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We presentab initio calculations of the interlayer exchange coupling between two, in general noncollinearly
aligned magnetic slabs embedded in a nonmagnetic spacer. Based on a surface Green’s function formalism,
two equivalent but formally and physically different approaches are examined and discussed. For the Co/Cu/
Co~001! system we demonstrate the usefulness of the concept of infinitesimal rotations in order to calculate the
coupling for a finite relative angleu, in particular foru5p, between the corresponding spin directions in the
magnetic slabs. The temperature and layer dependence of the interlayer exchange coupling is examined and the
possibility for noncollinear coupling is investigated.@S0163-1829~96!02121-2#

I. INTRODUCTION

Interlayer oscillatory coupling~IOC! has been found to
occur in a number of ferromagnetic-nonmagnetic multilayer
systems and is in some cases accompanied by an oscillatory
magnetoresistance. A number of models were proposed to
explain this phenomenon~for a recent review see Ref. 1!.
Typically one estimates the energy difference between the
ferromagnetic~F! and antiferromagnetic~AF! alignment in
order to determine the interaction between two magnetic
slabs separated by a nonmagnetic spacer. A slightly different
approach was first proposed by Slonczewski.2 His interaction
energy is obtained from the torque by calculating the spin
current accross the spacer and employing wave functions.
This method was further elaborated by Hathaway and
co-workers,3 Edwards and co-workers,4 and its usefulness
was tested on simple free-electron and tight-binding models.
A reformulation of the spin current approach of Slonczewski
in terms of Green’s functions in a tight-binding representa-
tion appeared very recently.5 Also mentioned has to be an
expression for the torque in terms of Green’s functions and
employing Lloyd’s formula for the integrated density of
states within a tight-binding model.6 In Refs. 5 and 6 the
change in the grand canonical potentialdV(u) necessary to
rotate the spin direction in one slab with respect to another
one by an angleu is calculated and the torque is expressed as
2]dV(u)/]u. Within a nonrelativistic approach this is the
most general approach to the problem which in turn also
allows for a generalization to random slabs and spacers.

Recently, ab initio formulations of the interlayer ex-
change coupling have appeared,7–9 based on an application
of a layer version of Lloyd’s formula in order to evaluate the
difference between the grand canonical potentials of the F
(u50) and AF (u5p) alignment using the so-called frozen
potential approximation.7 In the present paper we generalize
our previous approach8 to the case of an arbitrary angleu.

We also present an alternative formulation of the IOC which,
while giving exactly the same result as the original one,8

differs from it both formally and in its physical interpreta-
tion.

The applicability of the method of infinitesimal rotations
to various interesting cases, in particular to the AF alignment
(u5p), will be studied numerically. Expressions for the bi-
linear and biquadratic terms in the expansion of the exact
formulas are then obtained and their properties, in particular
the temperature dependence, studied. All applications are
discussed for the Co/Cu/Co~001! system with varying thick-
nesses of the magnetic slabs and of the spacer.

II. FORMALISM

The grand canonical potentialV of a system is defined by

V52
1

p
ImE

2`

`

f ~E!Tr lnG ~z!dE, ~1!

wherez5E1 i0, f (E) is the Fermi-Dirac distribution func-
tion, and Tr denotes the trace over the spin and configuration
space. Within the tight-binding linear muffin-tin orbital10

~TB-LMTO! methodG (z) is given by

G ~z!5@P~z!2S#21, ~2!

whereS is a matrix of structure constantsSR,R8 , P(z) is a
site-diagonal matrix of potential functionsPR(z) which in
spin space can be written as the following 232 supermatri-
ces:
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PR~z!5S PR
↑↑~z!, PR

↑↓~z!

PR
↓↑~z!, PR

↓↓~z!
D ,

SR,R85S SR,R8
↑↑ 0

0 SR,R8
↓↓ D ,

SR,R8
↑↑

5SR,R8
↓↓ , ~3!

andR andR8 denote site indices. The off-diagonal terms of
PR(z) in spin space account for a spin orientation of atoms
in one and the same magnetic layer with respect to a~fic-
tious! global axis of the system. The use of the so-called
auxiliary Green’s function~GF! defined in ~2! in Eq. ~1!
instead of the physical Green’s function is justified within
the TB-LMTO formalism ~see e.g., Ref. 11!. It should be
noted that in the absence of spin-orbit coupling only the
relative angle between the spin orientations in two different
magnetic layers is important.

