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We presenab initio calculations of the interlayer exchange coupling between two, in general noncollinearly
aligned magnetic slabs embedded in a nonmagnetic spacer. Based on a surface Green’s function formalism,
two equivalent but formally and physically different approaches are examined and discussed. For the Co/Cu/
Co(001) system we demonstrate the usefulness of the concept of infinitesimal rotations in order to calculate the
coupling for a finite relative anglé, in particular for6= 7, between the corresponding spin directions in the
magnetic slabs. The temperature and layer dependence of the interlayer exchange coupling is examined and the
possibility for noncollinear coupling is investigatd0163-182606)02121-2

[. INTRODUCTION We also present an alternative formulation of the IOC which,
while giving exactly the same result as the original 8ne,
Interlayer oscillatory couplindlOC) has been found to differs from it both formally and in its physical interpreta-
occur in a number of ferromagnetic-nonmagnetic multilayertion.
systems and is in some cases accompanied by an oscillatory The applicability of the method of infinitesimal rotations
magnetoresistance. A number of models were proposed to various interesting cases, in particular to the AF alignment
explain this phenomenoffor a recent review see Ref).1 (6= ), will be studied numerically. Expressions for the bi-
Typically one estimates the energy difference between thénear and biquadratic terms in the expansion of the exact
ferromagnetic(F) and antiferromagneti€AF) alignment in  formulas are then obtained and their properties, in particular
order to determine the interaction between two magnetithe temperature dependence, studied. All applications are
slabs separated by a nonmagnetic spacer. A slightly differemtiscussed for the Co/Cu/Q@01) system with varying thick-
approach was first proposed by Slonczevidhis interaction  nesses of the magnetic slabs and of the spacer.
energy is obtained from the torque by calculating the spin
current accross the spacer and employing wave functions.
This method was further elaborated by Hathaway and Il. FORMALISM
co-workers> Edwards and co-workefsand its usefulness
was tested on simple free-electron and tight-binding models. The grand canonical potentifd of a system is defined by
A reformulation of the spin current approach of Slonczewski
in terms of Green’s functions in a tight-binding representa-
tion appeared very recentlyAlso mentioned has to be an
expression for the torque in terms of Green’s functions and
employing Lloyd's formula for the integrated density of
states within a tight-binding mod&lin Refs. 5 and 6 the
change in the grand canonical poteni#}(6) necessary to wherez=E+i0, f(E) is the Fermi-Dirac distribution func-
rotate the spin direction in one slab with respect to anothetion, and Tr denotes the trace over the spin and configuration
one by an anglé is calculated and the torque is expressed aspace. Within the tight-binding linear muffin-tin orbital
—d56Q0(0)/96. Within a nonrelativistic approach this is the (TB-LMTO) method¥(z) is given by
most general approach to the problem which in turn also
allows for a generalization to random slabs and spacers.
Recently, ab initio formulations of the interlayer ex- Az)=[P(2)—S] 1, 2)
change coupling have appearéd,based on an application
of a layer version of Lloyd’s formula in order to evaluate the
difference between the grand canonical potentials of the WhereS is a matrix of structure constan8 g, P(z) is a
(0=0) and AF (9= ) alignment using the so-called frozen site-diagonal matrix of potential functiorBz(z) which in
potential approximatiof.In the present paper we generalize spin space can be written as the following 2 supermatri-
our previous approaého the case of an arbitrary angle  ces:

1 o )
O=- —Imf f(E)Tr In(z)dE, 1)
T

— o0
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(pg(z), p}gl(z) where thet matricesr; (i=1,N)
Pr(2)=| 511 1| )
Priz), PRz n(k. 2D =Ti(k; 2[1-gu(k DTk 2] L (5)
_ STRTR’ 0 are defined in terms of the effective embedding potentials
SrRI= 0 SIL?LR, ' Ii(ky,2) attheZ 7 (i=1) and thez 7 (i = N) interfaces,
S =Sk ®) Fa(ky,2)=S1olk)) 7 (ky 2) S Ky, ®)
andR andR’ denote site indices. The off-diagonal terms of Tk 2) = Sou(ky) £k ,2) SiolK)).

