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A sequential relaxation model for the susceptibility of site diluted Ising systems is introduced. Most of the
necessary parameters are known for the two-dimensional Ising spin glass Fe0.4 Mg0.6 Cl2 and a good fit to
experimental results for the ac susceptibility is obtained. Predictions of the model yield good agreement with
aging experiments on Rb2Cu0.89Co0.11F4 and Fe0.5Mn0.5 TiO3 . @S0163-1829~96!06321-7#

I. INTRODUCTION

It has been known for some time that at low temperatures
the spectrum of relaxation times in disordered Ising magnets
becomes very broad. More recently,1–3 interesting aging ef-
fects, in which the susceptibility is time dependent, have
been reported. A very elementary microscopic model will be
introduced below that can, in large measure, account for
these experimental results.

In an important series of papers, Fisher and Huse4 have
developed a droplet model of relaxation in disordered Ising
systems in which the coherent relaxation of droplets of op-
positely ordered spins controls the dynamics. A droplet is
defined as a coherent group of reversed spins embedded in a
matrix of oppositely oriented spins. The dynamics of the
system is determined by coherent reversals of the droplet
spins. As the temperature is lowered the important droplet
relaxations, i.e., those that can take place in an experimental
time, are confined to smaller and smaller droplets. The drop-
let relaxations occur in a system of domains, and movement
of the domain boundaries and the consequent decrease in
domain boundary area is responsible for aging. The only
difference between droplets and domains is one of size, and
hence the time scale of fluctuations. The domains are taken
to be stable for a time on the order of the experimental time,
whereas the droplets are not. The distinction is, of course,
inexact because there must be a continuous distribution of
sizes, and a complete theory would avoid the distinction. In
fact the process by which a cluster of reversed spins~a drop-
let! becomes a domain is important for the effect of cooling
rate on the thermal remanent moment~TRM!, and aging.

The model to be presented here is similar in that the sys-
tem is supposed to consist of domains of oppositely oriented
spins. In the low temperature limit, when all relaxation times
are much longer than the experimental time, all domains are
stable. As the temperature increases fluctuations become im-
portant, leading to changes in the domain structure respon-
sible for aging effects. However, coherent fluctuations, and
hence droplets, are specifically discarded in favor of a se-
quential model to be described below in which spins are
assumed to relax sequentially with the relaxation of one re-
ducing the constraint on a neighbor, thereby allowing it to
relax, which in turn reduces the constraint on another spin in
the sequence and so on. Thus the focus is on the individual
relaxation of the spins in the domains, rather than their col-
lective relaxation. Nevertheless, clusters of flipped spins are

the result, common to both theories.
Both models predict that a two-dimensional~2D! random

ferromagnet ages as (A1B lnt)a. The droplet model predicts
thata'4, whereas the sequential requiresa to be 1/2. The
droplet model has been applied to the aging of the ac sus-
ceptibility by Schinset al.,3 however, it will be shown below
that the sequential approach yields better agreement with the
data.

The sequential is a constrained dynamical model for re-
laxation. Frederickson and Andersen5,6 have described a con-
strained dynamical model for relaxation in Ising systems
which yields the susceptibility, and similar models have been
applied to other relaxation phenomena in disordered
systems.7–10 In a similar vein, a hierarchical model was quite
successful in accounting for relaxation in orientational
glasses11–13 accounting for the frequency and temperature
dependence of not only the structural but also the dielectric
relaxation. The model was based on the hierarchical relax-
ation model of Palmeret al.,14 in which Ising spins are as-
sumed to occupy a hierarchy of levels such that the spin in
one level, sayn, cannot relax unless spins in the adjacent
lower level,n21, has relaxed. No microscopic model for the
levels was provided by the authors; so, in order to apply it
and compare it with experiment the levels were identified
with the number of nearest neighbors, so that relaxation of a
spin with a given number of neighbors required the relax-
ation of spins with fewer neighbors. In other words the fluc-
tuations in concentration were modeled to consist of clusters
of spins with the highest concentration at the center of the
cluster.

A hierarchical model for the organization of the energy
barriers in the rough free-energy landscape of spin glasses
has been proposed by Ledermanet al.15 which has been ap-
plied to the decay of a TRM.

