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The ideas of the shadow wave function are applied to construct a variational wave function to describe the
liquid and the solid phase of a system that obeys Fermi statistics. The shadow variables are introduced in the
symmetric correlating factor. The antisymmetric part is a standard determinant of plane waves modified by
backflow effect. Variational Monte Carlo calculations for3He provide ground-state energies in the liquid phase
at the level of the most elaborate trial function available in the literature. With this wave function, properties
like translational invariance and antisymmetry under particle interchange are maintained even in the crystalline
phase.@S0163-1829~96!08321-X#

I. INTRODUCTION

The shadow wave function~SWF! ~Refs. 1–3! has shown
to be a powerful tool in the investigation of quantum solids
and liquids obeying Bose statistics. In the context of varia-
tional Monte Carlo~VMC! calculations, it has allowed for
studying many properties of superfluid and solid4He: the
crystallization,3,4,10 the excitation spectrum both at zero5 and
at finite temperature,6,7 the properties of the roton at finite
temperature,8 and the liquid-solid coexistence.9 In this work
we apply the shadow wave function ideas to the ground state
of a Fermi system. In this way we obtain a wave function
that satisfies the properties of translational invariance and
antisymmetry under particle exchange even in the solid
phase.

In the shadow wave function particles are correlated by
pair terms in the form of a Jastrow factor and indirectly, via
a coupling to subsidiary variables, the shadows. The shadow
variables are also correlated between themselves by a Ja-
strow factor. Integration over these shadow variables intro-
duces implicitly correlations between the particles not only
at the pair level but also via triplet, quadruplet, and higher
order terms. At large enough density these many body cor-
relations become strong enough that the particles become
localized and a crystalline solid becomes stable. In this way
one has a wave function which is translationally invariant,
while the system displays a spontaneously broken transla-
tional symmetry.

The standard trial wave functions for the ground state
c0 of a Fermi fluid, like liquid

3He, is usually written as the
product of two factors.11 The first is symmetric under inter-
change of particles, and often has a Jastrow form. Better
results are obtained if this factor contains also explicit trip-
lets terms.12–14 The second factor is antisymmetric, and of
the form of a Slater determinant of plane waves. In the ab-
sence of spin-flip terms both in the Hamiltonian and in the
correlations, the Slater determinant can be decomposed in
the product of two such determinants, one for particles with
spin up and one for those of spin down. Even better results
are obtained if the plane waves are modified by the so-called
backflow terms.12–14 These wave functions go under the
name of Jastrow-Slater~JS!, ~Jastrow1triplet!-Slater
@~J1T!S#, and~Jastrow1triplet!-Slater-backflow@~J1T!SB#,
respectively. Shadow variables can be introduced in two
main different ways.15,16 In the first16 it is the symmetric
correlating factor which is augmented by a shadow factor,
and the antisymmetric part remains written in terms of the
particle variables. In this case the nodal structure remains
exactly the same as that of a standard wave function, as for
instance Slater or Slater backflow. The shadow variables in-
troduce only many body correlations of symmetric character.
The second possibility15 is to write the determinant in terms
of the shadow variables. In this case the nodal surface for the
particle variables is no more that of the Slater determinant,
and the implicit many body correlations introduced by the
shadow variables are not limited to the symmetric ones.
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In this paper we present the computation for3He based
on the shadow wave function. We have adopted the first
choice, the one with symmetric shadows. This is computa-
tionally much easier to study than the other choice, and it
allows for addressing two main issues. From the study of
4He it is known that at equilibrium density the triplet corre-
lations have an important role, but higher order correlations
do not. The situation is quite different when the density in-
creases. At the freezing point the energy upperbound given
by the shadow wave function is significantly lower than that
obtained with wave functions containing fully optimized Ja-
strow and triplets terms.17,18 This means that terms beyond
the triplet ones must be of comparable importance. It is
known that also in3He triplet terms are important at equi-
librium density to obtain a quantitative understanding of the
equation of state, and other fundamental properties of the
liquid, such as the momentum distribution and the structure
factor. With the present computation we want to see if
shadow variables are able to represent the effects of such
triplet terms and if there is any evidence of higher order
correlations from the symmetric part becoming important at
densities close to the freezing point, as in4He.

