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The ideas of the shadow wave function are applied to construct a variational wave function to describe the
liquid and the solid phase of a system that obeys Fermi statistics. The shadow variables are introduced in the
symmetric correlating factor. The antisymmetric part is a standard determinant of plane waves modified by
backflow effect. Variational Monte Carlo calculations fitde provide ground-state energies in the liquid phase
at the level of the most elaborate trial function available in the literature. With this wave function, properties
like translational invariance and antisymmetry under particle interchange are maintained even in the crystalline
phase[S0163-18206)08321-X]

[. INTRODUCTION The standard trial wave functions for the ground state
o of a Fermi fluid, like liquid®He, is usually written as the
The shadow wave functiofSWPF (Refs. 1-3 has shown product of two factord! The first is symmetric under inter-
to be a powerful tool in the investigation of quantum solidschange of particles, and often has a Jastrow form. Better
and liquids obeying Bose statistics. In the context of variatesults are obtained if this factor contains also explicit trip-
tional Monte Carlo(VMC) calculations, it has allowed for lets terms?2~1* The second factor is antisymmetric, and of
studying many properties of superfluid and sofide: the the form of a Slater determinant of plane waves. In the ab-
crystallization>*1°the excitation spectrum both at zémnd  sence of spin-flip terms both in the Hamiltonian and in the
at finite temperaturg/ the properties of the roton at finite correlations, the Slater determinant can be decomposed in
temperaturé,and the liquid-solid coexistenen this work  the product of two such determinants, one for particles with
we apply the shadow wave function ideas to the ground statspin up and one for those of spin down. Even better results
of a Fermi system. In this way we obtain a wave functionare obtained if the plane waves are modified by the so-called
that satisfies the properties of translational invariance anbdackflow terms?—1* These wave functions go under the
antisymmetry under particle exchange even in the solidhame of Jastrow-Slater(JS, (Jastrowttriplet)-Slater
phase. [(3+T)S], and(Jastrowttriplet)-Slater-backflow (J+T)SB],
In the shadow wave function particles are correlated byespectively. Shadow variables can be introduced in two
pair terms in the form of a Jastrow factor and indirectly, viamain different way$>® In the first® it is the symmetric
a coupling to subsidiary variables, the shadows. The shadoworrelating factor which is augmented by a shadow factor,
variables are also correlated between themselves by a Jand the antisymmetric part remains written in terms of the
strow factor. Integration over these shadow variables introparticle variables. In this case the nodal structure remains
duces implicitly correlations between the particles not onlyexactly the same as that of a standard wave function, as for
at the pair level but also via triplet, quadruplet, and higherinstance Slater or Slater backflow. The shadow variables in-
order terms. At large enough density these many body cortroduce only many body correlations of symmetric character.
relations become strong enough that the particles beconiehe second possibility is to write the determinant in terms
localized and a crystalline solid becomes stable. In this wapf the shadow variables. In this case the nodal surface for the
one has a wave function which is translationally invariant,particle variables is no more that of the Slater determinant,
while the system displays a spontaneously broken transland the implicit many body correlations introduced by the
tional symmetry. shadow variables are not limited to the symmetric ones.
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In this paper we present the computation fitte based The plan of the paper is the following. The trial wave

on the shadow wave function. We have adopted the firstunction is described in Sec. Il. Section Il discusses the
choice, the one with symmetric shadows. This is Computavariational Monte Carlo method used in the calculation. The

tionally much easier to study than the other choice, and if€sults are presented in Sec. IV. The last section is devoted to

allows for addressing two main issues. From the study ofonclusions.
“He it is known that at equilibrium density the triplet corre-
lations have an important role, but higher order correlations
do not. The situation is quite different when the density in-  Our trial wave functior¥’ contains both the many-body
creases. At the freezing point the energy upperbound giveoorrelations of the shadow type and the backflow correla-
by the shadow wave function is significantly lower than thattions. It consists in the product of the bosonic SWF
obtained with wave functions containing fully optimized Ja- ¥ (R), R={r;|i=1, ... N}, by a factor®(R) embodying
strow and triplets term&.'8 This means that terms beyond the antisymmetry property under particle interchange:

