "7

e—e—lw—id

(1-2f .y, )e"7

_ (HDR, (J)R
ImGp (€ Iw)Gp (el)e—el—mw—iﬁ

+GYR(€)IMGYA(e—ma)

(1-2f )e'”

— Gy (e=10)ImGY ™ (ey)—

—e—Mmw—is |’ (41)

wheres—0 and is taking into account the causality requirements in the ac Josephson effect. In this case one can find also the
expressions for the quasiparticle and for Josephson components of the ac current. Using the dispersiof® rielatioas
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functionsGﬁ(A)(k,p,e) the quasiparticle component of the ac current is written as

efinT
K=, BITIS Iicnl@In-i(a) | de'de(A keI RPNy~ 1 g oy @2
where
Ai(k,p,e)=Im{GR(k,p,e)}, (43
while for the Josephsofsuperfluid part one finds
e —imoT
JS'O 7= ez Bi |T|J 22 Jim(a@)d_m(@) f de’de(Bi(k,p,e")Bj(k,p,€))p[ fer—f] e r(m-No—is’ (44
where
Bi(k,p,e)=Im{F(k,p,e)}. (45)
In the opposite limiting caséi) |TIJ 2=|T|? one obtains
(1-2f e T
(19(eD)p= E F(J)Z Jirml@ij)Imi( CY.J)J dey| Im {g"R(e1) g A (e~ mw)m
. . (1-2f e . (1-2f_p,)e "7
_ (DR( e (DR( g, )o— T ele/® | J()R (DA
Im{g™ (e~ lo)hg N er) o — 05 + 9" (e)Im{g (e~ mo)——— =375
(A ()R (-2t et
—ql _ J - - @
9" (e~lw)im{g (el)}e_ﬁl_mw_ié, (46)

where gVRA(¢) = fdgp(GR(A)(p,e»p, ¢, is the electron  where the upper sign is attributed to ind@while the lower
kinetic energy, I'; is the virtual tunneling rat& and  sign to indexA for the quasiparticle component of the ac
a;;=eE{)d®|i—j|/w. In many applications, when strong Ccurrent, Eq.(42), one obtains

anisotropy of the electron spectra is present the electron

states are strictly separated in momentum space. For instance J{)(7) = >

E I sml@ip)Im(ai))

in the case of anisotropic pairing the SC order parameter ] eRJ
forms petalqsee Fig. 2 having the samé@.e., for symmetry B e iloT
. . . . ij
dy2) or different(i.e., for symmetnyd,2_,2; Fig. 2) superfluid j de'delL : — e —(miDw=is]’

phase. Thus we distinguish the cases when the Josephson
tunneling is happening either between the out-of-phase petals (48)
(see Fig. 2, arrows 1 and 3 correspondly between the i

in-phase petal¢see Fig. 2, arrows 2 and 4nhtroducing the

7 factor exp(y). Then the integration over the angles of |_'EJ E=Im{g“>R(e’)}Im {gDR(eV(F.~F.), (49
electron momentum in formula86), (42), and(44) as well ) ‘ _ _

as in the corresponding expression for the self-endrggee  While for the Josephsofsuperfluid part, Eq.(44), one finds
Refs. 11 and 1Ris restricted within the petals having the

same phase. The Josephson term gets thefactor J<'>5(7) 2 2 (=)™ m( i) Il i)
cosy==1 for in-phase(upper sign or out-of-phaselower i eRJ ;m

sign tunneling processes. The expressi@®) for the gp aileT

source as well as an analogous expression for the Josephson XJ de'deM" Rel . —
source allow us to find formulas for the quasiparticle and for e e—e'—(Mmtho=is

the Josephson components of the interlayer ac current which (50)

are naturally derived from the quantum kinetic equati®®). ,
Below we restrict ourselves to consider the dirty cgige  With

leaving the clean case for a detailed description elsewhere. Ml DR( R+ _
Using the dispersion relation Me e =Im{FIRENHM{FPR (O} (Fe—fe). (BD)
In formula (50), f(')R(A)(e)=fd§p(FiR(A)(p,e)>p andR;; is

R the interlayer resistivity. The above formulas obtained de-

R ()= EJ d¢ Im{g"()} 47) scribe the ac current induced in the layered SC system by the

9 T {—e=xid’ applied external stationary ac field with the assumption that
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the interlayer voltage is alternating harmonically. These for- Thus the Green functions calculated in the pole approxi-
mulas also are appropriate to take into account many-body anation are written as
depairing effects as well as the different symmetry of the SC
order parameter. Becaus§). is sensitive to the phase of the e
order parameter, this allows us to indicate the contribution of g (e)=i 7r< 2—>
the 7 junctions which distinguish thd-wave case from the Ve —A7(0,¢)
anisotropics-wave case.

