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We consider a band of fermions in two space dimensions with a flux phase~relativistic! dispersion relation
coupled to a local magnetic impurity via ans-d interaction. This model describes spinons of a flux phase and
it is also a qualitative model of the quasiparticles in adx22y2 superconductor. We find a zero-temperature phase
transition at a finite coupling constant between a weak coupling unscreened impurity state and a strong
coupling regime with a Kondo effect. We use large-N methods to study the phase transition in this Kondo
system away from marginality. The Kondo energy scales linearly with the distance to the transition. The
zero-field magnetic susceptibility at zero temperature diverges linearly. Similar behavior is found in theT
matrix which shows a resonance at the Kondo scale. However, in addition to this simple scaling, we always
find the presence of logarithmic corrections to scaling. Such behavior is typical of systems at an upper critical
dimension. We derive an effective fermion model in one space dimension for this problem. Unlike the usual
Kondo problem, this system has an intrinsic multichannel nature which follows from the spinor structure of
(211)-dimensional relativistic fermions.@S0163-1829~96!01822-X#

I. INTRODUCTION

It is by now well understood that the presence of a small
concentration of magnetic impurities into an otherwise non-
magnetic metallic host can affect dramatically the low-
temperature properties of the system. The prototype of these
interesting phenomena is the Kondo effect.1 At the single-
impurity level, there is a nonperturbative crossover between
a Curie-Weiss law behavior~in which the impurity behaves
like a noninteracting localized magnetic moment! at high
temperature and a strongly interacting regime in which the
magnetic impurity and the band electrons form a singlet
ground state. In other words, in this low-temperature~strong-
coupling! regime, the band electrons ‘‘conspire’’ to screen
out the spin~and magnetic moment! of the impurity. At zero
temperature a similar crossover occurs as a function of an
external magnetic field. This picture has been developed by
the concerted use of the renormalization group,2,3 ‘‘exact’’
numerical simulations and scaling,4 exact solutions via the
Bethe ansatz,5,6 and large-N expansions.7,8

From the point of view of scaling, the Kondo problem is
a typical situation in which a trivial fixed point, which de-
scribes band electrons decoupled from the magnetic impu-
rity, is destabilized by amarginally relevantperturbation, the
coupling to the magnetic impurity. This leads to anasymp-
totically free renormalization group flow with ab function
which is quadratic in the coupling constant. Marginal pertur-
bations appear in critical systems at acritical dimension. The
standards-d Kondo Hamiltonian is effectively a model of
one-dimensional chiral fermions coupled to a single mag-
netic impurity through the forward scattering channel.5

Clearly, in this case we are at thelowestcritical dimension.
This is a direct consequence of the fact that the band elec-
trons have a Fermi surface where the density of states is
finite and essentially constant. Thus, the Kondo effect is ul-
timately due to the availability of states in the electron band
which can efficiently screen the impurity spin no matter how

weak the exchange coupling constant may be.
Some time ago Withoff and Fradkin9 ~WF! considered a

generalization of the Kondo problem to systems in which the
density of band electron states may actually go to zero at the
Fermi energy. They showed that if the density of states of the
electron band vanishes at the Fermi energy as a positive
power of the energy, the Kondo effect is suppressed for
small values of the exchange constant and that Kondo
screening only happens beyond a critical value of this cou-
pling. In fact, it is easy to see that the exponentr of the
one-particle density of states,N(E)}uE2EFur , plays a role
here quite analogous to the distance to the lower critical di-
mensiond2dc in critical phenomena. WF showed, using a
combination of a ‘‘poor man’s scaling argument’’ and a
large-N limit, that at least for small values of the exponent
r , this is the correct picture. Quite generally, if the exponent
r.0, this is a nonmarginal Kondo system.

There are a number of systems of physical interest where
this situation does arise. A simple example is the fermionic
excitations of a quantum antiferromagnet in aflux phase.10

More importantly, the normal state excitations of ad-wave
superconductor~with symmetrydx22y2) behave precisely in
this fashion.11 In the vicinity of eachnodeof the gap func-
tion ~hence, the use of the term ‘‘node’’ hereafter!, the dis-
persion relation for the normal quasiparticles is linear in the
momentum. Thus, sufficiently close to the node, the quasi-
particles have an effective relativisticlike dispersion. In the
theory of superconductivity~isotropic or not! ~Ref. 12! the
dynamics of the quasiparticles is usually pictured in terms of
Nambu spinors. For the case of ad-wave superconductor,
Nersesyan, Tsvelik, and Wenger13 have shown that this ap-
proach leads to an effective Hamiltonian for the quasiparti-
cles which takes the form of a massless Dirac Hamiltonian
for each node of the gap, with the ‘‘speed of light’’ equal to
the Fermi velocity.~Naturally, relativistic massless Dirac fer-
mions themselves always have this property.! In this paper
we consider a model which describes properly the coupling
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of flux-phase fermions to a magnetic impurity. It turns out
that this model can also be used to describe the coupling of a
local magnetic impurity to ad-wave superconductor, includ-
ing pair-breaking effects. In a separate publication we will
discuss in detail the problem of a magnetic impurity in a
d-wave superconductor in more detail.14,15

In this paper we reconsider the Kondo effect for nonmar-
ginal systems. The model has fermions coupled locally to a
magnetic impurity. The fermions are assumed to obey a rela-
tivisticlike dispersion law and hence a density of states van-
ishing linearly with the energy. For simplicity we consider
models with just one species of ‘‘relativistic’’ fermions. We
will refer to them as ‘‘having a single node.’’ In particular
we will discuss the case of an impurity coupled to an elec-
tron band with a density of states that vanisheslinearly with
distance to the Fermi energyEF[0. This case was not ex-
amined by WF who found that the singularity structure
changed as soon asr.1/2. We will show in this paper that at
r51 the additional singularities ‘‘conspire’’ to givesimple
scaling lawsmodified bylogarithmic corrections.16 This pic-
ture is strongly reminiscent of a critical system at anupper
critical dimension.

As in the conventional Kondo problem, here too we can
construct an effective one-dimensional theory. However,
when one carefully reduces the (211)-dimensional fermi-
ons with a relativisticlike energy-momentum dispersion to an
effective (111)-dimensional model, one finds that there are
at least two angular momentum channels that arealways
coupled. Thus, these are allinherentlymultichannel Kondo
systems. In particular, it is always thel 50 channel coupled
either tol 51 channel or tol 521 channel. Which pair of
angular momentum channels are actually coupled depends
on theparity of the node~or cone! to which the channels
belong. We find two equivalent ways to represent the dimen-
sionally reduced model. We have the freedom to choose the
effective (111)-dimensional fermions to have a local ki-
netic energy and, hence, to behave like conventional right
movers. However, in this picture, the effective interaction
with the impurity becomes nonlocal. The other, alternative
picture, is to have a local coupling between right-moving
fermions which now have a nonlocal kinetic energy. In fact,
due to phase space factors, the density of states of the effec-
tive (111)-dimensional model goes to zero linearly with
energy. The linearity of the density of states reflects the fact
that in the original problem the fermions move in two space
dimensions. It is this feature what drives the system out of
marginality and which generates a critical coupling constant
below which the width of the Kondo resonance vanishes.

In all cases of physical interest,parity is an exact symme-
try. This means that the number of nodes~cones! is evenand
that there should be as many cones with positive parity as
there are with negative parity. In the case of both the
d-wave superconductors and of the flux-phase fermions, this
property follows from the alternating signs of the gap func-
tion. In contrast, if either parity or time reversal were broken,
all four cones would have the same properties under parity.
However, in that case there would always be a nonzero en-
ergy gap on the entire Fermi surface. Thus, in general, the
effective Kondo Hamiltonians always have an exact degen-
eracy~angular momentum channels!. The spin symmetry is
the usual SU~2! spin rotation invariance~which here we call

color!. Here we will work with the SU(Nc) generalization of
this symmetry, with the physicalNc52. The angular mo-
mentum degeneracy leads to SU(Nf) flavor degeneracy. For
a problem with one node,Nf52. When more than one node
is considered,Nf.2. We will also consider impurity scatter-
ing amplitudes which may change the angular momentum of
the fermions. The basic and simplest model is worked out in
Sec. II.

In the second part of the paper we use large-N methods to
investigate the behavior of these systems near the critical
coupling.7 We find that there is still a Kondo scale once we
go over the critical coupling. However, the position and the
width of the resonance are not related anymore in the very
simple way they are in the usual Kondo effect. The details
are worked out in Sec. III. The most salient feature of our
results is the presence of logarithmic corrections to simple
scaling in all quantities of physical interest, including the
zero-field paramagnetic susceptibility~at T50), the Kondo
scale, and theT matrix for bulk fermions.