Sibani,25 using a model based on motion involving ther-
mally activated hopping in an utrametric space has obtained
results which qualitatively reproduce experimental suscepti-
bilities. No comparison with experiment is attempted, how-
ever, possibly because the change in the temperature of the
susceptibility peak with frequency is much larger than is
observed in most experiments.

While both the hierarchical and the droplet model can
account for aging effects, neither does so for the temperature
and frequency dependence of the ac susceptibility. In fact,
despite more than two decades of intense theoretical and ex-
perimental interest, quantitative agreement with the ac sus-
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ceptibility does not exist for any theory at present. This will
be provided by the sequential model which will also be
shown to account for aging phenomena.

The sequential model generates a distribution of relax-
ation times which diverge exponentially with the number of
spins in the sequence. There are other constrained dynamical
models which could, in principle, be expected to achieve the
same result, and, as outlined above some display attractive
features. The detailed comparison with experimental suscep-
tibilities is lacking, however.

This paper is organized as follows: in Sec. II the model is
described and compared with experimental data for the ac
susceptibility of the two-dimensional Ising spin glass,
Fe0.4Mg0.6Cl 2 obtained by Wonget al.16 Next the change in
ac susceptibility with time after a quench is treated in Sec.
III. The time dependent acquisition of a moment in a mag-
netic field is considered in Sec. III, and the results are dis-
cussed in Sec. V.

The model is a nearest neighbor model so only results for
insulating Ising systems with short range interactions are
considered. Unfortunately aging data are not available at
present for Fe0.4Mg0.6Cl 2 and the analysis of the aging data
requires parameters which have not been measured in the
systems for which aging data is available. Decay of a TRM is
not considered, because cooling in a field results in a com-
plex structure for which there is no obvious approximation:
since the TRM decay is sensitive to the waiting time before
the field is turned off,15 the starting distribution of clusters
must depend on cooling rate. Calculation of the cooling rate
dependence of a TRM is not difficult but is beyond the pur-
pose of this communication.

II. THE SPECTRUM OF RELAXATION TIMES

The model is the following: a site-diluted 2D Ising ran-
dom magnet with clusters of spins which are unfrustrated is
considered. The major interaction is with the nearest neigh-
bors~NN’s!, and is calculated explicitly. A single ion anisot-
ropy energyQ must be overcome for a spin to flip~of course,
a substantial anisotropy must exist for the Ising model to
provide a realistic approximation!.

The following is the basic assumption of the model: at
low temperatures the field due to its nearest neighbors will
prevent a spin in a cluster from relaxing. But, if at least half
its neighbors have flipped, the field of the rest will be can-
celed, and the spin will no longer be constrained. The only
remaining barrier to its relaxation will be that due to anisot-
ropy. The simplest such situation is one where the spin has
only two NN’s. In that case the relaxation time of a spinn
sites from where the process was initiated is determined by
the probability that, since these are Ising spins, the neighbor
at (n21) will occupy one of its two possible states, i.e.,14

tn852tn21 .

The spin atn can, of course relax thermally, and the re-
laxation time for this process is

v0
21e~Q14J!/T,

wherev0 is the attempt frequency,J is the exchange inter-
action with NN, andQ is the anisotropy energy. The total
relaxation rate will be

1

tn
5

1

2tn21
1v0e

2 ~Q14J!/T. ~1!

If the spin atn has three NN’s relaxation of one of them will
still leave it constrained by the other. The other NN forms
part of another sequence and when both have relaxed the
sequence can continue. It is unlikely that both spins have the
same relaxation time; so, while the spin with the longer time
is favorably oriented, the other, with the shorter time will flip
more than once, and it is the longest relaxation time of the
two that will control the process; so the faster relaxation of
the second spin will be neglected.

If the spin has four NN’s, relaxation of two neighbors
removes the constraint imposed by the other two, and the
same remarks apply, except that with three NN’s only one
sequence can continue, whereas with four NN’s both can. If
five and six NN’s are possible it is necessary for three spins
to relax. In order to simplify the calculation it will be as-
sumed that the relaxation of only one NN controls the relax-
ation of a spin in a sequence. In effect correlations between
the sequences are being neglected. This is a poor assumption
if the number of NN’s is 5 or 6, but at the concentrations of
interest the concentration of spins with more than four NN’s
is very small.

