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We present a Gutzwiller-projected variational state appropriate for Heisenberg quantum antiferromagnets
which incorporates staggered magnetization as a continuous variational parameter. Although we obtain Ne´el-
ordered ground states with appropriate sublattice magnetization on the square, honeycomb, and triangular
lattice spin-12 quantum antiferromagnets, we find no such order on thekagome´ lattice, providing evidence that
the ground state on thekagome´ lattice is disordered. The spin-spin correlations we obtain for spins separated
by more than a lattice constant are similar to those obtained by exact diagonalization of small clusters.
@S0163-1829~96!07821-6#

A fundamental issue in quantum antiferromagnetism is
the existence of long-range order in the ground state. In one
dimension, the ground state of the linear chain spin1

2 quan-
tum antiferromagnet~QAFM! is disordered with unbroken
translational symmetry1,2 – a ‘‘spin-liquid.’’ To date no two-
dimensional lattice QAFM has been shown to have a spin-
liquid ground state, though it is generally believed that lat-
tices with low coordination number and frustrated classical
antiferromagnetism are the best candidates. The search for a
two-dimensional spin liquid has been refueled by exotic
theories of cuprate superconductivity, and because the exist-
ence~or nonexistence! of such a state is an interesting and
unanswered question of principle in the theory of quantum
antiferromagnetism.

The two-dimensional square lattice spin-1
2 QAFM, a rea-

sonable model of spin dynamics in the parent insulators of
the superconducting cuprates,3 is now believed to have a
Néel-ordered ground state. A variety of theoretical tech-
niques including small cluster diagonalization,4,5 variational
Monte Carlo,6,7 and series expansions of anisotropic Heisen-
berg models8 are all consistent with an ordered ground state
retaining 61% of the classical Ne´el order, in excellent agree-
ment with linear spin-wave theory.9

The two-dimensional triangular lattice spin-1
2 QAFM was

proposed by Anderson10 to have a spin-liquid ground state.
Subsequent theoretical studies have supported the conclusion
that the ground state has either very weak or no three-
sublattice Ne´el order,11–15 although linear spin-wave theory
predicts16 Néel order with 48% of the classical staggered
magnetization and a variational approach which works well
on the square lattice predicts7 68% of the classical Ne´el or-
der. At T50 this system may be at or near a critical
point,11,12 making accurate characterization of the ground-
state properties difficult using any method short of exact so-
lution.

An argument has been made that the triangular lattice
spin-12 QAFM should have a spin-liquid ground state.17 The
argument given by the authors of Ref. 17 is based on a map-
ping of the triangular spin-12 QAFM onto the quantum Hall
effect Hamiltonian for electrons in a magnetic field, and con-

cludes that the Kalmeyer-Laughlinm52 wave function,18 or
equivalently a resonating-valence-bond~RVB! state, closely
approximates the exact ground state. Our present results do
not support this suggestion.

Another candidate for a two-dimensional spin-liquid is
the kagome´ lattice19 spin-12 QAFM, which has been studied
by small cluster diagonalization,14 linear spin-wave theory,20

and series expansions about the Ising limit.21,12No convinc-
ing evidence of Ne´el order atT50 has yet been found.

This paper is organized as follows. Section I presents our
method of constructing spin-12 QAFM variational states. On
the square lattice, the resulting variational state has been em-
ployed previously22 using small clusters. Our approach al-
lows us to confirm these results and extend them to larger
embedded clusters, permitting extrapolation to the thermody-
namic limit. In Sec. II we consider a pair of bipartite lattices
which are believed to exhibit ordered ground states~the
square and honeycomb26,27 lattices!, and show that our varia-
tional states yield results in agreement with other calcula-
tions. In Sec. III we present results obtained with our varia-
tional states on two tripartite lattices whose ground states are
controversial~the triangular andkagome´!. These suggest that
the triangular lattice spin-12 QAFM does possess Ne´el order,
but that thekagome´ lattice spin-12 QAFM does not. In Sec.
IV we summarize our findings and discuss possible flaws in
our approach.

I. VARIATIONAL STATES

We consider variational states for a spin-1
2 Heisenberg

antiferromagnet, whose Hamiltonian has the form

H51(̂
i j &

Si•Sj , ~1!

whereSi is the spin operator on sitei and the sum runs over
all pairs of nearest-neighbor sitesi and j .

To obtain our variational states, we start with half-filled
Slater determinant statesuf& with antiferromagnetic order
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adjustable between zero and the classical valuem†51/2. Lo-
cal number fluctuations inuf& are removed by projecting out
all configurations having doubly occupied sites~Gutzwiller
projection!, leaving the variational state

uC&[P i~12ni↑ni↓!uf&. ~2!