Pr(2) in spin space account for a spin orientation of atoms

in one and the same magnetic layer with respect (ica A standardk; Fourier transform was performed i@). In
tious) global axis of the system. The use of the so-calledeqs (4) and (5), 914(2),91n(2),9ni1(2), andgnn(2) are the
auxiliary Green's function(GF) defined in(2) in Eq. (1) corresponding blocks of the spacer slab GF consistiny of
instead of the physical Green’s function is justified within |ayers; tr denotes the trace over angular momebta{m)

the TB-LMTO formalism(see e.g., Ref. 11t should be  5nq spin =1, ), andSp(k;) andSy(k)) are the interlayer
noted that in the absence of spin-orbit coupling only thegyycture constants which couple neighboring PL’s. Finally,
relative angle between the spin orientations in two dlffereniltn 6) f"/;’(k 7) and Z(k;,z) are the surface Green's
magnetic layers is important. functiond®*® (SGF'9 of the magnetic subsystemg and

The t§ystem cor:sgfredf consists tﬁ.f E cesn;lral f('jn';z non, respectively. The coupling between the two magnetic
magnetic spacer slatz() of varying thicknessN an 0 subsystems is due to the layer off-diagonal projections

semi-infinite systems, denoted (left) and.”2 (right), each -

containingM rza netic layers on( to) of a s/er(ni(—ginf)inite non- 9mn(K|2) andg(k;,2) of the G of the finite slab spacer.
ng 9 yers on top The oscillatory behavior of the interlayer coupling is then

.ma}g'netm spacer. In the limit th|s.model represents t.WO S€Migoverned by the oscillatory behavior of these quasi-one-

infinite magnetic slabs sandwiching the nonmagnetic space imensional spacer Green's functions, a formulation which

The reference frame of a rotation of the spin orientation inis very much in the spirit of a simplified RKKY approa&h.

one particular slab by an angle is assumed to t_>e with Alternatively, one can consider as the unperturbed system
respect to the ferromagnetl_c ahg_nmgﬂt:(O): In partlculqr, wo semi-infinite systems¥?” and.7%’, coupled together via
we assume that the spin orientation in the right magnetic sla terlayer coupling at a single interface”.%'. The '

72 is rotated by an angl@ with respect to that of the left subsystem consists & magnetic layers on top of a semi-

magnetic slat.)%l L . . infinite nonmagnetic spacer similarly as in the previous case,
The quantity of the physical interest is the difference ofi e., '=%. The.%' subsystem contains, in addition, the

the grand canonical potentials between the ferromagnetiﬁnite spacer slab on top of the magnetic slab, namely it con-
(6=0) and a rotated{+0) alignment of the two magnetic sists of the previous? and .7 subsy,stems, ie.
slabs, namely the e?«?hange ener@’y(a)=Q(0)—_Q(0). #'=#U.%. In other words, we shall consider the differ-
The exchange energies () are very small quantities and g ce peween the rotated and ferromagnetic alignments indi-

their ?lredc,t efvalualuqn 'i ra}ther cumlt()erfs%}n?ne clue is to_ | rectly in terms of the energy of a single interface rather than
use Lloyd’s formula in the framework of the frozen potential i oy a5 the interface-interface interaction energy as in the

?pprolz(imatiohn a? applied to'a rol'gated alignbment VIVhiC? di(";'previous case. Employing again the partitioning technique to
ers from the ferromagnetic alignment by a localizedy o {1ace of the logarithm one gets

perturbatiorf~8 Technically there are few possibilities how

to divide the system into an unperturbed part and a localized 1

perturbation. A common approdthis to consider the “ro- 5Ty N(z)=——, tr IN[1—T o.(k},2) % (k) ,2)], (7)
tated” magnetic slab as a perturbation. Clearly, with increas- Nj% i 7

ing thicknessM of the magnetic slabs the numerical effort

increases as the third power df. This limitation can be T i(Ky,2)=Sio(K)) & r(Ky ,2) Soa(K)),

relaxed by considering three decoupled noninteracting re-

gions#, 7, and.”Z as an unperturbed system. The localizedwhere, similar to(6), the quantityl’ ,/(k;,z) has the mean-
perturbation is the interlayer coupling at the€ %" and the ing of an effective embedding potential, afd,, and &

