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Magnetic excitations in the sinusoidal spin phase of Er and Tm
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The frequency moment method is used to study the magnetic excitations in magnetically ordered systems,
especially the sinusoidally modulated spin structure that occurs just below giedNgeratures of erbium and
thulium. It is shown that the transverse excitations may have rather sharp but dispersionless spectra or broad
spectra depending on the relative strengths of the twofold anisotropy energy versus the exchange energy. The
longitudinal spin excitations are extensions of the Goldstone modes. They may have rather sharp spectra with
linear dispersion relations when the exchange and anisotropy energies are compB@4!6ia-18286)03222-

5]

[. INTRODUCTION order moments are needed to find a spectral shape which can
be compared with experiments. The paper is organized as
The rare-earth metals erbiuf@r) and thulium(Tm) have  follows. Section Il formulates the frequency moment method
the sinusoidally modulated spin structure in a range of temfor the spin system, and demonstrates its use by reproducing
perature immediately below their magnetic orderingthe known results for the isotropic Heisenberg ferromagnet.
temperatured? The spins in each hexagonal plane of theSe_ction [l reviews t_he stability priterion for the sinusoidal
crystal are ferromagnetically aligned in the direction perpenSPin structure. Section IV applies the frequency moment
dicular to the plane, and the size of the ordered momeninethod to the_transvers:_a Spin excitations. Sectlon_V does the
varies sinusoidally from plane to plane with a periodicity thatSame for longitudinal spin excitations. The theoretical results
is usually not an integral multiple of the crystataxis repeat ~ aré compared with experiments in Sec. V1.
distance. This is a special case of a class of periodic spin
structures which can be characterized by a wave vegtor Il. THE FREQUENCY MOMENT METHOD
which points along thec-axis direction. Nishikubo and

Nagamiyd showed that this kind of spin ordering arises due cheme to calculate the phonon density of states for an elas-

to an interplay of the long-range exchange interaction, which. 7 )
favors a periodic spin arrangement, and a uniaxial anisoté'lC Slci)e“g.toT%;hengt)i(;[:esntst?eemasm?grr; if;rle ﬁgﬁf;;}tehgil?;;iggﬁn
ropy, which forces the spins to lie in tieedirection. Coopér PP 9 y ' y y

discussed the equations of motion of the spin in the sinusoir—mdu'amd.SIOIn systems. Itis, Fherefore, helpful to qutlme the
ethod briefly and illustrate its use by reproducing some

dally modulated phase and pointed out that the elementar%/1 ; : .
excitations are not ordinary spin waves. One of the presen e_III_—hknzwn r_?su!ts forftr;]e |?otrop|c He|§enberg fer romagnet.
authors(S.H.L) put the solution of the spin-excitation prob- e Hamiltonian of the ferromagnetic system Is

lem in the form of an infinite continued fractidrand argued

that the excitation spectrum is inherently broad, due to the Ho= —JE S-Sis, @
spatial fluctuations of the local exchange and anisotropy 1o

fields. Neutron-scattering studies carried out by Wakabaghere the sum o is over all lattice sites and is over all

yashi and Nicklow have detected broad inelastic responses,earest neighbors of The ordered moment points in tize

around the magnetic satellites, in qualitative agreement Witljirection. The operator for a spin excitation with wave vector
theoretical conclusions. The authors also reported rathqi are S(;: defined by

sharp lines for longitudinal excitations which have linear dis-

persion relations. There has been no explanation for these . _ _

modes so far. Sy = N~Y2D (S=isy)eldr, (2
In this paper we reexamine the magnetic excitation prob- '

lem by using a new method, the method of frequency mowhereN is the number of lattice sites, amgis the coordi-

ments. The excitation is defined as the linear response of theate vector of théth site. The propagator of the excitation is
spin system to an external excitation, e.g., inelastic scattering