The large-Nc theory that we present here suggests the
following scenario. For small values of the coupling constant
J, the impurity is free and effectively paramagnetic. In con-
trast, for large values ofJ, the impurity is screened by fer-
mions. The critical couplingJc is dimensionful and scales
with the energy cutoff. However, the fact that these systems
are inherently multichannel Kondo systems suggests that for
J>Jc the impurity is actuallyoverscreened.17 In the lan-
guage of the renormalization group this requires a flow with
two finite fixed points: oneinfrared unstablefixed point for
the paramagnetic-Kondo phase transition and aninfrared
stable to describe the multichannel behavior of the Kondo
phase. As in the conventional Kondo problem, the large-Nc

theory can only describe the formation of the Kondo singlet
which in a nonmarginal system can only take place at finite
coupling. In marginal Kondo systems multichannel behavior
is found as a next-to-leading-order effect in the 1/Nc expan-
sion or to third order in perturbative scaling.18 In the systems
of physical interest mentioned above where this model ap-
plies, the number of channels,Nf , is always larger than the
number of colors. In such a situation one can imagine that
there exists a critical number of channels such that both fixed
points actually coincide and below this critical number the
transition disappears altogether.19We should emphasize here
that this physics cannot be accessed by a straightforward use
of the large-Nc expansion.

The paper is organized as follows. In Sec. II we derive the
effective (111)-dimensional impurity models for systems
of fermions in two space dimensions with relativisticlike dis-
persion~flux phase!. In Sec. III we study these models in the
large-N limit and determine their critical behavior. In Sec. IV
we calculate the propagator for the band fermions in the
N→` limit and use it to derive theT matrix. In Sec. V we
consider a model with the most general type of scattering
process for fermions with only one node coupled to a single
impurity and determine the phase diagram. Section VI is
devoted to the conclusions and to discussions of the similari-
ties and differences between the problem we discuss here
and the conventional Kondo problem. In the Appendix we
sketch the calculations of a few integrals.
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II. TOY MODEL: s-d HAMILTONIAN
FOR A LINEAR DENSITY OF STATES

In this section we want to study thes-d Hamiltonian in
the manner of Read and Newns,7 with the difference that we
are not assuming a constant density of states for the conduc-
tion fermions. We are coupling anf impurity to a bath of
‘‘relativistic’’ electrons, i.e., electrons with a linear disper-
sion relation. We assume that the chemical potential for the
electrons~the Fermi energy! is zero. This is a very special
case but it will turn out to be quite important for the case of
a d-wave superconductor as will be discussed in the follow-
ing sections.

We start with a two-dimensional free fermion Hamil-
tonian with a linear spectrum and a Fermi velocityvF which
may correspond to the linearization of a fermion band of
width 2D, whereD is an energy cutoff. We will consider a
model of band fermions withNc5N spin components with
N52 for the physically relevant case of spin SU~2!. In gen-
eral, this model will have a global SU(Nc) ‘‘color’’ ~or spin!
symmetry. This model has a well-defined large-N limit. The
free part of the Hamiltonian is

H05E d2p

~2p!2
Cs i

† ~p!~vFpW •aW ! i jCs j~p!, ~2.1!

wherea1 anda2 are Pauli matrices, so that

pW •aW 5p1a11p2a25pS 0 e2 iu

eiu 0 D . ~2.2!

Equation~2.2! can be diagonalized by expanding the fields
into a linear combination of spinor eigenstates. Let us call
themu6 . These eigenmodes satisfy

vFpW •aW u656vFupuu6 . ~2.3!

A particular ~and convenient! choice of eigenstates is given
by

u6
~1!5

1

A2
and u6

~2!56
eiu

A2
. ~2.4!

The fieldsC ’s carry a spin indexs apart from the spinor
index i and j which we ignore at this point but we shall put
it back in when dealing with the interaction with the impurity
term

C i~p!5 (
l56

ui
l~p!zl~p!, ~2.5!

so that

C1~p!5
1

A2
@z1~p!1z2~p!#,

C2~p!5
1

A2
@z1~p!2z2~p!#eiu. ~2.6!

Now we can expand thez fields in a basis of angular mo-
mentum eigenmodes,

z6~p!5 (
m52`

`

eimuz6,m~p!, ~2.7!

wherem is an integer and6 indicates the positive-negative
energy spinor eigenmodes of the Dirac equation given by Eq.
~2.1!. We then have

H05 (
m52`

` E
0

`pdp

2p
vFupu@z1,m

† ~p!z1,m~p!

2z2,m
† ~p!z2,m~p!#. ~2.8!

In real space we have

C i~rW !5E
0

`pdp

2p (
l56

E
0

2p du

2p (
m52`

`

ui
l~u!eip

W
•rWeimuzm,l~p!.

~2.9!

To reduce this to an equivalent one-dimensional problem we
use polar coordinates wherepW [(p,u), rW[(r ,f), and
pW •rW5prcos(u2f). By making use of the expansion,

eizcosw5 (
n52`

`

i nJn~z!einw, ~2.10!

whereJn(z) are the Bessel functions. They satisfy the rela-
tions

E
0

2p du

2p
eiprcos~u2f!1 imu5 i mJm~pr !eimf

since J2n~z!5~21!nJn~z!. ~2.11!

Using these in Eq.~2.9! one gets

C1~r ,f!5E
0

`pdp

2p

1

A2 (
m52`

`

i mJm~pr !e2 imf

3@zm,1~p!1zm,2~p!#,

C2~r ,f!5E
0

`pdp

2p

1

A2 (
m52`

`

i m11Jm11~pr !e
2 i ~m11!f

3@zm,1~p!2zm,2~p!#. ~2.12!

At the impurity site, i.e., forr→0, J0(0)51 andJm(0)50
for mÞ0. So we are left with

C1~0!5E
0

`pdp

2p

1

A2
@z0,1~p!1z0,2~p!#,

C2~0!5E
0

`pdp

2p

1

A2
@z21,1~p!2z21,2~p!#. ~2.13!

This is telling us that the effect of having a conelike disper-
sion relation for the fermions instead of a flat band will not
only reduce the available density of states but it will also
induce an angular momentum mode mixing. Even though we
may regard the impurity as having ad-function spatial form
factor as in the case of the usual Kondo effect, the coupling
to the fermions will no longer be restricted only to thes
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wave or the spherically symmetric angular momentum chan-
nel. This feature will become evident in the following step.
We want to rewrite the theory by introducing effective one-
dimensional fermion operators. We use the radial component
of incoming and outgoing waves. We find two ‘‘flavors’’ of
right movers given by

c1~p![Aupuz1,0~ upu!,

c2~p![Aupuz1,21~ upu! for p.0,

c1~p![Aupuz2,0~ upu!,

c2~p![2Aupuz2,21~ upu! for p,0. ~2.14!

In other words,c1 are the fermion states with angular mo-
mentuml 50 while c2 are the fermion states with angular
momentuml 521. We summarize these mappings as

C i~0!5
1

A2
E

2`

` dp

2p
Aupuci~p!. ~2.15!

For a system with an SU(Nc) symmetry, thes-d interaction

can be written in the form

H imp5Ca
†~0!tab

a Cb~0!Sa[Ca
†~0!tab

a Cb~0! f g
†tgd

a f d ,

~2.16!
where f g

†tgd
a f d is the impurity spin coupled to the electrons

at the real-space positionx50. For a system with an
SU(Nc) symmetry,a51, . . . ,Nc

221. We will use the stan-
dard representation of spin operators@here, the generators of
SU(Nc)# defined in terms of the fermion operatorsf g as
f g
†tgd

a f d . If the constraintf g
† f g51 is satisfied, the impurity

is in the lowest~fundamental! representation of SU(Nc).
Other representations can be constructed by changing the
‘‘filling fraction’’ of the impurity spin. Notice that, for
SU(2), theonly possible value of the filling fraction is equal
to one.

Once again we stress the fact that the angular momentum
channels given bym50 andm521 couple to the impurity.
This is an important difference with respect to the case of
constant density of states, where only them50 channel
couples to the impurity. We shall single out these two chan-
nels from the free part of the Hamiltonian to obtain an effec-
tive theory by replacing Eq.~2.13! into Eq. ~2.16!,

H eff5E
0

`pdp

2p
vFupu@z0,1

† ~p!z0,1~p!2z0,2
† ~p!z0,2~p!#1E

0

`pdp

2p
vFupu@z21,1

† ~p!z21,1~p!2z21,2
† ~p!z21,2~p!#

1
g

2E0
`pdp

2p E
0

`qdq

2p
@z0,1

† ~p!taz0,1~q!1z0,2
† ~p!taz0,2~q!1z0,1

† ~p!taz0,2~q!1z0,2
† ~p!taz0,1~q!#Sa

1
g

2E0
`pdp

2p E
0

`qdq

2p
@z21,1

† ~p!taz21,1~q!1z21,2
† ~p!taz21,2~q!2z21,1

† ~p!taz21,2~q!2z21,2
† ~p!taz21,1~q!#Sa.