¢ 7 interfaces, which is independent of the thickness of theare the corresponding SGFs. Both expressions, @ysind
magnetic slabs. The concept of principal layéréPL) as (7), give exactly the same result féf, . It should be noted
used within the TB-LMTO method leads to a block tridiago- that an addition of spacer layers introduces changes only in
nal form of the structure constants and of the inverse of thes ,, but leaves?’,,, unchanged. Sinc& , is related to the
GF. Employing the partitioning technique with respect to thelocal density of statéé’® of the top surface layer of the
trace of the logarithm of the GEjt is possible to extract .7’ subsystem, the formulation iG7) resembles rather a
directly the term describing the coupling of interfaces,quantum-well state descriptidsee, e.g., Ref.)lof the I0C

oTr In.s(2), than the RKKY-like approach of E@4). Equation(7) is also
o 1 more convenient from a numerical point of view as the de-
oTr In.g(z)=— N_”;” tr In[1—7,(k;,2)gin(k),2) termination of the SGRRef. 12 is more efficient than the

evaluation of the layer off-diagonal blockg,n(z) and
X mn(K,2)ana (K|, 2) ], (4)  gni(2) of the Green’s function of the spacer sl&b In par-
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ticular the formulation in(7) is similar in spirit to the spin- where
current approach of Ref. 5 formulated within a semiempirical

tight-binding model. M=1—(1-A}B})"1(1-A}B})
Let us now turn to our primary problem, namely the
evaluation of the energy difference between arbitrary align- X (1-AB) “H1-AlB)). (18)

ments. Consider the following quantity:

triInZ=tr In(1—AgB)—tr In(1—AyBy), (8) 12 . . .

where the matriced\, and B, are related to the ferromag-
netic alignment and thus are diagonal in spin space

10 .
Al 0 B) O A
Ap= , = . 9 = it
0 0 A(l) 0 0 B(l) 9 %*
N’ 8 — -
The particular form of the subblocks] andBg (o=1,]) is g
given by %
: i
Ag=0an1(K|,2) 11 (K, 2)91n(K ,2), E 61 T
5
Bg=r(ky.2), (10) =
]
and ° 4+ _
[og (=2 5
AG=S1o(k)) <, (K| ,2)Soi(K)),

Bg: ffff/ﬂ,,(k|| \Z), (11)

for the formulations based on E@) and Eq.(7), respec-
tively.

The matrixB refers to an alignment in which the orienta- 3
tions of the spin in two magnetic slabs are rotated relatively (@) k vector
by an anglef, 12 ‘ . .
B=U(8)B,U'(0), (12
where 10 y
C S =
= 1
Vo) (_S C) 13 ﬁ gk [.\ 4
is the rotation matri¥ for spin 1/2, c=cos@2), E
s=sin(@2), U(OUT(9)= UT(9U(F)=1, and ded(6) Z
=deUT(6). The quantity =A,B in (8) can therefore be s 6 R
written as “g’
o
1-AgB=(U(8)~AU(8)Bo)U(6), (14) P
5 i
where, as follows from Eqg9) and (13), 2
A
c(1-AlB))  s(1-AlBY)
U(8)—AgU(8)By= .
(O=ANOB g1 ale)) c(1-ABY
(15
Using now the identity tr IX = In detX, which is valid for

any non-singular matriX, and the identity 3
(b) k vector
A B I
de C D =deti-deD-de(1-A""BD°C), (16 FIG. 1. Absolute value of the discrete Fourier transform of

L . Lo . ) N2Z,(7,N) for a finite set of spacer layersN&10-50 and for
Wh'c_:h,m turn is valid if the matrices andD are nonsingu-  gitferent temperaturesta) two semi-infinite C¢001) subsystems
lar, it is straightforward to prove that sandwiching the Cu spacer, afij two 5 monolayer thick C@01)

slabs in fcc Cu. The temperatures dre 0 K (full line), T=150 K
1-codb) | ) (17 (dashed ling T=300 K (dash-dotted ling and T=450 K (dotted

== line).

tr InZ=tr_In
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FIG. 2. Absolute value of the discrete Fourier transform of ~FIG. 3. Exchange couplingi“”,(6,N) as a function of the
N2, (m,N) for a finite set of spacer layerd\&10-50, full line spac_er thickneshl! for two semi-infinite C¢001) subsyste_ms sand-
and N=40-80, dashed linecorresponding to two semi-infinite Wiching the Cu spacer@ T=0 K, and(b) T=450 K. Diamonds

Co(001) subsystems sandwiching the Cu spacer. The temperature fefer to the calc_:ulated values, the full liflgack Fourier transforjn
T=0 K in both cases. serves as a guide to the eye.

