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We consider a band of fermions in two space dimensions with a flux fhelsgivistic dispersion relation
coupled to a local magnetic impurity via ard interaction. This model describes spinons of a flux phase and
itis also a qualitative model of the quasiparticles ita_,2 superconductor. We find a zero-temperature phase
transition at a finite coupling constant between a weak coupling unscreened impurity state and a strong
coupling regime with a Kondo effect. We use lafgemethods to study the phase transition in this Kondo
system away from marginality. The Kondo energy scales linearly with the distance to the transition. The
zero-field magnetic susceptibility at zero temperature diverges linearly. Similar behavior is foundTn the
matrix which shows a resonance at the Kondo scale. However, in addition to this simple scaling, we always
find the presence of logarithmic corrections to scaling. Such behavior is typical of systems at an upper critical
dimension. We derive an effective fermion model in one space dimension for this problem. Unlike the usual
Kondo problem, this system has an intrinsic multichannel nature which follows from the spinor structure of
(2+1)-dimensional relativistic fermion$§S0163-182606)01822-X

[. INTRODUCTION weak the exchange coupling constant may be.
Some time ago Withoff and FradKifWF) considered a

It is by now well understood that the presence of a smalbeneralization of the Kondo problem to systems in which the
concentration of magnetic impurities into an otherwise non-density of band electron states may actually go to zero at the
magnetic metallic host can affect dramatically the low-Fermienergy. They showed that if the density of states of the
temperature properties of the system. The prototype of thesglectron band vanishes at the Fermi energy as a positive
interesting phenomena is the Kondo effedt the single- power of the energy, the Kondo effect is suppressed for
impurity level, there is a nonperturbative crossover betweelsmall values of the exchange constant and that Kondo
a Curie-Weiss law behavidin which the impurity behaves screening only happens beyond a critical value of this cou-
like a noninteracting localized magnetic momjeat high  pling. In fact, it is easy to see that the exponenof the
temperature and a strongly interacting regime in which thene-particle density of statell(E)e«|E—Eg|", plays a role
magnetic impurity and the band electrons form a singlethere quite analogous to the distance to the lower critical di-
ground state. In other words, in this low-temperat(steong- mensiond—d, in critical phenomena. WF showed, using a
coupling regime, the band electrons “conspire” to screencombination of a “poor man’s scaling argument” and a
out the spinland magnetic momenof the impurity. At zero  largeN limit, that at least for small values of the exponent
temperature a similar crossover occurs as a function of an, this is the correct picture. Quite generally, if the exponent
external magnetic field. This picture has been developed by>0, this is a nonmarginal Kondo system.

the concerted use of the renormalization grédpiexact” There are a number of systems of physical interest where
numerical simulations and scalifiggxact solutions via the this situation does arise. A simple example is the fermionic
Bethe ansat2? and largeN expansiong:?® excitations of a quantum antiferromagnet iflax phase®

From the point of view of scaling, the Kondo problem is More importantly, the normal state excitations oflavave
a typical situation in which a trivial fixed point, which de- superconductofwith symmetryd,._,2) behave precisely in
scribes band electrons decoupled from the magnetic imptthis fashiont! In the vicinity of eachnodeof the gap func-
rity, is destabilized by anarginally relevanperturbation, the tion (hence, the use of the term “node” hereaftehe dis-
coupling to the magnetic impurity. This leads to asymp-  persion relation for the normal quasiparticles is linear in the
totically free renormalization group flow with @ function =~ momentum. Thus, sufficiently close to the node, the quasi-
which is quadratic in the coupling constant. Marginal pertur-particles have an effective relativisticlike dispersion. In the
bations appear in critical systems atritical dimension The  theory of superconductivityisotropic or not (Ref. 12 the
standards-d Kondo Hamiltonian is effectively a model of dynamics of the quasiparticles is usually pictured in terms of
one-dimensional chiral fermions coupled to a single magNambu spinors. For the case ofdawave superconductor,
netic impurity through the forward scattering chanhel. Nersesyan, Tsvelik, and Wendg&have shown that this ap-
Clearly, in this case we are at th@westcritical dimension. proach leads to an effective Hamiltonian for the quasiparti-
This is a direct consequence of the fact that the band elecles which takes the form of a massless Dirac Hamiltonian
trons have a Fermi surface where the density of states i®r each node of the gap, with the “speed of light” equal to
finite and essentially constant. Thus, the Kondo effect is ulthe Fermi velocity(Naturally, relativistic massless Dirac fer-
timately due to the availability of states in the electron bandmions themselves always have this propértg. this paper
which can efficiently screen the impurity spin no matter howwe consider a model which describes properly the coupling
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of flux-phase fermions to a magnetic impurity. It turns outcolor). Here we will work with the SUK.) generalization of
that this model can also be used to describe the coupling of this symmetry, with the physicall.=2. The angular mo-
local magnetic impurity to @-wave superconductor, includ- mentum degeneracy leads to Yj flavor degeneracy. For
ing pair-breaking effects. In a separate publication we willa problem with one nodey;=2. When more than one node
discuss in detail the problem of a magnetic impurity in ais consideredN;>2. We will also consider impurity scatter-
d-wave superconductor in more detHift® ing amplitudes which may change the angular momentum of
In this paper we reconsider the Kondo effect for nonmarthe fermions. The basic and simplest model is worked out in
ginal systems. The model has fermions coupled locally to a&ec. Il.
magnetic impurity. The fermions are assumed to obey a rela- |n the second part of the paper we use layerethods to
tivisticlike dispersion law and hence a density of states vaninvestigate the behavior of these systems near the critical
ishing linearly with the energy. For simplicity we consider coypling” We find that there is still a Kondo scale once we
models with just one Species of “relativistic ”ferm|on_s. We go over the critical coupling. However, the position and the
will refer to them as “having a single node.” In particular \yiqth of the resonance are not related anymore in the very
we will discuss the case of an impurity coupled to an elecjmpje way they are in the usual Kondo effect. The details
tron band with a dens_|ty of states that.vanlshlaearly with are worked out in Sec. Ill. The most salient feature of our
d|s§ance to the Fermi enerdy-=0. This case was not ex- roq it s the presence of logarithmic corrections to simple
amined by WF who found that the singularity structure L i, o : :
. e scaling in all quantities of physical interest, including the
changed as soon a3 1/2. We will show in this paper that at h . .
- e . o - - zero-field paramagnetic susceptibilitgt T=0), the Kondo
r=1 the additional singularities “conspire” to giveimple | d tha matrix for bulk fermi
scaling lawsmodified bylogarithmic corrections® This pic- ~ SC2!€: @n matrix for bulk fermions.
The largeN; theory that we present here suggests the

ture is strongly reminiscent of a critical system atupper X . ;
critical dimension following scenario. For small values of the coupling constant

As in the conventional Kondo problem, here too we cand: the impurity is free and effectively paramagnetic. In con-
construct an effective one-dimensional theory. Howeverlrast, for large values af, the impurity is screened by fer-
when one carefully reduces the {2 )-dimensional fermi- Mmions. The critical coupling. is dimensionful and scales
ons with a relativisticlike energy-momentum dispersion to arwith the energy cutoff. However, the fact that these systems
effective (1+ 1)-dimensional model, one finds that there areare inherently multichannel Kondo systems suggests that for
at leasttwo angular momentum channels that adevays J=J. the impurity is actuallyoverscreened’ In the lan-
coupled. Thus, these are afiherentlymultichannel Kondo guage of the renormalization group this requires a flow with
systems. In particular, it is always the=0 channel coupled two finite fixed points: onénfrared unstablefixed point for
either to/=1 channel or to”’=—1 channel. Which pair of the paramagnetic-Kondo phase transition andirdrared
angular momentum channels are actually coupled dependsableto describe the multichannel behavior of the Kondo
on the parity of the node(or cong to which the channels phase. As in the conventional Kondo problem, the laxge-
belong. We find two equivalent ways to represent the dimentheory can only describe the formation of the Kondo singlet
sionally reduced model. We have the freedom to choose thghich in a nonmarginal system can only take place at finite
effective (1+1)-dimensional fermions to have a local ki- ¢oypling. In marginal Kondo systems multichannel behavior
netic energy and, hence, to behave like conventional right found as a next-to-leading-order effect in thal1Expan-

m'(t)r:/ eth. _Howe_\t/erl,) in this plctulr €, tlhgrﬁffe(iﬂve 'nﬁeraCtt'pnsion or to third order in perturbative scalifgln the systems
wi € Impurily becomes noniocal. The other, arternalive,e physical interest mentioned above where this model ap-
picture, is to have a local coupling between right-moving