~2.17!

By using the correspondence between thez ’s andc’s defined above we may write the Hamiltonian in a more compact form.
Since we found that this model contains effectively two ‘‘flavors’’ of right movers, we define a flavor indexl51, . . . ,Nf with
Nf52. The system has an effective SU~2! ‘‘flavor’’ symmetry which originates in the unavoidable mixing of angular mo-
mentum waves by the impurity. Similarly, we will write down the spin indexs51, . . . ,Nc explicitly. The effective Hamil-
tonian is~repeated indices are summed!

Heff5E
2`

` dp

2p
E~p!cls

† ~p!cls~p!1
g

2 F E
2`

` dp

2p
Aupucls

† ~p!Gtsv
a F E

2`

` dq

2p
Auquclv~q!G f a

†tab
a f b , ~2.18!

wherea51, . . . ,Nc
221. The single-particle excitation energy isE(p)5vFp. Equation~2.18! shows that the coupling between

the impurity spin and the band electrons is momentum dependent.
We note here that there is an alternative representation of this model. It may be obtained by, instead of rescaling the fields

by a factor ofAupu as we have done here, defining a new momentum variablek[p2 @and later extendingk to (2`,1`)#. In
this form, the effective Hamiltonian becomes

Heff5E
2`

` dk

2p
E~k!cls

† ~k!cls~k!1
g

2 F E
2`

` dk

2p
cls
† ~k!Gtsv

a F E
2`

` dk8

2p
clv~k8!G f a

†tab
a f b . ~2.19!

In this caseE(k)[sgn(k)Ak. In this representation, the interaction becomes local at the expense of a nonlocal kinetic energy.
In fact these two representations are equivalent and are the only ones compatible with local~anti!commutation relations for the
C fields. This is the representation used by Withoff and Fradkin.9 In this paper we will not use this representation of the
model.

We may now proceed to study this theory with a functional integral formalism.7 The Lagrangian, in imaginary time, is
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L~t!5E
2`

` dp

2p
cls
† ~p!S ]

]t
1E~p! D cls~p!1

J0
Nc

F E
2`

` dp

2p
Aupucls

† ~p!Gtsv
a F E

2`

` dq

2p
Auquclv~q!G f a

†tab
a f b

1 f s
† S ]

]t
2ĥsD f s1e f~t!~ f s

† f s2Qf !. ~2.20!

In Eq. ~2.20! we have definedJ0[g(Nc/2). We have also included a magnetic fieldĥ which we will choose to be a diagonal
matrix ĥs and it will be defined below. The Lagrange multiplier fielde f(t) has been introduced to enforce the constraint of
charge~occupancy! Qf at the impurity site. In principle, the partition function separates into a sum of subsectors each of which
is characterized by an impurity occupancyQf .

Following the standard large-Nc decoupling approach of Read and Newns,
7 we write the spin operators in terms of fermions

and find an effective four Fermi interaction. This interaction can be written in a simple form by making use of the well-known
identity, which holds for the generators of SU(Nc),

(
a51

Nc
2
21

tsv
a tab

a 5Ncdsbdva2dsvdab . ~2.21!

A Hubbard-Stratonovich~HS! transformation is now introduced to decouple the fermionic quartic term which arises from this
expansion. Up to an integration over the HS fieldsw l(t) andw l* (t), Eq. ~2.20! is equivalent to

L8~t!5E
2`

` dp

2p
cls
† ~p!S ]

]t
1E~p! D cls~p!1E

2`

` dp

2p
Aupu@w l* ~t! f s

†cls~p!1w l~t!cls
† ~p! f s#

1
Nc

J0
(
l51

Nf

uw l~t!u21 f s
† S ]

]t
2ĥs1e f~t! D f s2Qfe f~t!. ~2.22!

Equation~2.22! can be rearranged, by field shifting and completing squares, in the form

L8~t!5E
2`

` dp

2p Fcls† ~p!1w l* ~t! f s
†~t!AupuS ]

]t
1E~p! D 21G S ]

]t
1E~p! D Fcls~p!1S ]

]t
1E~p! D 21

Aupuw l~t! f s~t!G
1 f s

†~t!F ]

]t
2ĥs1e f~t!2w l* ~t!E

2`

` dp

2p
upuS ]

]t
1E~p! D 21

w l~t!G f s1
Nc

J0
(
l51

Nf

uw l~t!u22Qfe f~t!. ~2.23!

We now obtain an effective theory for the fieldse f andw l by integrating out the fermions. The partition function is given by

Z5E Df †DfDc†DcDe fDwDw* expS 2E dtL8~t! D5Z0E DwDw*De f exp~2Seff!, ~2.24!

where

Z05expFNcNfTrE dp

2p
lnS ]

]t
1E~p! D G

is the partition function of free fermions. The impurity part of the effective action is

Seff52 (
s51

Nc

Tr lnF ]

]t
2ĥs1e f2(

l51

Nf

w l* ~t!E dp

2p
upu

1

]t1E~p!
w l~t!G1E dtFNc

J0
S (
l51

Nf

uw l u2D 2Qfe f G . ~2.25!

Here we stress that the model of physical interest has
Nc52 andNf52.

The effective action of Eq.~2.25! has the standard form of
Ref. 7. The key difference here is the form of the free ferm-
ion Green’s function which in this problem has a relativistic
form. For the usual Kondo problem the magnetic impurity is
coupled to system of band electrons with a constant density
of states at the Fermi surface. In the model that we discuss
here, the density of states of the effective fermions~the
‘‘right movers’’! is still constant but the interaction with the

magnetic impurity has an explicit momentum dependence.
This momentum dependence is such that the effective cou-
pling at low momenta becomes arbitrarily small. We will
show below that up to a critical value of the coupling con-
stantJ0 there is no Kondo effect. This is in fact the result of
Ref. 9. Notice that the momentum dependence of the inter-
action is a direct consequence of the relativistic dispersion.
Should any finite density of states arise, either by effects of a
chemical potential or induced by disorder, a crossover to a
conventional Kondo effect will occur. There is an important
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physical case in which a finite density of states is precluded
by reasons of symmetry, and the Fermi energy has to be
locked at zero. This is the case of thed-wave superconduct-
ors which we will discuss elsewhere.15

We now consider theNc→` limit. Here, large Nc means
the limit in which the rank of the group of spin rotations
becomes large instead of being SU~2!. To proceed with the
1/Nc expansion, we look first for a static solution for
w l(t). From the SU(Nf) flavor symmetry of the effective
Hamiltonian, there is a manifold of solutions which span the
group SU(Nf). Clearly, all the solutions break SU(Nf) spon-
taneously. As in all impurity problems, it is impossible to
break spontaneously a continuous symmetry of bulk fermi-
ons by coupling them to an impurity, which has a finite Hil-
bert space. Thus, this apparent spontaneous symmetry break-
ing is an artifact of theNc→` limit. In fact, we expect that
it will already be restored by the leading 1/Nc correction.
This is precisely what happens in the large-N approach to the
conventional Kondo problem.7 Thus, quantities which ex-
hibit this apparent spontaneous symmetry breaking will get
strongly corrected already in the next order in 1/Nc .

In what follows we will seek a static, symmetric, solution
of the formw l(t)5w0 . We will now derive the form of the
saddle-point equations~SPE’s! which will determinew as a
function of J0 and of the filling fraction of the impurity
Qf .

First we need to compute

g0~ iv!52E dp

2p
upu

1

2 iv1p
. ~2.26!

By working in imaginary frequency we automatically get the
time-ordered expression form for Eq.~2.25!. To compute Eq.
~2.26! we introduce a Lorentzian cutoff functionfL(p) and
extend the integration overp to 6`. We have

g0~ iv!52E
2`

` dp

2p

upu
p2 iv S L2

p21L2D
5

iv

2pvF
2

L2

L22v2 lnS v2

L2D . ~2.27!

We can go back to Eq.~2.25! which now reads

Seff52NcbE
0

`dv

2p
ln$e f

21v2@12Nf uw0u2f ~v2,L2!#2%

1bSNcNf uw0u2

J0
2Qfe f D , ~2.28!

where

f S v2

L2D5
1

2pvF
2

1

12~v/L!2
lnS v2

L2D ~2.29!

and the magnetic fieldh has been set to zero. The saddle-
point equations are

NcE
0

`dv

2p

2e f
e f
21v2@12Nf uw0u2f ~v2,L2!#2

1Qf50,

~2.30!

where we should understand the integral as computed using
some convenient adiabatic cutoff. The nontrivial solution for
w0 is given by

1

J0
52E

0

`dv

2p

2v2f ~v2,L2!@12Nf uw0u2f ~v2,L2!#

e f
21v2@12Nf uw0u2f ~v2,L2!#2

.