of neutrons. For a fixed wave vector of the excitation, the G(q,t)z(ng(t)qu(O)), (3
frequency spectrum is determined indirectly by calculating

the moments of the frequency, or energy, of the excitation. IWvhere the Heisenberg operator is, in units with1,
principle, it requires an infinite number of moments to define N Hoted —iHt

the spectrum uniquely. In practice, however, only a few low- Sq ()=e"o'Sye o 4

The frequency moment method is a well-established
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The frequency spectruiG(q,) is the Fourier transform of - second term the quantity(q) =(ala,) is the occupation of
the propagator in Eq(3). Integration ofG(q,w) over the  the spin-wave state with wave vectgr One can recognize

entire frequency domain yields the term as the Dyson correction to the spin-wave engrgy,
. d which depends on on the temperati@ir@ccording toT>.

f G(q, ) —w=<S;S:q>. (5) The evalpation of the second moment requires some

— 2 work. We will merely present the answer here because the

The first moment of the frequency is given by algebra is straightforward. We can write

- do /(= do (wg)=(we)?+(80g), (12
(wg)= J_wwe(q,w) > /J_me(q,m > where
=([Sq HolSZg)/(Sq S ). ©  sery=2Z s MOt G- @lLEn(@y][1Fn(g,)]
The commutator in the above equation has the explicit ex- N 192 1+n(qg)
ression
press! X{7(a)+ 7(a2) ~ Y@= dy) — y(a-)}?. (13)
—J igr As long as({wq)>{(8w?)}*?, the former is the position and
+ - ‘et _cotcz q-r; q ’
[Sq Hol JN % (SS55~S S )8 ' ™ the latter is the width o?‘ the spin-wave peak, both are directly

measurable by neutron scattering experiments. The linewidth
Thus, the calculation of the first moment is reduced to thgesult in Eq.(13) can be calculated from the scattering of two
evaluation of two three-spin correlation functions and onespin waves as formulated by DysdrThus, the moment
tWO—Spin correlation function. S|m|lar|y, the second momentmethod is Capab'e of reproducing the results of a h|gh|y SO-
can be written down in two different but equivalent expres-phisticated theory using the lowest-order boson approxima-
sions: tion for the spin operators.

2\ _ + — + o
{0g) =([[Sq -Ho].Ho]S-)/(Sy S-g) lIl. THE SINUSOIDALLY MODULATED
=([S¢ Hol[Ho,SZ /(SIS ). ®) SPIN STRUCTURE

The commutatofH,,S”,] has an expression similar to that  In this section we give a brief review of the
in Eq. (7). The second moment, then, involves a few four-Nishikubo-Nagamiy# theory of the stability of the sinu-
spin correlation functions. In this manner all higher momentssoidal spin structure, with the added detail that both Er and
of the frequency are expressed in terms of higher-order spinfm has the hexagonal-closed-packedp) crystal structure,
correlation functions. with two inequivalent sites per unit cell. We label the two
The evaluation of the spin-correlation functions requiresSublattices by the indek=1,2, the position vectors of the
approximations for the dynamical properties of the spins. Atwo lattice sites by; andr;+7, and the spins on the sublat-
low temperatures one can employ the well-establishedices byS;. The spin Hamilatonian is
Holstein-Primakoff transformatioh:

= 5.5 — 'S.S, — Z2
S—s-ala,, H= g 3iiSi- S % %8S, —KX (8D (19
S =(29)Y2], where |'=1+1 mod?2), the indicesi,j sum over all unit
cells, J;; denotes the long-range exchange coupling between
S =(29)Y;, (99  two spins on sites in the same sublattidg, the exchange

_ . coupling between two sites in opposite sublattices, l&nd
where aiT and a; are boson operators. Their Fourier trans-the single-site twofold anisotropy constant.

forms aa anda, are the spin-wave or magnon operators. The The mean field at site of the sublattice 1 is
evaluation of the first moment is entirely straightforward in
the noninteracting spin-wave approximation, with the result