With these assumptions Eq.~1! can be written as

1

tn
5

1

2tn21
1v0e

2 ~Q12znJ!/T, ~2!

wherezn is the number of NN’s ofn. Equation~1! also holds
for the nearest neighbors ofn

1

tn21
5

1

2tn22
1v0e

2 ~Q12zn21J!/T, ~3!

wherezn21 is the number of nearest neighbors of the spin at
n21. zn21 must be greater than 1 for a sequence to be pos-
sible. Substitution of~3! in ~2! yields

1

tn
5
1

2 S 1

2tn22
1v0e

2 ~Q12zn21J!/TD1v0e
2 ~Q12znJ!/T.

An expression similar to~3! can be derived fortn22 , and
if the sequence is retraced to the spin which originated it,
t i , we obtain

t i ,n
215

1

2nt i
1v0e

2
Q
T(
k50

n21

22ke2 ~2zn2kJ!/T. ~4!

When the first term in~3! is larger than the second, the
relaxation is a sequential process with the relaxation of each
spin leading to the relaxation of a neighbor along a line of
spins. Eventually the second term will dominate, the se-
quence stops, and the relaxation times become those for ther-
mal relaxation of the individual spins.

The contribution of a sequence to the suceptibility is
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x i ,n8 5
1

T

P~zi !P~zj !P~zk!•••P~zn!

11~vt i , j , . . . ,n!
2 , ~5!

where t i , j ,k, . . . ,n is the relaxation time of a sequence that
begins at a spin withi NN’s, and continues with spins with
successivelyj , k, and so on ton NN’s. v is the measure-
ment frequency, andP(zk) is the probability that a spin at
k haszk nearest neighbors.

Spins in the sequences must have at least two neighbors.
The spin which starts the sequence must have at least one
neighbor. If it is on a domain boundary the effective number
of NN can be as small as zero because the presence of op-
positely oriented spins on the other side of the boundary can
cancel the effect of some of its NN’s on its side.

In order to compute the contribution of the relaxing spins
to the real part of the susceptibility it is necessary to sum the
contributions of all the sequences:

xseq8 5
1

T(i50

m

P~zi ! (
j ,k, . . . ,n52

m
P~zj !P~zk!•••P~zn!

11~vt i , j ,k, . . . ,n!
2 . ~6!

In this expressioni refers to the spin that starts the sequence.
It can effectively have zero NN’s if it is on a domain bound-
ary;m is the maximum number of neighbors a spin can have.

The number of possible combinations contributing to Eq.
~5! can be very large: If there arem possible values ofz it is
m(m22)n21. Fortunately, at the concentrations of interest
here the probabilitiesP(z) are small, and only the contribu-
tion of the first few terms is necessary.

There are two additional contributions to the susceptibil-
ity which are significant: the first is the coherent relaxation
of small independent clusters of spins, i.e., where the cluster
reverses its total moment. This is

xcl8 5
1

T(
p52

pmax P~p!

11@vtcl~p!#2
, ~7!

where the probabilitiesP(p) have been calculated by Sykes
and Glen,17 and the relaxation time of a cluster ofp spins is

tcl~p!5vcl
21epQ/T, ~8!

whereQ is just the anisotropy energy.
The other contribution is a frequency independent static

susceptibility,xst8 , from spins which cannot relax at the mea-
surement frequency. If spin wave data are available this can
be estimated using elementary spin wave theory.18 The prob-
lem with this approach in disordered systems is first that the
lack of translational invariance makes it impossible to define
a consistent set of spin wave vectors. Another difficulty is
that as some phase transition temperature is approached the
contribution becomes smaller, and eventually disppears. That
temperature is difficult to identify, and must be specified in
somead hoc fashion. An alternative is to use the classical
theory for antiferromagnets.19 If this is done the magnetiza-
tion must be calculated. If a mean field theory is used the
magnetization will be overestimated, and in any case mean
field theory ignores the reaction field which is important in
disordered systems.20 If the reaction field is included it is
necessary to solve the TAP~Ref. 21! equations. However,
the contribution of the static susceptibility is small, and the

labor involved in attempting even an approximate solution to
these equations is difficult to justify. Therefore the simple
expedient of adjusting the magnitude of the exchange field
will be used instead:

Since this is a two level system, the magnetization in a
small fieldh is given by19

M65
N

2
tanhS gJ6h

T D , ~9!

whereg is an adjustable parameter as discussed above, and
N is the number of spins per unit volume. The susceptibility
will be

xst85F]~M12M2!