the triplet ones must be of comparable importance. It is

known that also in®*He triplet terms are important at equi- We(R)=Vg(RIP(R). @
librium density to obtain a quantitative understanding of theSince we are modelingHe atT=0 K in the normal phase,
equation of state, and other fundamental properties of thge take ®(R) as the antisymmetrized product of single
liquid, such as the momentum distribution and the structurgarticle orbitals, O(R)={.Zl1¢,(i)]i=1,... N;kskg},
factor. With the present computation we want to see ifwhere. 7 is the antisymmetrization operaterdenotes both
shadow variables are able to represent the effects of suahek vector and the spin state, akg the Fermi momentum.

triplet terms and if there is any evidence of higher orderThe single particle wave functions are taken as plane waves
correlations from the symmetric part becoming important ainodified by backflow correlations

densities close to the freezing point, as*ide.

The more relevant question has to do with the possibility
that the symmetric many body correlations introduced by the
shadow variables are able to give a stable crystalline solid . . .
phase. Helium solids were first described as a product ofNeré7(r) is the backflow function that correlates particle
single particle Gaussians by Nosanow and SHamuch | With the remaining ones of the system,=r;—r,, and
better results were obtained by NosarBwhen short-range  $(1) represents the spin state of particlé=or an unpolarized
correlations were introduced in this wave function through 25YStem oiN particles, there arl/2 of them with spin-up and
correlation factor of the Jastrow form. VMC calculations for @0 €qual number with spin-down. Sineg(R) does not
crystal *He where first performed by Hansen and Levegdue contain spin-flip correlations, in the calculation of the expec-
using a Nosanow-Jastrow wave function. Similar resultdation value of any spin-independent operatb(R) of Eq.
have been obtained later on by Ceperyal,?? who con- (1) ¢an be written as
sidered also a determinant of Gaussians in addition to a
simple product of one-body Nosanow terms. All these calcu- ®(R)=)det[ ¢, (i)]det[d,(])]
lations were based on wave functions that have factors
breaking the translational invariance, aadpriori equilib- N

o

Il. THE FERMI SHADOW TRIAL WAVE FUNCTION

&, @

¢K(i):ex+k' rﬁ”\s% 7I(ri|)ri|)

N| Z

i=1,...,

rium positions for the atoms have to be assumed. In fact, j==+1,... N;ks (©)]
these factors, products of Gaussian one-body terms, con- 2
strain particles to remain around the assumed equilibriunmamely the product of two Slater determinants, one for each
positions forming a regular lattice. Although much useful spin state of the particles. We choosggr) to be of the
information as obtained using such procedure, this class dbrm?®?
wave functions have precluded the investigation of many 3 )
interesting phenomena. The crystallization of a liquidlike _(r_RB) F{_(r_rB) }

. . T, , . n(r)= ex : 4
configuration and the solid-liquid coexistence phase are typi- Rg Wpg
cal examples that cannot be studied by imposangriori where g, g, andwg are variational parameter&g is

equilibrium positions. On the other ha}nd, a sir_nple WaV€aken as half of the simulation cell. The bosonic term of
function of the Jastrow form together with an antisymmetri- (R) in Eq. (1) is of the shadow type, and is given by
zation factor, although being able to give rise to a crystal, © ' '

would give a crystal with too tightly localized particles, pro-
viding an unacceptable description of the system. ‘I'B(R):f dSKR,S)¥s(S), ®)
Our computation shows that with symmetric shadows one

can obtain a stable crystal without any one-body term tha‘f"heresz{S1|i =1,... N} denote the shadow vari.ables, that
localize particles in a givea priori lattice, still leaving the &re correlated bysy(S). The kemelK(R,S) consists of a

correct antisymmetry of the wave function. We find also evi-Preduct of a function(R), correlating the particles, and a
dence for crystallization when the system is started from dunction ©(R,S) binding the particles to the shadows,
liquidlike configuration. The most important outcome of our "@mely

results is that the shadow wave function we propose to de- )
scribe both liquid and solidHe, can therefore certainly be K(R,9)=¢(R)O(R,S)=y(R)[] e clri—sl",
used to perform realistic studies of the liquid solid coexist- !