On the square lattice,uC& yields excellent variational
energies22,23 when the proper correlations are built into the
Slater determinantuf&. This can be achieved by takinguf&
to be the ground state of a tight-binding Hamiltonian which
incorporates a~possibly nonuniform! fictitious magnetic flux
coupled to the particles orbital motion, and a staggered mag-
netic field coupled to spin.22

Explicitly, uf& is the half-filled ground state of the tight-
binding Hamiltonian

Hf52 (
^ i j &a

eiai j cia
† cja1h(

i
êm~ i !•Si . ~3!

Herecia
† creates a fermion with spin projectiona at the site

i , andSi5
1
2 Sabcia

† sW abcib is the spin operator at sitei . The
vector potentialai j describes the fictitious flux,m( i ) labels
the magnetic sublattice to which sitei belongs, andêm is a
unit vector pointing in the direction of a spin on sublattice
m in a classical Ne´el ground state. The variational parameter
h adjusts the strength of the antiferromagnetic order present
in uf&, and henceuC&. It is chosen to minimize the varia-
tional energy for a system ofN spins,

E~h!5
^C~h!uHuC~h!&

^C~h!uC~h!&
5
1

2
zN^Si•Sj&h , ~4!

wherez is the coordination number of the lattice and sites
i and j are nearest neighbors.

The dimensionless ‘‘flux’’ through a plaquette is the di-
rected sum of the phase factors(ai j around the plaquette.
~In these units a full flux quantum corresponds to a flux of
2p.) The distribution of theai j ’s is only determined to
within a gauge transformation. We choose the flux through
each elementary plaquette to be that which minimizes the
sum of single-particle energies below the Fermi level on an
isolated plaquette.24 Specifically, forn an integer, plaquettes
with 4n12 sites require no added flux, while those with
4n sites requirep added flux. Plaquettes with odd numbers
of sites require6p/2 added flux. These rules are successful
predictors of the best variational stateuC& for an infinite
periodic lattice, and seem to work on many~though not all!
finite systems.25

The proper addition of flux~nonzeroai j ) and/or magne-
tization~nonzeroh) in Eq. ~3! opens a gap in the spectrum of
Hf at the Fermi level, making all physical correlations in
uf& short ranged. The correlation lengthj is defined by the
asymptotic decay of the Green’s function for large separa-
tion, ^fucia

† cjauf& ; e2r i j /j.
On the square and honeycomb lattices, there are two su-

blatticesmP$A,B% and we takeêA5 ẑ and êB52 ẑ. On the
triangular andkagome´ lattices, the classical ground state has
three sublatticesmP$A,B,C% whose magnetization direc-
tions are 120° apart, e.g.,êA5 ŷ, êB5(A3x̂2 ŷ)/2, and
êC52(A3x̂1 ŷ)/2. On thekagome´ lattice the three sublat-

tices may be arranged in theq50 ~3 spins per unit cell!
arrangement shown in Fig. 1~a!, or theA33A3 ~9 spins per
unit cell! arrangement shown in Fig. 1~b!. ~The latter pattern
is obtained by starting with the triangular latticeA33A3
Néel state and deleting sites to obtain thekagome´ lattice.!

To compute spin correlationŝSi•Sj& and sublattice mag-
netizationm†(h)[(1/N)( i^êm( i )•Si&h , we use the embed-
ded cluster method.23 Briefly, we consider a small cluster of
Nc sites embedded in an infinite system. Correlations within
the cluster are computed exactly, while correlations outside
the cluster are accounted for only approximately. The ther-
modynamic limit is usually reached rapidly when the cluster
size exceeds the correlation lengthj. This method converges
much more rapidly than exact Gutzwiller projection on a
series of progressively larger finite systems.23

II. BIPARTITE LATTICES

On the square lattice, the loop rules described above sug-
gest that each elementary plaquette should haveF0/2 flux,
i.e.,(ai j5p around each square. For the honeycomb lattice,
the rules suggest that no fictitious flux is required through
each hexagonal plaquette, andai j50. These patterns donot
break time-reversal or parity symmetry.

For both the square lattice flux state and the fluxless hon-
eycomb state, theh50 spectra ofHf are gapless, although
they have vanishing density of states at the Fermi level, and
possess particle-hole symmetry. The resulting correlations
decay fast enough for the embedded cluster method to
converge.23 When hÞ0, a complete gap is opened in the
spectrum for both lattices, and particle-hole symmetry is pre-
served@see Figs. 2~a! and 2~b!#.

