
Magnetic excitations in the sinusoidal spin phase of Er and Tm

S. H. Liu
Department of Physics, University of California, San Diego, La Jolla, California 92093-0319

J. F. Cooke
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830-6032

~Received 22 January 1996!

The frequency moment method is used to study the magnetic excitations in magnetically ordered systems,
especially the sinusoidally modulated spin structure that occurs just below the Ne´el temperatures of erbium and
thulium. It is shown that the transverse excitations may have rather sharp but dispersionless spectra or broad
spectra depending on the relative strengths of the twofold anisotropy energy versus the exchange energy. The
longitudinal spin excitations are extensions of the Goldstone modes. They may have rather sharp spectra with
linear dispersion relations when the exchange and anisotropy energies are comparable.@S0163-1829~96!03222-
5#

I. INTRODUCTION

The rare-earth metals erbium~Er! and thulium~Tm! have
the sinusoidally modulated spin structure in a range of tem-
perature immediately below their magnetic ordering
temperatures.1,2 The spins in each hexagonal plane of the
crystal are ferromagnetically aligned in the direction perpen-
dicular to the plane, and the size of the ordered moment
varies sinusoidally from plane to plane with a periodicity that
is usually not an integral multiple of the crystalc-axis repeat
distance. This is a special case of a class of periodic spin
structures which can be characterized by a wave vectorQ,
which points along thec-axis direction. Nishikubo and
Nagamiya3 showed that this kind of spin ordering arises due
to an interplay of the long-range exchange interaction, which
favors a periodic spin arrangement, and a uniaxial anisot-
ropy, which forces the spins to lie in thec direction. Cooper4

discussed the equations of motion of the spin in the sinusoi-
dally modulated phase and pointed out that the elementary
excitations are not ordinary spin waves. One of the present
authors~S.H.L.! put the solution of the spin-excitation prob-
lem in the form of an infinite continued fraction,5 and argued
that the excitation spectrum is inherently broad, due to the
spatial fluctuations of the local exchange and anisotropy
fields. Neutron-scattering studies carried out by Wakaba-
yashi and Nicklow6 have detected broad inelastic responses
around the magnetic satellites, in qualitative agreement with
theoretical conclusions. The authors also reported rather
sharp lines for longitudinal excitations which have linear dis-
persion relations. There has been no explanation for these
modes so far.

In this paper we reexamine the magnetic excitation prob-
lem by using a new method, the method of frequency mo-
ments. The excitation is defined as the linear response of the
spin system to an external excitation, e.g., inelastic scattering
of neutrons. For a fixed wave vector of the excitation, the
frequency spectrum is determined indirectly by calculating
the moments of the frequency, or energy, of the excitation. In
principle, it requires an infinite number of moments to define
the spectrum uniquely. In practice, however, only a few low-

order moments are needed to find a spectral shape which can
be compared with experiments. The paper is organized as
follows. Section II formulates the frequency moment method
for the spin system, and demonstrates its use by reproducing
the known results for the isotropic Heisenberg ferromagnet.
Section III reviews the stability criterion for the sinusoidal
spin structure. Section IV applies the frequency moment
method to the transverse spin excitations. Section V does the
same for longitudinal spin excitations. The theoretical results
are compared with experiments in Sec. VI.

II. THE FREQUENCY MOMENT METHOD

The frequency moment method is a well-established
scheme to calculate the phonon density of states for an elas-
tic solid.7 To the extent the authors are aware, it has not been
applied to magnetic systems, certainly not to the sinusoidally
modulated spin systems. It is, therefore, helpful to outline the
method briefly and illustrate its use by reproducing some
well-known results for the isotropic Heisenberg ferromagnet.

The Hamiltonian of the ferromagnetic system is

H052J(
i ,d

Si•Si1d , ~1!

where the sum oni is over all lattice sites ands is over all
nearest neighbors ofi . The ordered moment points in thez
direction. The operator for a spin excitation with wave vector
q areSq

6 defined by

Sq
65N21/2(

i
~Si

x6 iSi
y!eiq•r, ~2!

whereN is the number of lattice sites, andr i is the coordi-
nate vector of thei th site. The propagator of the excitation is

G~q,t !5^TSq
1~ t !S2q

2 ~0!&, ~3!

where the Heisenberg operator is, in units with\51,

Sq
1~ t !5eiH0tSq

1e2 iH0t. ~4!
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The frequency spectrumG~q,v! is the Fourier transform of
the propagator in Eq.~3!. Integration ofG~q,v! over the
entire frequency domain yields

E
2`

`

G~q,v!
dv

2p
5^Sq

1S2q
2 &. ~5!