ence and interface. The factorsy(R) and #(S) are chosen of the Jastrow form

(6)
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Ill. VARIATIONAL MONTE CARLO METHOD

R)=]] e 24" and ¢y(S)=]] e U, (7
VR JH<I vs(S) JH<I @ We have computed the energy per particle’die at sev-

eral densities both in the liquid and solid phases,
The particles pseudopotentia{r) is taken of the McMillan

form, = HY "
N_ ,\P ) ( )
b\® -
u(r)=(—) , (8)  where the angular brackets denote averages taken with re-

r spect configurations sampled from the function

whereas for the shadows,(s) is taken of the form P(R,S,S)=A(RK(R,S)K(R,S ) ths(S) 1h(S). (12)
. . , , In the Hamiltonian of the system
" 1+ o,()oyj) 11 1-o,()oyj)
Us(Sj1) = Ug (Sjl)f"'us (%Of, 52 ,

(9) HZ_%E Vi‘l';j V(rij), (13)

whereo, is thez component of the Pauli matrices. This form the two-body interatomic potential considered is the Hartree-
of ug(s) allows for different correlations between spin- Fock dispersion HFDHE2 potential by Azet al*®

parallel and spin-antiparallel pairs. The shadow-shadow The simulations are performed considering periodic
pseudopotential§ul|c=11,1]} are equal to the two-body boundary conditions. These conditions determine the wave
interaction potential of the system rescaled in its amplitude/6ctorsk;=2mn/L, whereL is the side of our cubic simu-
and its range by variational parametérs: lation cell andneZ3. To ensure the correct ground state
symmetries for the wave function we consider in the simu-
lations a number of particles that fill a complete shell in
momentum space. It is well kno#hthat single particle

_ ) ) moves in the Metropolis random walk is usually the most
In the case of He it has been shovihthat this choice for the  efficient way for particles to diffuse in the configuration

shadow-shadow pseudopotential is significantly better thagpace when the Fermi statistics is enforced without momen-
the McMillan form used in the original computations. tum dependent correlations. On the other hand, when dealing
This wave function will hereafter be denoted as shadowyith a determinantal wave function that includes backflow, a
Slater backflow(ShSB wave function. It is translational in-  cojlective move with an optimized transition probability den-
variant and fully antisymmetric under particle exchange. Thejty gives the lowest variance for a given amount of com-
motivation of the ShSB wave function is based on the aspyter time?? For this reason, in our calculations we attempt
sumption that the state-dependent correlations are reasonatg,lmgb moves for the shadows and collective moves for the
well described by backflow correlations. Consequently, thgarticles. Most of our simulations were done for 54 atoms.
n-body correlations witm>2 are basically state indepen- Finjte size effects on the binding energy have been estimated
dent and therefore can be efficiently treated by means of g ihe equilibrium density, using 14, 38, 54, and 66 atoms.
shadow-type factor. In fact, the crystallization mechanism isl’hey have been found to be of about 0.15 K.
expected to be driven by such many-body correlations, as in |y some of the runs, an additional kind of trial move has
“He. Nevertheless we are aware of the fact that the nodajeen implemented, namely the exchange of particles with
structure of ShSB trial function is not optimal. Diffusion gifferent spin assignment. These moves turned out to be very
Monte Carlo calculations, performed fixing the nodal surface,mportam in the solid phase. The exchange move has been
of the wave function to that of the Slater backflow function, 4one every 100 ordinary Monte Carlo steps. We have tried to
lead to an equation of state which misses the experiment@l\,\,ap pairs of particles randomly chosen. For efficiency rea-
data by~10%:° Finally, we mention that the Pauli principle sons, the considered number of such attempts was of the
induces an effective short range repulsion among particlegrger of the number of particles. The acceptance ratio of this
with parallel spin which should affect their correlation fac- exchange moves has been found to be about 12%.
tors. In our wave function this feature was taken into account  Other quantities of interest, such as the pair correlation
by the introduction ofug that are meant to correlate in a function and the crystalline order parameters have also been
different way spin-parallel and spin-antiparallel pairs. computed. The pair correlation function has been decom-
The only variational parameters in the ShSB trial functionposed into the spin parallel and spin antiparallel components
that have been optimized in this work age 6%, «”, and o
b. Since the optimization of the backflow parameters at the 1 <'§ 1xo,(i)o,())