) X o plies, the number of channelN;, is always larger than the
fermions which now have a nonlocal kinetic energy. In fact, umber of colors. In such a situation one can imagine that
due to phase space factors, the density of states of the effec- . S gne |
tive (1+1)-dimensional model goes to zero linearly with there exists a critical number of channels such that both fixed

energy. The linearity of the density of states reflects the facpoInts actually coincide and below this critical number the

that in the original problem the fermions move in two spacelf@nsition disappears altogetti@we should emphasize here

dimensions. It is this feature what drives the system out oft this physics cannot be accessed by a straightforward use
marginality and which generates a critical coupling constan®f the largeN. expansion.
below which the width of the Kondo resonance vanishes. ~ The paper is organized as follows. In Sec. Il we derive the
In all cases of physical interegtarity is an exact symme- €effective (1+1)-dimensional impurity models for systems
try. This means that the number of nodesnes is evenand  of fermions in two space dimensions with relativisticlike dis-
that there should be as many cones with positive parity apersion(flux phasg. In Sec. Il we study these models in the
there are with negative parity. In the case of both thdargeN limit and determine their critical behavior. In Sec. IV
d-wave superconductors and of the flux-phase fermions, thiwe calculate the propagator for the band fermions in the
property follows from the alternating signs of the gap func-N—o limit and use it to derive th& matrix. In Sec. V we
tion. In contrast, if either parity or time reversal were broken,consider a model with the most general type of scattering
all four cones would have the same properties under parityprocess for fermions with only one node coupled to a single
However, in that case there would always be a nonzero erimpurity and determine the phase diagram. Section VI is
ergy gap on the entire Fermi surface. Thus, in general, thdevoted to the conclusions and to discussions of the similari-
effective Kondo Hamiltonians always have an exact degenties and differences between the problem we discuss here
eracy (angular momentum channgldhe spin symmetry is and the conventional Kondo problem. In the Appendix we
the usual SIR) spin rotation invariancéwhich here we call ~sketch the calculations of a few integrals.



53 KONDO EFFECT IN FLUX PHASES 15081

Il. TOY MODEL: s-d HAMILTONIAN =
FOR A LINEAR DENSITY OF STATES -(p)= > €™z, (p), 2.7
m=—o

In this section we want to study treed Hamiltonian in wherem is an integer and- indicates the positive-negative

the manner of Read and Newhujith the difference that we energy spinor eigenmodes of the Dirac equation given by Eq.
are not assuming a constant density of states for the condugz 1). We then have

tion fermions. We are coupling ah impurity to a bath of

“relativistic” electrons, i.e., electrons with a linear disper- - =pdp

sion relation. We assume that the chemical potential for the Ho= > EUF|p|[§1,m(p)§+,m(p)
electrons(the Fermi energyis zero. This is a very special m=== /0

case but it will turn out to be ql_Jite important for the case of _51,m(p)§—,m(p)]- (2.9
a d-wave superconductor as will be discussed in the follow-

ing sections. In real space we have

We start with a two-dimensional free fermion Hamil- g rndg
tonian with a linear spectrum and a Fermi velocitywhich - [*pap g N 5.7 ime
may correspond to the linearization of a fermion band of\pi(r)_,[o ﬁé:i jo 2w m;x ur(6)e® e m\(p)-
width 2D, whereD is an energy cutoff. We will consider a (2.9
model of band fermions wittN,=N spin components with To red this t valent di ional orobl
N=2 for the physically relevant case of spin @ In gen- uce this to .an equiva en*one |me|13|ona problem we
eral, this model will have a global SM() “color” (or spin ~ Use polar coordinates wherp=(p,), r=(r,4), and
symmetry. This model has a well-defined lafgdimit. The  p-r=prcos@—¢). By making use of the expansion,
free part of the Hamiltonian is

o]

d’p + - - @izcosp — 2 i3, (2)e", .10
HOZJ(zT)z‘I’Ui(p)(va-a)”qf(,j(p), (2.1 G~
whereJ,(z) are the Bessel functions. They satisfy the rela-
wherea; and «, are Pauli matrices, so that tions
0 e i0 2nde | |
5- a= pia;t+pray= p( e? 0 ) . (2.2 fo Eelprcos{e—(ﬁ)ﬂma:ime(pr)elm¢

Equation(2.2) can be diagonalized by expanding the fields since J_,(2)=(—1)"J(2). (2.1)
into a linear combination of spinor eigenstates. Let us cal

themu.. . These eigenmodes satisfy bsmg these in Eq(2.9) one gets

- - »pdp 1 .
VEP- au.=*vg|p|u.. 2.3 W(r,¢)= 0%;§;E:m2;ximxﬁpmem¢

A particular (and convenientchoice of eigenstates is given
by X[&m,+(P)+ &m-(P)],

1 el? »pdp 1

uP=— and uP=+x—. 2.4 :f pdp = jm+1 —im+ D¢
2= 2= 5 (2.4 Vaord)= | o % mgix' Imea(pr)e

The fieldsW’s carry a spin indexo apart from the spinor X[ &+ (P)— Lm—(P)]. (2.12

indexi andj which we ignore at this point but we shall put ) o
it back in when dealing with the interaction with the impurity At the impurity site, i.e., for —0, Jo(0)=1 andJ,(0)=0

term for m#0. So we are left with
vip)=3 u 2 \If<0>—f°pﬂ’i[ (p)+ Lo (P)]
i(P)= 2, Ui (P)(p), (2.9 0= ) 27 2 So,+(P)+ Lo~ (P)],
so that
=pdp 1

L V0= | S e D=L (p) 213
Yi(p)=—7=[¢+(P)+{-(P)],
V2 This is telling us that the effect of having a conelike disper-
sion relation for the fermions instead of a flat band will not
1 » only reduce the available density of states but it will also
Wa(p)= E[§+(p)_ {-(p)le”. (2.6 induce an angular momentum mode mixing. Even though we
may regard the impurity as having&function spatial form
Now we can expand thé fields in a basis of angular mo- factor as in the case of the usual Kondo effect, the coupling
mentum eigenmodes, to the fermions will no longer be restricted only to tke
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wave or the spherically symmetric angular momentum chanean be written in the form
nel. This feature will become evident in the following step. t a - a t a
We want to rewrite the theory by introducing effective one- Himp= Y o(0) 705 5(0) =W ,(0) 7,5 ¥ 5(0) f 175,58 5,

dimensional fermion operators. We use the radial component (2.16
of incoming and outgoing waves. We find two “flavors™ of wheref;r"’;&f& is the impurity spin coupled to the electrons
right movers given by at the real-space positiom=0. For a system with an
_ SU(N,) symmetry,a=1, ... ,Ng—l. We will use the stan-
cl(p)=\/m§+,0(|p|), dard representation of spin operatfingre, the generators of
_ SU(N)] defined in terms of the fermion operatofs as
C2(p)= \/m§+,_1(|p|) for  p=0, fJr 7550 5. If the constralntfyf =1 is satisfied, the impurity
_ |s in the lowest(fundamentgl representation of SWN\.).
cl(p)—\/mg_,o(lpl), Other representations can be constructed by changing the

_ “filling fraction” of the impurity spin. Notice that, for

co(p) =[Pl ~a(lp) for p<0. (219 SU(2), theonly possible value of the filling fraction is equal

In other words,c,; are the fermion states with angular mo- to one.

mentum/ =0 while c, are the fermion states with angular ~ Once again we stress the fact that the angular momentum

momentum/ = — 1. We summarize these mappings as channels given byn=0 andm= —1 couple to the impurity.
This is an important difference with respect to the case of
constant density of states, where only the=0 channel