The first moment of the frequency is given by

^vq&5E
2`

`

vG~q,v!
dv

2p YE
2`

`

G~q,v!
dv

2p

5^@Sq
1 ,H0#S2q

2 &/^Sq
1S2q

2 &. ~6!

The commutator in the above equation has the explicit ex-
pression

@Sq
1 ,H0#5

2J

AN (
i ,d

~Si
zSi1d

1 2Si
1Si1d

z !e2 iq•r i. ~7!

Thus, the calculation of the first moment is reduced to the
evaluation of two three-spin correlation functions and one
two-spin correlation function. Similarly, the second moment
can be written down in two different but equivalent expres-
sions:

^vq
2&5^@@Sq

1 ,H0#,H0#S2q
2 &/^Sq

1S2q
2 &

5^@Sq
1 ,H0#@H0 ,S2q

2 #&/^Sq
1S2q

2 &. ~8!

The commutator@H0 ,S2q
2 # has an expression similar to that

in Eq. ~7!. The second moment, then, involves a few four-
spin correlation functions. In this manner all higher moments
of the frequency are expressed in terms of higher-order spin-
correlation functions.

The evaluation of the spin-correlation functions requires
approximations for the dynamical properties of the spins. At
low temperatures one can employ the well-established
Holstein-Primakoff transformation:8

Si
z5S2ai

†ai ,

Si
25~2S!1/2ai

† ,

Si
15~2S!1/2ai , ~9!

whereai
† and ai are boson operators. Their Fourier trans-

formsaq
† andaq are the spin-wave or magnon operators. The

evaluation of the first moment is entirely straightforward in
the noninteracting spin-wave approximation, with the result

^vq&52zS$12g~q!%2
2z

N (
q1

n~q1!$12g~q!2g~q1!

1g~q2q1!%, ~10!

wherez is the number of nearest neighbors,

g~q!5
1

z (
d

eiq•rd, ~11!

and r d is the vector pointing from the sitei to its nearest
neighbori1d. The first term in Eq.~10! can be recognized as
the spin-wave energy in the linear spin-wave theory. In the

second term the quantityn(q)5^aq
†aq& is the occupation of

the spin-wave state with wave vectorq. One can recognize
the term as the Dyson correction to the spin-wave energy,9

which depends on on the temperatureT according toT5/2.
The evaluation of the second moment requires some

work. We will merely present the answer here because the
algebra is straightforward. We can write

^vq
2&5^vq&

21^dvq
2&, ~12!

where

^dvq
2&5

2z2

N2 (
q1q2

n~q11q22q!@11n~q1!#@11n~q2!#
11n~q!

3$g~q1!1g~q2!2g~q2q1!2g~q2q2!%
2. ~13!

As long as^vq&@$^dvq
2&%1/2, the former is the position and

the latter is the width of the spin-wave peak, both are directly
measurable by neutron scattering experiments. The linewidth
result in Eq.~13! can be calculated from the scattering of two
spin waves as formulated by Dyson.9 Thus, the moment
method is capable of reproducing the results of a highly so-
phisticated theory using the lowest-order boson approxima-
tion for the spin operators.

III. THE SINUSOIDALLY MODULATED
SPIN STRUCTURE

In this section we give a brief review of the
Nishikubo-Nagamiya3 theory of the stability of the sinu-
soidal spin structure, with the added detail that both Er and
Tm has the hexagonal-closed-packed~hcp! crystal structure,
with two inequivalent sites per unit cell. We label the two
sublattices by the indexl51,2, the position vectors of the
two lattice sites byr i andr i1t, and the spins on the sublat-
tices bySl i . The spin Hamilatonian is

H52(
l i j

Ji jSl i •Sl j2(
l i j

Ji j8Sl i •Sl 8, j2K(
l i

~Sli
z !2, ~14!

where l 85 l11 mod~2!, the indicesi , j sum over all unit
cells,Ji j denotes the long-range exchange coupling between
two spins on sites in the same sublattice,Ji j8 the exchange
coupling between two sites in opposite sublattices, andK is
the single-site twofold anisotropy constant.