Hii=2§j) Ji §j+2; J}; S5 +2KS}, . (15)
2z
(wg)=2z91-v(A)}~ qu n(g){1—(q)~ »(ay) An interchange of the sublattice indices 1 and 2 yields the
expression for the mean field at a sitef the sublattice 2.
+y(q—ay}, (10 For a sinusoidal moment distribution withalong thec axis,

we write the ordered part of the moments as

(Si)=m coqq-ri},

wherez is the number of nearest neighbors,

1 .
—— ia-rs
Ha=7 2 €, a
andr s is the vector pointing from the site to its nearest (S5)y=mcodq- (ri+7)}. (16)
neighbori + 8. The first term in Eq(10) can be recognized as
the spin-wave energy in the linear spin-wave theory. In theéPutting these expressions into E@5), we obtain
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E=2(SEM Z(q)+ 7' () + K}, (17) cated result. We believe the same principle also holds in the
sinusoidal phase so that the results of our calculation are
where sufficiently accurate to guide the interpretation of experimen-
tal findings.
A=, Jj;ed i, The two-spin correlation functions are calculated by relat-
i

ing them to staggered field susceptibilitiéstor the longi-
tudinal correlation function, we add a staggered field to the

fi spins in sublattice 1 so th&t?; now has the form

J-=I’i—r]-, and

! - ! ald-(rij+7) )
J'(Q) 213 Jijed T, (18) 2=23 3;S%+2> IS5 +2KSE +hel? i, (24)
J I
The mean-field equation is whereq is the wave vector of the staggered field. The mean
2y _g HZ). 19 field on §ubl_att|ce 2 doeg not have the added term. We define
(Si)=SBy(BHID) (19 the longitudinal susceptibilitieg{7(q) by
where B=1/kgT, T is the temperature, anBlg is the Bril- , , e
louin function. This equation yields a nonzero solution for (Sfiy=xi1(q)hed . (25
the ordered moment fof <Ty, where the Nel temperature  tpe jinearized mean-field equation, which applies when

Ty satisfies T>Ty, yields the following equations for the susceptibili-
ties:

2
keTn=5 S(S+D{77(Q+K}, (20

where 7:(Q)=_7(Q)+ 7'(Q). In Eq. (20) the vector Q
maximizes the total exchange energy(q) for all vectorsq. AT
Just below the Nal temperature the ordered moment has the B 220 1\ — O f & 2z per 2z
temperature dependencex(Ty—T)"2 The nonlinear na-  S(S+1) X2 @) =207+ Kixar( @) +2.77 (@) xa@)-
ture of the mean-field theory in Eq19) predicts that at (26)

tempera_ttures sufficier_1t|y beloWw, the ordered mome_nts de_- In the above equations the quantitiggq) and 7’(q) have
velop higher harmonics such that the morrlléant distributionyeen defined in Eq18). Notice that 7(q) is real because the
tends to square up, as shown by McEvetral. sublattices have inversion symmetry, whereg&sq) is com-

. The helical sp.in state, for which the spins are all Perpenpiex for generaly except wherg is parallel to the axis. The
dicular to thec axis, can compete energetically with the sinu- g5 1utions of these equations are

soidal state. The energy of the system in the sinusoidal state

ssr D M@ =20 7@+ Ky + 2.7 (@xdi@) + 1

Is x11(0) ={3kgT/S(S+1)—2 7(q) — 2K}/D,
E=—N[/77(Q)+K]m?, (21 and
whereN is the number of lattice sitedy/2 on each sublat- Xo1()=27"*(q)/D, (27

tice. In the helical state, however, the exchange energy is
twice as large but the anisotropy energy is absent, i.e.,