Wi(0)= \/—f \/_C (). (219 couples to the impurity. We shall single out these two chan-

nels from the free part of the Hamiltonian to obtain an effec-

For a system with an SW;) symmetry, thes-d interaction tive theory by replacing E¢2.13 into Eq.(2.16),

*>pd >pd
Horm [ 2 Poclplieh (010 (9= 23 (m - (01+ | 2 Poclplle’s c(0) 14(m) =2ty (M) 1 (p)]

d d
gf | S T ()70, () + £ (D) L0 - (@) + 2 (D) Lo (@) + £ (D) 7740, (@)]S°

d d
gf o T (P @+ Ly (D)L (@=L (P 7Ly (@)= Ly ()7L (@)]SY

(2.17

By using the correspondence between fleeandc’s defined above we may write the Hamiltonian in a more compact form.
Since we found that this model contains effectively two “flavors” of right movers, we define a flavor Imdgx. . . N; with
N;=2. The system has an effective &) “flavor” symmetry which originates in the unavoidable mixing of angular mo-
mentum waves by the impurity. Similarly, we will write down the spin index 1, . . . N. explicitly. The effective Hamil-
tonian is(repeated indices are summed

- dp t a
f_mz\/mcw'(p) Tow

© d
| et

= dp g
Heffzf WEEw)CL(p)clU(pHE 173505, (2.18

wherea=1, . .. ,Ng— 1. The single-particle excitation energyl$p) =vp. Equation(2.18 shows that the coupling between
the impurity spin and the band electrons is momentum dependent.
We note here that there is an alternative representation of this model. It may be obtained by, instead of rescaling the fields
by a factor of\/m as we have done here, defining a new momentum varlable? [and later extending to (—,+%)]. In
this form, the effective Hamiltonian becomes

gfwdka dek' .
> _xzcw() 5 Co(k')|f

In this caseE(k)=sgn(k) Vk. In this representation, the interaction becomes local at the expense of a nonlocal kinetic energy.
In fact these two representations are equivalent and are the only ones compatible witarlcalimmutation relations for the
V¥ fields. This is the representation used by Withoff and Fradkimthis paper we will not use this representation of the
model.

We may now proceed to study this theory with a functional integral formdli3ime Lagrangian, in imaginary time, is

a

Taw

e P (2.19

~dk _ .
Herr= f_sz(k)Cm(k)Cw(kH



53 KONDO EFFECT IN FLUX PHASES 15083

Pt

“T):Lz cl,(p) farasls

© dq
Taw J‘iwz\/ﬁclw(q)

‘]0 * dp t
N, wagJIHcla(p)

J
a—T+E(p))c|g(p)+

Jd -
+fl-' E_—hlf f0'+€f(7)(fz-fo'_Qf)- (22@

In Eq. (2.20 we have defined,=g(N./2). We have also included a magnetic fiélavhich we will choose to be a diagonal
matrix h, and it will be defined below. The Lagrange multiplier fiedg{ 7) has been introduced to enforce the constraint of
charge(occupancy Qs at the impurity site. In principle, the partition function separates into a sum of subsectors each of which
is characterized by an impurity occupan@y .

Following the standard largi; decoupling approach of Read and Nevinge write the spin operators in terms of fermions
and find an effective four Fermi interaction. This interaction can be written in a simple form by making use of the well-known
identity, which holds for the generators of SU),

NZ-1

2 T(rw aﬁ =N 60'[3500:1 50'(1)50([3' (221)

A Hubbard-StratonovicliHS) transformation is now introduced to decouple the fermionic quartic term which arises from this
expansion. Up to an integration over the HS fielgdér) and ¢ (7), Eq. (2.20 is equivalent to

L"(T)=J Cug(IO)

+E<p))c|o<p>+f J_[cplw)f*clc,( )+ i(7)el (p)f,]

N¢

N, PR
T3 > |<P|(7')|2+f:r7(&__ha+€f(7))fa—fof(T)- (2.22
o I=1 T

Equation(2.22 can be rearranged, by field shifting and completing squares, in the form

L'(r)= f

+11(7)

1

d
clo(P)+ e (DT ()VIp] ——FE(P) || cip(p)+

J
—+E(p)) a—T+E(p)) Iplei(T f(r)}

2 lo1(7)]2— Qre( 7). (2.23

J - . = dp d -1
0—T—ha+€f(7)—¢| (T)ﬁwzm E_JFE(P) e(7) |f

We now obtain an effective theory for the fieldsand ¢, by integrating out the fermions. The partition function is given by

z=f DfTDchTDcDefD¢D¢*ex;n<—f dTE’(T))=Zof DeD¢*De; exp— Sef), (2.29

e g7 =)
Zy=¢ex NcNfTrf —In +E(p)

is the partition function of free fermions. The impurity part of the effective action is

N
N f
f —JC(Elcmlz
o\i=1

where

Sefr= — E Trin| -

o=1

R N . dp 1
ha+6f_|21 ol (T)fzmb TE() @i(7) —Qget|. (2.29

Here we stress that the model of physical interest hasagnetic impurity has an explicit momentum dependence.
N.=2 andN;=2. This momentum dependence is such that the effective cou-
The effective action of Eq2.25 has the standard form of pling at low momenta becomes arbitrarily small. We will
Ref. 7. The key difference here is the form of the free ferm-show below that up to a critical value of the coupling con-
ion Green'’s function which in this problem has a relativistic stantJ, there is no Kondo effect. This is in fact the result of
form. For the usual Kondo problem the magnetic impurity isRef. 9. Notice that the momentum dependence of the inter-
coupled to system of band electrons with a constant densitgction is a direct consequence of the relativistic dispersion.
of states at the Fermi surface. In the model that we discusShould any finite density of states arise, either by effects of a
here, the density of states of the effective fermidtfee =~ chemical potential or induced by disorder, a crossover to a
“right movers”) is still constant but the interaction with the conventional Kondo effect will occur. There is an important
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physical case in which a finite density of states is precludedvhere we should understand the integral as computed using
by reasons of symmetry, and the Fermi energy has to bsome convenient adiabatic cutoff. The nontrivial solution for

locked at zero. This is the case of thevave superconduct- ¢q is given by
ors which we will discuss elsewhete.

We now consider thél,—c limit. Here, large N, means 1 (*de 20°f (0% A%)[1—Ni|@o|*f(w?,A?)]
the limit in which the rank of the group of spin rotations  J, 027 e+ w1—N¢@o|*f(w?A2)]?
becomes large instead of being @Y To proceed with the (2.31)

LN, expansion, we look first for a static solution for It will prove useful to define the dimensionless variables
. F th fl try of the effecti ) :
¢i(7). From the SUR) flavor symmetry of the effective | _ ) " g v=|e&|/A. The saddle point equation@.30

Hamiltonian, there is a manifold of solutions which span the 4(2.3 d
group SU;). Clearly, all the solutions break SN¢) spon- and(2.31) now rea

taneously As in all impurity problems, it is impossible to Q; =dx ”

break spontaneously a continuous symmetry of bulk fermi- — = —sgn ef)f — —

ons by coupling them to an impurity, which has a finite Hil- Ne o m v HXT1-AlnX/(1—x7)]

bert space. Thus, this apparent spontaneous symmetry break- (2.32

ing is an artifact of theN,— limit. In fact, we expect that gn(d
it will already be restored by the leadingNL/ correction.