The mean field at sitei of the sublattice 1 is

H1i
z 52(

j
Ji j S1 j

z 12(
j
Ji j8S2 j

z 12KS1i
z . ~15!

An interchange of the sublattice indices 1 and 2 yields the
expression for the mean field at a sitei of the sublattice 2.
For a sinusoidal moment distribution withq along thec axis,
we write the ordered part of the moments as

^S1i
z &5m cos$q•r i%,

and

^S2i
z &5m cos$q•~r i1t!%. ~16!

Putting these expressions into Eq.~15!, we obtain
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Hli
z52^Sli

z &$J ~q!1J 8~q!1K%, ~17!

where

J ~q!5(
j
Ji j e

iq•r i j ,

r i j5r i2r j , and

J 8~q!5(
j
Ji j8 e

iq•~r i j1t!. ~18!

The mean-field equation is

^Sli
z &5SBS~bHli

z !, ~19!

whereb51/kBT, T is the temperature, andBS is the Bril-
louin function. This equation yields a nonzero solution for
the ordered moment forT,TN , where the Ne´el temperature
TN satisfies

kBTN5
2

3
S~S11!$JT~Q!1K%, ~20!

where JT~Q!5J ~Q!1J 8~Q!. In Eq. ~20! the vectorQ
maximizes the total exchange energyJT~q! for all vectorsq.
Just below the Ne´el temperature the ordered moment has the
temperature dependencem}(TN2T)1/2. The nonlinear na-
ture of the mean-field theory in Eq.~19! predicts that at
temperatures sufficiently belowTN the ordered moments de-
velop higher harmonics such that the moment distribution
tends to square up, as shown by McEwenet al.10

The helical spin state, for which the spins are all perpen-
dicular to thec axis, can compete energetically with the sinu-
soidal state. The energy of the system in the sinusoidal state
is

E52N@JT~Q!1K#m2, ~21!

whereN is the number of lattice sites,N/2 on each sublat-
tice. In the helical state, however, the exchange energy is
twice as large but the anisotropy energy is absent, i.e.,

E8522N@JT~Q!#m2. ~22!

We ignore the difference in the magnetizations of the two
states. It then follows that the sinusoidal state is stable pro-
vided that

K.JT~Q!. ~23!

This puts some constraint on the range of the energy param-
eters we may choose to fit the experimental results.

In the next section we will formulate the frequency mo-
ment calculation in terms of many-spin correlation functions,
which in turn, are evaluated under a suitable approximation
scheme. The scheme we choose involves two basic rules:~1!
the ordered moment is factored out as a constant of motion,
and ~2! multiple spin-correlation functions are factored into
products of two-spin correlation functions. The first rule is
appropriate for condensed systems, and the second rule as-
sumes that spin excitations are noninteracting modes, even at
elevated temperatures where the sinusoidal structure exists.
As we have learned from the ferromagnetic problem, one can
use a primitive approximation and obtain a highly sophisti-

cated result. We believe the same principle also holds in the
sinusoidal phase so that the results of our calculation are
sufficiently accurate to guide the interpretation of experimen-
tal findings.

The two-spin correlation functions are calculated by relat-
ing them to staggered field susceptibilities.11 For the longi-
tudinal correlation function, we add a staggered field to the
spins in sublattice 1 so thatH 1i

z now has the form

H1i
z 52(

j
Ji j S1 j

z 12(
j
Ji j8S2 j

z 12KS1i
z 1heiq•r1i, ~24!

whereq is the wave vector of the staggered field. The mean
field on sublattice 2 does not have the added term. We define
the longitudinal susceptibilitiesx l1

zz~q! by

^Sli
z &5x l1

zz~q!heiq•r1i. ~25!