The system considered consists of a central finite non-
magnetic spacer slab (C ) of varying thicknessN and two
semi-infinite systems, denotedL ~left! andR ~right!, each
containingM magnetic layers on top of a semi-infinite non-
magnetic spacer. In the limit this model represents two semi-
infinite magnetic slabs sandwiching the nonmagnetic spacer.
The reference frame of a rotation of the spin orientation in
one particular slab by an angleu is assumed to be with
respect to the ferromagnetic alignment (u50). In particular,
we assume that the spin orientation in the right magnetic slab
R is rotated by an angleu with respect to that of the left
magnetic slabL.

The quantity of the physical interest is the difference of
the grand canonical potentials between the ferromagnetic
(u50) and a rotated (uÞ0) alignment of the two magnetic
slabs, namely the exchange energyEx(u)5V(u)2V(0).
The exchange energiesEx(u) are very small quantities and
their direct evaluation is rather cumbersome.1 The clue is to
use Lloyd’s formula in the framework of the frozen potential
approximation as applied to a rotated alignment which dif-
fers from the ferromagnetic alignment by a localized
perturbation.6–8 Technically there are few possibilities how
to divide the system into an unperturbed part and a localized
perturbation. A common approach6,7 is to consider the ‘‘ro-
tated’’ magnetic slab as a perturbation. Clearly, with increas-
ing thicknessM of the magnetic slabs the numerical effort
increases as the third power ofM . This limitation can be
relaxed8 by considering three decoupled noninteracting re-
gionsL, C , andR as an unperturbed system. The localized
perturbation is the interlayer coupling at theL/C and the
C /R interfaces, which is independent of the thickness of the
magnetic slabs. The concept of principal layers12 ~PL! as
used within the TB-LMTO method leads to a block tridiago-
nal form of the structure constants and of the inverse of the
GF. Employing the partitioning technique with respect to the
trace of the logarithm of the GF,8 it is possible to extract
directly the term describing the coupling of interfaces,
dTr lnG (z),

dTr lnG ~z!52
1

Ni
(
ki

tr ln@12t1~ki ,z!g1N~ki ,z!

3tN~ki ,z!gN1~ki ,z!#, ~4!

where thet matricest i ( i51,N)

t i~ki ,z!5G i~ki ,z!@12gii ~ki ,z!G i~ki ,z!#21 ~5!

are defined in terms of the effective embedding potentials
G i(ki ,z) at theL/C ( i51) and theC /R ( i5N) interfaces,

G1~ki ,z!5S10~ki!G̃ ~ki ,z!S01~ki!, ~6!

GN~ki ,z!5S01~ki!G ~ki ,z!S10~ki!.

A standardki Fourier transform was performed in~4!. In
Eqs. ~4! and ~5!, g11(z),g1N(z),gN1(z), andgNN(z) are the
corresponding blocks of the spacer slab GF consisting ofN
layers, tr denotes the trace over angular momenta (L5l m)
and spin (s5↑,↓), andS01(ki) andS10(ki) are the interlayer
structure constants which couple neighboring PL’s. Finally,
in ~6! G̃ (ki ,z) and G (ki ,z) are the surface Green’s
functions12,13 ~SGF’s! of the magnetic subsystemsL and
R, respectively. The coupling between the two magnetic
subsystems is due to the layer off-diagonal projections
g1N(ki ,z) andgN1(ki ,z) of the GF of the finite slab spacer.
The oscillatory behavior of the interlayer coupling is then
governed by the oscillatory behavior of these quasi-one-
dimensional spacer Green’s functions, a formulation which
is very much in the spirit of a simplified RKKY approach.1

Alternatively, one can consider as the unperturbed system
two semi-infinite systems,L8 andR8, coupled together via
interlayer coupling at a single interfaceL8/R8. The L8
subsystem consists ofM magnetic layers on top of a semi-
infinite nonmagnetic spacer similarly as in the previous case,
i.e., L8[L. TheR8 subsystem contains, in addition, the
finite spacer slab on top of the magnetic slab, namely it con-
sists of the previous C and R subsystems, i.e.,
R85CøR. In other words, we shall consider the differ-
ence between the rotated and ferromagnetic alignments indi-
rectly in terms of the energy of a single interface rather than
directly as the interface-interface interaction energy as in the
previous case. Employing again the partitioning technique to
the trace of the logarithm one gets

dTr lnG ~z!52
1

Ni
(
ki

tr ln@12GL8~ki ,z!GR8~ki ,z!#, ~7!