This is precisely what happens in the lafgexpproach to the 1 A 0 Inx Inx
conventional Kondo problerh.Thus, quantities which ex- %2_ (m00)2 )0 XT-x2 1- 1—x2
hibit this apparent spontaneous symmetry breaking will get
strongly corrected already in the next order ilNJ/ x?
In what follows we will seek a static, symmetric, solution XX 1A (1— D)2 (2.33
of the form¢,(7) = ¢o5. We will now derive the form of the .
saddle-point equationéSPE’$ which will determineg as a ~ WhereA=N¢|go|*/7v . . .
function of J, and of the filling fraction of the impurity There exists a critical value fdi, which we define as the
Q. value of Jy at the point wherep, departs from zero, for
First we need to compute vanishinge; .° It is given by
, dp 1 1 fwdwf(wz)_ A r dx
Goliw)== | 2Pl o5 (2.29 3.7 Jo m AT T Gaop2)o 1™
By working in imaginary frequency we automatically get the A m° 23
time-ordered expression form for E®.25. To compute Eq. T (mvp)? 4 (2.34

(2.26 we introduce a Lorentzian cutoff function, (p) and
extend the integration over to =o. We have

© d
go<iw>=—f p_Ipl_

730Z p—lw

In the next section we use the SPE’s to extract the critical
behavior of the system nedg.
A2

p2+ A2 Ill. SCALING AND ENERGY SCALES

IN THE STATIC APPROXIMATION

(2.27) In the previous section we obtained the saddle-point equa-
tions (SPE’9 for this theory; however, these SPE’s have a
singular behavior around the point=0, A=0. In particular,
an expansion in powers d for small A is not possible for

“daw v—0. In this section we want to investigate in further detail

Sef= — Ncﬂf 2—In{ef+w2[1— N¢| ool 2f (w2, A?) ]2} the behavior of the_SPE’s gnd the s.calllng behawoAcﬁs

0 & we approach the critical point. We will find that, opposite to
the situation in the usual Kondo problem, there are now two

B iw A2 | 2
_27TU|2: A%— @? n AZ)"

We can go back to Eq2.25 which now reads

2
+8 M_Qfﬂ), (2.29  independent energy scales frandv. o
J We go back to the SPE’s expressed in their original form
where Q; 1 (= v
f(wz 1 1 (e e —N—csgqef)=;f0 X 2 1= Ak (1—x0) 2
A2 2w T=(wlh)2 | A7 (229 3.1)
and
and the magnetic fielth has been set to zero. The saddle-
point equations are 1 fmd Inx 1-A Inx
g Jo Tox2 1-x?
N dew 26f n -0
*Jo 27 Fr a1 NiledPH(0ZADE T O X

(2.30 T N T e A
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whereA=N¢|¢o|?/ mv andgo=AJy/(7vE)2. For A small enough, the approximation is consistent. Work-
In Eq.(3.1), the integrand is the equal-time propagator foring on this idea, we split Eq:3.1) as

the impurity, with the integration variablebeing the imagi-

nary frequency scaled by the band electrons cutaffThis Qr if’flmdx

equation sets up a scale for a crossover between two different Ne 7)o 2+ x[1—Alnx/(1—x?)]?

behaviors, in much the same way as in the usual Kondo

14

effect the imaginary part of the band electrons Green func- n ifx dx v
tion sets the scale of the Kondo temperature. m)e1n 2+ x[1—Alnx/(1—x?)]?
In the case of the usual Kondo effect, the expression _
equivalent to Eq(3.1) is =li+lz, 3.8
0 1 e ” where we have used the fact that the only solution consistent
e = _f dx—— . (33 With Q{/N,<1/2 hase<O0. o
Ne mJo T vTH(X+A) The SPE’s forA may be treated using a similar approach.

The caseéN =2 is, in a sense, a limiting case as can be seefrduation(3.2 can be splitintd ; an_dl}Aé, where the first one
from Eq.(3.3. On the one hand, the right-hand sigs) of IS the corresponding integral up € “=, and the second one
this equation is a positive function. This fact forces sgj( takes over from that point to infinity. Again we are interested

to be negative in order to have a solution. However, even il the smallA and small» regime. The detailed computation

this case one gets of the integrald 1, I,, andl, 15 is given in the Appendix.
We will be interested in the following limiting cases.
1T A A (@ Q¢/Ng<1/m. In the regime in whichv<e YA<1,
Qf§=arctar<m —arctargm), (34 with »,A<1, the contribution froml, is negligible and

_ _ Q¢ /Ng=~(vim)er™ or v=m(Qs/IN)e YA <e Y, Thus, in
whereA is some electron band cutoff. This suggests that fokpis regime, Q;/N,<1/7. In this limit, the leading term

Q;=0, the impurity level|e| has to approach zero. How- rom the other SPE is going to Heee the Appendix, Eq.
ever, if Q;=1, there is no solution, since (A 17)]

m/2—arctan(\/|e|) is a strictly positive number. Now, if

N, is an integer larger than 2, and letting— o, we find a1 Q:\%1
———|~e Wz <. (3.9
1 Qf A 4 Y0 N¢ A
T 57 N_c =arctarém). (3.5 This gives
Here we can distinguish two different regimes: (mQ¢/N,)?
Q:/N.—1/2 which corresponds to the cafe<|e| and 1 | In[M}
Q;/N.—0 which corresponds tpe¢| <A. A~ o — SR A
However, for the system being discussed here, the situa- n (mQ¢/N¢) 5| (mQ¢/Nc)
tion is a little different and, actually, more complex since, as m214— 1/g, w2 14— 1/g,
it turns out, now there are two different scales involved. In (3.10
principle there is a scale set enby A at the point where and
Inx 1 Inx
l~-Ay—7 OF ;~—7— 7. (3.6) e QA 1 (14— 1/go) 1
N mQ/N¢ (mQ¢/No)*|”
If the value of the frequencyand therefore ok) is small L -y 1/g,
enough so that><1, we can approximate (3.11
X~ ex _i 3.7 (b) Q;/N.,~3. We now consider the opposite regime
Al ' e YA<p<1, where we obtain
|
Qf 1 3 Can 3 1/3 e 1/A s Qf 1
N—C'vi—me and v=~|— (_Qf/NC+1/2)1/3>e if N—c—>§ (3.12
In this regime, clearlyQ/N.— 3 and the other SPE gives
1 7 7
—=~—+ —vlnv. (3.13

0o 4 2

We can get a solution for by iteration on Eq(3.13),
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1 2(m 1 .
V~I = ; T—% . (3 4)
" 2(7%4— 1ig,)
Using Eq.(3.12 we getw which, after being replaced into E(B.13), gives a scaling form foA in this regime,
2(@* 1\[w(1 Q)| ., T
e v R P (319
Thus,
aelin 1 -1 L InIn[(2/7)(7?14—1/gy)]~*
(2/m)(m?14— 1Igo)[ (7/3)(3— Qs /Nc) ]V In{(2/m) (w24~ 1Ugo)[ (m/3) (5 — Q¢ /N)]¥3 %)
(3.1

Notice that, for the physical cadd.=2, the two regimes value of the coupling constant by the effect of the reduction
Q:/N.<1 and Q;~N_./2 are identical. Only ad. grows of the density of band states. Hence, in the present case, the
large does it become possible to distinguish one case frorimteraction has to become strong enough so as to overcome
the other. However, in the casg;~N./2 the magnitude of the effect of the depletion in the number of states available in
A appears to go to zero &— N /2~ even though the criti- order to produce the Kondo screening. Thus, for systems
cal coupling is independent of the value @f. In contrast, with a small coupling to the impurity, there will be no Kondo

in the caseQ;/N.<1 such an unwanted feature is not screening and we should expect a decoupled impurity behav-
present. It is worth noting here that, in spite of this apparentor.

difficulty, we will show at the end of this section that the If go>g., the system is in the Kondo screening phase.
zero-temperature susceptibility at zero field has the same b&Ve may define a&ondo scale T for the regimegy>g;.
havior in both regimes. Thus, this difficulty is not physically From Egs.(3.9—-(3.11) we see that, in terms of the physical
relevant. For simplicity, we will use the ca§g/N.<1 to  parameters of the theory, we have

extrapolate to the physically meaningful caseN\pf= 2.