u?(s)=6"V(a’s). (10)

equilibrium densitypa®=0.273 (¢=2.556 A have led only 9i1,11(r)= Np | & 5 a(rij—r) ), (14
to a marginal improvement on the energy upperbound, we "

have kept the values of Ref. 12 for all the densities considwhere the plus and minus sign refersgo (r) andg; (r),
ered fhg=—1, rg=2.173 A, andwg=1.278 A. We have respectively. These quantities provide information about the
not attempted, in this exploratory study, to go beyond thdocal spin ordering of the system, for both the liquid and
McMillan form for the particle-particle pseudopotential and solid phases.

to fully optimize u(r), as done in Ref. 23, following the In the course of the numerical experiment for the crystal-

Euler Monte Carlo method of Refs. 24, 17, and 18. lization of the system we have monitored the order parameter
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TABLE |. Total and kinetic energy pefHe atom at several TABLE lll. Total and kinetic energy at equilibrium density

densities in the liquid phassee texk pa®=0.273 for different functional forms of the trial wave func-
tion. Calculations from Ref. 21 were done@t®=0.277.

oo (E)IN (K) (T) (K)
(E)/N (K) (T) (K) Wave function

0.236 —1.838+0.049 9.82%0.063

0.273 —1.821+0.029 11.88%0.040 —1.821+0.029 11.88%+0.040 ShSB

0.300 —1.563+0.037 14.27%0.050 —1.08+0.03 JS(Ref. 12

0.325 —1.182£0.035 15.75%0.047 —1.55-0.04 JSB(Ref. 12

0.325¢ —1.249+0.064 16.224:0.093 —-1.91=0.03 (J+T)SB (Ref. 12
—2.163+0.006 12.27%0.008 OJOTB(Ref. 18
—2.37+0.01 DMC (Ref. 18

N
exp(iGp, i)
=1

1
O =— | X , )
Mg N\ 7 i . )

perbound which largely improves upon the results of Jastrow
where{G} is a star ofmg, vectors in the reciprocal lattice. model, and it is just 0.1 K above the energy given by the
This was done to ensure that the final averages are taken witd+T)SB model.
respect to configurations that describes really a solid phase. The importance of backflow correlations can be seen
Note that the order parameter as it is defined here is not zermomparing JS and Jastrow-Slater-backfléd&B models.

in the disordered phase, but it@;(y\/ﬁ)_ The values of the backflow parameters in the JSB,T)SB,
and ShSB wave functions are the same. Therefore the corre-
IV. RESULTS sponding energies presented in Table Il are directly compa-
rable. The result labeled with OJOTB have been obtained by
A. Liquid phase optimizing both Jastrow and Triplet correlations and using a