GL8~ki ,z!5S10~ki!G L8~ki ,z!S01~ki!,

where, similar to~6!, the quantityGL8(ki ,z) has the mean-
ing of an effective embedding potential, andG L8 andGR8
are the corresponding SGFs. Both expressions, Eqs.~4! and
~7!, give exactly the same result forEx . It should be noted
that an addition of spacer layers introduces changes only in
GR8 but leavesG L8 unchanged. SinceGR8 is related to the
local density of states12,13 of the top surface layer of the
R8 subsystem, the formulation in~7! resembles rather a
quantum-well state description~see, e.g., Ref. 1! of the IOC
than the RKKY-like approach of Eq.~4!. Equation~7! is also
more convenient from a numerical point of view as the de-
termination of the SGF~Ref. 12! is more efficient than the
evaluation of the layer off-diagonal blocksg1N(z) and
gN1(z) of the Green’s function of the spacer slabC . In par-
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ticular the formulation in~7! is similar in spirit to the spin-
current approach of Ref. 5 formulated within a semiempirical
tight-binding model.

Let us now turn to our primary problem, namely the
evaluation of the energy difference between arbitrary align-
ments. Consider the following quantity:

tr lnZ5tr ln~12A0B!2tr ln~12A0B0!, ~8!

where the matricesA0 andB0 are related to the ferromag-
netic alignment and thus are diagonal in spin space

A05S A0
↑ 0

0 A0
↓D , B05S B0

↑ 0

0 B0
↓D . ~9!

The particular form of the subblocksA0
s andB0

s (s5↑,↓) is
given by

A0
s5gN1~ki ,z!t1

s~ki ,z!g1N~ki ,z!,

B0
s5tN

s~ki ,z!, ~10!

and

A0
s5S10~ki!G L8

s
~ki ,z!S01~ki!,

B0
s5G

R8
s

~ki ,z!, ~11!

for the formulations based on Eq.~4! and Eq.~7!, respec-
tively.

The matrixB refers to an alignment in which the orienta-
tions of the spin in two magnetic slabs are rotated relatively
by an angleu,

B5U~u!B0U
†~u!, ~12!

where

U~u!5S c s

2s cD ~13!

is the rotation matrix14 for spin 1/2, c5cos(u/2),
s5sin(u/2), U(u)U†(u)5 U†(u)U(u)51, and detU(u)
5detU†(u). The quantity 12A0B in ~8! can therefore be
written as

12A0B5~U~u!2A0U~u!B0!U
†~u!, ~14!

where, as follows from Eqs.~9! and ~13!,

U~u!2A0U~u!B05S c~12A0
↑B0
↑! s~12A0

↑B0
↓!

2s~12A0
↓B0
↑! c~12A0

↓B0
↓!
D .

~15!

Using now the identity tr lnX 5 ln detX, which is valid for
any non-singular matrixX, and the identity

detS A B

C DD 5detA•detD•det~12A21BD21C!, ~16!

which in turn is valid if the matricesA andD are nonsingu-
lar, it is straightforward to prove that

tr lnZ5trLlnS 12
12cos~u!

2
M D , ~17!

where

M512~12A0
↑B0
↑!21~12A0

↑B0
↓!

3~12A0
↓B0
↓!21~12A0

↓B0
↑!. ~18!