E’ = — 2N[ 74(Q)]m2. (22 D={3kgT/S(S+ 1)—2 7(q)—2K}2+ 4| 7' (q)|%. (28)
In a similar manner, we apply a staggered field on spins in

here

We ignore the difference in the magnetizations of the two

; : : sublattice 2 and find that x35(q)=xii(q) and
\S/}[gé%s.thl';;then follows that the sinusoidal state is stable proXizz(Q)Z[Xﬁ(q)]*- At T—T,, we make use of the equation

for Ty, EQ. (20), to write

K>71(Q. 3 D= XD =2{ 7(Q - AQYD, (29
This puts some constraint on the range of the energy param-
eters we may choose to fit the experimental results. Lol

In the next section we will formulate the frequency mo- _ g _ g 2_ | g 2
ment calculation in terms of many-spin correlation functions, D=4l AQ-AaF= 17 (@I (30
which in turn, are evaluated under a suitable approximatiohe expressions for the off-diagonal elementsyofemain
scheme. The scheme we choose involves two basic rilles: the same except that the new expressiorCicare used. For
the ordered moment is factored out as a constant of motionl,<Ty we approximate the susceptibility matrix elements by
and (2) multiple spin-correlation functions are factored into their values affy. A better calculation can be carried out,
products of two-spin correlation functions. The first rule isbut the expressions are much more complicated so that the
appropriate for condensed systems, and the second rule assential physics becomes quite obsctiré?
sumes that spin excitations are noninteracting modes, even at We finally relate the susceptibilities to the correlation
elevated temperatures where the sinusoidal structure existisinctions?
As we have learned from the ferromagnetic problem, one can
use a primitive approximation and obtain a highly sophisti- (SigSL,- ¢ =(S3¢S5,- @ =Li(a) =ksTxi(a), (31
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<S§q i,—q>* = <Siqsé,— q>E Lo(g)= kBTXﬁ(q)-

In the above equations the Fourier transforms of the spins are
defined in analogy with Eq2), i.e.,

2
Sq:Nl/ZE:L ZI Sieiq~r|i:271/2(slq+szq).

The Fourier component§, have been defined in E¢32).

2 ) The commutato[S,Xq,H] can be evaluated readily:
So= Vg 2 Sie, (32
N 5 0\ 112
X —il — — G —
wherer;;=r for |=1 andr++ for |=2. The longitudinal [Siq.HI=1 N) E 2{[K=7(a—d)
correlation functions diverge as—Q, as a necessary conse- 4
guence of the long-range sinusoidal spin order. + )]0 S o+ 7 *(01)S2 S
For the transverse susceptibilities and two-spin correlation AW1510,510-0, 7 77 (W20,510-4,
functions, we apply a staggered field perpendicular to the _;Z’*(q_ql)siq s>2fq_q 1. (40)
€ 1 ’ 1

ordered moments. For instance, a staggered field inxthe

direction on the spins of sublattice 1 gives rise to the follow-The expression foﬁ'sgq,H] is similar. According to the ap-
ing mean field on sublattice 1: proximation scheme in the last section, we decouple the or-
dered moment by factoring out
ii=ZEj Jiis§j+2$ Sy +hear, (33 .

1/2
& :—<—) [ o+ 8 —ol. (41)
It differs from the mean field in Eq21) in that the anisot- o212 Q" %60

ropy term does not contribute. An identical calculation yields

. o The result after this step is
the following transverse susceptibilities:

X)lof(q):{3kBT/S(S+ l)—2{;7(q)}/D’, [S)iq lH]:Im{[K_/IZT(q_Q)_FZT(Q)]S{q*Q

XX, o\ 5 , and a similar result foFS;,,H]. What is left in the numera-
Xa(@)=27"(q)/D, (34) tor of Eq.(39) is a correlgtion function betwee® and S,
where which is zero according to the results of the last section.
Therefore, the first moment of the frequency vanishes. In a
D' ={3kgT/S(S+1) =2 ZA(}*+4| 7' (a)|>. (35  similar way, we find that all odd moments of the frequency
vanish. The spectral functioB(g,w) is an even function of