The linearized mean-field equation, which applies when
T.TN , yields the following equations for the susceptibili-
ties:

3kBT

S~S11!
x11
zz~q!52$J ~q!1K%x11

zz~q!12J 8~q!x21
zz~q!11,

3kBT

S~S11!
x21
zz~q!52$J ~q!1K%x21

zz~q!12J 8* ~q!x11
zz~q!.

~26!

In the above equations the quantitiesJ ~q! andJ 8~q! have
been defined in Eq.~18!. Notice thatJ ~q! is real because the
sublattices have inversion symmetry, whereasJ 8~q! is com-
plex for generalq except whenq is parallel to thec axis. The
solutions of these equations are

x11
zz~q!5$3kBT/S~S11!22J ~q!22K%/D,

and

x21
zz~q!52J 8* ~q!/D, ~27!

where

D5$3kBT/S~S11!22J ~q!22K%214uJ 8~q!u2. ~28!

In a similar manner, we apply a staggered field on spins in
sublattice 2 and find that x 22

zz(q!5x11
zz~q! and

x 12
zz(q!5@x21

zz~q!#* . At T5TN we make use of the equation
for TN , Eq. ~20!, to write

x11
zz~q!5x22

zz~q!52$JT~Q!2J ~q!%/D, ~29!

where

D54$@JT~Q!2J ~q!#22uJ 8~q!u2%. ~30!

The expressions for the off-diagonal elements ofx remain
the same except that the new expression forD are used. For
T,TN we approximate the susceptibility matrix elements by
their values atTN . A better calculation can be carried out,
but the expressions are much more complicated so that the
essential physics becomes quite obscure.11–13

We finally relate the susceptibilities to the correlation
functions11

^S1q
z S1,2q

z &5^S2q
z S2,2q

z &[L1~q!5kBTx11
zz~q!, ~31!
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^S2q
z S1,2q

z &*5^S1q
z S2,2q

z &[L2~q!5kBTx12
zz~q!.

In the above equations the Fourier transforms of the spins are
defined in analogy with Eq.~2!, i.e.,

Slq5A2

N (
i
Sl i e

iq•r l i , ~32!

where r l i5r for l51 and r1t for l52. The longitudinal
correlation functions diverge asq→Q, as a necessary conse-
quence of the long-range sinusoidal spin order.

For the transverse susceptibilities and two-spin correlation
functions, we apply a staggered field perpendicular to the
ordered moments. For instance, a staggered field in thex
direction on the spins of sublattice 1 gives rise to the follow-
ing mean field on sublattice 1:

H1i
x 52(

j
Ji j S1 j

x 12(
j
Ji j8S2 j

x 1heiq•r1i. ~33!

It differs from the mean field in Eq.~21! in that the anisot-
ropy term does not contribute. An identical calculation yields
the following transverse susceptibilities:

x11
xx~q!5$3kBT/S~S11!22J ~q!%/D8,

and

x21
xx~q!52J 8* ~q!/D8, ~34!

where

D85$3kBT/S~S11!22J ~q!%214uJ 8~q!u2. ~35!

BelowTN we approximate the susceptibilities by their values
at TN , i.e.,

x11
xx~q!52$JT~Q!2J ~q!1K%/D8,

where

D854$JT~q!2J ~q!1K%214uJ 8~q!u2. ~36!

Finally

^S1q
x S1,2q

x &5^S2q
x S2,2q

x &[T1~q!5kBTx11
xx~q!,

^S2q
x S1,2q

x &*5^S1q
x S2,2q

x &[T2~q!5kBTx12
xx~q!. ~37!

There is complete symmetry between the two transverse di-
rectionsx andy, so the two-spin correlation functions in the
y directions are also given by the above equations.

IV. TRANSVERSE EXCITATIONS
IN THE SINUSOIDAL PHASE

The spectral density for the transverse excitations is de-
fined as the Fourier transform of the Green’s function:

G~q,t !5^TSq
x~ t !S2q

x ~0!&. ~38!

The moments of the frequency are calculated in analogy with
Eq. ~6!. For instance,

^vq&5^@Sq
x ,H#S2q

x &/^Sq
xS2q

x &, ~39!

whereH is the Hamiltonian in Eq.~14!, and

Sq5N1/2(
l51

2

(
i
Sl i e

iq•r l i5221/2~S1q1S2q!.