Figure 3~a! shows our results computed using embedded
clusters containing 8, 12, and 18 sites on the square lattice.
These clusters have not yet converged to the thermodynamic
limit. For clusters larger than;20 sites we must use a Monte
Carlo algorithm23 to sum over spin configurations, which
leads to error bars that blur the variational minimum with
respect tom†. For the 18-site cluster, the extrapolated mini-
mum occurs whenm†.0.38, which is within the range of
results obtained with other methods.3

Fixing h near the 18-site minimum and extrapolating us-
ing clusters containing 8–44 sites as shown in the inset of
Fig. 3~a!, we obtain a variational energy of
E/N520.6860.01, comparable to estimates derived from
exact diagonalization of small clusters4 and series
expansions,8 E/N520.67760.008.

For the honeycomb lattice@Fig. 3~b!#, we obtain a varia-

FIG. 1. Possible arrangements of the three magnetic sublattices
A, B, andC on thekagome´ lattice. ~a! q50 and~b! A33A3.
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tional minimum nearm†.0.35 for all clusters containing
more than 10 sites. The extrapolation to largerN is not as
smooth as that of the square lattice, so we instead quote the
energy associated with the largest cluster we considered
(N554 sites!, E/N520.5460.01. This compares favorably
with estimates of the ground-state energy and staggered
magnetization ofE/N520.545 andm†50.22 from Monte
Carlo,26E/N520.549 andm†50.24 from second-order spin
waves,27 and E/N520.544 andm†50.27 from series
expansion.27

A more stringent test of the variational state is obtained
by examining the spin-spin correlations at distances farther
than nearest neighbor. Table I presents a comparison of the
spin-spin correlations computed using large embedded clus-
ters with those obtained by exactly diagonalizing the Heisen-
berg model on a 32-site square lattice with periodic boundary
conditions. As Table I indicates, there is generally good
agreement between the spin-spin correlations calculated in
our variational state and those calculated by exact diagonal-
ization of small periodic systems.~We do not show compari-
son with the honeycomb lattice because we are unaware of
any exact diagonalizations which report correlation func-
tions.!

III. TRIPARTITE LATTICES

For the triangular lattice, the loop rules prescribe a uni-
form flux F0/4. For thekagome´ lattice, the loop rules sug-
gest a uniform flux of F0/4 through the triangles
((ai j5p/2), and 0 through the hexagons. Both of these flux
patterns break time-reversal and parity symmetry, but intro-
duce particle-hole symmetry24 into the tight-binding Hamil-
tonianHf . Figures 2~c! and 2~d! shows the density of states

resulting from these flux patterns.
Figure 3~c! showsE(h) versusm†(h) for the triangular

lattice using embedded clusters. The variational minimum
occurs atm†.0.3, indicating a tripartite Ne´el state rather
than a spin-liquid ground state. Using clusters containing as
many as 54 sites, we estimate the infinite cluster size varia-
tional energy to beE/N520.49060.005. This is substan-
tially higher than the exact energy of a 36-site periodic
cluster,13 E/N520.560 37.

To investigate possible reasons for this discrepancy, we
performed our calculation withh50 on a finite system,
rather than an infinite one. Table II shows our results using

FIG. 2. Density ofHf single-particle eigenstatesD(E) for the
lattices studied in this paper. Dashed lines showD(E) when there
is no fictitious flux (ai j50) and no induced Ne´el order (h50).
Solid lines showD(E) and a fictitious flux as specified by the loop
rules in the text, withhÞ0 ~a!–~c!, h50 ~d!. Note that the flux
and/or induced Ne´el order opens a gap at half filling, and estab-
lishes particle-hole symmetry.

FIG. 3. Variational energyE(h) vs. m†(h), computed using
embedded clusters on~a! square,~b! honeycomb,~c! triangular, and
~d! kagome´ lattices. The lines are guides to the eye; in~d! the solid
lines connect results withq50 magnetization, while dashed lines
connect those withA33A3 magnetization~see text!. The points in
the inset of~a! illustrate the extrapolation of the lowest energy state
vs. the inverse of the embedded cluster size 1/Nc . Also appearing
in ~a!–~d! are illustrations of some of the clusters used; the spin-
spin correlation was computed between sites marked by filled
circles.
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lattices of sites which haveL andM sites in each of the two
lattice translations of the triangular lattice and whose bound-
ary conditions are periodic.

We find that our variational state does indeed have a
lower energy on these small triangular lattice systems than in
our embedded cluster calculation for an infinite system. In
fact, all of the L52 systems we studied have an energy
below that reported in the literature for the energy extrapo-
lated to infinite system size.@We note that because our varia-
tional state is constructed from Hamiltonians of the type Eq.
~3!, some of the small periodic systems studied in the litera-
ture are essentially inaccessible because they do not decom-
pose into magnetic unit cells when the flux state is con-
structed. That is, adding flux to these systems requires a net
fictitious flux through the system which is not a multiple of
the flux quantum 2p.# On the other hand, the singleL54
system accessible to us has an energy above even our em-

bedded cluster results. This strong boundary condition de-
pendence suggests that the discrepancy between the energy
we report for the triangular lattice and those reported for
exact diagonalization of small periodic lattices is due to the
difference in lattice boundary conditions, which affects the
energy on the triangular lattice more strongly than on the
other lattices. This is somewhat surprising, since for these
states the spin-spin correlations decay exponentially, and one
might therefore expect less dependence on boundary condi-
tions.