Let us first discuss the results obtained with the ShseSlater-backflow wave function for the antisymmetric pért.
wave function for the liquid phase. In Table | we report the They are not directly comparable with the other results, and
results for the total and kinetic energy at several densities dfave been included for the sake of comparison. The differ-
the liquid phase. These results were obtained with numericgnce between our ShSB and the fixed node DMC result is of
simulations for 54 atoms, keeping the spin-parallel and thdhe same order of magnitude as the one found in the case of
spin antiparallel components of(s) equal. At the highest ~He described by the SWF and the Green'’s function Monte
density consideregho®=0.325 we have also performed a Carlo result. _
full minimization, releasing the constraing''=4'! and At the freezing densityo°=0.325, the(J+T)SB wave
a'"=a'!. The improvement in the total energy is only function gives an energy of 1.334+0.052 K, and this is
nominal, although the kinetic energy increases considerablgbout 0.1 K below the value of ShSB. Thus we do not see
(see last line of Table | denoted by 0.335For this last case Nere the improvement that shadow wave function gives with
the optimal variational parameters turn out totbe 1,11, ~ 'eSpect to 3T in the case of'He near the freezing point. A
C=350"2 6'1=0.095 K1 6!=0090 K1 ol possible reason for this feature is the lower value of the
=0.86, @' ' =0.91. The optimal values of the variational pa- freezing density ofHe. Correlations of the shadow-type be-
rameters determined with the constraii=8''=s'! and Yond the triplet level might be less important here. The other
a=a'T=a'! are listed in Table II. possibility is that in the case of a Fermi system these many-

The total energy and the kinetic energy per particle apody correlations have a significant antisymmetric character,
equilibrium density provided by various model trial func- and t_hls feature is not captured by the present shadow wave
tions are compared in Table Ill. For completeness we alsé“nction. _ _
report the results obtained with fixed-node diffusion Monte The sp.|n—paraII<§I and spin-antiparallel components of the
Carlo (DMC) of Refs. 17 and 18. Similarly to what happens P&ir function atpo”=0.325 are displayed in Fig. 1 for the

for liquid “He, shadow-type correlations lead to energy up- WO cases: o -independent ando,-dependent shadow-
shadow pseudopotential. The,-dependentug reduces the

TABLE II. Optimal values of the variational parameters of the Short range antiferromagnetic order, in agreement with the
wave function used in this work withs=5'"=8"" and DMC results of Ref. 18.

B. Solid phase
p(o7%) b(a) C(o7?) s (K™ @
Solid 3He is interesting also for its magnetic propertiés.

Liquid From experiment we know that below a temperature of the
0.236 1.08 3.5 0.095 0.88  order of the mK a nuclear-spin ordering of the up-up-down-
0.273 1.08 35 0.095 0.88 down, etc. form becomes stable, i.e., there is a stacking of
0.300 1.10 35 0.110 0.86 two planes of the bcc crystal with up spins, followed by two
0.325 1.08 3.4 0.090 0.82 planes with down spins. Such order is due to a competition

Solid between different processes of atomic exchange between
0.427 1.08 3.2 0.095 0.81 two, three, or more atoms. These processes can be hardly
0.440 1.11 3.2 0.095 0.81 observed in standard simulations, and therefore special tech-