The Fourier componentsSlq have been defined in Eq.~32!.
The commutator@Slq

x ,H# can be evaluated readily:

@S1q
x ,H#5 i S 2ND 1/2(

q18
2$@K2J ~q2q1!

1J ~q1!#S1q1
z S1,q2q1

y 1J 8* ~q1!S2q1
z S1,q2q1

y

2J 8* ~q2q1!S1q1
z S2,q2q1

y %. ~40!

The expression for@S2q
x ,H# is similar. According to the ap-

proximation scheme in the last section, we decouple the or-
dered moment by factoring out

Slq1
z 5

m

2 SN2 D 1/2@dq1 ,Q1dq1 ,2Q#. ~41!

The result after this step is

@S1q
x ,H#5 im$@K2JT~q2Q!1JT~Q!#S1,q2Q

y

1~Q→2Q!%, ~42!

and a similar result for@S2q
x ,H#. What is left in the numera-

tor of Eq. ~39! is a correlation function betweenSy andSx,
which is zero according to the results of the last section.
Therefore, the first moment of the frequency vanishes. In a
similar way, we find that all odd moments of the frequency
vanish. The spectral functionG(q,v! is an even function of
the frequencyv.

We assume a simple and practical form ofG(q,v! as
follows:

G~q,v!5C@e2~v1Vq!2/2Gq
2
1e2~v2Vq!2/2Gq

2
#, ~43!

whereC is a normalization constant, andVq andGq are two
fitting parameters. The spectrum has either two resolved
peaks or one broad peak depending on whether the ratio
Vq /Gq is greater or less than unity. It follows that

^vq
2&5Vq

21Gq
2 ~44a!

and

^vq
4&5Vq

416Vq
2Gq

213Gq
4. ~44b!

The two fitting parameters, and therefore the line shape, are
determined by the second and fourth moments of the fre-
quency.

As in the ferromagnetic problem, the second moment can
be calculated in two ways. The first method requires the
calculation of a double commutator:

^vq
2&5^@@Sq

x ,H#,H#S2q
x &/^Sq

xS2q
x &. ~45!

The calculation is greatly simplified when the ordered mo-
ment is decoupled along the way. The final answer is quite
lengthy to write down except in the experimentally practical
case whereqiQ:
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^vq
2&5m2@K1JT~Q!2JT~q!#@2K12JT~Q!

2JT~q1Q!2JT~q2Q2Q!#, ~46!

whereJT(q!5J (q!1J 8(q!, as defined under Eq.~20!, is
real. The second method involves two single commutators:

^vq
2&5^@Sq

x ,H#@H,S2q
x #&/^Sq

xS2q
x &. ~47!

Although the two methods are equivalent, we need to check
whether they yield the same answer under the approximation
scheme developed in the last section. Direct calculation
gives, again forqiQ, the result

^vq
2&5m2$@K2JT~q2Q!1JT~Q!#2T~q2Q!

1@K2JT~q1Q!1JT~Q!#2T~q1Q!%/T~q!,

~48!

where

T~q!5T1~q!1T2~q!

5kBT/2@K1JT~Q!2JT~q!# ~49!

is real whenq is parallel to thec axis. Substituting Eq.~49!
into Eq.~48!, we verify that the new result is the same as that
in Eq. ~46!. Thus, the approximation scheme we have devel-
oped is internally consistent.

It is instructive to contrast the result for^vq
2& in Eq. ~46!

with the spin-wave dispersion relation in the helical
phase:14,15

vq
252m2@K1JT~Q!2JT~q!#

3@2JT~Q!2JT~q1Q!2JT~q2Q!#.

With moments in the basal plane, the anisotropy energyK
appears at different places. Concentrating on the exchange
energy contribution, we find that the right-hand side of the
above expression is twice the result in Eq.~46!. Recall that in
the helical phase all spins have the same expectation valuem
whereas in the sinusoidal phase the moments vary sinusoi-
dally, one can see that the factor of one-half for the sinu-
soidal phase comes from averaging the square of the mo-
ments. This local variation in moments gives rise to a local
fluctuation in exchange energy and consequently a broaden-
ing of the spin-wave energy.