~2.31!

It will prove useful to define the dimensionless variables
x[v/L and n[ue f u/L. The saddle point equations~2.30!
and ~2.31! now read

Qf

Nc
52sgn~e f !E

0

`dx

p

n

n21x2@12D lnx/~12x2!#2

~2.32!

and

1

J0
52

L

~pvF!2
E
0

`

dx
lnx

12x2 S 12D
lnx

12x2D
3

x2

n21x2@12D lnx/~12x2!#2
, ~2.33!

whereD[Nf uw0u2/pvF
2 .

There exists a critical value forJ0 , which we define as the
value of J0 at the point wherew0 departs from zero, for
vanishinge f .

9 It is given by

1

Jc
52E

0

`dv

p
f S v2

L2D52
L

~pvF!2
E
0

` dx

12x2
lnx

5
L

~pvF!2
p2

4
. ~2.34!

In the next section we use the SPE’s to extract the critical
behavior of the system nearJc .

III. SCALING AND ENERGY SCALES
IN THE STATIC APPROXIMATION

In the previous section we obtained the saddle-point equa-
tions ~SPE’s! for this theory; however, these SPE’s have a
singular behavior around the pointn50,D50. In particular,
an expansion in powers ofD for smallD is not possible for
n→0. In this section we want to investigate in further detail
the behavior of the SPE’s and the scaling behavior ofD as
we approach the critical point. We will find that, opposite to
the situation in the usual Kondo problem, there are now two
independent energy scales forD andn.

We go back to the SPE’s expressed in their original form

2
Qf

Nc
sgn~e f !5

1

pE0
`

dx
n

n21x2@12D lnx/~12x2!#2

~3.1!

and

1

g0
52E

0

`

dx
lnx

12x2 S 12D
lnx

12x2D
3

x2

n21x2@12D lnx/~12x2!#2
, ~3.2!
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whereD[Nf uw0u2/pvF
2 andg0[LJ0 /(pvF)

2.
In Eq. ~3.1!, the integrand is the equal-time propagator for

the impurity, with the integration variablex being the imagi-
nary frequency scaled by the band electrons cutoffL. This
equation sets up a scale for a crossover between two different
behaviors, in much the same way as in the usual Kondo
effect the imaginary part of the band electrons Green func-
tion sets the scale of the Kondo temperature.

In the case of the usual Kondo effect, the expression
equivalent to Eq.~3.1! is

2
Qf

Nc
sgn~e f !5

1

pE0
`

dx
n

n21~x1D!2
. ~3.3!

The caseNc52 is, in a sense, a limiting case as can be seen
from Eq. ~3.3!. On the one hand, the right-hand side~rhs! of
this equation is a positive function. This fact forces sgn(e f)
to be negative in order to have a solution. However, even in
this case one gets

Qf

p

2
5arctanS L

ue f u
D2arctanS D

ue f u
D , ~3.4!

whereL is some electron band cutoff. This suggests that for
Qf50, the impurity levelue f u has to approach zero. How-
ever, if Qf51, there is no solution, since
p/22arctan(L/uefu) is a strictly positive number. Now, if
Nc is an integer larger than 2, and lettingL→`, we find

pS 122
Qf

Nc
D5arctanS D

ue f u
D . ~3.5!

Here we can distinguish two different regimes:
Qf /Nc→1/2 which corresponds to the caseD!ue f u and
Qf /Nc→0 which corresponds toue f u!D.

However, for the system being discussed here, the situa-
tion is a little different and, actually, more complex since, as
it turns out, now there are two different scales involved. In
principle there is a scale set onx by D at the point where

1'2D
lnx

12x2
or

1

D
'2

lnx

12x2
. ~3.6!

If the value of the frequency~and therefore ofx) is small
enough so thatx2!1, we can approximate

x'expS 2
1

D D . ~3.7!

For D small enough, the approximation is consistent. Work-
ing on this idea, we split Eq.~3.1! as

Qf

Nc
5
1

pE0e
21/D

dx
n

n21x2@12D lnx/~12x2!#2

1
1

pEe21/D

`

dx
n

n21x2@12D lnx/~12x2!#2

[I 11I 2 , ~3.8!

where we have used the fact that the only solution consistent
with Qf /Nc,1/2 hase f,0.

The SPE’s forD may be treated using a similar approach.
Equation~3.2! can be split intoI 18 andI 28 , where the first one
is the corresponding integral up toe21/D, and the second one
takes over from that point to infinity. Again we are interested
in the small-D and small-n regime. The detailed computation
of the integralsI 1 , I 2 , andI 18 , I 28 is given in the Appendix.

We will be interested in the following limiting cases.
~a! Qf /Nc!1/p. In the regime in whichn!e21/D!1,

with n,D!1, the contribution fromI 2 is negligible and
Qf /Nc'(n/p)e1/D or n'p(Qf /Nc)e

21/D!e21/D. Thus, in
this regime,Qf /Nc!1/p. In this limit, the leading term
from the other SPE is going to be@see the Appendix, Eq.
~A.17!#

S p2

4
2

1

g0
D'e21/DF S p

Qf

Nc
D 2 1DG . ~3.9!

This gives

D'
1

lnF ~pQf /Nc!
2

p2/421/g0
G 2

ln lnF ~pQf /Nc!
2

p2/421/g0
G

ln2F ~pQf /Nc!
2

p2/421/g0
G 1•••

~3.10!

and

n'p
Qf

Nc
e21/D'

~p2/421/g0!

pQf /Nc

1

lnF ~pQf /Nc!
2

p2/421/g0
G .

~3.11!

~b! Qf /Nc'
1
2. We now consider the opposite regime

e21/D!n!1, where we obtain

Qf

Nc
'
1

2
2

3

pn3
e23/D and n'S 3p D 1/3 e21/D

~2Qf /Nc11/2!1/3
@e21/D if

Qf

Nc
→

1

2
. ~3.12!

In this regime, clearlyQf /Nc→ 1
2 and the other SPE gives

1

g0
'

p2

4
1

p

2
n lnn. ~3.13!

We can get a solution forn by iteration on Eq.~3.13!,
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n'
1

lnF p

2~p2/421/g0!
G
2

p S p2

4
2

1

g0
D . ~3.14!

Using Eq.~3.12! we getn which, after being replaced into Eq.~3.13!, gives a scaling form forD in this regime,

2

p S p2

4
2

1

g0
D Fp3 S 122

Qf

Nc
D G1/3'e21/DlnF p

2~p2/421/g0!
G . ~3.15!

Thus,

D'F lnS 1

~2/p!~p2/421/g0!@~p/3!~ 1
22Qf /Nc!#

1/3D G21S 12
ln ln@~2/p!~p2/421/g0!#

21

ln$~2/p!~p2/421/g0!@~p/3!~ 1
22Qf /Nc!#

1/3%21D .
~3.16!

Notice that, for the physical caseNc52, the two regimes
Qf /Nc!1 andQf'Nc/2 are identical. Only asNc grows
large does it become possible to distinguish one case from
the other. However, in the caseQf'Nc/2 the magnitude of
D appears to go to zero asQf→Nc/2

2 even though the criti-
cal coupling is independent of the value ofQf . In contrast,
in the caseQf /Nc!1 such an unwanted feature is not
present. It is worth noting here that, in spite of this apparent
difficulty, we will show at the end of this section that the
zero-temperature susceptibility at zero field has the same be-
havior in both regimes. Thus, this difficulty is not physically
relevant. For simplicity, we will use the caseQf /Nc!1 to
extrapolate to the physically meaningful case ofNc52.

We can use these results to derive theb function for the
coupling constantg0 in the limit Nc→`. In order to do this
we may use Eq.~3.13! for the regime in whichQf /Nc'

1
2 or

Eq. ~3.11! for the caseQf /Nc→0. Starting from Eq.~3.9! we
may replaceD in terms ofn to obtain

p2

4
2

1

g0
'an~ lna2 lnn!, ~3.17!

wherea[pQf /Nc . Theb function keeps track of the flow
of g0 as the cutoffL is decreased from very large values
~infinite bandwidth!. Hence,

b~g0![2L
]g0
]L

. ~3.18!