FIG. 1. Absolute value of the discrete Fourier transform of
N2Ex(p,N) for a finite set of spacer layers (N510–50! and for
different temperatures:~a! two semi-infinite Co~001! subsystems
sandwiching the Cu spacer, and~b! two 5 monolayer thick Co~001!
slabs in fcc Cu. The temperatures areT50 K ~full line!, T5150 K
~dashed line!, T5300 K ~dash-dotted line!, andT5450 K ~dotted
line!.
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It should be noted that in~8! tr denotes the trace over orbital
momenta and spin, while in~17! tr L denotes the trace over
orbital momenta only. The final expression forEx(u) is thus
given by

Ex~u!5
1

pNi
(
ki

ImE
C
f ~z!

3trLlnS 12
12cos~u!

2
M ~ki ,z! Ddz, ~19!

in which the energy integral is formulated in terms of a con-
tour integral which will be discussed in detail in Sec. III A.
For the antiferromagnetic alignment, i.e., foru5p, it is
straightforward to verify the equivalence of Eqs.~10!, ~18!,
and ~19! with those given in our previous paper.8 It is also
possible to show that Eqs.~11!, ~18!, and ~19! are formally
related to the results of the spin-current approach5 as formu-
lated within a Green’s function formalism based on an em-
pirical single orbital tight-binding model. Finally, it should
be mentioned that in the related approach6 which employs as
unperturbed part the infinite spacer with two magnetic slabs
of the thicknessM , the numerical effort increases asM3

contrary to the present approach, which scales linearly with
M .

Since the rotations in the spin space, Eq.~13!, form a Lie
group, the torque formula can be easily obtained by differ-
entiating Eq.~19! with respect to the angleu. By definition
one gets therefore

T~u!52
]Ex~u!

]u
or Ex~u!52E

0

u

T~u8!du8, ~20!

wherebyT(u) follows immediately from~19!,

T~u!5
sin~u!

2pNi
(
ki

ImE
C
f ~z!trL

3FM ~ki ,z!S 12
1

2
@12cos~u!#M ~ki ,z! D 21Gdz.

~21!
Finally, by formally expanding the logarithm in~19! in

powers of 12cos(u), one can cast the expression forEx(u)
into the form

Ex~u!5A1@12cos~u!#1
1

2
B1@12cos~u!#21•••, ~22!

whereA1 and B1 are the bilinear and the biquadratic ex-
change coupling coefficients, respectively,

A15
1

2pNi
(
ki

ImE
C
f ~z!trLM ~ki ,z!dz, ~23!

B152
1

4pNi
(
ki

ImE
C
f ~z!trL@M ~ki ,z!#2dz.

It should be noted that in the literature6 other forms of
Ex(u) are also used, e.g.,

Ex~u!5E02A2cos~u!2B2cos
2~u!1•••. ~24!

FIG. 2. Absolute value of the discrete Fourier transform of
N2Ex(p,N) for a finite set of spacer layers (N510–50, full line
and N540–80, dashed line! corresponding to two semi-infinite
Co~001! subsystems sandwiching the Cu spacer. The temperature is
T50 K in both cases.

FIG. 3. Exchange couplingN2Ex(u,N) as a function of the
spacer thicknessN for two semi-infinite Co~001! subsystems sand-
wiching the Cu spacer:~a! T50 K, and ~b! T5450 K. Diamonds
refer to the calculated values, the full line~back Fourier transform!
serves as a guide to the eye.
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While the interrelation of the above two forms@~23! and
~24!# is trivial, certain care is needed when comparing dif-
ferent theoretical results or experimental data as theA’s and
theB’s differ both by value and even sign.

From ~19! follows the possibility for an expansion around
the state with a given angleu different from zero. Of par-
ticular interest of course is the expansion ofEx(u) for a
small u, i.e., when 12cos(u) is a small parameter@the
method of infinitesimal rotations~MIR’s!#. This approach
becomes particularly relevant in the case when the spacer is
a magnetic metal or for complicated geometries, e.g., for
periodic multilayers. The applicability of the MIR to mag-
netic spacers is based on the validity of the local force theo-
rem for magnetic systems, the usefulness of which was dem-
onstrated for the case of bulk magnetic crystals and their
alloys.15