0
It should be noted that ifB) tr denotes the trace over orbital T(0)=— 92(9) or £,(6)= _J T(6')de', (20
momenta and spin, while iflL7) tr| denotes the trace over a9 0
o_rbitalbmomenta only. The final expression #6y( ) is thus wherebyT(6) follows immediately from(19),

given by

sin( 6)
T(6)= ZWN“;” ImJC f(z)tr,

1
éx(0)=77—N”;H |mfC f(2)

X dz

1 -1
M(k” ,Z)( 1- E[l-COiG)]M(k” ,Z))

M(k;,2) |dz, (19 (1)

Finally, by formally expanding the logarithm ifl9) in
_ _ _ _ _ powers of 1-cos(), one can cast the expression #6y( 6)
in which the energy integral is formulated in terms of a con-jxio the form
tour integral which will be discussed in detail in Sec. Il A.
For the antiferromagnetic alignment, i.e., fée=, it is 1
straightforward to verify the equivalence of Eqs0), (18),  “x(0)=Aq[1—cod )]+ 5B4[1—cod 017+ -, (22)
and (19) with those given in our previous papett is also
possible to show that Eqél1), (18), and(19) are formally ~where A; and B, are the bilinear and the biquadratic ex-
related to the results of the spin-current appréachformu-  change coupling coefficients, respectively,
lated within a Green’s function formalism based on an em-

1-cog )

>< —
trLIn( 1 5

pirical single orbital tight-binding model. Finally, it should 1

be mentioned that in the related apprdasthich employs as A1= 27TNH;\\ Imfc f(2)tM(k).2)dz, 23
unperturbed part the infinite spacer with two magnetic slabs

of the thicknessM, the numerical effort increases &4° 1

contrary to the present approach, which scales linearly with Bi=— FN”E |mjc f(2)tr [M(k;,2)]°dz.

M K

Since the rotations in the spin space, EtB), form a Lie |t should be noted that in the literatGrether forms of
group, the torque formula can be easily obtained by differ-z, () are also used, e.g.,
entiating Eq.(19) with respect to the anglé. By definition
one gets therefore Z(0)=Eg—A,coq 6) —B,coF( )+ - - -. (24
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FIG. 4. Absolute value of the discrete Fourier transform of the
torqueN2T(6,N) (full line) and ofN?Z,(6,N) (dashed lingfor a
finite set of spacer layerdN(=10-50 and for = =/2. This case
refers to two 5 ML thick C@01) slabs andl=0 K.

While the interrelation of the above two formi§23) and

Discrete Fourier transform (mRy)
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| T=0K

k vector

From (19) follows the possibility for an expansion around
the state with a given angle different from zero. Of par-
ticular interest of course is the expansion &f(6) for a
small 4, i.e., when Xcos(@) is a small parametefthe
method of infinitesimal rotation§MIR’s)]. This approach
becomes particularly relevant in the case when the spacer is
a magnetic metal or for complicated geometries, e.g., for
periodic multilayers. The applicability of the MIR to mag-
netic spacers is based on the validity of the local force theo-
rem for magnetic systems, the usefulness of which was dem-
onstrated for the case of bulk magnetic crystals and their
alloys?!®