In both limitsQf /Nc→0 andQf /Nc→1/2 we find

b~g0!52g01
1

gc
g0
2 , ~3.19!

where 1/gc5p2/4 .
We immediately see that there are two fixed points:~a! a

stable fixed point atg050 and~b! an unstable fixed point at
g05gc . The stable fixed point represents the weak-coupling
phase in which the fermions are decoupled from the impurity
and the impurity spin is unscreened and there is no Kondo
effect. The nontrivial fixed point atg05gc separates the
weak-coupling phase from a strong-coupling phase that, in
principle, should exhibit a Kondo effect. This unstable fixed
point can be regarded as the usual marginally unstable fixed
point of the standard Kondo problem, now pushed to a finite

value of the coupling constant by the effect of the reduction
of the density of band states. Hence, in the present case, the
interaction has to become strong enough so as to overcome
the effect of the depletion in the number of states available in
order to produce the Kondo screening. Thus, for systems
with a small coupling to the impurity, there will be no Kondo
screening and we should expect a decoupled impurity behav-
ior.

If g0.gc , the system is in the Kondo screening phase.
We may define aKondo scale TK for the regimeg0.gc .
From Eqs.~3.9!–~3.11! we see that, in terms of the physical
parameters of the theory, we have

TK[ue f u'p
Nc

Qf
vF
2 S J02Jc

J0Jc
D H lnF S 2Qf

Nc
D 2S J0

J02Jc
D G J 21

.

~3.20!

The results found here generalize the work of WF.9 In that
work the case of a density of states which vanishes linearly
was not discussed on account of the fact that the structure of
the singularities was not smoothly connected with the case of
a constant density of states. The results of this section show
that the main difference is the presence of logarithmic cor-
rections to scaling in all the physical quantities. The case of
a magnetic impurity coupled to a Fermi system with a linear
density of states seems to be analogous to the behavior of
critical systems at their upper critical dimension. In contrast,
the case of the constant density of states is the analog of a
critical system at the lower critical dimension~marginal in-
stability!. The closest analog to this problem is the critical
behavior of the Gross-Neveu model in 311 ~space-time!
dimensions.20

The results that we find here hold for the simple regime of
largeNc which does not describe correctly the dynamics of
the system with more than one fermion flavor. At this lead-
ing order in 1/Nc , the existence of several channels is only
reflected into a trivial degeneracy and it does not lead to any
new physics. However, as has been shown by Blandin and
Nozières,18 already the leading corrections in 1/Nc will lead
to nontrivial behavior in the ‘‘screened’’ phase,g0.gc . In
the standard Kondo problem, this behavior was confirmed by
both the Bethe-ansatz solution17 and conformal field
theory.21 We note here that, due to the nonlocal character of
the effective one-dimensional theory discussed in Sec. II, it
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is not possible to use either the Bethe ansatz or conformal
field theory to study the noncritical Kondo problem that we
discuss here. Nevertheless, we expect that the physics of the
phase withg0.gc should be similar to that of the conven-
tional overscreened Kondo problem. We also note that, in a
more realistic model, one expectsfour nodes with two nodes
of each chirality and hence with more flavors and a more
pronounced overscreened behavior.

We close this section with a discussion of the zero-field
susceptibility for this model. The coupling of a magnetic
field only to the impurity spin has the form of a Zeeman term

Hh52 (
s51

Nc

f s
† ĥs f s . ~3.21!

Here, ĥs are the elements of a suitably chosen SU(Nc) di-
agonal generator, which also includes the appropriate nor-
malization factors so as to set the Bohr magneton to one. We
will need to ensure the tracelessness of the generator, and we
can do so by keeping all the elements of order one with
alternating signs. In this way we prevent the case of over-
populating one of the states that the Zeeman term splits with
respect to the others; i.e., we explicitly avoid cases like the
one with Nc21 elements being21 and the last element
beingNc21. This is an important consideration to care about
if we want to study the magnetic field crossover, i.e., if we
were interested in obtaining the susceptibility at finite field.
This was discussed in Ref. 22. However, we will be inter-
ested only in the zero-field susceptibility and it will be suf-
ficient to assume all theĥs to be6h, so that the sum of their
squares gives a factor ofNc . The magnetizationM is given
by

M5 (
s51

Nc

^ f s
† ĥs f s&

52 (
s51

Nc E
2`

` dv

2p

ĥs

e f2 iv@12Nf uw0u2f ~v2,L2!#2ĥs

.

~3.22!

The susceptibility at zero field is

xuh505
]M

]h U
h50

5
Nc

L H 2n 2
]

]n J E
0

`dx

p

n

n21x2@12D lnx/~12x2!#2
.

~3.23!

Once again, we consider two regimes:Qf /Nc→0 and
Qf /Nc→1/2. We discuss only the regimeg0.gc since the
susceptibility is infinite belowgc , where the impurity is un-
screened.

~a! Qf /Nc!1. ForQf /Nc'(n/p)e1/D, we get

x~0!'
Qf

ue f u
5
Qf

TK

'
Nc

pvF
2 SQf

Nc
D 2S JcJ0

J02Jc
D lnF S 2Qf

Nc
D 2S J0

J02Jc
D G .

~3.24!

~b! Qf /Nc'
1
2. ForQf /Nc'

1
22(3/pn3)e23/D, we have

x~0!'
Nc

2pvF
2 S JcJ0

J02Jc
D lnF 2p S J0

J02Jc
D G

3H 125S 122
Qf

Nc
D1•••J . ~3.25!

Once again, we find logarithmic corrections to scaling.
We see from Eqs.~3.25! and ~3.24! that the zero-field

susceptibilityx(0), atzero temperature, has a behavior con-
sistent with the general picture described above. It is finite
for g0.gc , but diverges asg0 approachesgc . This is con-
sistent with the impurity being screened~Kondo effect! for a
value of the coupling constant larger than the critical value.
However, as we approach the critical coupling constant from
the screening~Kondo! phase, the susceptibility must diverge,
since for values of the coupling lower than the critical value,
D vanishes and the impurity effectively decouples from the
band. In this regime one expects the impurity will behave
like a free spin in a magnetic field and, since we are at zero
temperature, the susceptibility should diverge.

IV. T MATRIX AND ONE-PARTICLE GREEN FUNCTION

In this section we derive the propagator for the band elec-
trons to orderN→`. We will use this expression to calcu-
late theT matrix in theN→` limit. We will consider pro-
cesses in which an electron with a given energy is initially in
a state with well definedangular momentum, and it is scat-
tered by the impurity into a state with possibly a different
angular momentum. Thus, we will parametrize theT matrix
by the magnitude of the incoming and the outgoing momenta
~namely, the energy of the state! and by the angular momenta
of channels involved in the scattering process. This descrip-
tion is natural since at most only a pair of angular momen-
tum states (l 50,21 with our choice of node! are actually
mixed by the impurity.

In contrast, the computation of the correlation function

^C j
†(rW)Ck(rW8)&, for rW and rW8 away from the impurity, will

involve a mixing of all the angular momentum channels.
However, in principle, we could add a source term and also
decompose the source field in angular momentum modes,
and keep only the modes that get mixed by the interaction
with the impurity. In other words, we are considering the
scattering of band electrons among angular momentum chan-
nels produced by the interaction with the impurity. In the
case of a coupling to a flat band~usual Kondo problem!, the
only angular momentum channel that gets involved is thes
wave. Thus, in practice, we only need to consider the partial
waves that actually get mixed by scattering from the impu-
rity.

Therefore, it will be sufficient to work with the equivalent
one-dimensional fermionsc1 andc2 while keeping in mind
the correspondences defined in Sec. II. The relevant part of
the action is
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SF5E
2`

` dv

2pE2`

` dp

2p
cls
† ~p,v!@2 iv1E~p!#cls~p,v!1E

2`

` dv

2pE2`

` dv8

2p E
2`

` dp

2p
Aupu$w l* ~v2v8! f s

†~v8!cls~p,v!

1w l~v2v8!cls
† ~p,v! f s~v8!%. ~4.1!

We add sourcesh ls
† (p,v) andh ls(p,v) for the fieldscls(p,v) andcls

† by adding the following source term to the action:

E
2`

` dv

2pE2`

` dp

2p
@h ls

† ~p,v!cls~p,v!1cls
† ~p,v!h ls~p,v!#. ~4.2!

After completing squares and integrating over the band fermion fields, we are left with~apart from a normalization factor! an
action which depends only on the impurity fermion fields and the sources,

Sf5 (
s51

Nc E dv

2p
f s
†~v!~2 iv1e f ! f s~v!2(

a,w
E

2`

` dv

2pE2`

` dp

2p F E dv8

2p
w l* ~v2v8!Aupu f s

†~v8!1h ls
† ~p,v!G S 1

2 iv1E~p! D
3F E dv9

2p
w l* ~v2v9!Aupu f s~v9!1h ls~p,v!G1E

2`

` dv

2pE2`

` dp

2p
h ls
† ~p,v!S 1

2 iv1E~p! Dh ls~p,v!. ~4.3!