Below Ty we approximate the susceptibilities by their values
N PP P y the frequencyw.

tTy, i€, . .
atin. e We assume a simple and practical form 6{q,w) as
x11(0) =2{ 77(Q)— 7(a)+K}/D’, follows:
where G(q,w)=C[e‘<‘°+9q)2’2F§+e‘(“"“q)z’zrg], (43)
D'=4{ 7r(a)~ ZA@)+K}?+4| 7/ (@)]%. (30  whereC is a normalization constant, aftl, andI', are two
Finally fitting parameters. The spectrum has either two resolved
peaks or one broad peak depending on whether the ratio
(Si¢S1-q) =(S5¢S2 - =Te(A) =kgTx11(q), Q,/T4 is greater or less than unity. It follows that
(S5aSi-* = (S¢S - =T2(D=ksTX33(@. (37 (0g)=0g+T7g (443

There is complete symmetry between the two transverse dand
rectionsx andy, so the two-spin correlation functions in the

y directions are also given by the above equations. (wg)=Qg+6Q5+3I,. (44b)
IV. TRANSVERSE EXCITATIONS The two fitting parameters, and therefore the line shape, are
IN THE SINUSOIDAL PHASE determined by the second and fourth moments of the fre-

guency.
The spectral density for the transverse excitations is de- As in the ferromagnetic problem, the second moment can
fined as the Fourier transform of the Green'’s function: be calculated in two ways. The first method requires the
« calculation of a double commutator:
G(a.H) =(TS{(S* 4(0)). (38
2\ _
The moments of the frequency are calculated in analogy with <“’q> =([[Sq 'H]'H]Squwsés)iq)' (45)

Eq. (6). For instance, The calculation is greatly simplified when the ordered mo-

=[S H]ISK WSS ), 39 ment is decoupled along the way. The final answer is quite
{0g) = IS-/(SSa) 39 lengthy to write down except in the experimentally practical
whereH is the Hamiltonian in Eq(14), and case wherglQ:



15 000 S. H. LIU AND J. F. COOKE 53

(wp=mA K+ 7:(Q)— Zr(@)][2K+2 7(Q) | ; SN

' || Il

= 77(q+Q)— 77(qa=Q—-Q)], (46) os | :“ I

: i i

where 7:(q)=_7(q)+_7'(q), as defined under Ed20), is :‘ :‘:

real. The second method involves two single commutators: 06 : A

(0)=([S§HIH, S SIS o). (47 il B A T °
1
Although the two methods are equivalent, we need to check 02 : :
whether they yield the same answer under the approximation : :
scheme developed in the last section. Direct calculation 0
gives, again foglQ, the result 5105 005 1 15
o/ 2mK

2\ _ 12 / > 2
= — Y J— + & J—
(wq) MAK= A= Q+ AQFT@-Q) FIG. 1. The frequency spectrum of transverse magnetic excita-

+[K=_77(q+ Q)+ 7+(Q)1*T(q+Q)}/T(q), tions in a sinusoidal spin system for which the twofold anisotropy
energy is much stronger than the exchange energy. The dotted

(48) curve is the exact spectrum, and the solid curve is the double
Gaussian approximation which has the same second and fourth mo-

where ments as the exact spectrum.
T@=Ta(@+Tz(q) (8022 =m*K~ 72(q)+ 7« QH[K~ 77(a-Q)
Sl Sl 49 + QK= 71(a-20)+ 7(Q)P
is real whenq is parallel to thec axis. Substituting Eq(49) XT(g—2Q)+(Q— —Q)MT(q). (51)

into Eq.(48), we verify that the new result is the same as that
in Eq. (46). Thus, the approximation scheme we have devel- |, the |imit of strong twofold anisotropy, the frequency

oped is internally consistent. - spectrum has a simple analytical foPm:
It is instructive to contrast the result fowg) in Eq. (46)

with the spin-wave dispersion relation in the helical 1
phase:**® Glw)=— (4m’K?—w?) 12 (52)
wg=2m[K+ 7:(Q)— 77(q)] for |w|<2mK and zero otherwise. This result follows be-
) y cause the frequency spectrum reflects the distribution of the
X[ZiiT(Q)_{/ZT(Q'FQ) _17T(q_ Q)] local anisotropy gap given by