Figure 3~d! showsE(h) versusm†(h) for the kagome´
lattice using embedded clusters, for both theq50 and
A33A3 magnetization patterns. In both cases the variational
minimum occurs ath50, indicating a disordered ground
state. Our estimate of the variational energy, considering
clusters containing as many as 52 sites, is
E/N520.40960.006. As with the triangular lattice, this
number is significantly higher than that yielded by exact di-
agonalization of a finite 36-site cluster,14 E/N520.438 38.

To confirm that our variational states have the same char-
acter as the true ground states, we can again compare further
range spin-spin correlations with exact diagonalization stud-
ies of 36-site periodic clusters of the triangular13 and
kagome´14 lattices~Table I!. Qualitatively, the agreement with
exact diagonalization results is similar to that obtained on
bipartite lattices. In contrast with the bipartite lattices, corre-
lations on the tripartite lattices decay very rapidly, to near
zero on thekagome´ lattice and to a weak three-sublattice
order on the triangular lattice. These longer-range correla-
tions, however, are consistently larger in our calculations
than in the exact diagonalization studies.

IV. CONCLUSIONS

The variational stateuC& appears to be a good approxi-
mation to the true ground state as measured by its variational
energy and, more significantly, because the short-range cor-
relations match those of the ground state. In agreement with
other calculations on the square and honeycomb lattice spin-
1
2 QAFM, our best variational states exhibit Ne´el order. On
the triangular lattice, our best variational state also contains
Néel order, withm†.0.3. In sharp contrast, our best varia-
tional state for thekagome´ lattice spin-12 QAFM contains no
staggered magnetization for any simple unit cell. This
strongly suggests that thekagome´ lattice spin-12 QAFM has a
disordered ground state.

As with any variational calculation, errors in the ‘‘ground
state’’ order may result from an insufficiently general class
of trial states. The variational states we consider overesti-
mate the importance of Ne´el order in obtaining an energy
minimum; our predicted staggered magnetizations are
roughly 20% larger than obtained by other methods. These
overestimates of Ne´el order on the square and honeycomb
lattice suggest that the states we consider are overly prone to
developing antiferromagnetic order. This may explain why
this class of variational state predicts Ne´el order on the tri-
angular lattice while other methods do not.

Our previous work23 leads us to believe that the finite-size
effects associated with clusters embedded into an infinite
system are generally of the same magnitude as those associ-
ated with a finite system. Thus the actual energy of the infi-

TABLE I. Spin-spin correlation function for square,kagome´,
and triangular spin-12 QAFM’s. The middle column reports our em-
bedded cluster results, while the last column reports the correlations
of the largest published exact diagonalizations.

Square latticêSi•Sj&
r i j 44 site cluster Ref. 5~32 sites!

1 20.33560.013 20.3401
A2 10.20460.002 10.2090

2 10.18860.002 10.1874
A5 20.17960.002 20.1830

Triangular latticê Si•Sj&
r i j 42 site cluster Ref. 13~36 sites!

1 20.16360.002 20.1868
A3 10.16160.002 10.1535

2 20.06560.002 20.0548
A7 10.07660.002 20.0066

Kagomélattice ^Si•Sj&
r i j 52 site cluster Ref. 14~36 sites!

1 20.20560.004 20.2192
A3 20.00760.004 10.0116

2 ~in line! 10.03260.004 10.0527
2 ~across hexagon! 20.02860.004 20.0090

TABLE II. Energy per siteE/N for the variational state Eq.~2!
with h50 on small triangular lattices with periodic boundary con-
ditions. The lattice dimensions areL andM in each of the two
fundamental lattice translations of the triangular lattice, and contain
N5LM sites.

System size (L3M ) E/N

232 -0.500 000
234 -0.701 283
236 -0.686 685
238 -0.629 483
434 -0.459 370
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nite triangular andkagome´ Heisenberg spin lattices is prob-
ably somewhere between our estimates presented here and
those published estimates arising from exact diagonalization
of finite systems.

Our variational states currently do not allow for the pos-
sibility of spin-Peierls ordering. This could easily be rem-
edied by allowing the hopping matrix elements in Eq.~3! to
vary in magnitude from bond to bond.
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