After a few fairly straightforward manipulations and another integration now over the impurity fermion fields, we can rewrite
the action as

Sf@J,J
†#52 (

s51

Nc E dv

2pE dv8

2p
Js
†~v!K21~v,v8!Js~v8!, ~4.4!

where we have introduced the operatorsJs’s and the kernelK which are given by

Js~v!5(
l51

Nf E dv8

2p E dp

2p
w l* ~v82v!

Aupu
2 iv81E~p!

h ls~p,v8! ~4.5!

and

K~v,v8!5~2 iv1e f !d~v2v8!2E dp

2pE dv9

2p

upu
2 iv81E~p! (

l51

Nf

w l* ~v92v!w l~v92v8!. ~4.6!

The generating functional for the Green’s functions~at zero temperature! can be written as

ZF@h,h†#5exp@2Sf~h,h†!#, ~4.7!

so that correlation functions of the band fermion fields can be computed by differentiation overZF ,

^cls
† ~q,V!cl 8s8~q8,V8!&5 K d

dh ls~q,V!

d

dh l 8s8~q8,V8!
ZF@h,h†#L

h5h†50

. ~4.8!

We restrict the calculation to the static solution case wherew l(V2v)[w̄ ld(V2v). Then

^cls
† ~q,V!cl 8s8~q8,V8!&5d l l 8dss8d~q2q8!d~V2V8!

1

2 iV1E~q!
1

Auqu
2 iV1E~q!

Tl l 8~V!
Auq8u

2 iV1E~q8!
d~V2V8!,

~4.9!

where theT matrix Tl l 8(V) is given by

Tl l 8~V![2
w̄ l w̄ l 8

*

2 iV1e f1g0~ iV!(
l51

Nf

uw̄ l u2
, ~4.10!

whereg0( iV) was given in Eq.~2.26! and Eq.~2.27!.
TheT matrix of Eq.~4.10! exhibits several important fea-

tures.

~a! Equation~4.10! gives theT matrix at imaginary fre-
quency. TheT matrix for real frequency~at zero tempera-
ture! is found by an analytic continuation to the real axis,
iV→V.

~b! If w̄ l and w̄ l 8
* are nonzero, there exists a finite matrix

element for the scattering of a band electron from a state
with angular momentuml into a state with angular momen-
tum l 8 ~and vice versa!. In contrast, for a flat band, theT
matrix is diagonal in angular momentum states. This matrix
element is not invariant under SU(Nf) since it mixes the
angular momentum channels. As we pointed out above, this
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is a consequence of the unphysical spontaneous breaking of
the flavor ~channel! symmetry. Thus only thetrace of this
T matrix is physical. All other matrix elements will be sup-
pressed by infrared-divergent corrections to next order in the
1/Nc expansion.

~c! From the analytic continuation of the trace of theT
matrix one can find the position of the Kondo resonance
VK , the widthWK , and the phase shiftd(V). Using the fact
that( l51

Nf uw̄ l u25Nf uw0u2, we can write the trace in the form

trT̂~V![Tl l ~V!52
pvF

2D

V1ue f u1VD ln~L/uVu!2 i ~p/2!VD
,

~4.11!
which is valid for frequencies low compared to the band-
width V!L but comparable to the dynamically generated
scales. The phase shiftd(V) is

d~V!5tan21S ~p/2!VD

V1ue f u1VD ln~L/uVu! D . ~4.12!

~d! The imaginary part of theT matrix is

Im trT̂~V!5

1
2 ~pDvF!2V

$ue f u1V@12D ln~ uVu/L!#%21@~p/2!DV#2
.

~4.13!
The function given by Eq.~4.13! has a peak at the Kondo
resonanceVK , which is the solution of the equation

e f5VS 12D ln
uVu
L D . ~4.14!

One easily obtains the asymptotic solution

VK'2pvF
2 Nc

Qf
S J02Jc
J0Jc

D
3

1

ln$~2/p!~2Qf /Nc!
3@J0 /~J02Jc!#

2%
1•••,

~4.15!

where we have kept only the leading-logarithmic corrections.
We see immediately that we have a resonance centered at
VK , which is basically the Kondo scalee f that we found in
Sec. III but modified by the ubiquitous logarithmic correc-
tions. In particular, the position of the Kondo resonance
scales with the distance to the critical coupling constant and
it goes to zero~the Fermi energy! at Jc .

~e! The resonance widthWK can be read off from Eq.
~4.13!,

WK'uVKu
pD

2
. ~4.16!

From Eq.~4.12! it is clear that the dimensionless parameter
D5Nf uw̄0u2/pvF

2 sets the scale for the range of the scattering
amplitude. Thus, as far as transport properties such as the
resistivity are concerned,D is the important parameter,
whereas thermodynamic properties, such as the susceptibil-
ity, depend entirely on the impurity energy scalee f , i.e., the
Kondo scaleTK . The analysis done in the last section shows

that, due to the strong logarithmic corrections, these two
scales are completely different. Once again, in the conven-
tional Kondo effect,TK controls both effects.

Hence, in contrast with conventional Kondo behavior, the
interaction with the magnetic impurity induces a nontrivial
renormalization of the propagator of the band fermions. This
will happen even forJ0<Jc , although this effect only occurs
in higher order in 1/Nc . Finally we stress that, due to the
SU(Nf) flavor symmetry, there cannot be any channel mix-
ing scattering processes in this model. However, in the fol-
lowing section, we will present a model which describes the
most general impurity scattering processes for systems with
only one node. In that model the channel~or flavor! symme-
try SU(Nf) is broken explicitly already at the level of the
impurity Hamiltonian. Thus we expect to find processes
which will mix the various channels.

V. GENERALIZED IMPURITY

In the past sections we considered a situation in which the
fermions coupled to the impurity spin only through their own
spin densityC†tWC. Scattering processes of this type have
the simplifying feature that particles and holes interact with
the impurity independently from each other and exactly in
the same way. However, in practice, more general scattering
processes will be present. We also made the assumption that
only one node of the two-dimensional fermions is present.

Here, we will consider all possible scattering processes
involving only one node. The coupling through the spin den-
sity has the very special feature that it isdiagonal in the
components of the spinors; i.e., the impurity does not mix
particles with holes. In terms of the effective Hamiltonian of
Eq. ~2.19!, this diagonal coupling implies that there is no
explicit mixing of angular momentum channels. Hence, the
model has an SU(Nf) symmetry~with Nf52). Any process
which mixes particles and holes will break the flavor sym-
metry explicitly. We will include now these processes.

We will also incorporate the correct node structure. For
example, in the case of a flux phase, say, on a square lattice,
there will be four differentnodescorresponding to the sym-
metry points (6p/2a0 ,6p/2a0) of the first Brillouin zone.
As we discussed in Sec. I, ad-wave superconductor has an
analogous node structure, at the points where the gap has
nodes. We will discuss of this very interesting case in a
separate publication.15 It is straightforward to see that the
main effect of a more general node structure is toincrease
the number offlavorsin the effective model. In the one-node
model of the previous section we found that there were two
flavors and an SU~2! flavor symmetry. The existence of two
flavors can be traced back to the spinor structure of the origi-
nal problem. When the two-dimensional fermions have more
than one node, the number of flavors becomestwice the num-
ber of nodes, Nf52Nnodes. Thus, for a flux phase we will
haveNf58 flavors. However, flux phases areevenunder
parity. Hence, there are two pairs of nodes with opposite
parity. The parity of the node is given by therelative signof
the two terms in the free fermion Hamiltonian of Eq.~2.1!.
Thus, a change of parity is equivalent to the mapping
u→2u, in other words to a reflection across thex1 axis. In
Sec. II we showed that, with the choice of parity we made
there, the channels with angular momental 50 and
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l 521 get mixed by the impurity. Hence, if nodes with the
other parity are also included, we will also get mixing be-
tween l 50 and l 511, but no direct mixing between
l 511 andl 521. In Sec. II we also found that only the
mapping between the components of the original fermion
and the fermions of the effective one-dimensional theory car-
ried information about which angular momentum compo-
nents are mixed. This feature is always present. Thus, the net
effect of having a multinode structure is to increase the num-
ber of flavors. Consequently, although the thermodynamic
properties will be insensitive to parity assignments, the scat-
tering amplitudes of the original fermions with the impurity
will carry information on the parity of the nodes. This feature
can be used to determine the nature of a superconducting
state.

In what follows, we will consider a system with four
nodes, two with positive parity and two with negative parity,
interacting with a single magnetic impurity. For simplicity
we will assume that the impurity form factor is strongly
peaked at small momentum, so that internode scattering pro-
cesses can be ignored. We will keep, however, processes in
which particles and holes may interact differently with the
impurity and/or mix with each other. We parametrize these
processes with four coupling constantsJi , with i50,1,2,3.
The generalized impurity Hamiltonian is given by

H imp5(
l ,i

JiCa l
† ~0!TitWCb l~0!SW , ~5.1!

where the indicesl labels the nodes anda andb the spin
components.T05I is the 232 identity matrix andTi5s i
( i51,2,3) are the three Pauli matrices. HereJ0 is the cou-
pling constant that was used in the model of Sec. II.