With moments in the basal plane, the anisotropy end¢gy
appears at different places. Concentrating on the exchange
energy contribution, we find that the right-hand side of theThe frequency spectrum is dispersionless. It is straightfor-
above expression is twice the result in £46). Recall thatin  \ard to calculate the second and fourth moments, with the
the helical phase all spins have the same expectation walue results(w?)=2m?K? and (w*)=6m*K*. These are in com-
whereas in the sinusoidal phase the moments vary sinusgiiete agreement with the limiting values of Eqg46) and
dally, one can see that the factor of one-half for the sinu{51). The comparison between the exact spectrum and the
soidal phase comes from averaging the square of the maitted spectrum in Eq(43) is shown in Fig. 1. The two spec-
ments. This local variation in moments gives rise to a locakra agree in that they both exhibit the two peak structure. It is
fluctuation in exchange energy and consequently a broadepot possible to reproduce the singularities of the exact spec-

(.U”:ZmK COSQ'I’H). (53)

ing of the spin-wave energy. trum in Eq.(52) by the double Gaussian form in E@3).
The calculation of the fourth moment proceeds as follows. The observed spin excitation spectrum in the sinusoidal
We start from the formula phase of Tm agrees with our high anisotropy result in Eq.

(52).1918 The spectrum for Er is explained by the opposite
<w;‘>=<[[sx ,H],H][H,[H,Sx_q]])/(SES’iq>, (50 condition, that the exchange energy is strong compared with

the anisotropy energyThis will be discussed further in Sec.
evaluate the commutators according to E&0) while sim- .
plify the interim result by decoupling the ordered moment.
For generad) the final formula for the fourth moment is quite
complex, but in the restricted case wheris in the c-axis
direction the formula simplifies. We obtain

V. LONGITUDINAL EXCITATIONS
IN THE SINUSOIDAL PHASE

As in the transverse case, the odd moments of the fre-
(0g)— (i) ?=((swd)?), quency vanish for the longitudinal excitations. The second
and fourth moments of the frequency are calculated from
where evaluating the following spin-correlation functions:



53 MAGNETIC EXCITATIONS IN THE SINUSOIDAL SPN . .. 15001

(05)=([S§ . HI[H,S* )/(S:S" ), (59 A(01,6,Q)=[|B1|*+|B,|*]T1(a;— Q) T1(q—ay)
and +4T1(d,— Q)REBIB,T(q—qy)]

. +REBT3 (9,- Q) T3(q—ay)]
(0h=([[SLH],HIH.[H,SN(SS . (55

1
- * 2 _ * _
The commutatof Sf,,H] can be readily evaluated: 5 RABzTo(a - QT2 (a-a)],

(60)
1/2
[Siq:HI= N) 2, 2{[(a- 4~ AQISle,Slg-q, B;=Cy(d1)+Ca(q—0,+Q),
1
+,}7(q_q1)8>1(qlsg,q7ql_,y,(ql)séqls{qfql}' Bzzcz(Q1)+C§(q_Q1+Q), (61)
(56)  Cy(a)=4{[ Z(q—a1)— Z(a) ][ 77(Q)— Z(Q—aqy) +K]
The expression fofSj, ,H] is similar. The operato8;, does —[7"*(q=a1)— 7' (q)]1.7"* (41— Q)},

not appear in the above result, so we cannot factor out the s ,,
ordered moment in this step. In the numerator of the second Coa)=4{[7"*(q—a1)— 7' (a1)]
moment expression we encounter four-spin correlation func- [ 7 — AO—a)+K
tions of the form [/(Q=AQ=a)+K]