We can use these results to derive fhéunction for the B Ne ,(Jdo—Jc Qr\% Jo -t
coupling constany in the limit N.—o. In order to do this TK:|6f|~Tr@UF Jode In 2N_C Jo— e :
we may use Eq(3.13 for the regime in whichQ; /N~ 3 or (3.20
Eq. (3.1 for the case&; /N.— 0. Starting from Eq(3.9) we ) ’
may replace\ in terms ofv to obtain The results found here generalize the work of . that
work the case of a density of states which vanishes linearly
m 1 was not discussed on account of the fact that the structure of
4 9_o~ av(lna—Inv), B.17  the singularities was not smoothly connected with the case of

) a constant density of states. The results of this section show
wherea=7Q;/N¢. The 8 function keeps track of the flow that the main difference is the presence of logarithmic cor-
of go as the cutoffA is decreased from very large values rections to scaling in all the physical quantities. The case of

(infinite bandwidth. Hence, a magnetic impurity coupled to a Fermi system with a linear
P density of states seems to be analogous to the behavior of
B(do)= _Aﬂ_ (3.19 critical systems at their upper critical dimension. In contrast,
dA the case of the constant density of states is the analog of a
- - critical system at the lower critical dimensigmarginal in-
In both fimits Q;/Ne—0 andQy/Ne—1/2 we find stability). The closest analog to this problem is the critical
1 behavior of the Gross-Neveu model i3 (space-timg
B(9o)=—go+ —05. (3.19  dimensiong?®
9 The results that we find here hold for the simple regime of
where 1¢.=m?/4 . large N. which does not describe correctly the dynamics of

We immediately see that there are two fixed poifég:a  the system with more than one fermion flavor. At this lead-
stable fixed point atgy=0 and(b) an unstable fixed point at ing order in 1N., the existence of several channels is only
do=9.. The stable fixed point represents the weak-couplingeflected into a trivial degeneracy and it does not lead to any
phase in which the fermions are decoupled from the impuritynew physics. However, as has been shown by Blandin and
and the impurity spin is unscreened and there is no Konddlozieres® already the leading corrections inNL/ will lead
effect. The nontrivial fixed point agy=g. separates the to nontrivial behavior in the “screened” phasgs>g.. In
weak-coupling phase from a strong-coupling phase that, ithe standard Kondo problem, this behavior was confirmed by
principle, should exhibit a Kondo effect. This unstable fixedboth the Bethe-ansatz solutidn and conformal field
point can be regarded as the usual marginally unstable fixetheory?! We note here that, due to the nonlocal character of
point of the standard Kondo problem, now pushed to a finitdhe effective one-dimensional theory discussed in Sec. Il, it
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is not possible to use either the Bethe ansatz or conformal (b) Q;/N.~3. For Q;/N.~3—(3/mv%e %*, we have
field theory to study the noncritical Kondo problem that we
discuss here. Nevertheless, we expect that the physics of the
phase withg,>g. should be similar to that of the conven- c Jo 2( J
tional overscreened Kondo problem. We also note that, in a x(0)~ oy (J 3 )In[—(\l 3 ”
. . TUE \Jo~ Je m\Jo— J¢
more realistic model, one expedtair nodes with two nodes
of each chirality and hence with more flavors and a more
pronounced overscreened behavior. X
We close this section with a discussion of the zero-field
susceptibility for this model. The coupling of a magnetic

field only to the impurity spin has the form of a Zeeman termppce again, we find logarithmic corrections to scaling.

155 o

7N, +...

(3.29

Ne We see from Eqgs(3.25 and (3.29 that the zero-field

Hy,=— 2 fT,hng. (3.21 susceptibilityy(0), atzero temperature, has a behavior con-

R o=t sistent with the general picture described above. It is finite
Here, h, are the elements of a suitably chosen Bi)(di-  for g,>g., but diverges ag, approacheg.. This is con-

agonal generator, which also includes the appropriate nokistent with the impurity being screenégondo effecj for a
malization factors so as to set the Bohr magneton to one. Wgajue of the coupling constant larger than the critical value.
will need to ensure the tracelessness of the generator, and Wywever, as we approach the critical coupling constant from
can do so by keeping all the elements of order one withne screeningondo) phase, the susceptibility must diverge,
alternating signs. In this way we prevent the case of overgince for values of the coupling lower than the critical value,
populating one of the states that the Zeeman term splits wit | 2 ishes and the impurity effectively decouples from the

respect to the others; i.e., we explicitly avoid cases like th%and. In this regime one expects the impurity will behave

one with N.— 1. e_Ieme_nts being-1 aﬂd th? last element like a free spin in a magnetic field and, since we are at zero
beingN.— 1. This is an important consideration to care abou&emperature the susceptibility should diverge

if we want to study the magnetic field crossover, i.e., if we
were interested in obtaining the susceptibility at finite field.
This was discussed in Ref. 22. However, we will be inter-
ested only in the zero-field susceptibility and it will be suf- IV. T MATRIX AND ONE-PARTICLE GREEN FUNCTION

ficient to assume all thie, to be = h, so that the sum of their In this section we derive the propagator for the band elec-
squares gives a factor &f;. The magnetizatioM is given  tons to ordemN— . We will use this expression to calcu-
by . late theT matrix in theN—o limit. We will consider pro-
St cesses in which an electron with a given energy is initially in
M :;1 (fohofo) a state with well define@ngular momentumand it is scat-

tered by the impurity into a state with possibly a different
angular momentum. Thus, we will parametrize Thenatrix
by the magnitude of the incoming and the outgoing momenta
(namely, the energy of the statnd by the angular momenta
(3.22  of channels involved in the scattering process. This descrip-
The susceptibility at zero field is tion is natural since at most only a pair of angular momen-
tum states {'=0,—1 with our choice of nodeare actually

N .
¢ (> dw h
=-2>

)27 e[ 1Ny goPf (02 A2)] -,

o

oM mixed by the impurity.
X|h:o:m o In contrast, the computation of the correlation function
(\P}r(F)\Pk(F’)), for r andr’ away from the impurity, will
:&[E_i]fwd_x v involve a mixing of all the angular momentum channels.
Alv av|)o m v*+x1-Alnx/(1-x3)]*" However, in principle, we could add a source term and also

(3.23 decompose the source field in angular momentum modes,
' and keep only the modes that get mixed by the interaction
Once again, we consider two regime®:/N.—0 and  with the impurity. In other words, we are considering the
Q¢ /N—1/2. We discuss only the reging>g. since the  scattering of band electrons among angular momentum chan-
susceptibility is infinite belovg. , where the impurity is un-  nels produced by the interaction with the impurity. In the

screened. n case of a coupling to a flat barfdsual Kondo problem the
(@ Qf/Nc<1. ForQ/Nc~(v/m)e™", we get only angular momentum channel that gets involved isshe
o Q wave. Thus, in practice, we only need to consider the partial
x(0)= ~t_ =t waves that actually get mixed by scattering from the impu-
| Ef| TK r|ty
Ne [Qf\2 Ido 20¢\3 Jo Therefore, it will be sufficient to work with the equivalent
~—| — | ) — . one-dimensional fermions; andc, while keeping in mind
’7TU|: Nc \]O Jc NC JO JC

the correspondences defined in Sec. Il. The relevant part of
(3.29 the action is



15088 CARLOS R. CASSANELLO AND EDUARDO FRADKIN 53

= do' (= d
s= [ oo| Selmor-iotEmiadpo [ 5| G [" SR bler - wile e p.0)

+o(w—o')c (p,0)f (o)} (4.0

We add sources;fg(p,w) and 7,,(p,w) for the fieldsc,,(p,») and CL by adding the following source term to the action:

fﬁmzﬂ.f [77lo(p ®)Cio(p, @)+ ¢l (P, ) 7,(p,®)]. (4.2

After completing squares and integrating over the band fermion fields, we are leftapait from a normalization factoan
action which depends only on the impurity fermion fields and the sources,

1
(—iw+E(p)>

sf—E et —io+eto-3 [ 22" T8 S gt tom o) VBltliw)+ il p.o)

dp + 1
f 27J 2w”"’(p’“’)<TE(p)

After a few fairly straightforward manipulations and another integration now over the impurity fermion fields, we can rewrite
the action as

nlu(piw)' (43)