The more relevant question has to do with the possibility
that the symmetric many body correlations introduced by the
shadow variables are able to give a stable crystalline solid
phase. Helium solids were first described as a product of
single particle Gaussians by Nosanow and Shaw.19 Much
better results were obtained by Nosanow20 when short-range
correlations were introduced in this wave function through a
correlation factor of the Jastrow form. VMC calculations for
crystal 3He where first performed by Hansen and Levesque21

using a Nosanow-Jastrow wave function. Similar results
have been obtained later on by Ceperleyet al.,22 who con-
sidered also a determinant of Gaussians in addition to a
simple product of one-body Nosanow terms. All these calcu-
lations were based on wave functions that have factors
breaking the translational invariance, anda priori equilib-
rium positions for the atoms have to be assumed. In fact,
these factors, products of Gaussian one-body terms, con-
strain particles to remain around the assumed equilibrium
positions forming a regular lattice. Although much useful
information as obtained using such procedure, this class of
wave functions have precluded the investigation of many
interesting phenomena. The crystallization of a liquidlike
configuration and the solid-liquid coexistence phase are typi-
cal examples that cannot be studied by imposinga priori
equilibrium positions. On the other hand, a simple wave
function of the Jastrow form together with an antisymmetri-
zation factor, although being able to give rise to a crystal,
would give a crystal with too tightly localized particles, pro-
viding an unacceptable description of the system.

Our computation shows that with symmetric shadows one
can obtain a stable crystal without any one-body term that
localize particles in a givena priori lattice, still leaving the
correct antisymmetry of the wave function. We find also evi-
dence for crystallization when the system is started from a
liquidlike configuration. The most important outcome of our
results is that the shadow wave function we propose to de-
scribe both liquid and solid3He, can therefore certainly be
used to perform realistic studies of the liquid solid coexist-
ence and interface.

The plan of the paper is the following. The trial wave
function is described in Sec. II. Section III discusses the
variational Monte Carlo method used in the calculation. The
results are presented in Sec. IV. The last section is devoted to
conclusions.

II. THE FERMI SHADOW TRIAL WAVE FUNCTION

Our trial wave functionCF contains both the many-body
correlations of the shadow type and the backflow correla-
tions. It consists in the product of the bosonic SWF
CB(R), R[$r i u i51, . . . ,N%, by a factorF(R) embodying
the antisymmetry property under particle interchange:

CF~R!5CB~R!F~R!. ~1!

Since we are modeling3He atT50 K in the normal phase,
we takeF(R) as the antisymmetrized product of single
particle orbitals, F(R)5$A)fk( i )u i51, . . . ,N;k<kF%,
whereA is the antisymmetrization operatork denotes both
thek vector and the spin state, andkF the Fermi momentum.
The single particle wave functions are taken as plane waves
modified by backflow correlations

fk~ i !5expF ik•S r i1lB(
lÞ i

h~r il !r i l D Gj~ i !, ~2!

whereh(r ) is the backflow function that correlates particle
i with the remaining ones of the system,r i l5r i2r l , and
j( i ) represents the spin state of particlei . For an unpolarized
system ofN particles, there areN/2 of them with spin-up and
an equal number with spin-down. SinceCB(R) does not
contain spin-flip correlations, in the calculation of the expec-
tation value of any spin-independent operator,F(R) of Eq.
~1! can be written as

F~R!5H det↑@fk~ i !#det↓@fk~ j !#U i51, . . . ,
N

2
;

j5
N

2
11, . . . ,N;k<kFJ , ~3!