I1l. NUMERICAL RESULTS AND DISCUSSION
A. Details of calculations

The numerical studies were performed for(@@l) slabs
in a fcc-Cu spacer assuming an ideal lattice corresponding to
the experimental lattice spacing of fcc Cu. Self-consistent
potentials of bulk Cu and of a single @®»1) monolayer in
bulk Cu are used also for the interacting sldti®e frozen
potential approximatioff''9. Special care was devoted to
the energy and the Brillouin zone integrations: at a finite
temperatur&® an integration along a conto@, which en-
closes the first few Matsubara frequencies and which starts
and ends aE,,, andE,,,, respectively, is performed using
a Gaussian quadrature procedure. The ené&igy refers to
the valence band bottom whilg,,, lies sufficiently above
the Fermi energyE; in order to include also the partially

(24)] is trivial, certain care is needed when comparing dif-filled states(for details see Ref. 37 For T=0 K we have

ferent theoretical results or experimental data asAtiseand

the B’s differ both by value and even sign.

12

10

Discrete Fourier transform (mRy)
3N

(@)

T=0K

k vector

Discrete Fourier transform (mRy)

(b)

10

tested two contours, namely a semicircle betwggyp, and
E:, or, alternatively, a line contoug;+ie, € e (0,2), and

L T T 10 T T T
T=300 K T=300 K
- 8 - -
>
=4
g
g
- e 6 - .
g
B
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=]
2
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g
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3 0 1 2 3
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FIG. 5. Absolute value of the discrete Fourier transfornNé&,(,N) (dashed lingand ofN2A;(N)[1— cos@)] (solid line) for a finite
set of spacer layerdN=10-50 and for = 7: (a) two semi-infinite C§001) subsystems sandwiching the Cu spader,0 K, (b) the same
but for T=300 K, (c) two 5 monolayer thick C®01) slabs,T=300 K.
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U " YN 0.7 I T=300K 1
Z
£ 70 i
i 0.6 -
2 0
03< Sr 4 ]
= Jo L b v AR 1 0.5 r -
X
_15 1 ] 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
(@) N (monolayer)

Discrete Fourier transform (mRy)
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0 5 10 15 20 25 30 35 40 45 50
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T . .
~ FIG. 6. szchange couplingl“#,(6#,N) (diamonds and the bi- FIG. 7. Absolute value of the discrete Fourier transform of the
linear termN“A;(N)[1—cos(@)] (crossesfor = 7 as a function of biquadratic termN2B,(N) for a finite set of spacer layers
the spacer thicknesN for two semi-infinite C¢001) subsystems (N=10-50 corresponding to two semi-infinite @01 sub-
sandwiching the Cu spaces) T=0 K, and(b) T=300 K. The full g stomg sandwiching the Cu spacer. The temperatufe-B00 K.
line (back Fourier transforinserves as a guide to the eye.

ere p=Npax— Nmin is the number of values used in the

again using a Gaussian quadrature. The results were ve . ) : : oo
ourier analysis, anll,;, is chosen in order to eliminate the

similar in both cases. The use of the line contour allows on ff f hi icaly N =10 d
to avoid possible problems connected with the phase of ect of very t n spacers_(typlca Yy Nmin= an
=50). The periods of oscillationg\; (in monolayer$

complex logarithm. Typically a total of 20—25 energy points ' "max— ="~ - : .
was used. A large number &f points in the ireducible 2D are then identified with the positiotks of pronounced peaks

Brillouin zone is needed only for the energy points close tof the absolute valug=(ki)| of a discrete Fourier transform
the real axis, whereby generally a greater number is needdd(K) @s Ai=2/ki, while the amplitudes of oscillations

for lower temperatures and thicker spacers. The number dhi are estimated from; = (2/p)|F (k;)|. The background os-
kj points can be significantly reduced for energies well offCillations thus obtainedsee Figs. 1, 2, 4, 5, 7 belgwre due

the real axis. For higher temperatures the first Matsubar the finite data sets used for the Fourier transformation. The
frequencies move deeper into the complex plane, makin ackground oscillations could be smoothened using the pro-

again thek; integrations numerically less demandihdgn edure described in Ref. 18, namely by multiplying
particular, 1“‘or the first four energy points we used 4095/N*#x(0,N) by Csin(N/p)/(mN/p), whereC is a normaliza-
2485/1035/32% points in the irreducible 2D Brillouin zone tion factor. Second, the values o #,(6,N) are displayed
and 55 for all remaining energy points on the contour. The?S & function of the spacer thickness Both representations
thickness of the spacer was in most cases varied from 1 to 5/€ consistent with a RKKY-like behavior of,(6,N),
layers and in particular cases from 1 to 80 layers. Finally, th&@mely Zx(6,N)=N"* for a largeN.