U—w (0—o")|plf (0" + 74P, o) |+

C

S[3,3M=— E — —J (0K Y w,0")I (o), (4.9

where we have introduced the operatngs and the kerneK which are given by

Jo(w)= E oo et (- )%'E(p)m(p,w') (49
and
| dpde” |p|
K(w,w’)=(—lw+6f)5(w—w’)—fE o m 21 o (0" — o) (0"—o'). (4.6)

The generating functional for the Green'’s functidas zero temperatuyean be written as

Ze[n. 7' 1=exd = Si(7.7N)], 4.7
so that correlation functions of the band fermion fields can be computed by differentiatio@ oyer

1) 1)
t ' I —
(a9 )>_<6m<q,m 577|'(r'(Q',Q')ZF[77177T]>nr;To. “9

We restrict the calculation to the static solution case Whg(€) — w)= ¢, 5(Q1— w). Then
1 Vgl vlg']
T ! ! — , , o~/ _ ! , — /
<C|o'(qVQ)C|’0"(q 1Q )> 5” 50'0' 5(q q )5(9 Q )_|Q+E(q) + —iQ+ E(q)lzfl (Q) —iQ+ E(q/) 5(9 Q )1
4.9

where theT matrix 7;;,({) is given by (a) Equation(4.10 gives theT matrix atimaginary fre-
quency. TheT matrix for real frequency(at zero tempera-
ture) is found by an analytic continuation to the real axis,

- % .
. PPy i0—Q. o
Ty ()=~ Ny . (410 (b) If ¢, and ¢, are nonzero, there exists a finite matrix
—iQ+ef+go(iQ)|Zl [o]? element for the scattering of a band electron from a state

with angular momenturh into a state with angular momen-
tum |’ (and vice versp In contrast, for a flat band, thé
wheregg(i€2) was given in Eq(2.26) and Eq.(2.27). matrix is diagonal in angular momentum states. This matrix
TheT matrix of Eq.(4.10 exhibits several important fea- element is not invariant under SNf) since it mixes the
tures. angular momentum channels. As we pointed out above, this
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is a consequence of the unphysical spontaneous breaking tifat, due to the strong logarithmic corrections, these two
the flavor (channel symmetry. Thus only thérace of this  scales are completely different. Once again, in the conven-
T matrix is physical. All other matrix elements will be sup- tional Kondo effect,Tx controls both effects.
pressed by infrared-divergent corrections to next order in the Hence, in contrast with conventional Kondo behavior, the
1/N. expansion. interaction with the magnetic impurity induces a nontrivial
(c) From the analytic continuation of the trace of the renormalization of the propagator of the band fermions. This
matrix one can find the position of the Kondo resonancewill happen even fod,<J., although this effect only occurs
Qg , the widthW, , and the phase shii(2). Using the fact in higher order in I.. Finally we stress that, due to the
that ="' [¢)]=N¢|o|?, we can write the trace in the form SU(Ny) flavor symmetry, there cannot be any channel mix-
ing scattering processes in this model. However, in the fol-
. TFUEA lowing section, we will present a model which describes the
tr7(Q)=7,(Q)=— Ot e T OAINAQ) i (772 OA" most general impurity scattering processes for systems with
only one node. In that model the chanfeit flavor) symme-
(4.11 try SU(N;) is broken explicitly already at the level of the

which is valid for frequencies low compared to the band-impurity Hamiltonian. Thus we expect to find processes
width Q<A but comparable to the dynamically generatedwhich will mix the various channels.

scales. The phase shif(Q}) is

(72)QA V. GENERALIZED IMPURITY
(4.12

Q+ ||+ QAINAIQ]) ) In the past sections we considered a situation in which the
fermions coupled to the impurity spin only through their own

spin densily‘lﬁ;\lf. Scattering processes of this type have
L ) the simplifying feature that particles and holes interact with
2(mAvg)°Q the impurity independently from each other and exactly in
{led] + Q[1—AIN(|Q/A) ]} 2+ [(7/2)AQ]? the same way. However, in practice, more general scattering
(4.13 processes will be present. We also made the assumption that
only one node of the two-dimensional fermions is present.
Here, we will consider all possible scattering processes
involving only one nodeThe coupling through the spin den-
|Q|) sity has the very special feature that itdsagonal in the

5(Q)=tan !

(d) The imaginary part of th& matrix is

Im trﬁ(Q)=

The function given by Eq(4.13 has a peak at the Kondo
resonanced) , which is the solution of the equation

=0 1-Aln— (4.14  components of the spinors; i.e., the impurity does not mix

A particles with holes. In terms of the effective Hamiltonian of
One easily obtains the asymptotic solution Eq. (2.19, this diagonal coupling implies that there is no
explicit mixing of angular momentum channels. Hence, the
> N [Jo—Jc model has an SU\;) symmetry(with N;=2). Any process
Qg~—mvEg- 33 which mixes particles and holes will break the flavor sym-
Qf oYc .. .
metry explicitly. We will include now these processes.
1 We will also incorporate the correct node structure. For
XIn{(Z/W)(ZQf/Nc)s[‘]O/(‘]O_JC)]Z} T example, in the case of a flux phase, say, on a square lattice,
there will be four differenhodescorresponding to the sym-
(4.19 metry points (- m/2a,,*+ w/2a,) of the first Brillouin zone.

where we have kept only the leading-logarithmic correctionsAs We discussed in Sec. |,kwave superconductor has an
We see immediately that we have a resonance centered @palogous node structure, at the points where the gap has
Q. which is basically the Kondo scalg that we found in nodes. We will discuss of this very interesting case in a
Sec. Il but modified by the ubiquitous logarithmic correc- Separate publicatiof?. It is straightforward to see that the
tions. In particular, the position of the Kondo resonancemain effect of a more general node structure isnitrease
scales with the distance to the critical coupling constant anéhe number oflavorsin the effective model. In the one-node

it goes to zerdthe Fermi energyat J. . model of the previous section we found that there were two
(e) The resonance widthV, can be read off from Eq. flavors and an S(2) flavor symmetry. The existence of two
(4.13, flavors can be traced back to the spinor structure of the origi-

nal problem. When the two-dimensional fermions have more
T than one node, the number of flavors becomése the num-
WK”|QK|7- (416  ber of nodesN;=2N,4s Thus, for a flux phase we will
have N;=8 flavors. However, flux phases aewenunder
From Eq.(4.12 it is clear that the dimensionless parameterparity. Hence, there are two pairs of nodes with opposite
A=N¢|go|%/mv? sets the scale for the range of the scatteringparity. The parity of the node is given by thelative signof
amplitude. Thus, as far as transport properties such as ttibe two terms in the free fermion Hamiltonian of HG.1).
resistivity are concernedA is the important parameter, Thus, a change of parity is equivalent to the mapping
whereas thermodynamic properties, such as the susceptibi— — 6, in other words to a reflection across theaxis. In
ity, depend entirely on the impurity energy scale i.e., the  Sec. Il we showed that, with the choice of parity we made
Kondo scal€Tk . The analysis done in the last section showsthere, the channels with angular momenta=0 and
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/=—1 get mixed by the impurity. Hence, if nodes with the Which should depend only on the absolute values of these
other parity are also included, we will also get mixing be-two coupling constants. In the expressions for the Fermi
tween /=0 and /=+1, but no direct mixing between field,

/=+1 and/=—1. In Sec. Il we also found that only the 1 (= dp

mapping bet_ween the comppnents of the pngmal fermion q,”(o):_f —\/mcn(p) and SaEf;re;&fa,

and the fermions of the effective one-dimensional theory car- V2) -2

ried information about which angular momentum compo- (5.3
nents are mixed. This feature is always present. Thus, the ngfe havel =1, . . . N, gesandi =1,2. In what follows we use
effect of having a multinode structure is to increase the numa single flavor index=1, . .. N; with Ny=2N,,oges HOW-

ber of flavors. Consequently, although the thermodynami@ver, we will keep in mind that the impurity does not mix
properties will be insensitive to parity assignments, the scatdifferent nodes but it does mix the flavor components asso-
tering amplitudes of the original fermions with the impurity ciated with the same node.
will carry information on the parity of the nodes. This feature  The model of equivalent one-dimensional right-moving
can be used to determine the nature of a superconductirexcitations has an S®@) spin (color) symmetry and a
state. SU(2Noged flavor symmetry(associated with the channgls