namely the product of two Slater determinants, one for each
spin state of the particles. We chooseh(r ) to be of the
form12

h~r !5S r2RB

RB
D 3expF2S r2r B

wB
D 2G , ~4!

where lB , r B , and wB are variational parameters;RB is
taken as half of the simulation cell. The bosonic term of
CF(R) in Eq. ~1! is of the shadow type, and is given by

CB~R!5E dSK~R,S!cs~S!, ~5!

whereS[$si u i51, . . . ,N% denote the shadow variables, that
are correlated bycs(S). The kernelK(R,S) consists of a
product of a functionc(R), correlating the particles, and a
function Q(R,S) binding the particles to the shadows,
namely

K~R,S!5c~R!Q~R,S!5c~R!)
j
e2Cur j2sj u

2
. ~6!

The factorsc(R) andcs(S) are chosen of the Jastrow form
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c~R!5)
j, l

e2 1/2 u~r j l ! and cs~S!5)
j, l

e2us~sjl !. ~7!

The particles pseudopotentialu(r ) is taken of the McMillan
form,

u~r !5S br D
5

, ~8!

whereas for the shadows,us(s) is taken of the form

us~sjl !5us
↑↑~sjl !

11sz~ i !sz~ j !

2
1us

↑↓~sjl !
12sz~ i !sz~ j !

2
,

~9!

wheresz is thez component of the Pauli matrices. This form
of us(s) allows for different correlations between spin-
parallel and spin-antiparallel pairs. The shadow-shadow
pseudopotentials$us

sus5↑↑,↑↓% are equal to the two-body
interaction potential of the system rescaled in its amplitude
and its range by variational parameters:2

us
s~s!5dsV~ass!. ~10!

In the case of4He it has been shown23 that this choice for the
shadow-shadow pseudopotential is significantly better than
the McMillan form used in the original computations.

This wave function will hereafter be denoted as shadow-
Slater backflow~ShSB! wave function. It is translational in-
variant and fully antisymmetric under particle exchange. The
motivation of the ShSB wave function is based on the as-
sumption that the state-dependent correlations are reasonably
well described by backflow correlations. Consequently, the
n-body correlations withn.2 are basically state indepen-
dent and therefore can be efficiently treated by means of a
shadow-type factor. In fact, the crystallization mechanism is
expected to be driven by such many-body correlations, as in
4He. Nevertheless we are aware of the fact that the nodal
structure of ShSB trial function is not optimal. Diffusion
Monte Carlo calculations, performed fixing the nodal surface
of the wave function to that of the Slater backflow function,
lead to an equation of state which misses the experimental
data by;10%.18 Finally, we mention that the Pauli principle
induces an effective short range repulsion among particles
with parallel spin which should affect their correlation fac-
tors. In our wave function this feature was taken into account
by the introduction ofus

s that are meant to correlate in a
different way spin-parallel and spin-antiparallel pairs.

The only variational parameters in the ShSB trial function
that have been optimized in this work areC, ds, as, and
b. Since the optimization of the backflow parameters at the
equilibrium densityrs350.273 (s52.556 Å! have led only
to a marginal improvement on the energy upperbound, we
have kept the values of Ref. 12 for all the densities consid-
ered (lB521, r B52.173 Å, andwB51.278 Å!. We have
not attempted, in this exploratory study, to go beyond the
McMillan form for the particle-particle pseudopotential and
to fully optimize u(r ), as done in Ref. 23, following the
Euler Monte Carlo method of Refs. 24, 17, and 18.

III. VARIATIONAL MONTE CARLO METHOD

We have computed the energy per particle of3He at sev-
eral densities both in the liquid and solid phases,

E

N
5K HC

F

C
F

L , ~11!

where the angular brackets denote averages taken with re-
spect configurations sampled from the function

p~R,S,S8!5f2~R!K~R,S!K~R,S8!cs~S!cs~S8!. ~12!