self-consistent potential of a monolayer(301) slab in bulk

fcc-Cu was also employed for a slab 5 monolayers thick and C. The expansion of the exact expression, E19)

for a semi-infinite C€001) system. We have verified that  The aim of this subsection is to study the validity of the
essentially the same results are obtained using potentials %ﬁ(pansion of the logarithm in Eq(19) in powers of
pure fcc-Cu and fce-Co crystals aligned to a common Fermtl_cos@]/z or, alternatively, in powers of ca®( for a

energy of the spacer. general angle and thus to justify limited expansions, Egs.
(23) and (24). The logarithm in(19) can be expanded into
B. Analysis of the results the Taylor series
The calculated results, namef§; (6,N), whereN speci-
fies the spacer thickness, were analyzed in two ways. First, a “(0)=— 2 E)\nm _ 1-cos (25)
discrete Fourier transform X T n n 2
1 Nmax 1
F(k== > N2Z,(6,N)expikN), m,=——_2, Imj f(2)tr (M (k) ,2)"dz, (26)
p N=Npin WNH kH c
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in terms of the moments,,. The expansion is absolutely  The results are insensitive to the choice of the subset of
convergent fof\ | <1/M, whereM is the maximum absolute N2, (,N) values used for a discrete Fourier transform as
value of the eigenvalues of the mati(k;,z) for all k| illustrated for the case of thick @@01) slabs in Fig. 2. As
vectors from the surface Brillouin zone, and for all energiescompared to the subshit= 10— 40 greater background oscil-

z on the contourC used in(26). Note that the matrixvi lations for the subse¥l=40—80 layers indicate a slight de-
depends on the energy k; vector, the spacer thicknesg ~ Crease of relative accuracy of calculations for very thick
and on the orbital indicegm in a very complicated manner. SPacers. Similar results were obtained also for Co slabs 5

Clearly, the expansion is convergent for the infinitesimalIyMUS thiCk'_ ininfini labs th d d
small 6, but its extension to finit@'s is not straightforward. For semi-ininfinite Co slabs the temperature dependence

In order to investigate numerically its convergence we cal-_Of & N) as a function of spacer thicknelssis presented

culated the first 60 moments for thick Co slabsTat0 K Lnoerlgﬁgefovrvi-[h:Org d‘;’:;% :1—52 i?oaK.sEeléef?ulltli\?riwg]dgf_
and atT=300 K numerically and found that for low tem- b P !

namely that the suppression of oscillations is proportional to

peratures and small spacer thicknesses, the series is div?ﬁ-e temperaturd and the spacer thicknesé via a certain

gent, while for larger spacer thicknesses and higher temperg; \iion of the factorz=NT. As can be seen from Fig. 1

tures it becomes convergent. The convergence is rather faghie temperatures result in overall smaller values of the am-
for spacer thicknesség=30-35 layers aff =0 K, and for  pjitydes, while a suppression of exchange coupling with in-
N=8-10 layers afl = 300 K. The same behavior was found creasing spacer thicknesé is clearly seen in Fig. 3case
also for Co slabs 5 monolayers thick. _ T=450 K). It should be noted that due to the dependence on
_Itis worthwhile to mention that even if the series(@6)  the factor the amplitudes of oscillations now depend on the
diverges, its first few terms are very close to the exact resu'barticular subset o2, (r,N) values used for the discrete
This can be seen from Fig. 5 where we comparergyrier analysis. A comparison of discrete Fourier trans-
N2Z(6,N) and NA;(N) as a function of the spacer thick- forms has to be confined, therefore, to the same subset,
nessN. ForT=0 K the difference between the exact expres- | order to illustrate numerically the relation between the
sion and the bilineaHeisenberg-like approximation be- torque T(6,N), Eq. (21), and the exchange coupling
comes smaller with increasiny and is negligible for all #(6,N), Eq.(19), in Fig. 4 we present for Co slabs 5 ML
spacer thicknesses far=300 K. thick results for a discrete Fourier transform of both quanti-
_ This kind of behavior is typical for an asympotic expan-ties at§=/2, T=0 K. For symmetry reasons, the torque
sion. It can be explained in the following way. Théh mo-  T(¢) is zero for collinear alignments of the magnetic slabs,
ment m,, can be viewed as sum of theh powers of the e ‘for9=0 or 6=, and has a maximum fat==/2. The
eigenvalues of the matrid evaluated for a set of arguments very good quantitative agreement betwe®(im/2) and
{kj .z} with proper weights. We have calculated the eigen-i7, (7/2) as obtained also for thick Co slabs is quite remark-
values of the matriM and have found that most of them lie gpje. Even better agreement is obtained at higher tempera-