The free fermion Hamiltonian for each node,

H05E d2p

~2p!2
C†~p!vFsW •pW C~p!, ~5.2!

is invariant under the symmetry transformationCC(p)
→s3C(2p). The effect of this transformation onH imp is to
reverse the sign of bothJ1 andJ2 . This implies that the sign
of J1 and J2 is irrelevant to the properties of the theory,

which should depend only on the absolute values of these
two coupling constants. In the expressions for the Fermi
field,

C i l ~0!5
1

A2
E

2`

` dp

2p
Aupucil ~p! and Sa[ f g

†tgd
a f d ,

~5.3!

we havel51, . . . ,Nnodesandi51,2. In what follows we use
a single flavor indexi51, . . . ,Nf with Nf52Nnodes. How-
ever, we will keep in mind that the impurity does not mix
different nodes but it does mix the flavor components asso-
ciated with the same node.

The model of equivalent one-dimensional right-moving
excitations has an SU~2! spin ~color! symmetry and a
SU(2Nnodes) flavor symmetry~associated with the channels!
broken down to SU(Nnodes). The free fermion kinetic term
has the form

H05E dp

2p
pvF(

ia
cia
† ~p!cia~p! ~5.4!

and an impurity interaction term with the following struc-
ture:

H imp52E dp

2pE dq

2p
Aupuuqu f a

†ca j~q!cb i
† ~p! f bTi j , ~5.5!

whereTi j is the coupling matrix which has a block diagonal
form. For i , j associated with the same nodeTi j has the form

Ti j[Nc~J0d i j1J1s1
i j1J2s2

i j1J3s3
i j !. ~5.6!

In other terms the matrix has the formT^ I whereT is the
232 matrix of Eq.~5.6! and I is theNnodes3Nnodesidentity
matrix. We have also let the spin indicesa,b to run from
1, . . . ,Nc and used the identity of Eq.~2.21!. The form of
the impurity Hamiltonian, Eq.~5.5!, shows that, if the cou-
pling constantsJi are all different, the SU~2! flavor symme-
try of each node is broken by the interactions but the sym-
metry involving different nodes remains intact.

We will now proceed as in the previous sections and solve
this model in the limit of Nc→`. After a Hubbard-
Stratonovich transformation, the quartic term of the Euclid-
ean action becomes~repeated indices are summed!

E dts i* ~t!Mi js j~t!1E dtE
2`

` dp

2p
Aupu@s i~t! f a

†~t!ca i~p,t!1s i* ~t!ca i
† ~p,t! f a~t!#, ~5.7!

whereMab5(Tab)
21. SinceT is of the formT^ I , thenM has the same form, i.e.,M^ I . In the following,M stands for the

232 matrix of Eq.~5.7!. It can be easily shown that

M5
Nc

g0
22gW •gW

S g02g3 2~g12 ig2!

2~g11 ig2! g01g3
D[NcM̃ , ~5.8!

whereJi[gi /Nc
2 andgW [(g1 ,g2 ,g3). In the case considered in Sec. II, i.e., whenJi50, J0Þ0, we have a full U~2! flavor

symmetry between thes fields. In other words, the two channels play exactly the same role. When the coupling constants are
all different, this symmetry is broken down to a U~1!3 U~1!, where one of the U~1! symmetries is generated by the identity
and the other byM̃ .
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TheNc→` limit is taken in the standard fashion. The Hubbard-Stratonovich fieldss i will be chosen to be an arbitrary
vector for each node and the same vector for all nodes. LetV be a unitary transformation which diagonalizes the 232 matrix
M̃ , and lets[Vs̃, so thatus1u21us2u25us̃1u21us̃2u2. The eigenvalues ofM̃ can be rewritten asm6dm, where

m5
g0

g0
22gW 2

and dm5
AgW 2

g0
22gW 2

. ~5.9!

The modified effective action can be written as

1

b
Seff52NcE

2`

` dv

2p
lnS 2 iv1e f1

1

2
Nnodes~ us̃1u21us̃2u2!G0~ iv!D 1

1

2
NnodesNc@~ us̃1u21us̃2u2!m

1~ us̃1u22us̃2u2!dm#2Qfe f

52NcE
2`

` dv

2p
lnS 2 iv1e f1

1

2
Nnodes~ us̃1u21us̃2u2!G0~ iv!D 1

1

2
NnodesNcS us̃1u2

g02AgW 2
1

us̃2u2

g01AgW 2
D 2Qfe f . ~5.10!

The new saddle-point equations are

Qf

Nc
52E

2`

` dv

2p

1

2 iv1e f1
1
2Nnodes~ us̃1u21us̃2u2!G0~ iv!

, ~5.11!

s̃1

g02AgW 2
5s̃1E

2`

` dv

2p

G0~ iv!

2 iv1e f1
1
2Nnodes~ us̃1u21us̃2u2!G0~ iv!

, ~5.12!

and

s̃2

g01AgW 2
5s̃2E

2`

` dv

2p

G0~ iv!

2 iv1e f1
1
2Nnodes~ us̃1u21us̃2u2!G0~ iv!

. ~5.13!

We now solve these new SPE’s. The solution will be cast in
the form of a phase diagram which can be plotted in a
AgW 22g0 plane~see Fig. 1!. In principle, we find three dif-
ferent solutions of the SPE’s.

~a! s̃15s̃250. This is the region of the phase diagram

below the lineg01AgW 25gc . This is the weak-coupling
phase. The magnetic impurity is effectively decoupled from
the band electrons. To leading order in 1/Nc the impurity
does not interact with the band fermions and behaves like a
free magnetic moment. Consequently the impurity spin sus-
ceptibility is infinite, there is no resonance, and there is no
Kondo screening.

~b! Both s̃1Þ0 ands̃2Þ0. There is no consistent solution
of this form unlessgW 250. In other words, this case is pos-
sible only if the only nonvanishing coupling constant isJ0 ,
with J0.Jc , in which case we do have the U~2! symmetry.
This is the line on the axisg0 of the Fig. 1 forg0.gc .

~c! s̃2Þ0, s̃150. A solution of this form satisfies the
equations

1

g01AgW 2
5E dv

2p

G0~ iv!

2 iv1e f1
1
2Nnodesus̃2u2G0~ iv!

,

Qf

Nc
52E dv

2p

1

2 iv1e f1
1
2Nnodesus̃2u2G0~ iv!

.

~5.14!

The action of this solution is given byFIG. 1. Phase diagram of the generalized impurity model.
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1

b
Simp52NcE dv

2p
lnS 2 iv1e f1Nnodes

us̃2u2

2
G0~ iv! D

1
Ncus̃2u2

g01AgW 2
2Qfe f . ~5.15!

For a solution of this type,s1 and s2 are determined by
s̃1 through the relations

s15s̃2

~g12 ig2!

A2AgW 2~AgW 21g3!

,

s252s̃2AAgW 21g3

2AgW 2
. ~5.16!

This solution is only allowed above the lineg01AgW 25gc in
the phase diagram. This is the Kondo or screening phase.
The results of the previous sections apply to this phase.

~d! s̃2Þ0, s̃150. The SPE’s also allow for solutions of
this form. In principle such solutions are allowed above the

line g02AgW 25gc . The SPE’s for this solution are exactly

the same ones found in~c! with g01AgW 2 replaced by

g02AgW 2. Clearly this solution competes with the solution of
case~c! over a significant region of the phase diagram. In
fact its allowed region is completely included within the al-
lowed region for~c!. However, we argue that this solution is
always metastable and never occurs. In fact, for any finite

value ofAgW 2, the interaction between the impurity and the
band electrons will be stronger in case~c! since

g01AgW 2.g02AgW 2, favoring the first case in much the
same way in which the bonding state is preferred to the an-
tibonding one when the degeneracy in a two-level system is
lifted by a perturbation. It is easy to check that this is indeed
correct by looking for solutions of both types in the vicinity

of the phase transition, forg0 close togc andAgW 2 small. In
addition, since there is no actual symmetry change between
these two ‘‘phases,’’ we do not expect a phase transition.