—[Ad=d)— ZAa)] 7 (q1—Q)}. (62

X y X
<S‘l'q13y2'q2 3'q3$4~q4> We consider for the moment the analytical properties of
=8y 00 oS e S NS S ) the results in Eqs(57) and (59). It is clearly seen that both
910742702, 7431 07 70y /A 2,0 s T A the second and the fourth moments vanish when+Q,

) L ) which means that there is an undamped zero-frequency mode
by applylng the rules of approximation developgd in Sec. !”'at each magnetic satellite point. These are just the Goldstone
Depe_ndmg on the ;ubla_tt_lce Ia_bel, the two-spin C()rrelat'or}'r10des which characterize the translational invariance of the
functions are to be identified witly(dy,) or To(dy), respec-  ginysoidal moment structure. Away from the satellites we
tively. After considerable algebraic manipulations, we findﬁnd damped modes with linear dispersion relatiae:
the final formula for the second moment: |g—Q|. This conclusion is in qualitative agreement with the

experiment on Ef.For Tm whose anisotropy energy far ex-

16 ceeds the exchange energy, both the second and the fourth
2y _ - G — G !
(wg)= N [7(Q) = /x(a)] moments are small because they are of the order of
Z+(Q)IK. Our theory predicts that it will be difficult to ob-
. , serve the longitudinal mode except very near the magnetic
X 7(q—01) — 7 - . , . . .
q21 {LAa=a) = AD]Tx(a=qy) satellite point. Further comparison with experimental data

o . will be the subject of the next section.
—Rd 7'(q=a)— 7" (q)1T2(a—a1)}. (57)
" 2 VI. COMPARISON WITH EXPERIMENTAL RESULTS
We have also verified that the formulawg) ON Er
=([[Sg.H],HIS. )/(S4S% ) Yields the same result for the
second moment as given in E&7). Notice that we can not We have shown that the determination of the magnetic
simplify the expression by restrictinglQ because the sum €Xxcitation spectra requires the complete knowledge of the

over g, extends over the entire Brillouin zone. long-range interaction parametetg andJ;; as well as the
The evaluation of the fourth moment requires a great deagnisotropy constar in the sinusoidal phase of Er. In real-
of work. We again write ity, what we know about these parameters are culled from
low-temperature spin-wave measurements when Er is in the
<wg>:(<w§>)z+<(5wé)2>, (58) conical phasé’ In this structure all spins in the same hex-

agonal plane are aligned parallel to one another. The net
moment of each layer points at an angle away from dhe
axis such that there is a net ferromagnetic moment parallel to
2 1 the ¢ axis. The basal plane component of the net moments
2y2y _ g — g i form a helical structure. The anisotropy energies in this
((80g)%)= 2kgT [A(Q= ][ phase is expected to be very different from that in the sinu-
soidal phase. The exchange parameters are also different for
XE [A(G1,0,Q)+A(G,q,—Q)], (59 thef_se two spin.structures beca}use they have diffe?emjs
a periodicities. Since only the spin-wave spectrumdan the
c-axis direction has been measured, it is possible to deter-
andA(g;,9,Q) is a complicated expression involving the ex- mine at most the Fourier transform;(q) for q in this di-
change and anisotrophy parameters: rection. To compound the uncertainty, Nickloet al. re-

where
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FIG. 2. Calculated constant energy scan neutron-scattering cross L ——] el ]

sections for transverse spin excitations at three different energies.