inside the unit circle of the complex plane. Only a smallyres. It is easy to verify from Eq$19) and(21) that for the
fraction (not exceeding 1% in the most unfavorable gase |eading term of the expansion one gets

falls outside the unit circle.
Zx(8,N)=A(N)[1—cog )]

D. Results for Co/Cu/Cd001) system and

A discrete Fourier transform of the temperature depen- - _ :
dence of #,(6,N) for the collinear arrangemeri= 7 is T(6,N)=A(N)[1~cog 6)]sin(6),
plotted in Fig. 1 for the cases of 5 monolay®fL ) slabs and j.e., T(w/2)=— #,(w/2). The above discussion on the con-
semi-inifinite Cq001) slabs. FolT=0 K the results coincide vergence of the Taylor expansion f&t(6) with respect to
with those of Ref. 16 but with the background oscillations[ 1 — cos()] applies therefore also to a similar expansion for
smoothed by using the procedure described above. We find g ¢).
nearly complete suppression of the long period oscillations
for thick Ca(001) slabs(see als$®'9. For finite slabs, how-
ever, both the short and the long period oscillations
exist/™® 8in particular for 5 ML thick C§001) slabs. The In the following we want to illustrate the range of validity
periods of oscillations are in a fair agreement with existingof the approximate expansion in EG.9), and, in particular,
expenmemg? as well as with other theoretical its approximation by the bilinear and biquadratic terms, Eqs.
approache$%1t was demonstrated recentfthat the am-  (23) and(24). Bilinear coupling[the first terms in(23) and
plitudes of oscillations for real samples, in particular the(24)] is exact for infinitesimally smalp but we deliberately
short period oscillations, may be strongly reduced due to théested its applicability in the extreme limit gf=1. Then
presence of disorder in the systéimterfacial roughness and &y(7,N)~2A;(N) and the corresponding results are dis-
interfacial interdiffusion between magnetic and nonmagneti@layed in Figs. 5 and 6. Irrespective of the thickness of the
subsystems In addition, a suppression of the amplitudes of magnetic slabs the present calculations confirm a good over-
oscillations due to the temperature is found, which is nonall agreement betweet,(,N) and its approximate form
negligible for room and higher temperatures. It turns out tha2A;(N) already forT=0 K and almost perfect agreement
the effect of temperature is somewhat stronger for the londor T=300 K. Quite obviously, the Heisenberg-like or bilin-
periods(the case of 5 ML'’s slafghan for the short periods. ear terms in the exact expressiti®) yield already a very

E. Bilinear and biquadratic couplings
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accurate description of the coupling, in particular for /2 coupling and the case of the interface roughness. The
T=300 K, while the non-Heisenberg terms, in particular themotivation for such study comes from recent studies by
biquadratic terms, are negligible for higher temperatures an&lonczewskK® in which he suggested that either the inter-
large spacer thicknesses. In other words, temperature hasface roughnes8 or so-called loose spifiscould be respon-
more pronounced effect on the biquadratic terms than on théible for the /2 coupling. In order to discuss the case of
bilnear terms. Seemingly, the angle dependence ofterfacial roughness, we assume as in the previous Baper
Z,(0,N) is then correctly approximated by7,(g,N) large flat terraces of monolayer heights fluctuating randomly
~A;(N)[1—cos@)]. The present calculations confirm there- and uncorrelateq in both directions a.round an !dgal interface
fore that this approximation can be used not only for smallVith the probabilityr, followed by a simple statistical aver-
anglesd but for anyf< . As discussed in Sec. II, it seems 29€ With respect to the average spacer thickhess