niques were developed to overcome this lifditVe describe
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not remain stable when exchange moves were turned on. As
r/a discussed in the previous section about 12% of such moves
are accepted, and the AF order rapidly decreases from about
FIG. 1. (a Spin-parallel g;;(r) and (b) spin-antiparallel unity to a value very close to zero, as can be seen in Fig. 2,
g (r) pair functions for liquid ®He at freezing density where the staggered magnetizatidy is plotted as function
pa®=0.325 for two different parametrizations. Solid lines!'!  of the Monte Carlo stepdICS) performed. The system still
#6'" and a!T#a'!; dotted lines:5''=6"! and a!'=a''. The  shows a prevailing antiferromagnetic local order as it can be
values of the parameters are given in the text. seen from the spherically averagg(r) reported in Fig. 3.
The spin-parallel and spin-antiparallel pair function at
the He in the solid phase by the same wave functign po>=0.440 resemble those typical of the liquid phase, apart
used for the liquid. As already mentioned, this is a translafrom being more peaked at=/3a/2 for g;,(r) and at
tional invariant wave function that provides spontaneous =a for g;;(r), wherea is the unit cell side. The energy for
symmetry breaking at high density. We have performed calthis magnetically disordered state increases by about 1 K
culations at two different densities in the solid phase, startingver that of the NAF state. Still higher energy is obtained in
from an initial configuration of the body centered culiicc)  the case of the fully polarized state, where all spins have the
type with various magnetic orders. We found that the bcasame direction: at densifyo®=0.440,(E)/N is about 4 K.
crystalline order was always stable. We have also performed We can draw the following two conclusions from the re-
a simulation starting from a disordered configuration, in or-sults discussed above. In the first place the energy for the
der to see if spontaneous crystallization takes place as INAF state does not correspond to a variational estimate of it,
“He. because the very low rate of processes in which particles
When the initial configuration has a normal antiferromag-spontaneously exchange their positions does not allow the
netic order(NAF), we found that such order remained stablesystem to relax towards a true equilibrium state within the
during the simulation, because during our finite MC runfinite length of our MC runs. Similarly, if one used a
(about 100 000 stepsall particles stay around their initial Nosanow wave function with a frozen spin structure, analo-
positions. The NAF spin ordering gives the lowest energy forgous problems would arise. We are not aware of other com-
the solid (see Table 1. However, this magnetic order did putations for solid®He using the Aziz interatomic potential,

TABLE IV. Total energy and kinetic energy per particle at two densities in the solid phase for different
functional forms of the trial wave functions. The value of the order parameter proper for the liquid phase is

=0.136.

pol Wave function (E)N (K) (T) (K) Og (particles Og (shadows

0.427 ShSB-NAF 0.9550.033 25.826:0.065 0.291 0.391
ShSB+exchange 2.05%0.039 25.9120.069 0.274 0.392

0.440 ShSB-NAF 1.3820.023 26.51%0.047 0.496 0.725

ShSBtexchange 2.4050.042 26.9520.076 0.426 0.679




15134 F. PEDERIVAet al. 53

- l ' ' T l ' T T T i T L 05 | 1 T T T T T T T T T T T T T T
1C 7 i ]
s @ : : |
r ] 0.4 -
= 06 [ 7 i R ]
b% B - L D:" -
0.4 '_ —_ 03 B ‘:‘:x Y YYLYYS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA_
: : 'G‘ - ox -
02 [ . o Fooe s ]
0 | l__ 02 :_QXXXAA __
] 2 4 6 [ 2% 1
r/o L+ i
T T T T T T T T T T T T T 01 __ *_
1 7 L .
08 [ - I TETETR AR BN RN PR
C b 0 2x10* 4x10* 6x10* 8x10* 10%
508 [ 7 MCS
5 0 :
04 [ ] FIG. 4. Evolution of the order parameter for the bcc structure
r ] during the numerical simulation of crystallization. Triangles: par-
02 [ 7 ticles; squares: left shadows; crosses: right shadows. The value of
] the order parameter in a liquid is0.136. The discontinuity at
0 L T 2x10* MCS is due to the reset of the estimators after the equili-

o
N
E-
[2)]

bration phase.
r/o

FIG. 3. (a) Spin-parallel g;(r) and (b) spin-antiparallel shadows during the crystallization run. It.can be seen that the
g:,(r) pair functions for liquid®He at po®=0.273 (dashed lines value goes from a value of orderyI, typical of a fluid, to
and solid®He atpo3=0.440 in the paramagnetisolid lineg and & value of order of unity, as expected in a perfect bcc lattice.
NAF bce phasedotted lines. The fact that this value never reaches 1 is due to quantum

fluctuations of particles around the lattice sites, in full anal-
and therefore we cannot compare directly our results. Howegy with the simulations performed fdtHe. The obtained
ever, at densityo3=0.427, a computation performed with a energy per particle 3.0480.023 K is about 0.6 K higher
Lennard-Jones potential and a determinant of Gaussians muhan that found when starting from a bce configuration. This
tiplied by a Jastrow terfd gave an energy of 1.57 K, about difference is analogous to that observed in the case of
0.5 K lower than our variational result, and about 0.5 K “He® In that case such difference was explained by the fact
higher than our NAF estimate. that in the crystallization run the particles have frozen with