III. NUMERICAL RESULTS AND DISCUSSION

A. Details of calculations

The numerical studies were performed for Co~001! slabs
in a fcc-Cu spacer assuming an ideal lattice corresponding to
the experimental lattice spacing of fcc Cu. Self-consistent
potentials of bulk Cu and of a single Co~001! monolayer in
bulk Cu are used also for the interacting slabs~the frozen
potential approximation7,8,16!. Special care was devoted to
the energy and the Brillouin zone integrations: at a finite
temperature7–9 an integration along a contourC, which en-
closes the first few Matsubara frequencies and which starts
and ends atEmin andEmax, respectively, is performed using
a Gaussian quadrature procedure. The energyEmin refers to
the valence band bottom whileEmax lies sufficiently above
the Fermi energyEf in order to include also the partially
filled states~for details see Ref. 17!. For T50 K we have
tested two contours, namely a semicircle betweenEmin and
Ef , or, alternatively, a line contourEf1 i«, «P(0,̀ ), and

FIG. 4. Absolute value of the discrete Fourier transform of the
torqueN2T(u,N) ~full line! and ofN2Ex(u,N) ~dashed line! for a
finite set of spacer layers (N510–50! and for u5p/2. This case
refers to two 5 ML thick Co~001! slabs andT50 K.

FIG. 5. Absolute value of the discrete Fourier transform ofN2Ex(p,N) ~dashed line! and ofN2A1(N)@12cos(u)# ~solid line! for a finite
set of spacer layers (N510–50! and foru5p: ~a! two semi-infinite Co~001! subsystems sandwiching the Cu spacer,T50 K, ~b! the same
but for T5300 K, ~c! two 5 monolayer thick Co~001! slabs,T5300 K.
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again using a Gaussian quadrature. The results were very
similar in both cases. The use of the line contour allows one
to avoid possible problems connected with the phase of a
complex logarithm. Typically a total of 20–25 energy points
was used. A large number ofki points in the irreducible 2D
Brillouin zone is needed only for the energy points close to
the real axis, whereby generally a greater number is needed
for lower temperatures and thicker spacers. The number of
ki points can be significantly reduced for energies well off
the real axis. For higher temperatures the first Matsubara
frequencies move deeper into the complex plane, making
again theki integrations numerically less demanding.7 In
particular, for the first four energy points we used 4095/
2485/1035/325ki points in the irreducible 2D Brillouin zone
and 55 for all remaining energy points on the contour. The
thickness of the spacer was in most cases varied from 1 to 50
layers and in particular cases from 1 to 80 layers. Finally, the
self-consistent potential of a monolayer Co~001! slab in bulk
fcc-Cu was also employed for a slab 5 monolayers thick and
for a semi-infinite Co~001! system. We have verified that
essentially the same results are obtained using potentials of
pure fcc-Cu and fcc-Co crystals aligned to a common Fermi
energy of the spacer.

B. Analysis of the results

The calculated results, namelyEx(u,N), whereN speci-
fies the spacer thickness, were analyzed in two ways. First, a
discrete Fourier transform

F~k!5
1

p (
N5Nmin

Nmax

N2Ex~u,N!exp~ ikN!,

wherep5Nmax2Nmin is the number of values used in the
Fourier analysis, andNmin is chosen in order to eliminate the
effect of very thin spacers~typically Nmin510 and
Nmax550!. The periods of oscillationsL i ~in monolayers!
are then identified with the positionski of pronounced peaks
of the absolute valueuF(ki)u of a discrete Fourier transform
F(k) as L i52p/ki , while the amplitudes of oscillations
Ai are estimated fromAi5(2/p)uF(ki)u. The background os-
cillations thus obtained~see Figs. 1, 2, 4, 5, 7 below! are due
to the finite data sets used for the Fourier transformation. The
background oscillations could be smoothened using the pro-
cedure described in Ref. 18, namely by multiplying
N2Ex(u,N) by Csin(pN/p)/(pN/p), whereC is a normaliza-
tion factor. Second, the values forN2Ex(u,N) are displayed
as a function of the spacer thicknessN. Both representations
are consistent with a RKKY-like behavior ofEx(u,N),
namelyEx(u,N)}N

22 for a largeN.