; : - We have found nar/2 coupling for the case of an ideal
that by starting from the ferromagnetic alignment and by. OO .
using subsequently the MIR, accurate estimates fo}nterface. On the other hand, the’2 coupling is energeti-

#x(0,N) for the case of more complicated geometries Iikeﬁi”é’u?r:/ %:)aublﬁnforv\fgg f%rl?r?: ?(:2%5;50 'azn?rm:jrozlo'é%ngiust-
periodic multilayers with in general more complex spin ping . -

: tent with these results, &/2 coupling occurs more fre-
structures can be o_btalned. . . quently forr=0.25. The same calculations performed for
2A discrete Fourier transfo.rm of the biquadratic te,rmT=300 K still give aw/2 coupling forr=0.2 andr =0.25
N“By(N), Eq.(23), as well as its dependence as a functiony,t for 5 smaller number of layers. This in turn is consistent

qf the spacer thicknesg is shown in Figs. 7 and 8, respeggith the dominating bilinear coupling for higher tempera-
tively, for the case of thick Co slabs and for=300 K. The  tyres as discussed above.

existence of the long period oscillations for the biquadratic
term is a consequence of the so-called aliadthghe fre- IV. CONCLUSIONS
quency is dogbled in the biquadratic term as compared_ to the We have derived a closed expression for the exchange
b|I|ne§r Oone, 1.e., the value of the correspondlngeptor n- coupling between two magnetic subsystems separated by a
the discrete Fourier transform of the biquadratic term IShonmagnetic spacer with a relative angléetween the cor-
kp=2X 2.48= 4.96. The corresponding irreducible vector responding spin orientations. The derivation is based on a
is ky=|2Xm—ky|=1.32 which is in excellent agreement g rface Green’s function formalism and the numerical effort
with the valuek,=1.31 in Fig. 7. The absolute value of the needed to evaluate the resulting expression scales linearly
biquadratic term, however, is much smaller as compared t@iith the thickness of both the spacer and the magnetic slabs.
the bilinear term. Temperature suppresses the oscillations @ particular case of our expression is the torque formula for
the biquadratic term similarly as fof,(8,N) [compare Fig. a general angl®.
3(b)]. A detailed analysis of the temperature dependence of ex-
change coupling was performed for the trilayer Co/Cu/
Co(00)) in the frozen potential approximation. In particular,
a strong temperature dependence of the non-Heisenberg-like
Finally we want to address the question of an energetiterms as compared with the Heisenberg-like ones was found.
cally favored orthogonal arrangement of the spin orientations The Taylor expansion of the exchange coupling with re-
in two semi-infinite C001) subsystems sandwiching the Cu spect to the small parametertos(@) was found to con-
spacer. By definition, the inequalitiés, (7/2,N) < #,(0,N) verge sufficiently well only for thick spacers, and to be
and &, (7/2,N)< &,(m,N) should be fulfilled for a certain strongly temperature dependent. The bilinear or the
spacer thicknesll at the same time. For this study we usedHeisenberg-like term seems to dominate the expansion for
the exact expressiofl9) because of the convergence prob-temperatures equal or higher than the room temperature.
lems for the Taylor series expansion for low temperatures We also demonstrated the usefulness of the method of
and thin spacers. We have considered different geometricgpflmtesmal rotations with respect to a ferromagnetic align-

models, namely the case of an ideal interféite intrinsic ment of magnetic slabs since it can serve as an interpolation
' scheme for arbitrary angles @. This result in particular

indicates the possibility of an approximate evaluation of the
15 ——— T exchange coupling for more complex geometries than the
trilayer arrangement studied here and also studied in most of
the other theoretical treatments.

Finally, we have verified that interface roughness favors a
noncollinear coupling, specifically @/2 coupling, as com-
pared with the case of an ideal interfatbe intrinsic 7/2
coupling. A more detailed study of this phenomenon is nec-
essary in the future by considering other layer stackings than
the fcd001) and other spacer and magnetic slab materials or

F. Remark on the 7w/2 coupling
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