The calculation of the fourth moment proceeds as follows.
We start from the formula

^vq
4&5^@@Sq

x ,H#,H#@H,@H,S2q
x ##&/^Sq

xS2q
x &, ~50!

evaluate the commutators according to Eq.~40! while sim-
plify the interim result by decoupling the ordered moment.
For generalq the final formula for the fourth moment is quite
complex, but in the restricted case whenq is in the c-axis
direction the formula simplifies. We obtain

^vq
4&2~^vq

2&!25^~dvq
2!2&,

where

^~dvq
2!2&5m4@K2JT~q!1JT~Q#$@K2JT~q2Q!

1JT~Q!#2@K2JT~q22q!1JT~Q!#2

3T~q22Q!1~Q→2Q!%/T~q!. ~51!

In the limit of strong twofold anisotropy, the frequency
spectrum has a simple analytical form:5

G~v!5
1

p
~4m2K22v2!21/2, ~52!

for uvu,2mK and zero otherwise. This result follows be-
cause the frequency spectrum reflects the distribution of the
local anisotropy gap given by

v l i52mK cos~Q•r l i !. ~53!

The frequency spectrum is dispersionless. It is straightfor-
ward to calculate the second and fourth moments, with the
results^v2&52m2K2 and ^v4&56m4K4. These are in com-
plete agreement with the limiting values of Eqs.~46! and
~51!. The comparison between the exact spectrum and the
fitted spectrum in Eq.~43! is shown in Fig. 1. The two spec-
tra agree in that they both exhibit the two peak structure. It is
not possible to reproduce the singularities of the exact spec-
trum in Eq.~52! by the double Gaussian form in Eq.~43!.

The observed spin excitation spectrum in the sinusoidal
phase of Tm agrees with our high anisotropy result in Eq.
~52!.10,16 The spectrum for Er is explained by the opposite
condition, that the exchange energy is strong compared with
the anisotropy energy.5 This will be discussed further in Sec.
VI.

V. LONGITUDINAL EXCITATIONS
IN THE SINUSOIDAL PHASE

As in the transverse case, the odd moments of the fre-
quency vanish for the longitudinal excitations. The second
and fourth moments of the frequency are calculated from
evaluating the following spin-correlation functions:

FIG. 1. The frequency spectrum of transverse magnetic excita-
tions in a sinusoidal spin system for which the twofold anisotropy
energy is much stronger than the exchange energy. The dotted
curve is the exact spectrum, and the solid curve is the double
Gaussian approximation which has the same second and fourth mo-
ments as the exact spectrum.
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^vq
2&5^@Sq

z ,H#@H,S2q
z #&/^Sq

zS2q
z &, ~54!

and

^vq
4&5^@@Sq

z ,H#,H#@H,@H,S2q
z ##&/^Sq

zS2q
z &. ~55!

The commutator@Slq
z ,H# can be readily evaluated:

@S1q
z ,H#5 i S 2ND 1/2(

q1
2$@J ~q2q1!2J ~q1!#S1q1

x S1,q2q1
y

1J 8~q2q1!S1q1
x S2,q2q1

y 2J 8~q1!S2q1
x S1,q2q1

y %.

~56!

The expression for@S2q
z ,H# is similar. The operatorSlq

z does
not appear in the above result, so we cannot factor out the
ordered moment in this step. In the numerator of the second
moment expression we encounter four-spin correlation func-
tions of the form

^Sl1 ,q1
x Sl2 ,q2

y Sl3 ,q3
y Sl4 ,q4

x &

.dq1 ,2q4
dq2 ,2q3^Sl1q1

x Sl ,2q1
x &^Sl2 ,q2

y Sl3 ,2q2
y &,

by applying the rules of approximation developed in Sec. III.
Depending on the sublattice label, the two-spin correlation
functions are to be identified withT1(qn! or T2(qn!, respec-
tively. After considerable algebraic manipulations, we find
the final formula for the second moment:

^vq
2&5

16

N
@JT~Q!2JT~q!#

3(
q1

$@J ~q2q1!2J ~q!#T1~q2q1!