C. The expansion of the exact expression, Eq.„19…

The aim of this subsection is to study the validity of the
expansion of the logarithm in Eq.~19! in powers of
@12cos(u)#/2 or, alternatively, in powers of cos(u), for a
general angleu and thus to justify limited expansions, Eqs.
~23! and ~24!. The logarithm in~19! can be expanded into
the Taylor series

Ex~u!52(
n

1

n
lnmn , l5

12cosu

2
, ~25!

mn5
1

pNi
(
ki

ImE
C
f ~z!trL~M ~ki ,z!…ndz, ~26!

FIG. 6. Exchange couplingN2Ex(u,N) ~diamonds! and the bi-
linear termN2A1(N)@12cos(u)# ~crosses! for u5p as a function of
the spacer thicknessN for two semi-infinite Co~001! subsystems
sandwiching the Cu spacer;~a! T50 K, and~b! T5300 K. The full
line ~back Fourier transform! serves as a guide to the eye.

FIG. 7. Absolute value of the discrete Fourier transform of the
biquadratic termN2B1(N) for a finite set of spacer layers
(N510–50! corresponding to two semi-infinite Co~001! sub-
systems sandwiching the Cu spacer. The temperature isT5300 K.
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in terms of the momentsmn . The expansion is absolutely
convergent forulu,1/M , whereM is the maximum absolute
value of the eigenvalues of the matrixM (ki ,z) for all ki
vectors from the surface Brillouin zone, and for all energies
z on the contourC used in ~26!. Note that the matrixM
depends on the energyz, ki vector, the spacer thicknessN,
and on the orbital indicesl m in a very complicated manner.
Clearly, the expansion is convergent for the infinitesimally
smallu, but its extension to finiteu ’s is not straightforward.
In order to investigate numerically its convergence we cal-
culated the first 60 moments for thick Co slabs atT50 K
and atT5300 K numerically and found that for low tem-
peratures and small spacer thicknesses, the series is diver-
gent, while for larger spacer thicknesses and higher tempera-
tures it becomes convergent. The convergence is rather fast
for spacer thicknessesN>30235 layers atT50 K, and for
N>8210 layers atT5300 K. The same behavior was found
also for Co slabs 5 monolayers thick.

It is worthwhile to mention that even if the series in~25!
diverges, its first few terms are very close to the exact result.
This can be seen from Fig. 5 where we compare
N2Ex(u,N) and 2N

2A1(N) as a function of the spacer thick-
nessN. ForT50 K the difference between the exact expres-
sion and the bilinear~Heisenberg-like! approximation be-
comes smaller with increasingN and is negligible for all
spacer thicknesses forT5300 K.

This kind of behavior is typical for an asympotic expan-
sion. It can be explained in the following way. Thenth mo-
mentmn can be viewed as sum of thenth powers of the
eigenvalues of the matrixM evaluated for a set of arguments
$ki ,z% with proper weights. We have calculated the eigen-
values of the matrixM and have found that most of them lie
inside the unit circle of the complex plane. Only a small
fraction ~not exceeding 1% in the most unfavorable case!
falls outside the unit circle.

D. Results for Co/Cu/Co„001… system

A discrete Fourier transform of the temperature depen-
dence ofEx(u,N) for the collinear arrangementu5p is
plotted in Fig. 1 for the cases of 5 monolayer~ML ! slabs and
semi-inifinite Co~001! slabs. ForT50 K the results coincide
with those of Ref. 16 but with the background oscillations
smoothed by using the procedure described above. We find a
nearly complete suppression of the long period oscillations
for thick Co~001! slabs~see also8,9,16!. For finite slabs, how-
ever, both the short and the long period oscillations
exist,7–9, 16 in particular for 5 ML thick Co~001! slabs. The
periods of oscillations are in a fair agreement with existing
experiments19 as well as with other theoretical
approaches.7,9,19 It was demonstrated recently16 that the am-
plitudes of oscillations for real samples, in particular the
short period oscillations, may be strongly reduced due to the
presence of disorder in the system~interfacial roughness and
interfacial interdiffusion between magnetic and nonmagnetic
subsystems!. In addition, a suppression of the amplitudes of
oscillations due to the temperature is found, which is non-
negligible for room and higher temperatures. It turns out that
the effect of temperature is somewhat stronger for the long
periods~the case of 5 ML’s slabs! than for the short periods.