In what follows, we will consider a system with four broken down to SU{,,4ed. The free fermion kinetic term
nodes, two with positive parity and two with negative parity, has the form
interacting with a single magnetic impurity. For simplicity d
we will assume that the impurity form factor is strongly H :f_p > ¢l (p)cil(p) (5.4)

0 pve ia P)Ci.(P

peaked at small momentum, so that internode scattering pro- 2m i
cesses can be ignored. We will keep, however, processes ihd an impurity interaction term with the following struc-
which particles and holes may interact differently with theyre:
impurity and/or mix with each other. We parametrize these

processes with four coupling constadts with i=0,1,2,3. . :_f @f ﬂ TaTet ~ T 3
The generalized impurity Hamiltonian is given by Himp 27 ) 2m Ipllalfacqj(aICs(P)TgTij, (5.9

whereT;; is the coupling matrix which has a block diagonal

Himp= IE IV (0)Ti7¥4(0)S, (5.)  form. Fori,j associated with the same nodig has the form

’I . .. .o

= y J ij ij
where the indice$ labels the nodes and and 8 the spin Tij=Ne(Jody +J101 +Jp07 +J305). 68
componentsT,=1 is the 2<2 identity matrix andT;= o; In other terms the matrix has_ the forfie | whereT is t_he
(i=1,2,3) are the three Pauli matrices. Hdggis the cou-  2x2 matrix of Eq.(5.6) andl is the Npoges< Nnodesidentity
pling constant that was used in the model of Sec. Il. matrix. We have also let the spin indicesg to run from
The free fermion Hamiltonian for each node, 1,... N; and used the identity of Eq2.21). The form of

the impurity Hamiltonian, Eq(5.5), shows that, if the cou-

d?p .. pling constants); are all different, the S(2) flavor symme-
HOZJ (ZW)Z‘PT(p)UFU' p¥(p), (5.2 try of each node is broken by the interactions but the sym-
metry involving different nodes remains intact.
is invariant under the symmetry transformati®@V (p) We will now proceed as in the previous sections and solve

—0o3V(—p). The effect of this transformation di,,isto  this model in the limit of N.—. After a Hubbard-
reverse the sign of both, andJ,. This implies that the sign Stratonovich transformation, the quartic term of the Euclid-
of J; and J, is irrelevant to the properties of the theory, ean action becomesepeated indices are summed

= d
f dm?(r)Mija,(erdrfﬁﬁﬂ[m(r)fl(r)cai(p,maf(r)ci,i(p,r)fa(r)], (5.7

WhereMaﬁ=(TaB)‘1. SinceT is of the formT®|, thenM has the same form, i.eM ®1I. In the following,M stands for the
2X 2 matrix of Eq.(5.7). It can be easily shown that

N¢ 90—9s  —(917ig2) ~
M= - - = . ENCM, (58)
g6—9g-g\ —(9:1tig2) 00103
whereJ;=g; /NZ and 9=(91.9,.93). In the case considered in Sec. II, i.e., whBr 0, Jo#0, we have a full (2) flavor

symmetry between the fields. In other words, the two channels play exactly the same role. When the coupling constants are
all different, this symmetry is broken down to g1)x U(1), where one of the ) symmetries is generated by the identity
and the other b.



53

KONDO EFFECT IN FLUX PHASES 15091

The N.—< limit is taken in the standard fashion. The Hubbard-Stratonovich fie|dsill be chosen to be an arbitrary
vector for each node and the same vector for all nodesVLet a unitary transformation which diagonalizes the2matrix

M, and leto=Vo, so that|o4|?+|0,|?=|7,|?+|7,|%. The eigenvalues d¥l can be rewritten am+ ém, where

Yo \/?

m= — and om=———. (5.9
95—9° 95—g°
The modified effective action can be written as
1 = dw _ 1 g 1 =
- eﬁ:_NcJ —In _|w+€f+_Nnode§|0'1| +|0'2| )Go('w) +_Nnodech[(|a'l| +|0'2| )ym
B —w21r 2 2
+(|o4]2=]2]?) Sm] — Qseq
NF dwm( otet N (|112+]55|2) Goli @) rIN 4\|( el + [l ) Q (5.10
=—N¢ o —loT €T —~Npgged |01 02 ollw ~ NnodedNc fEF - .
2T 2 2 go_\/g go+\/;
The new saddle-point equations are
%:_Jx d_w ! (5.11)
Ne w27 —iw+ e+ INnoged| 1|2 +[72|*) Goliw) '
Go(iw)
7, (5.12
\/— 7OC27T —iotets Nnode£|0'l|2+|0'2| )GO(“U)
and
Gy(iw) (5.13

_(,f
90+\/— 22T i+ €+ ENpoaed| T2 2+ [T D Goliw)

We now solve these new SPE’s. The solution will be castin (a) o;=0,=0. This is the region of the phase diagram

the form of a phase diagram which can be plotted in &elow the line gy+ Vg?=g,. This is the weak-coupling
\/?— do plane(see Fig. 1 In principle, we find three dif- phase. The magnetic impurity is effectively decoupled from

ferent solutions of the SPE's.

unscreened
impurity

the band electrons. To leading order irNg/the impurity
does not interact with the band fermions and behaves like a
free magnetic moment. Consequently the impurity spin sus-
ceptibility is infinite, there is no resonance, and there is no
Kondo screening.

(b) Both'z;# 0 ando,# 0. There is no consistent solution
of this form unlessjz=0. In other words, this case is pos-
sible only if the only nonvanishing coupling constantlis
with Jo>J., in which case we do have the(2) symmetry.
This is the line on the axigg of the Fig. 1 forgg>g..

(c) o,#0, o,=0. A solution of this form satisfies the
equations

screened impurity

f Go(iw)
gO+\/— 2m —lotets Nnode$0'2| G (“1))

Qf _ dw 1
Nc 2m _iw+6f+%NnodeiEZ|2GO(iw).

g Vg? (5.14

FIG. 1. Phase diagram of the generalized impurity model. ~ The action of this solution is given by
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) G ence of additional channels associated with the multinode
ESmp: ~Ne | 5In| —iw+ €+ Npgges—— Goli @) structure turns this into a multichannel Kondo system if in-
ternode scattering processes are not allowed.
Nc|’5'2|2
— Qe (5.15
o+ Vg2 V1. DISCUSSION AND CONCLUSIONS
For a solution of this typeg; and o, are determined by In this paper we have considered the problem of flux-
o, through the relations phase fermions coupled locally to a single magnetic impu-
) rity. This is formally the same as the problem of fermions
~ (91—i92) with a relativistic dispersion in two space dimensions
g1 02 —— ' coupled to a local spin. We derived explicitly an effective
V2Vg2(Vg?+gs) theory in one space dimension.
The physics of the effective one-dimensional theory for
_ \/T2+ this problem differs from the conventional radial picture of
02 T2\ ——F— ' the Kondo problem in several important ways. First, it is
2\/? always a multichannel system. The channels reflect the

This solution is only allowed above the limg+ \/§_= g in spinor structure of the nodes and the multiplicity of nodes.
the phase diagram. This is the Kondo or screening phaséecond, the relativistic dispersion implies a density of states
The results of the previous sections apply to this phase. Which vanishes linearly at the Fermi energy. Consequently,

(d) 5,#0, 7,=0. The SPE’s also allow for solutions of unlike the conventional Kondo model, the effective one-
this form. In principle such solutions are allowed above thedimensional problem has a nonlocal coupling between the

. = , . . effective right movers and the impurity. This is the feature
line go— Vg°=ge. The SPE's for this solution are exactly that drives the Kondo effect away from marginality and it is

the same ones found ifc) with go+g? replaced by responsible for the phase transition between an unscreened
Jo— \/? Clearly this solution competes with the solution of impurity phase and a phase with a Kondo effect. This is
case(c) over a significant region of the phase diagram. Inconsistent with earlier results of Withoff and Fradkin.