2Re@J 8~q2q1!2J 8* ~q1!#T2~q2q1!%. ~57!

We have also verified that the formula^vq
2&

5^@@Sq
z ,H#,H#S2q

z &/^Sq
zS2q

z & yields the same result for the
second moment as given in Eq.~57!. Notice that we can not
simplify the expression by restrictingqiQ because the sum
overq1 extends over the entire Brillouin zone.

The evaluation of the fourth moment requires a great deal
of work. We again write

^vq
4&5~^vq

2&!21^~dvq
2!2&, ~58!

where

^~dvq
2!2&5

m2

2kBT
@JT~Q!2JT~q!#

1

N

3(
q1

@A~q1 ,q,Q!1A~q1 ,q,2Q!#, ~59!

andA(q1,q,Q! is a complicated expression involving the ex-
change and anisotrophy parameters:

A~q1 ,q,Q!5@ uB1u21uB2u2#T1~q12Q!T1~q2q1!

14T1~q12Q!Re@B1*B2T2~q2q1!#

1Re@B1
2T2* ~q12Q!T2* ~q2q1!#

1
1

2
Re@B2*

2T2~q12Q!T2* ~q2q1!#,

~60!

B15C1~q1!1C1~q2q11Q!,

B25C2~q1!1C2* ~q2q11Q!, ~61!

C1~q1!54$@J ~q2q1!2J ~q1!#@JT~Q!2J ~Q2q1!1K#

2@J 8* ~q2q1!2J 8~q1!#J 8* ~q12Q!%,

C2~q1!54$@J 8* ~q2q1!2J 8~q1!#

3@JT~Q!2J ~Q2q1!1K#

2@J ~q2q1!2J ~q1!#J 8~q12Q!%. ~62!

We consider for the moment the analytical properties of
the results in Eqs.~57! and ~59!. It is clearly seen that both
the second and the fourth moments vanish whenq56Q,
which means that there is an undamped zero-frequency mode
at each magnetic satellite point. These are just the Goldstone
modes which characterize the translational invariance of the
sinusoidal moment structure. Away from the satellites we
find damped modes with linear dispersion relationvq}
uq2Qu. This conclusion is in qualitative agreement with the
experiment on Er.6 For Tm whose anisotropy energy far ex-
ceeds the exchange energy, both the second and the fourth
moments are small because they are of the order of
JT(Q!/K. Our theory predicts that it will be difficult to ob-
serve the longitudinal mode except very near the magnetic
satellite point. Further comparison with experimental data
will be the subject of the next section.

VI. COMPARISON WITH EXPERIMENTAL RESULTS
ON Er

We have shown that the determination of the magnetic
excitation spectra requires the complete knowledge of the
long-range interaction parametersJi j and Ji j8 as well as the
anisotropy constantK in the sinusoidal phase of Er. In real-
ity, what we know about these parameters are culled from
low-temperature spin-wave measurements when Er is in the
conical phase.17 In this structure all spins in the same hex-
agonal plane are aligned parallel to one another. The net
moment of each layer points at an angle away from thec
axis such that there is a net ferromagnetic moment parallel to
the c axis. The basal plane component of the net moments
form a helical structure. The anisotropy energies in this
phase is expected to be very different from that in the sinu-
soidal phase. The exchange parameters are also different for
these two spin structures because they have differentc axis
periodicities. Since only the spin-wave spectrum forq in the
c-axis direction has been measured, it is possible to deter-
mine at most the Fourier transformJT(q! for q in this di-
rection. To compound the uncertainty, Nicklowet al. re-
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ported that it was not possible to fit their data by isotropic
exchange and single-ion anisotropy terms alone.17 Different
attempts to construct the model Hamiltonian yielded differ-
ent sets of exchange parameters.17,18Nevertheless, these em-
pirical parameters are useful as a guide in our attempt to
understand the experimental data for the sinusoidal phase.6

One can use the Ne´el temperature to obtain an estimate of
the relevant energy scale of the magnetic excitations. Using
Eq. ~20! and the valuesTN584 K and S515/2 to find
K1JT(Q!50.165 meV. Then the stability criterion for the
sinusoidal phase, Eq.~23!, implies that 0.165.K.0.083
meV, and 0,T T(Q!,0.083 meV. These limits are appli-
cable to the extent that the mean-field theory is accurate.