In the Hamiltonian of the system

H52
\2

2m( ¹ i
21(

i, j
V~r i j !, ~13!

the two-body interatomic potential considered is the Hartree-
Fock dispersion HFDHE2 potential by Azizet al.25

The simulations are performed considering periodic
boundary conditions. These conditions determine the wave
vectorsk i52pn/L, whereL is the side of our cubic simu-
lation cell andnPZ3. To ensure the correct ground state
symmetries for the wave function we consider in the simu-
lations a number of particles that fill a complete shell in
momentum space. It is well known22 that single particle
moves in the Metropolis random walk is usually the most
efficient way for particles to diffuse in the configuration
space when the Fermi statistics is enforced without momen-
tum dependent correlations. On the other hand, when dealing
with a determinantal wave function that includes backflow, a
collective move with an optimized transition probability den-
sity gives the lowest variance for a given amount of com-
puter time.22 For this reason, in our calculations we attempt
single moves for the shadows and collective moves for the
particles. Most of our simulations were done for 54 atoms.
Finite size effects on the binding energy have been estimated
at the equilibrium density, using 14, 38, 54, and 66 atoms.
They have been found to be of about 0.15 K.

In some of the runs, an additional kind of trial move has
been implemented, namely the exchange of particles with
different spin assignment. These moves turned out to be very
important in the solid phase. The exchange move has been
done every 100 ordinary Monte Carlo steps. We have tried to
swap pairs of particles randomly chosen. For efficiency rea-
sons, the considered number of such attempts was of the
order of the number of particles. The acceptance ratio of this
exchange moves has been found to be about 12%.

Other quantities of interest, such as the pair correlation
function and the crystalline order parameters have also been
computed. The pair correlation function has been decom-
posed into the spin parallel and spin antiparallel components

g↑↑,↑↓~r !5
1

Nr K (
i , j

iÞ j
16sz~ i !sz~ j !

2
d~r i j2r !L , ~14!

where the plus and minus sign refers tog↑↑(r ) andg↑↓(r ),
respectively. These quantities provide information about the
local spin ordering of the system, for both the liquid and
solid phases.

In the course of the numerical experiment for the crystal-
lization of the system we have monitored the order parameter
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O$G%5
1

m$G%N
K (

m
(
i51

N Uexp~ iGm•r i !U L , ~15!

where$G% is a star ofm$G% vectors in the reciprocal lattice.
This was done to ensure that the final averages are taken with
respect to configurations that describes really a solid phase.
Note that the order parameter as it is defined here is not zero
in the disordered phase, but it isO(1/AN).

IV. RESULTS

A. Liquid phase

Let us first discuss the results obtained with the ShSB
wave function for the liquid phase. In Table I we report the
results for the total and kinetic energy at several densities of
the liquid phase. These results were obtained with numerical
simulations for 54 atoms, keeping the spin-parallel and the
spin antiparallel components ofus(s) equal. At the highest
density consideredrs350.325 we have also performed a
full minimization, releasing the constraintd↑↑5d↑↓ and
a↑↑5a↑↓. The improvement in the total energy is only
nominal, although the kinetic energy increases considerably
~see last line of Table I denoted by 0.325* ). For this last case
the optimal variational parameters turn out to beb51.11s,
C53.5s22, d↑↑50.095 K21, d↑↓50.090 K21, a↑↑

50.86,a↑↓50.91. The optimal values of the variational pa-
rameters determined with the constraintd5d↑↑5d↑↓ and
a5a↑↑5a↑↓ are listed in Table II.

The total energy and the kinetic energy per particle at
equilibrium density provided by various model trial func-
tions are compared in Table III. For completeness we also
report the results obtained with fixed-node diffusion Monte
Carlo ~DMC! of Refs. 17 and 18. Similarly to what happens
for liquid 4He, shadow-type correlations lead to energy up-

perbound which largely improves upon the results of Jastrow
model, and it is just 0.1 K above the energy given by the
~J1T!SB model.