The second conclusion we can draw is that the presenhe crystal axes tilted with respect to the simulation box axes.
wave function overestimates the effect of having differentThis feature, together with the periodic boundary conditions,
spin configurations on the value of the binding energy. Beindnduces defects and deformations in the crystalline order.
the ordering temperature of 1 mK and the Curie temperaturghe analysis of the configurations shows that also in the
of about 2 mK, we should expect the difference in energypresent case the crystalline order is not grown parallel to the
amongst different spin configurations not to exceed few mKsimulation box axes.
per particle. This is some orders of magnitude smaller than
f[he difference we find in our computations. Presumably, thi_s V. CONCLUSIONS
is due to the representation of the nodal surface for a solid
provided by our shadow wave function. The present nodal We have presented results for liquid and solide based
structure, strongly dominated by that of the underlying Fermion the shadow wave function. In the present wave function
gas, induces a large Fermi hole between particles with paenly many-body correlations of symmetric character are in-
allel spins. Such an hole does not have a significant effect itroduced by the shadow variables. In the liquid phase we find
the perfect NAF order, because particles with parallel spins significant improvement in the energy compared to the case
are second neighbors and hardly become close to each othef.pure Jastrow correlations. A comparison with the energy
However, the effect of the Fermi hole becomes not negli-upperbounds yielded b{J+T)SB wave function seems to
gible as the number of nearest neighbors with parallel spingdicate that symmetric correlations beyond the triplet level
increases. are less important ifHe than in*He or else that such many-

In the crystallization simulation, the initial configuration body correlations should have an important antisymmetric
was obtained from a previous simulation of a liquid at equi-character.
librium density p=0.273"3, with 54 particles and after The most important feature of our shadow wave function
50 000 MCS. It has then been rescaled to obtain the densitig the possibility of describing solidHe without introducing
p=0.440"3, well above the melting density. In Fig. 4 we a priori equilibrium positions. Indeed, we have found that
report the value of the order parameter both for particles an@hSB wave function is able to provide a stable crystalline
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order, even starting from a liquidlike configuration of the nearest neighbors with parallel spins are present. We expect
atoms. Therefore, the many-body correlations of the shadowhat this problem will be better clarified with a shadow wave
type, at sufficiently high density, introduce a spontaneouslfunction in which the antisymmetric part is written in terms
broken translational symmetry. Moreover, the ShSB wavef the shadow variables. It has been sh&that in this last
functions can be easily generalized to include density depertase the nodal structure changes from that of a Fermi gas to
dent parameterto describe inhomogeneous systems. COMthat of a determinant of Gaussians, depending on the density
puter simulations for liquid-solid coexistence, which requiresgnd on the coupling parameters. This new form of the trial
a large number ofHe atoms, are at the reach of the preseniyave function should provide enough flexibility to give a

computational capabilities. more satisfactory description of the solid phase. Work in this
Finally, we have we also found a strong dependence Ofjirection is in progress.

the energy on the configuration of the spins in the solid

phase, which indicates that the magnetic properties of solid

SHe are very sensltlve to the nqdal structure of our wave ACKNOWLEDGMENT

function. The Fermi hole brought in by the nodal structure of

our wave function, which has a small effect in the perfect The authors would like to acknowledge many useful dis-
NAF state, becomes more and more important when someussions with M. H. Kalos.
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