The results are insensitive to the choice of the subset of
N2Ex(p,N) values used for a discrete Fourier transform as
illustrated for the case of thick Co~001! slabs in Fig. 2. As
compared to the subsetN510240 greater background oscil-
lations for the subsetN540280 layers indicate a slight de-
crease of relative accuracy of calculations for very thick
spacers. Similar results were obtained also for Co slabs 5
ML’s thick.

For semi-ininfinite Co slabs the temperature dependence
of Ex(p,N) as a function of spacer thicknessN is presented
in Fig. 3 for T50 K andT5450 K. The results are in ac-
cordance with predictions of a simple RKKY model,19

namely that the suppression of oscillations is proportional to
the temperatureT and the spacer thicknessN via a certain
function of the factorz5NT. As can be seen from Fig. 1,
finite temperatures result in overall smaller values of the am-
plitudes, while a suppression of exchange coupling with in-
creasing spacer thicknessN is clearly seen in Fig. 3~case
T5450 K!. It should be noted that due to the dependence on
thez factor the amplitudes of oscillations now depend on the
particular subset ofN2Ex(p,N) values used for the discrete
Fourier analysis. A comparison of discrete Fourier trans-
forms has to be confined, therefore, to the same subset.

In order to illustrate numerically the relation between the
torque T(u,N), Eq. ~21!, and the exchange coupling
Ex(u,N), Eq. ~19!, in Fig. 4 we present for Co slabs 5 ML
thick results for a discrete Fourier transform of both quanti-
ties atu5p/2, T50 K. For symmetry reasons, the torque
T(u) is zero for collinear alignments of the magnetic slabs,
i.e., foru50 or u5p, and has a maximum foru5p/2. The
very good quantitative agreement betweenT(p/2) and
Ex(p/2) as obtained also for thick Co slabs is quite remark-
able. Even better agreement is obtained at higher tempera-
tures. It is easy to verify from Eqs.~19! and~21! that for the
leading term of the expansion one gets

Ex~u,N!>A1~N!@12cos~u!#

and

T~u,N!>A1~N!@12cos~u!#sin~u!,

i.e., T(p/2)52Ex(p/2). The above discussion on the con-
vergence of the Taylor expansion forEx(u) with respect to
@12cos(u)# applies therefore also to a similar expansion for
T(u).

E. Bilinear and biquadratic couplings

In the following we want to illustrate the range of validity
of the approximate expansion in Eq.~19!, and, in particular,
its approximation by the bilinear and biquadratic terms, Eqs.
~23! and ~24!. Bilinear coupling@the first terms in~23! and
~24!# is exact for infinitesimally smallu but we deliberately
tested its applicability in the extreme limit ofu5p. Then
Ex(p,N)'2A1(N) and the corresponding results are dis-
played in Figs. 5 and 6. Irrespective of the thickness of the
magnetic slabs the present calculations confirm a good over-
all agreement betweenEx(p,N) and its approximate form
2A1(N) already forT50 K and almost perfect agreement
for T5300 K. Quite obviously, the Heisenberg-like or bilin-
ear terms in the exact expression~19! yield already a very
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accurate description of the coupling, in particular for
T>300 K, while the non-Heisenberg terms, in particular the
biquadratic terms, are negligible for higher temperatures and
large spacer thicknesses. In other words, temperature has a
more pronounced effect on the biquadratic terms than on the
bilinear terms. Seemingly, the angle dependence of
Ex(u,N) is then correctly approximated byEx(u,N)
'A1(N)@12cos(u)#. The present calculations confirm there-
fore that this approximation can be used not only for small
anglesu but for anyu<p. As discussed in Sec. II, it seems
that by starting from the ferromagnetic alignment and by
using subsequently the MIR, accurate estimates for
Ex(u,N) for the case of more complicated geometries like
periodic multilayers with in general more complex spin
structures can be obtained.