The importance of backflow correlations can be seen
comparing JS and Jastrow-Slater-backflow~JSB! models.
The values of the backflow parameters in the JSB,~J1T!SB,
and ShSB wave functions are the same. Therefore the corre-
sponding energies presented in Table III are directly compa-
rable. The result labeled with OJOTB have been obtained by
optimizing both Jastrow and Triplet correlations and using a
Slater-backflow wave function for the antisymmetric part.18

They are not directly comparable with the other results, and
have been included for the sake of comparison. The differ-
ence between our ShSB and the fixed node DMC result is of
the same order of magnitude as the one found in the case of
4He described by the SWF and the Green’s function Monte
Carlo result.

At the freezing densityrs350.325, the~J1T!SB wave
function gives an energy of21.33460.052 K, and this is
about 0.1 K below the value of ShSB. Thus we do not see
here the improvement that shadow wave function gives with
respect to J1T in the case of4He near the freezing point. A
possible reason for this feature is the lower value of the
freezing density of3He. Correlations of the shadow-type be-
yond the triplet level might be less important here. The other
possibility is that in the case of a Fermi system these many-
body correlations have a significant antisymmetric character,
and this feature is not captured by the present shadow wave
function.

The spin-parallel and spin-antiparallel components of the
pair function atrs350.325 are displayed in Fig. 1 for the
two cases: sz-independent andsz-dependent shadow-
shadow pseudopotential. Thesz-dependentus reduces the
short range antiferromagnetic order, in agreement with the
DMC results of Ref. 18.

B. Solid phase

Solid 3He is interesting also for its magnetic properties.26

From experiment we know that below a temperature of the
order of the mK a nuclear-spin ordering of the up-up-down-
down, etc. form becomes stable, i.e., there is a stacking of
two planes of the bcc crystal with up spins, followed by two
planes with down spins. Such order is due to a competition
between different processes of atomic exchange between
two, three, or more atoms. These processes can be hardly
observed in standard simulations, and therefore special tech-
niques were developed to overcome this limit.27 We describe

TABLE I. Total and kinetic energy per3He atom at several
densities in the liquid phase~see text!.

r(s23) ^E&/N ~K! ^T& ~K!

0.236 21.83860.049 9.82760.063
0.273 21.82160.029 11.88160.040
0.300 21.56360.037 14.27760.050
0.325 21.18260.035 15.75160.047
0.325* 21.24960.064 16.22460.093

TABLE II. Optimal values of the variational parameters of the
wave function used in this work withd5d↑↑5d↑↓ and
a5a↑↑5a↑↓.

r(s23) b(s) C(s22) d ~K21) a

Liquid
0.236 1.08 3.5 0.095 0.88
0.273 1.08 3.5 0.095 0.88
0.300 1.10 3.5 0.110 0.86
0.325 1.08 3.4 0.090 0.82

Solid
0.427 1.08 3.2 0.095 0.81
0.440 1.11 3.2 0.095 0.81

TABLE III. Total and kinetic energy at equilibrium density
rs350.273 for different functional forms of the trial wave func-
tion. Calculations from Ref. 21 were done atrs350.277.

^E&/N ~K! ^T& ~K! Wave function

21.82160.029 11.88160.040 ShSB
21.0860.03 JS~Ref. 12!
21.5560.04 JSB~Ref. 12!
21.9160.03 ~J1T!SB ~Ref. 12!
22.16360.006 12.27160.008 OJOTB~Ref. 18!
22.3760.01 DMC ~Ref. 18!
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the 3He in the solid phase by the same wave function~1!
used for the liquid. As already mentioned, this is a transla-
tional invariant wave function that provides spontaneous
symmetry breaking at high density. We have performed cal-
culations at two different densities in the solid phase, starting
from an initial configuration of the body centered cubic~bcc!
type with various magnetic orders. We found that the bcc
crystalline order was always stable. We have also performed
a simulation starting from a disordered configuration, in or-
der to see if spontaneous crystallization takes place as in
4He.
When the initial configuration has a normal antiferromag-