]h G
h→0

5
N

T
sech2S gJ

T D . ~10!

The total susceptibility isx85 xseq8 1xcl8 1xst8 .
In order to test the model a system was required with as

many measured parameters as possible. The two-dimensional
spin glass Fe0.4Mg0.6Cl 2 is unmatched in this respect:
FeCl2 is an antiferromagnet consisting of Fe11 spins
aligned ferromagnetically along the hexagonal axis within
the layer, and antiparallel in neighboring layers.22 The spins
in the layers are located on a triangular lattice. The nearest
neighbor exchange interaction is ferromagnetic, and about an
order of magnitude greater than the next nearest neighbor,
and the antiferromagnetic interplanar interactions. When di-
luted with Mg, FeCl2 reportedly16,23 forms a two-
dimensional spin glass at Fe concentrations below 0.5, the
two-dimensional nearest neighbour percolation limit.

If a nearest neighbor model is used for Fe0.4Mg0.6Cl 2
frustration vanishes in the model, and the system becomes a
two-dimensional diluted ferromagnet. For such a system no
spin glass transition would be expected from the model: a
Griffiths phase would be expected to exist at all temperatures
below some magnetic transition temperature.24

The ac susceptibility of FexMg12xCl 2 has been measured
by Wong et al.16 for x50.4, and Bertrandet al.26 for
x50.3. Wonget al.have also made a rather complete inelas-
tic neutron scattering study which provides most of the re-
quired parameters for a fit. These results are not available for
Bertrandet al.’s material, so a detailed comparison will only
be made with Wonget al.’s data.

From the neutron results the average sizes of the clusters
was calculated by Wonget al. They point out that they are
substantially smaller than the percolation correlation length
for this concentration. This in turn implies that domain
boundaries are present, whose average length is easily calcu-
lated from the measured domain size.

It was assumed that the sequences could start at any spin.
The most likely starting points are on the boundary, where
the smallest barriers to thermal activation are encountered.
The fraction of spins on the boundaries was calculated from
the average boundary length.

The contribution to the susceptibility of the sequences
was computed using the model outlined above. The value of
J used was that determined by Birgeneauet al.22 The value
of the anisotropy energy was obtained from the neutron data.

The contribution of the sequences was computed numeri-
cally. In doing so it was found that sequences longer than
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five spins made negligible contribution. Apart from the first
spin to relax, no distinction was made between sequences
which are confined to the domain boundaries and those in the
interior of the domain.

The contribution of coherently relaxing clustersxcl8 was
calculated as outlined above. These are small clusters, and
they can also relax via the sequential mechanism. Thus only
those clusters were included whose relaxation time was
shorter than the sequential relaxation time of a sequence of
half the spins in the cluster.xcl8 amounted to about 10% of
the total.

The contribution of the static susceptibilityxst8 was only
about 20% of the total in the neighborhood of the suscepti-
bility peak, and about 5 to 10% elsewhere. It was obtained
using Eq.~9!, with g 50.5.

Because the susceptibility data is quoted in ‘‘arbitrary
units’’ x85A(xseq8 1xcl8 1xst8 ) was calculated leavingv0 and
A as adjustable parameters. The results, shown in Fig. 1,
were obtained withv0 51011.5 rad/sec.

III. AGING

Summarizing the preceding analysis, relaxation occurs by
a sequential process whereby flipping a spin relieves the con-
straint on a neighbor which then can flip thereby allowing its
neighbor to flip, and so on. The sequences can start either on
domain boundaries or in the interior of the clusters. The re-
laxation time of a spinn spins from where the sequence
began is

t i ,n
21522nt i

211t0
21(

k50

n21

22ke2 ~2zn2kJ!/T, ~11!

where t i is the relaxation time of the spin that started the
sequence,Q is an anisotropy barrier, andv0 is an attempt
frequency.