NearQ whereJT(q! is maximum, we assume a parabolic
shape

JT~q!'JT~Q!2a~q2Q!2, ~63!

wherea.0. We then factor out the energy scaleK1JT(Q!
and write

^vq
2&52m2@K1JT~Q!#@K1a~q2Q!2#c1~q!, ~64!

and

^~dvq
2!2&52m4@K1JT~Q!#3@K1a~q2Q!2#c2~q!,

~65!

where c1(q!,c2~q! are dimensionaless ratios of energy pa-
rameters, both of the order unity. We will ignore theq de-
pendence ofc1 andc2 and treat them as fitting constants. We
use the full momentm515/2 in order to compare the predic-
tions of our theory with the experimental result in Ref. 6
taken at 60 K, which is about 70% of the Ne´el temperature.
For the parametera, we recall that Nicklowet al.17 and
Lingård18 wrote

JT~q!5(
l51

n

Jlcos~ lqc/2!, ~66!

for q in the c-axis direction. One can obtain estimates ofa
from the curvature ofJT(q! around its maximum. In this
manner we finda51.2 meV/~2p/c!2 from the fitting param-
eters in Ref. 17 and 1.8 meV/~2p/c!2 from those in Ref. 18.
We choose to use the latter value in our numerical analysis.

In Fig. 2 we show the calculated neutron-scattering cross
section for three constant-energy scans as functions of the
momentum transfer measured fromQ. The parameters are
chosen so that the full width at half maximum of the line
shape forv50.3 THz ~1 THz'4 meV! matches the pub-
lished curve in Ref. 6. The fitting parameters are such that
K50.085 meV, which is at the lower end of our estimated
range, andc152.5, c251.5. Nicklow and Wakabayashi also
reported that the transverse magnetic cross section becomes
very weak at 0.5 THz and above.6 In our calculation, we find
that the lines fade away at energies higher than 0.6 THz.

An accurate calculation of the frequency moments for the
longitudinal mode is impossible because it requires the
knowledge ofJ (q! and J 8(q! over the entire Brillouin
zone. We can, nevertheless, make progress by using a set of
approximations similar to the transverse mode case. The
quantity in the Brillouin zone sum involves exchange and
anisotropy energies in both the numerator and the denomina-
tor. If we scale all quantities by the energy scale
K1JT(Q!50.165 meV, we can write

^vq
2&58kBTN@JT~Q!2JT~q!#c18~q!, ~67!

and

^~dvq
2!2&5m2kBTN@K1JT~Q!#2

3@JT~Q!2JT~q!#c28~q!, ~68!

where c18(q) and c28(q) are dimensionless Brillouin zone
sums. We ignore theq dependence of the two sums and
estimates them to be of the order unity. Together with the
assumed formJT(Q!2JT(q!5a~q2Q!2, and the previ-
ously estimated value ofa, we find that the measured peak
positions and linewidths for the constant energy scan at 0.3

FIG. 2. Calculated constant energy scan neutron-scattering cross
sections for transverse spin excitations at three different energies.

FIG. 3. Calculated constant energy scan neutron-scattering cross
sections for longitudinal spin excitations at four different energies.
The curves are shifted up from one another successively by one
unit.
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THz can be fitted by choosingc1851.7 andc2851.1. A set of
the calculated line shapes for four different energies is shown
in Fig. 3. The linear dispersion seen in the experiments is
reproduced here. The calculated curves show that the line-
width increases only slightly with increasing energy transfer,
and this is a direct consequence of our treatingc18(q) and
c28(q) as constants.

In summary, we have clarified the physics of the magnetic
excitations in the sinusoidal spin phase of Er and Tm. The
transverse excitations are broad lines centered around the
reciprocal-lattice points, and the linewidth arises from the
spatial variations of exchange and anisotropy energies, while
the longitudinal excitations are extensions of the Goldstone

mode and are quite sharp. The velocity of the longitudinal
mode is directly related to the spin-wave velocity at low
temperatures.
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