netic order~NAF!, we found that such order remained stable
during the simulation, because during our finite MC run
~about 100 000 steps! all particles stay around their initial
positions. The NAF spin ordering gives the lowest energy for
the solid ~see Table IV!. However, this magnetic order did

not remain stable when exchange moves were turned on. As
discussed in the previous section about 12% of such moves
are accepted, and the AF order rapidly decreases from about
unity to a value very close to zero, as can be seen in Fig. 2,
where the staggered magnetizationMs is plotted as function
of the Monte Carlo steps~MCS! performed. The system still
shows a prevailing antiferromagnetic local order as it can be
seen from the spherically averagedg(r ) reported in Fig. 3.
The spin-parallel and spin-antiparallel pair function at
rs350.440 resemble those typical of the liquid phase, apart
from being more peaked atr5A3a/2 for g↑↓(r ) and at
r5a for g↑↑(r ), wherea is the unit cell side. The energy for
this magnetically disordered state increases by about 1 K
over that of the NAF state. Still higher energy is obtained in
the case of the fully polarized state, where all spins have the
same direction: at densityrs350.440, ^E&/N is about 4 K.

We can draw the following two conclusions from the re-
sults discussed above. In the first place the energy for the
NAF state does not correspond to a variational estimate of it,
because the very low rate of processes in which particles
spontaneously exchange their positions does not allow the
system to relax towards a true equilibrium state within the
finite length of our MC runs. Similarly, if one used a
Nosanow wave function with a frozen spin structure, analo-
gous problems would arise. We are not aware of other com-
putations for solid3He using the Aziz interatomic potential,

FIG. 1. ~a! Spin-parallel g↑↑(r ) and ~b! spin-antiparallel
g↑↓(r ) pair functions for liquid 3He at freezing density
rs350.325 for two different parametrizations. Solid lines:d↑↑

Þd↑↓ and a↑↑Þa↑↓; dotted lines:d↑↑5d↑↓ and a↑↑5a↑↓. The
values of the parameters are given in the text.

TABLE IV. Total energy and kinetic energy per particle at two densities in the solid phase for different
functional forms of the trial wave functions. The value of the order parameter proper for the liquid phase is
.0.136.

rs3 Wave function ^E&/N ~K! ^T& ~K! OG ~particles! OG ~shadows!

0.427 ShSB-NAF 0.95560.033 25.82660.065 0.291 0.391
ShSB1exchange 2.05760.039 25.91260.069 0.274 0.392

0.440 ShSB-NAF 1.38260.023 26.51160.047 0.496 0.725
ShSB1exchange 2.40560.042 26.95260.076 0.426 0.679

FIG. 2. Averaged staggered magnetizationMs as a function of
the number of MCS. The density of the sample isrs350.440. The
jump after 104 steps is due to the reset of the estimators after the
equilibration phase.
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and therefore we cannot compare directly our results. How-
ever, at densityrs350.427, a computation performed with a
Lennard-Jones potential and a determinant of Gaussians mul-
tiplied by a Jastrow term22 gave an energy of 1.57 K, about
0.5 K lower than our variational result, and about 0.5 K
higher than our NAF estimate.

The second conclusion we can draw is that the present
wave function overestimates the effect of having different
spin configurations on the value of the binding energy. Being
the ordering temperature of 1 mK and the Curie temperature
of about 2 mK, we should expect the difference in energy
amongst different spin configurations not to exceed few mK
per particle. This is some orders of magnitude smaller than
the difference we find in our computations. Presumably, this
is due to the representation of the nodal surface for a solid
provided by our shadow wave function. The present nodal
structure, strongly dominated by that of the underlying Fermi
gas, induces a large Fermi hole between particles with par-
allel spins. Such an hole does not have a significant effect in
the perfect NAF order, because particles with parallel spins
are second neighbors and hardly become close to each other.
However, the effect of the Fermi hole becomes not negli-
gible as the number of nearest neighbors with parallel spins
increases.