The relaxation time of the spin which starts the sequence,
t i , is, of course much shorter than the thermally activated
relaxation times of the rest of the spins in the sequence, and
the first term in Eq.~3! will dominate at temperature at and
below the peak in the susceptibility. Consider temperatures
low enough for this to be the case, neglecting the second,
thermally activated term. If the system is in the field for a
time t, spins will have relaxed for whicht i ,n;t, and
2nt i;t, or

n;
1

ln2
ln~ t/t i !. ~12!

If the system has been rapidly quenched to a temperature
where it is no longer paramagnetic, it can be expected to
consist of a large number of domains. The faster the quench,
the smaller the domains can be expected to be, and a large
fraction of the spins will be on the boundaries. In that event
sequences which start on the boundaries can make a major
contribution to the total susceptibility.

If the temperature is high enough for relaxation to pro-
ceed, it can be expected that the domain size will increase
with time, and the total length of domain boundaries will
decrease. The sequences which can start on the boundary
will be fewer, and the susceptibility will decrease.

In order to estimate the change in susceptibility with wait-
ing time, consider that the material has been cooled to a
temperature where the average domain of sizeR contains
N spins, if the dimension isd,

N;Rd. ~13!

In general, if the system has been quenched it can be
expected that relaxation of spins on the boundary will in-
crease the size of favorably oriented domains. Thus ifn spins

FIG. 1. The real part of the susceptibility of
Fe0.4Mg0.6Cl2 . The points are taken from Wong
et al. ~Ref. 16!, at 11 Hz, upper curve, and 2784
Hz, lower curve. The lines were calculated.
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in the unfavorably oriented domain relax, the cluster will
now containN1n spins, and its size will increase to

R1dR;~N1n!1/d. ~14!

The number of clusters in the sample is;1/Rd and each
cluster has boundary;Rd21, so the total area of domain
boundary in the sample is;R21. If the fractal nature of the
domain boundaries is considered, and the dimension of the
boundary isds whered21,ds,d , the total boundary area
becomes4 R2(d2ds) . The contribution to the susceptibility
from spins on the domain boundaries is proportional to the
total area of domain boundary, and therefore is

x8}1/~R1dR!d2ds5A/~N1n!~d2ds!/d ~15!

and, with Eq.~10!,

x85
A

FN1
1

ln2
ln~ t/t i !G ~d2ds!/d

. ~16!

An ideal way to monitor the change in susceptibility is with
an ac measurement, and a beautiful series of experiments of
this kind have been performed by Schinset al.3 on the 2D
Ising random-exchange ferromagnet Rb2Cu0.89Co0.11F4 .
The experiment consists of quenching the sample, and then
monitoring the change in the ac susceptibility inzero field
as a function of time.

Let the size of a 2D average cluster in the quenched ma-
terial beR, and containN spins;N;R2. With Eq. ~14!, and
neglecting the fractal nature of the boundary

x85
A

~N ln21 lnv f1 lnt !1/2
~17!

or

~x8!225a1blnt, ~18!

N can be obtained from the average domain size. The con-
stantA is not easy to calculate analytically. Using the theory
above it can be evaluated numerically for Fe0.4Mg0.6Cl 2 ,
but unfortunately aging data are not available for this
material. On the other hand, aging data are available for
Rb2Cu0.89Co0.11F4 .

3 Although this material being a
random-exchange system with a high degree of frustration is
significantly different from that on which the analysis is
based, as shown in Fig. 2, the time dependence of its suscep-
tibility agrees very well with that predicted by Eq.~13!.