Since we are interested in the characteristics for which
mostly the energy range<Oe<E=max(A,T,w) is relevant,
we include the superconducting correlations using the ordi- R A i R
nary stationary expressions for the electron Green's 9i(e)—gi(e)=2miRe{g(2)},
function'® entering(49)—(51). In addition we assume that the
superconductivity is described within the simplest model Ai(0, )
with a three-dimensional energy gap. The different symme- ff(A)=i7T<2'—'> , (52)
try of the SC order parametex(6, ) (whered and ¢ are Ve —A7(6,9)
the angles between the electron momentum and the quanti-
zation axepis considered assuming the BCS pairing to be ofwhere(:--), , means the averaging over the angles of the
s-wave or ofd-wave like. For the case af-wave pairing electron momentum within the sandepetal. Besides, since
A is isotropic while thed-wave case for example for the the double integrals incorporated in formul@®)—(44) and
orthorhombic symmetry of the crystal latticde.g., (48)—(50) are expressed through the retardedivanced
YBa,Cu;0;_ ;) is described by the point symmetry group functionsgR®(e) [fR™(¢)], they are reduced to single in-
D, (see for instance Refs. 25 and)26 tegrals using their analytic propertieis the following way:

af(e)=[a(e)]*,

i) =P dsldszlm{gg')R}lm{g(”R} 7= de, K (1-2f,)),
£1— 1.4 leq|/s

Eo

Kl =Relg!)% Him g% +1m {g M Re{g! T }. (53

In the above formul@ means the Cauchy principal value of the integral. In the case of a weak external field one may linearize
the expressions over the field amplituBle(t) using the Josephson relati@r(t)=2edffthl(t). For the quasiparticlégg
X(t) and Josephsod{)(t) current then one finds

J(')(t) 2— [cos»t ‘p(w)—sinwtz';:{'pvl(w)],

JW(t)= Z—COSy—[COSutZ'JOS;_(w —sinwtZ}s {w)], (54)

where y=0 for the ordinary junctions whiley= 7 for = junctions,i,j are the indices of the adjacent layeR;; is the
interlayer normal state resistance. The function&i) are

Thw)= [ delm {0 % e—wim fg A} (F, 1),
Tipa(©)= f de[Re(g, 7, }m {g;” "} +1m {g, 1 Re{g, T (1~ 2f,)),
Thos @)= f de[Re[Z " Hm {7 R+ im {7 R Re {7 I (1 2f ),

etw

Thefw)= f delm {FIR(e— o) m {FT DA} (F._,— ). (55)
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FIG. 3. The different components of the quasiparticle and Jo- FIC- 4. The frequency dependence of the imaginary part of the
sephson currents for the anisotropic case. dielectric functionez(w).

For the real and imaginary components of the ac conductivthese units oy, =0.7 which corresponds to the value
ity from (54) one obtains 1.6 Q! cm™1] and e.=23. The contribution of the pos-
sible depairing effects as well as inelastic collisions was
ONL . taken into account by introducing an imaginary addition to
o1(w)=——=[Zgy(@) +co8yTjos f )], the energy gapy(T)=0.02A(T). From Fig. 4(curve 1 one
can see that for the chosen parameters a visible threshold
o takes place ab=<2A, being only a few percent less than the
o)== ——[T] (w)+cosyThe{w)], (56) Ppredicted Mattis-Bardeen thedryalue atw=2A for a ho-
® ' ' mogeneous isotropic SC. This threshold is caused by break-
ing off the Cooper pairs and by a contribution of the excited
quasiparticles. Curve 2 in the same Fig. 4 shew@s») cal-
culated for ag junction. One can see that in this case
e,(w)#0 already at low frequencie®—0 because of a
We calculate numerically the dielectric function, the re-contribution of the quasiparticles located along the lines and
flectivity, and transmissivity for the-wave (isotropic and  Points of nodes in the anisotropic gagp). In contradiction
anisotropi¢ andd-wave junctions using the above formulas. to the previous curve 1 the energy gap valuewat2A,
In order to make an analogy to the case of a single JotAo is the amplitude of the gags not pronounced in this
sephson junctidhwe calculate the different components of case. Curve 3 of the same figure showyéw) computed for
the quasiparticle and Josephson currents for the anisotropft Josephsomr junction at the same parameters as before.
case. In Fig. 3 one can compare the mentioned components Figure 5 shows the frequency dependenegs) for the
qup(w) (see curve ), f(qu,l(w) (curve 2, 79,, {w) (curve 3, sameA(p) symmetries and the same parametgrs as before.
and T}, {») (curve 4 computed for the case of in-phase One can see that the value &f,(T) is determined by a
tunneling andd-wave symmetry of the order parameter with
the classics-wave case presented in the inset to Fig. 3 where
curves I, I, 1ll, and 1V correspond to the analogous compo-
nents Zgy(w), Zg, (@), Zjs{w), and Zjs{w), respec-
tively. From these figures one can infer that in the former ;
case no distinguished gap features are exhibited-aRA Or;
contrary to what takes place for the last case. Instead the 3
amplitudes of the quasiparticlé;,, Josephsort}j,, and
interferenceZ'j  ,currents become of the same order of value :
already atw=A, causing a visible modification of all the ac 50 f
characteristics.
In Fig. 4 we show the frequency dependence of the imagi-
nary part of the dielectric functiom,(w) calculated in ac-

whereoy, is the normal state conductivity in theedirection.