We conclude that the generalized impurity model has just
two phases: a phase with an unscreened impurity and a phase
with a Kondo effect. The phase boundary is at the line

g01AgW 25gc . The physics of the Kondo phase is almost
identical to what was described in the previous sections. In
fact, at the level of theN→` theory, the physical observ-
ables of the generalized impurity model can be calculated
using the formulas for the single-node model of the previous
sections. The main difference is that, since the U~2! flavor
symmetry at each node is now broken by the explicit form of
the impurity Hamiltonian, operators with nontrivial matrix
elements in that sector are now allowed. In particular, there
will be nonvanishing, finite, off-diagonal matrix elements of
the band fermionT matrix. In other words, the impurity will
mix band fermion states with different angular momenta. In
contrast, processes which mix different nodes are still strictly
forbidden. Finally we note that scattering processes of the
type described here effectively reduce the number of inde-
pendent channels. If it were not for the existence of several
nodes, we would expect to find a Kondo effect in this phase
with a completely screened impurity. Once again, the exist-

ence of additional channels associated with the multinode
structure turns this into a multichannel Kondo system if in-
ternode scattering processes are not allowed.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have considered the problem of flux-
phase fermions coupled locally to a single magnetic impu-
rity. This is formally the same as the problem of fermions
with a relativistic dispersion in two space dimensions
coupled to a local spin. We derived explicitly an effective
theory in one space dimension.

The physics of the effective one-dimensional theory for
this problem differs from the conventional radial picture of
the Kondo problem in several important ways. First, it is
always a multichannel system. The channels reflect the
spinor structure of the nodes and the multiplicity of nodes.
Second, the relativistic dispersion implies a density of states
which vanishes linearly at the Fermi energy. Consequently,
unlike the conventional Kondo model, the effective one-
dimensional problem has a nonlocal coupling between the
effective right movers and the impurity. This is the feature
that drives the Kondo effect away from marginality and it is
responsible for the phase transition between an unscreened
impurity phase and a phase with a Kondo effect. This is
consistent with earlier results of Withoff and Fradkin.

However, for the case of the linearly vanishing density of
states that we discussed in this paper, the nature of the scal-
ing in the vicinity of this zero-temperature phase transition is
drastically changed. We find that all physical quantities ex-
hibit very simple scaling laws modified by logarithmic cor-
rections. We found this behavior in the Kondo scale and in
the impurity spin susceptibility. This behavior is strongly
reminiscent of critical phenomena at an upper critical dimen-
sion. One important consequence of the logarithmic correc-
tions is that there are more dynamical scales and that all
physical quantities are no longer controlled by the Kondo
scaleTK alone. This is particularly clear if one compares the
amplitude of theT matrix and the position and width of the
Kondo resonance.

The model we studied and solved here using large-N
methods is an interesting problem in its own right. In a sub-
sequent publication we will report on a study of a similar
model for magnetic impurities ind-wave superconductors
where we will draw heavily on the ideas that we developed
here.

It is interesting to compare the effective one-dimensional
model that we derived here with the conventional one-
dimensional models for the conventional Kondo problem.
The standard Kondo problem is equivalent to a model in one
space dimension with a single right mover which interacts
locally with the impurity spin through the fermion spin den-
sity. This coupling through a density is crucial for the phys-
ics of the Kondo problem to be correctly described by the
model of right-moving fermions. The fact that the fermions
are chiral ~namely, only right movers are present! means
that, up to a Fermi velocity, the fermion density and current
are the same observable. This model can be described en-
tirely in terms of a conserved current. This is the starting
point of the conformal field theory approach of Affleck and
Ludwig.21 However, it is also crucial for the success of the
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approach of Anderson, Yuval, and Hamman.3 In fact, the
equivalence that exists between Kondo systems and prob-
lems of macroscopic quantum coherence23 rely heavily on
bosonization of models of fermions coupled locally to impu-
rities through a density. The fact that this density is associ-
ated with a conserved current means that it cannot acquire
anomalous dimensions. Thus, the fixed points of the conven-
tional Kondo contain only marginal operators which are
made marginally relevant by quantum fluctuations.

From this analysis it is clear that it is not possible to
describe the phase transition that we discuss here in terms of
a conformal field theory coupled to local boundary operators
representing the impurity. The nonlocality of the effective
one-dimensional theory is essential. It is because the model
is nonlocal that the operator that couples to the impurity can
~and does! acquire an anomalous dimension. This is the
mechanism which drives the phase transition. These models
are not equivalent to any standard macroscopic quantum tun-
neling ~MQT! model. It may appear that, because the density
of states vanishes like a power of the energy, these models
could be related to a sub-Ohmic MQT system which are
known not to have phase transitions. However, sub-Ohmic
MQT models describe quantum impurities coupled to a mac-
roscopicbosonicsystem with sub-Ohmic spectral density.
The models that we discussed here are fermionic and are not
equivalent to a sub-Ohmic bosonic theory.
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APPENDIX

In Sec. III and from Eq.~3.8! we have

I 15
1

pE0e
21/D

dx
n

n21x2@12D lnx/~12x2!#2
~A1!

and

I 25
1

pEe21/D

`

dx
n

n21x2@12D lnx/~12x2!#2
. ~A2!

In the region of integration wherex@e21/D, I 2 can be ap-
proximated by

I 2'
1

2
2
1

p
arctanS 1n e21/DD . ~A3!

On the other hand, when we are in the regimex!e21/D,

I 1'
n

pD2E
0

e21/D dx

~n/D!21x2ln2x
[R~n,D!. ~A4!

The following inequality holds:

1

p

ne21/D

n21e22/D <R~n,D!<
1

pn
e21/D. ~A5!

We will be interested in the following cases:

If n@e21/D, we have R~n,D!→
1

pn
e21/D!1.

~A6!

If n!e21/D, we have R~n,D!→
n

p
e1/D!1.

~A7!

For 1@n@e21/D, we can expand the denominator in Eq.
~A4! to get

R~n,D!'
1

pn H e21/D2
3

D2 S D

n D 2e23/D1•••J . ~A8!

We can now get the behavior of Eq.~3.1! in these two dif-
ferent regimes: fore21/D!n!1,

Qf

Nc
'
1

2
2

3

pn3
e23/D

and n'S 3p D 1/3 e21/D

S 2Qf /Nc1
1

2D
1/3@e21/D if

Qf

Nc
→

1

2
.

~A9!

The other limit corresponds ton!e21/D!1; consequently
the contribution fromI 2 is negligible and

Qf

Nc
'

n

p
e1/D or n'p

Qf

Nc
e21/D!e21/D if

Qf

Nc
!
1

p
.

~A10!

Now we want to work out similar approximations for the
other SPE. We have

I 18[2E
0

e21/D

dx
lnx

12x2 S 12D
lnx

12x2D
3

x2

n21x2@12D lnx/~12x2!#2

'
1

D
e21/D2

pn

D
R~n,D!, ~A11!

in which we made use of the fact that over the integration
interval, the variablex is very small, so that the approxima-
tions 12x2'1 and2D lnx@1 are consistent. For the other
portion of the integral~i.e., for I 28) we are in a situation
wherex.e21/D and then2D lnx/(12x2),1, and so we ne-
glect the logarithmic term against 1.

We need here the result

E
0

`

dx
x2lnx

12x2
1

n21x2
5
1

2

1

11n2 H p2

2
1pn lnnJ .

~A12!

Then
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I 28[2E
e21/D

`

dx
lnx

12x2 S 12D
lnx

12x2D
3

x2

n21x2@12D lnx/~12x2!#2

'2E
e21/D

`

dx
x2lnx

12x2
1

n21x2

'
1

2

1

11n2 H p2

2
1pn lnnJ 2e21/DS 11

1

D D
2n lnnarctanS 1n e21/DD2nFS 1n e21/DD . ~A13!

The functionF(z) verifies that, foruzu.1,F(z)5F(1/z) and
for uzu,1 is given by

F~z!5 (
n50

`

~21!n
1

2n11
z2n11F lnz2

1

2n11G
'z~ lnz21!2

1

3
z3S lnz2

1

3D1•••. ~A14!

Getting everything together, in the limitn@e21/D and
n, D!1, where

R~n,D!→
1

pn
e21/D,

one can write the SPE in the form

1

g0
'

p2

4
1

p

2
n lnn, ~A15!

which can be solved by iteration@see Eq.~3.14! in Sec. III#.
The other limiting case corresponds tone1/D!1, with n,
D!1. Here

R~n,D!→
n

p
e1/D. ~A16!

The SPE now is

p2

4
2

1

g0
'e21/DF11

1

D S p
Qf

Nc
D 21S p

Qf

Nc
D 3

1S p
Qf

Nc
D 2lnS p

Qf

Nc
D G , ~A17!

since in this case,ne1/D'pQf /Nc . The cubic term can be
dropped right away. As for the other terms, as we approach
the transition,pQf /Nc remains fixed whileD→0. There-
fore, the leading term is going to be the one with the factor
1/D. This immediately gives the implicit expression forD in
terms of the impurity occupancyQf /Nc and the distance to
the critical point 1/gc21/g0 that we used in Eq.~3.9! in Sec.
III.
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