fact its allowed region is completely included within the al-  However, for the case of the linearly vanishing density of
lowed region for(c). However, we argue that this solution is states that we discussed in this paper, the nature of the scal-
always metastable and never occurs. In fact, for any finiténg in the vicinity of this zero-temperature phase transition is

value of Vg2, the interaction between the impurity and the drastically changed. We find that all physical quantities ex-
band electrons will be stronger in casé) since hibit very simple scaling laws modified by logarithmic cor-

= = _ ) _ rections. We found this behavior in the Kondo scale and in
9ot ‘/9—>9° ‘/9— favoring the first case in much the y,o impurity spin susceptibility. This behavior is strongly

same way in which the bonding state is preferred to the Alreminiscent of critical phenomena at an upper critical dimen-

}}ftt)ogdljlng onetwrt])e? thelfi_egenera:cy 'r? akt\g\O_tlixgl _sy_stgm 'Sjon. One important consequence of the logarithmic correc-
Ilted by a perturbation. 1S easy 1o check thal Inis IS INGEEG;, s s that there are more dynamical scales and that all

correct by looking for solutions of both typesjn the vicinity physical quantities are no longer controlled by the Kondo
of the phase transition, fag, close tog, and Vg2 small. In scaleTy alone. This is particularly clear if one compares the
addition, since there is no actual symmetry change betweegmplitude of theT matrix and the position and width of the
these two “phases,” we do not expect a phase transition. Kondo resonance.

We conclude that the generalized impurity model has just The model we studied and solved here using la¥ge-
two phases: a phase with an unscreened impurity and a phaggsthods is an interesting problem in its own right. In a sub-
with a Kondo effect. The phase boundary is at the linesequent publication we will report on a study of a similar
Jo+ \/?zgc. The physics of the Kondo phase is almostmodel for magnetic impurities iml-wave superconductors
identical to what was described in the previous sections. Invhere we will draw heavily on the ideas that we developed
fact, at the level of theN—c theory, the physical observ- here.
ables of the generalized impurity model can be calculated It is interesting to compare the effective one-dimensional
using the formulas for the single-node model of the previousnodel that we derived here with the conventional one-
sections. The main difference is that, since th@)Ulavor  dimensional models for the conventional Kondo problem.
symmetry at each node is now broken by the explicit form ofThe standard Kondo problem is equivalent to a model in one
the impurity Hamiltonian, operators with nontrivial matrix space dimension with a single right mover which interacts
elements in that sector are now allowed. In particular, therdocally with the impurity spin through the fermion spin den-
will be nonvanishing, finite, off-diagonal matrix elements of sity. This coupling through a density is crucial for the phys-
the band fermio matrix. In other words, the impurity will ics of the Kondo problem to be correctly described by the
mix band fermion states with different angular momenta. Inmodel of right-moving fermions. The fact that the fermions
contrast, processes which mix different nodes are still stricthare chiral (namely, only right movers are presgmheans
forbidden. Finally we note that scattering processes of théhat, up to a Fermi velocity, the fermion density and current
type described here effectively reduce the number of indeare the same observable. This model can be described en-
pendent channels. If it were not for the existence of severdirely in terms of a conserved current. This is the starting
nodes, we would expect to find a Kondo effect in this phasepoint of the conformal field theory approach of Affleck and
with a completely screened impurity. Once again, the existLudwig.?! However, it is also crucial for the success of the
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approach of Anderson, Yuval, and Hamntam fact, the 1 pe YA 1 .
equivalence that exists between Kondo systems and prob- — 2re a8 =R(rA)s—e " (AS5)

lems of macroscopic quantum cohereficeely heavily on
bosonization of models of fermions coupled locally to impu-We will be interested in the following cases:
rities through a density. The fact that this density is associ-
ated with a conserved current means that it cannot acquire _1A 1 I
anomalous dimensions. Thus, the fixed points of the conven- T »>€ 7=, we have R(y,A)——e ""<L1.
tional Kondo contain only marginal operators which are (AB)
made marginally relevant by quantum fluctuations.

From this analysis it is clear that it is not possible to v
describe the phase transition that we discuss here in terms of  If  v<e ', we have R(v,A)— ;em< 1.
a conformal field theory coupled to local boundary operators (A7)
representing the impurity. The nonlocality of the effective
one-dimensional theory is essential. It is because the mod&or 1>v>e ', we can expand the denominator in Eq.
is nonlocal that the operator that couples to the impurity cartA4) to get
(and doep acquire an anomalous dimension. This is the )
mechanism which drives the phase transition. These models R(v A)%i[em 3 (A) o3 .
are not equivalent to any standard macroscopic quantum tun- ' TV
neling (MQT) model. It may appear that, because the densit ] ] ]
of states vanishes like a power of the energy, these model&/€¢ can now get thlellzehawor of E(.1) in these two dif-
could be related to a sub-Ohmic MQT system which arg€rent regimes: foe™*“<v<1,
known not to have phase transitions. However, sub-Ohmic

AZ

(A8)

MQT models describe quantum impurities coupled to a mac- Qf ~ 1 _ ieffﬂm
roscopic bosonic system with sub-Ohmic spectral density. No 2 mv°
The models that we discussed here are fermionic and are not
equivalent to a sub-Ohmic bosonic theory. 3\1R e 1A a e Q1
and v~=~|— 7> e if —— <.
T Ne 2
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Now we want to work out similar approximations for the

APPENDIX other SPE. We have

In Sec. Il and from Eq(3.8) we have

, e 1A Inx Inx
IlE_ dez 1—A1T2

I _1J‘e—1/Ad v Al 0 X
=2l Y amiaoor  AY B
and X 1- A (1) 2
1 T
_1 o v %_e_llA——R(V,A), (ALD)
|2_?erdxv2+x2[1—A|nx/(1—x2)]2' (A2) A A

1A in which we made use of the fact that over the integration

In the region of integration where>e" "=, |, can be ap-  jneryal, the variable is very small, so that the approxima-
proximated by tions 1—x2~1 and—Alnx>1 are consistent. For the other
1 1 1 portion of the integral(i.e., for I;) we are in a situation
|y~ — —arctaré—e‘m). (A3)  Wwherex>e " and then— Alnx/(1—x%)<1, and so we ne-
2 glect the logarithmic term against 1.
1A We need here the result

On the other hand, when we are in the regixagee™

jw x%nx 1 1 1

a2 |
X == —+wvinv,.
0 1-x° v°+x% 2 1+2°

2

I~ — fefm dx =R(»,A A4
1A )y AR R (AY) (A12)

The following inequality holds: Then
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R Inx Inx
E T R s

X2

X 1= A (1= ]2

% g x%nx 1
~— Xo——s ——
e 1A T 1—x% pP+x?

1 1
T 21+12

2
T
> + Wvlnv} —e 1A

1+1
A

1 1
—vin varctar< —e m) —vF| e m) . (A13)

The functionF (z) verifies that, folz|> 1, F(z) =F(1/z) and
for |z|<1 is given by

z—

” 1
— _ n__—  S2n+1
F(2) ngo( A T L L )

1 1
~z(Inz—1)— §z3 Inz— 3

Getting everything together, in the limit>e Y and
v, A<1, where

oo (A14)

1
R(V,A)—>—e_1/A,
Ty
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one can write the SPE in the form

1 7 =«
—~—+ —viny,

T3 (A15)

which can be solved by iteratidsee Eq(3.14) in Sec. IlI].
The other limiting case corresponds @ <1, with v,
A<1. Here

R(v,A)— %em. (A16)
The SPE now is
w1 1/ Q)2 Qr\?
n S _a-1A ~f ~f
i E e
Qs)? Qs
+ WN—C) In ’iTN—C , (Al?)

since in this caseye*~7Q;/N.. The cubic term can be
dropped right away. As for the other terms, as we approach
the transition,7Q; /N, remains fixed whileA—0. There-
fore, the leading term is going to be the one with the factor
1/A. This immediately gives the implicit expression frin
terms of the impurity occupano®;/N; and the distance to
the critical point 1g.— 1/g, that we used in Eq.3.9) in Sec.
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