Ill. RESULTS OF THE NUMERICAL CALCULATION

€ (@)

cordance with(1), (56) for the s-waveo junction’s systerf a0t | . . . ’ . |
(curve ), for thed-waveg junction’s systercurve 2 with 05 1 15 2 25 3 15
in-phase tunneling and for thé~wave 7 junction’s system frequency/gap

(curve 3 with out-of-phase tunneling af=0.12 [all tem-

perature and energy units here are expressed in values of the FIG. 5. The frequency dependencegw) for the sameA(p)
order parameter amplitudA(0) at T=0; particularly, in  symmetries and the same parameters as before.
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FIG. 6. The results of computation of the reflectivig(w) for
the s-wave (curve 1 and d-wave (curves 2, 3 order parameter’s

ac PROPERTIES OF AN ANISOTROPIC LAYERED SUPERCONDUCTOR

15145

//////////////////////

il
Mmmmm
L
///////////////////75/%///”””/////

///// - /////
i /////////%f””jj’lll

////////////////////

/ ////
R(w)|| / / ” /////////////////77//

i
/
///’/’/””’””””////////////,/l,/ ”// ////////////////////// ///

b
///////////// //////// //
&#0”0,

W//ﬂ
WS
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metry and type of tunneling as in that figure. Comparing

symmetry. Curve 2 corresponds to the in-phase tunneling while th€urves 1, 2, and 3 in both Fig. 6 and Fig. 7 one can infer that

curve 3 is for the out-of-phase tunneling.

crossing ofe;(w) with the w axes(similarly as takes place
for the definition of the ordinary plasma frequenciever-
theless, the resonance frequeney(T) is established here

the R(w) and7{w) curves are quite sensitive to the order
parameter symmetry and to the type of tunneling as well.

In order to see how the above effect depends on the nor-
mal interlayer conductivity oy, we present a three-
dimensional plot of the reflectivitR(w) for thed,2_,2 sym-

by a balance between the quasiparticle and Josephson cunetry of A(p) and for the case of in-phase IL tunneling in
rents. Thus in our cas€,(T) corresponds to transverse Fig. 8. This figure demonstrates that the reflectivRyw)
oscillations while the Josephson plasma frequency is relatedepends on the value efy, in quantitative way: Asoy,

rather to longitudinal density oscillations.

decreases the reflectivity threshdld is diminished and the

Since the measurements of the reflectivity and transmispscillatory behavior ofR(w) at w>,s becomes more pro-
sivity are more spectacular, we present the computation ofiounced.

these values oR(w) and7{w) in accordance with formulas

From the above results one can see that the ac properties

(2) in Fig. 6 and Fig. 7. The calculations are performed for aof the layered SC are quite sensitive to the order parameter

thin film of thicknessd. Curve 1 in Fig. 6 is the reflectivity
R(w) calculated at=0.7c#i/A for the classics-wave case

symmetry becausg@) the energy gap has lines and points of
nodes along the Fermi surface; therefore the quasiparticle

and coincides with the result obtained in Ref. 4 while curveexcitations exist untilf—0; this causes a visible quasiparti-

2 corresponds to thd,2_,> symmetry ofA(p) for the case
of in-phase IL tunneling. Curve 3 is attributeddg 2 sym-

cle contribution to the total ac current already at srita$ind
o as takes place in the homogeneous anisotropic

metry as well but is for the out-of-phase Josephson tunnelinguperconductof’ (ii) due to the gap anisotropy effect the

between adjacent layersee Fig. 2. The curves for the

interference componetﬁJos {) becomes comparable to the

transmissivityZ(w) (see Fig. 7 were obtained for the same yalye with the quasiparticle componefif(w) already at
parameters as before and the curves with the same numbg[s. : (jii) the Josephson current is sensitive to the order
as in Fig. 6 correspond to the same order parameter's Sy“ﬁfarameter phase and this may contribute to the ac properties

05
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0 0.5 1 1.5 2
frequency/gap

FIG. 7. The transmissivityy{ w) for the same order parameter
symmetries and types of tunneling as in the previous figure.

as well;(iv) the reflectivity and transmissivity characteristics
are very sensitive to the shape of th€éw) curves. They
show striking undamped oscillatory behavior for the case of
anisotropic pairing(in-phase tunneling which itself may
serve as an independent test for the unconventional super-
conductivity in the layered SC.

IV. CONCLUSIONS

Finally one can conclude that the large vakie=23 as
well as the small c-axis normal state conductivity
on,=1.6 Q71 cm™! used above are not sufficient to ex-
plain the low value of),sin metal oxides within an isotropic
pairing model. The consistency is improved if one assumes
that the order parameter is anisotropic. It causes the quasi-
particle contribution to the total current even at low tempera-
tures and frequencies which itself may reduce the value
of Q. However, the analysis made here shows that
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fairly closer agreement with known experiments may befor the s-wave, anisotropics-wave, andd-wave layered

achieved if one accepts thlbwave symmetry of the order

SC’9 show an undamped oscillatory behavior which may

parameter. In the last case the reflectivity and transmissivitgerve as an independent test for this kind of pairing in the

characteristic§which in general are qualitatively different

layered SC.
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skii av., Kiev, Ukraine.
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