(q-Qx/2n
ported that it was not possible to fit their data by isotropic

exchange and single-ion anisotropy terms aldrifferent FIG. 3. Calculated constant energy scan neutron-scattering cross
attempts to construct the model Hamiltonian yielded differ-sections for longitudinal spin excitations at four different energies.
ent sets of exchange parameﬁérgf Nevertheless, these em- The curves are shifted up from one another successively by one
pirical parameters are useful as a guide in our attempt tonit.
understand the experimental data for the sinusoidal phase.
One can use the Nttemperature to obtain an estimate of
the relevant energy scale of the magnetic excitations. Using In Fig. 2 we show the calculated neutron-scattering cross
Eq. (200 and the valuesTy=84 K and S=15/2 to find section for three constant-energy scans as functions of the
K+ 77(Q)=0.165 meV. Then the stability criterion for the momentum transfer measured frogh The parameters are
sinusoidal phase, Eq.23), implies that 0.165K>0.083 chosen so that the full width at half maximum of the line
meV, and 6<.77(Q)<0.083 meV. These limits are appli- shape forw=0.3 THz (1 THz=4 meV) matches the pub-
cable to the extent that the mean-field theory is accurate. lished curve in Ref. 6. The fitting parameters are such that
NearQ where 77(q) is maximum, we assume a parabolic K=0.085 meV, which is at the lower end of our estimated

shape range, and;=2.5, c,=1.5. Nicklow and Wakabayashi also
, ) reported that the transverse magnetic cross section becomes
J1(q)=_77(Q)—a(q—Q)%, (63)  very weak at 0.5 THz and abo%én our calculation, we find
wherea>0. We then factor out the energy scile- 7-(Q)  that the lines fade away at energies higher than 0.6 THz.
and write ‘ An accurate calculation of the frequency moments for the

longitudinal mode is impossible because it requires the
(0fy=2m’[K+ 7¢(Q)I[K+a(q—Q)?Jcy(q), (64)  knowledge of 7(q) and 7'(q) over the entire Brillouin
zone. We can, nevertheless, make progress by using a set of
approximations similar to the transverse mode case. The
20\ ool p 3 2 quantity in the Brillouin zone sum involves exchange and
<(5“’q) )=2m K+ 7+(Q[K+a(q-Q) ]Cz(Q),(GS) anisotropy energies in both the numerator and the denomina-
tor. If we scale all quantities by the energy scale
where ¢,(q),cx(q) are dimensionaless ratios of energy pa-K+ 77(Q)=0.165 meV, we can write
rameters, both of the order unity. We will ignore thede-
pendence of; andc, and treat them as fitting constants. We
use the full momentn=15/2 in order to compare the predic-
tions of our theory with the experimental result in Ref. 6
taken at 60 K, which is about 70% of the &ldemperature.
For the parameter, we recall that Nicklowet all’ and
Lingard® wrote ((803)?)=m*kgTy[K+ 77(Q)T?

X[ 77(Q)~ 7x(w)]ex(a), (68)

and

(w2)y=8kgTn[ 71(Q)— Zr(a)]cy (), (67)
and

n
Jr(a)=2, Jicoglqcl2), (66)

=1 where c;(q) and cy(q) are dimensionless Brillouin zone
for g in the c-axis direction. One can obtain estimatesaof sums. We ignore the dependence of the two sums and
from the curvature ofZ7(q) around its maximum. In this estimates them to be of the order unity. Together with the
manner we fincda=1.2 meV(2x/c)? from the fitting param- assumed form 77(Q)— 7+(q)=a(@—Q)?, and the previ-
eters in Ref. 17 and 1.8 mel24/c)? from those in Ref. 18. ously estimated value af, we find that the measured peak
We choose to use the latter value in our numerical analysigositions and linewidths for the constant energy scan at 0.3
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THz can be fitted by choosingf=1.7 andc,=1.1. A set of mode and are quite sharp. The velocity of the longitudinal
the calculated line shapes for four different energies is showmode is directly related to the spin-wave velocity at low

in Fig. 3. The linear dispersion seen in the experiments iéemperatures.
reproduced here. The calculated curves show that the line-
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