IV. MAGNETIZATION IN CONSTANT FIELD

A sample cooled in zero field will initially consist of do-
mains of up and down spins of equal volume. The size of the
domains will depend on the cooling rate, and the waiting
time. When a magnetic field is applied spins in the unfavor-
ably oriented domains will begin to flip, and the sample will
begin to develop a moment. If the number of spins in such a
domain initially isN0

2 , N0
2 will depend on the waiting time

before the magnetic field is turned on. The longer the time,
the largerN0

2 , but the smaller the total boundary area, and
the smaller the susceptibility. Using Eq.~12! the rate of spin
reversal is initially

S dn

d lnt D
t→0

5(
i
N0

2
pi
cl

ln2
1~N0

2!ds/d
pi
bd

ln2
5A1B, ~19!

wherepi
cl (pi

bd) is the probability of initiating a sequence in
the cluster~on the boundary!.

After the field has been on for a timet, N0
2 will have

decreased. Ignoring correlations between the sequences, the
number of spins in the unfavorably oriented domains isN2

5N0
22n spins on the average. Taking this into account by

simply scaling Eq.~13!

dn

d lnt
5~A1B!

N2

N0
2 5C~N0

22n!, ~20!

whereC5(A1B)/N0
2 .

The solution is

ln~N0
22n!52C lnt1const.

Since n50 when t,t i , letting n50 at t5t i the const
5N0

2eC lnti, and

n5N0
2~12e2C ln~ t/t i !!. ~21!

The magnetization is simply proportional ton, and the ‘‘re-
laxation rate,’’S, of Svedlindhet al.2 is

S5
]M /H

] lnt
}N0

2Ce2C ln~ t/t i ! . ~22!

This expression provides the correct behavior initially, and at
long times. However, it is observed that at temperatures near
and below the peak in the susceptibility,S goes through a
distinct maximum at times on the order of the waiting time
before the field is turned on. As it stands this theory is inca-

FIG. 2. Aging in the two-dimensional random exchange ferro-
magnet Rb2Cu0.89Co0.11F4 . The reciprocal of the square of the
susceptibility has been plotted against log10(t) yielding a straight
line in agreement with the predicted behavior of the sequential
model. The data was taken from Schinset al. ~Ref. 3!. The numbers
on the lines refer to the measurement frequency.
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pable of providing an explanation for this behavior. How-
ever, if correlations between the sequences are taken into
account it may be possible forS to increase initially because
the sequences have the effect of increasing the number of
sites at which relaxation can start, since each flipped spin
along the sequence can initiate another sequence.

V. DISCUSSION

A simple model for relaxation has been described which
provides reasonable agreement between theory and experi-
ment for the susceptibility. It predicts that the time depen-
dent susceptibility during aging should be proportional to
(a1blnt)2d2ds /d, which leads to (a1blnt)1/2 for d52 if the
fractal nature of the domain boundary is neglected. The
droplet model, on the other hand, predicts (T lnt/t0),

4 and
Schinset al.3 have analyzed their data according to that law.
However, as shown in Fig. 3, the agreement is clearly infe-
rior to that obtained from the sequential model, in that a plot
of x821/4 against lnt does not yield a straight line.

By an obvious extension of the arguments presented, in
three dimensions the susceptibility should age according to
(a1blnt)2/3. Suitable data for a 3D Ising system could not be
found, but data for the relaxation of strain~i.e., creep! of the
orientational glass KBr0.5KCN0.5 ~Ref. 26! obeys this
relation.27

The model describes a random magnet rather than a spin

glass. However, Schinset al.3 have also obtained data for
aging in Rb2Cu0.67Co0.33F2 . This composition yields a spin
glass, and it is interesting that the magnitudes of the suscep-
tibilities are about a factor of 5 smaller, and the shift in
temperature of the susceptibility maximum is also much less.

Many materials classed as spin glasses show aging phe-
nomena and a shift in the temperature of the susceptibility
peak with frequency. The model described above would pre-
dict no time dependent phenomena for frustrated spins.
Therefore it is tempting to ascribe these phenomena in spin
glasses to constrained relaxational behavior of the spins that
are not frustrated. It is interesting to speculate that as the
number of unfrustrated spins decreases aging phenomena,
the susceptibility, and the change in temperature of the sus-
ceptibility maximum with frequency also decreases. This
could easily be verified.

VI. CONCLUSIONS

Constrained dynamical models in general, and the sequen-
tial model in particular, can account in large measure for
relaxation in disordered Ising systems.
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