A discrete Fourier transform of the biquadratic term
N2B1(N), Eq. ~23!, as well as its dependence as a function
of the spacer thickness is shown in Figs. 7 and 8, respec-
tively, for the case of thick Co slabs and forT5300 K. The
existence of the long period oscillations for the biquadratic
term is a consequence of the so-called aliasing.19 The fre-
quency is doubled in the biquadratic term as compared to the
bilinear one, i.e., the value of the correspondingk vector in
the discrete Fourier transform of the biquadratic term is
kb523 2.485 4.96. The corresponding irreducible vector19

is kb5u23p2kbu51.32 which is in excellent agreement
with the valuekb51.31 in Fig. 7. The absolute value of the
biquadratic term, however, is much smaller as compared to
the bilinear term. Temperature suppresses the oscillations of
the biquadratic term similarly as forEx(u,N) @compare Fig.
3~b!#.

F. Remark on thep/2 coupling

Finally we want to address the question of an energeti-
cally favored orthogonal arrangement of the spin orientations
in two semi-infinite Co~001! subsystems sandwiching the Cu
spacer. By definition, the inequalitiesEx(p/2,N),Ex(0,N)
andEx(p/2,N),Ex(p,N) should be fulfilled for a certain
spacer thicknessN at the same time. For this study we used
the exact expression~19! because of the convergence prob-
lems for the Taylor series expansion for low temperatures
and thin spacers. We have considered different geometrical
models, namely the case of an ideal interface~the intrinsic

p/2 coupling! and the case of the interface roughness. The
motivation for such study comes from recent studies by
Slonczewski20,21 in which he suggested that either the inter-
face roughness20 or so-called loose spins21 could be respon-
sible for thep/2 coupling. In order to discuss the case of
interfacial roughness, we assume as in the previous paper16

large flat terraces of monolayer heights fluctuating randomly
and uncorrelated in both directions around an ideal interface
with the probabilityr , followed by a simple statistical aver-
age with respect to the average spacer thicknessN.

We have found nop/2 coupling for the case of an ideal
interface. On the other hand, thep/2 coupling is energeti-
cally favorable for the probabilitiesr50.2 andr50.25, but
no such coupling was found forr50.05 andr50.1. Consis-
tent with these results, ap/2 coupling occurs more fre-
quently for r50.25. The same calculations performed for
T5300 K still give ap/2 coupling forr50.2 andr50.25
but for a smaller number of layers. This in turn is consistent
with the dominating bilinear coupling for higher tempera-
tures as discussed above.

IV. CONCLUSIONS

We have derived a closed expression for the exchange
coupling between two magnetic subsystems separated by a
nonmagnetic spacer with a relative angleu between the cor-
responding spin orientations. The derivation is based on a
surface Green’s function formalism and the numerical effort
needed to evaluate the resulting expression scales linearly
with the thickness of both the spacer and the magnetic slabs.
A particular case of our expression is the torque formula for
a general angleu.

A detailed analysis of the temperature dependence of ex-
change coupling was performed for the trilayer Co/Cu/
Co~001! in the frozen potential approximation. In particular,
a strong temperature dependence of the non-Heisenberg-like
terms as compared with the Heisenberg-like ones was found.

The Taylor expansion of the exchange coupling with re-
spect to the small parameter 12cos(u) was found to con-
verge sufficiently well only for thick spacers, and to be
strongly temperature dependent. The bilinear or the
Heisenberg-like term seems to dominate the expansion for
temperatures equal or higher than the room temperature.

We also demonstrated the usefulness of the method of
infinitesimal rotations with respect to a ferromagnetic align-
ment of magnetic slabs since it can serve as an interpolation
scheme for arbitrary angles ofu. This result in particular
indicates the possibility of an approximate evaluation of the
exchange coupling for more complex geometries than the
trilayer arrangement studied here and also studied in most of
the other theoretical treatments.

Finally, we have verified that interface roughness favors a
noncollinear coupling, specifically ap/2 coupling, as com-
pared with the case of an ideal interface~the intrinsicp/2
coupling!. A more detailed study of this phenomenon is nec-
essary in the future by considering other layer stackings than
the fcc~001! and other spacer and magnetic slab materials or
geometrical arrangements.
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FIG. 8. The biquadratic couplingN2B1(N) as a function of the
spacer thicknessN for two semi-infinite Co~001! subsystems sand-
wiching the Cu spacer. The temperature isT5300 K. Diamonds
refer to the calculated values, the full line~back Fourier transform!
serves as a guide to the eye.
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