In the crystallization simulation, the initial configuration
was obtained from a previous simulation of a liquid at equi-
librium density r50.273s23, with 54 particles and after
50 000 MCS. It has then been rescaled to obtain the density
r50.44s23, well above the melting density. In Fig. 4 we
report the value of the order parameter both for particles and

shadows during the crystallization run. It can be seen that the
value goes from a value of order 1/AN, typical of a fluid, to
a value of order of unity, as expected in a perfect bcc lattice.
The fact that this value never reaches 1 is due to quantum
fluctuations of particles around the lattice sites, in full anal-
ogy with the simulations performed for4He. The obtained
energy per particle 3.04860.023 K is about 0.6 K higher
than that found when starting from a bcc configuration. This
difference is analogous to that observed in the case of
4He.4 In that case such difference was explained by the fact
that in the crystallization run the particles have frozen with
the crystal axes tilted with respect to the simulation box axes.
This feature, together with the periodic boundary conditions,
induces defects and deformations in the crystalline order.
The analysis of the configurations shows that also in the
present case the crystalline order is not grown parallel to the
simulation box axes.

V. CONCLUSIONS

We have presented results for liquid and solid3He based
on the shadow wave function. In the present wave function
only many-body correlations of symmetric character are in-
troduced by the shadow variables. In the liquid phase we find
a significant improvement in the energy compared to the case
of pure Jastrow correlations. A comparison with the energy
upperbounds yielded by~J1T!SB wave function seems to
indicate that symmetric correlations beyond the triplet level
are less important in3He than in4He or else that such many-
body correlations should have an important antisymmetric
character.

The most important feature of our shadow wave function
is the possibility of describing solid3He without introducing
a priori equilibrium positions. Indeed, we have found that
ShSB wave function is able to provide a stable crystalline

FIG. 3. ~a! Spin-parallel g↑↑(r ) and ~b! spin-antiparallel
g↑↓(r ) pair functions for liquid

3He atrs350.273 ~dashed lines!
and solid3He atrs350.440 in the paramagnetic~solid lines! and
NAF bcc phase~dotted lines!.

FIG. 4. Evolution of the order parameter for the bcc structure
during the numerical simulation of crystallization. Triangles: par-
ticles; squares: left shadows; crosses: right shadows. The value of
the order parameter in a liquid is;0.136. The discontinuity at
23104 MCS is due to the reset of the estimators after the equili-
bration phase.
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order, even starting from a liquidlike configuration of the
atoms. Therefore, the many-body correlations of the shadow
type, at sufficiently high density, introduce a spontaneously
broken translational symmetry. Moreover, the ShSB wave
functions can be easily generalized to include density depen-
dent parameters,9 to describe inhomogeneous systems. Com-
puter simulations for liquid-solid coexistence, which requires
a large number of3He atoms, are at the reach of the present
computational capabilities.

Finally, we have we also found a strong dependence of
the energy on the configuration of the spins in the solid
phase, which indicates that the magnetic properties of solid
3He are very sensitive to the nodal structure of our wave
function. The Fermi hole brought in by the nodal structure of
our wave function, which has a small effect in the perfect
NAF state, becomes more and more important when some

nearest neighbors with parallel spins are present. We expect
that this problem will be better clarified with a shadow wave
function in which the antisymmetric part is written in terms
of the shadow variables. It has been shown28 that in this last
case the nodal structure changes from that of a Fermi gas to
that of a determinant of Gaussians, depending on the density
and on the coupling parameters. This new form of the trial
wave function should provide enough flexibility to give a
more satisfactory description of the solid phase. Work in this
direction is in progress.
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