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Variational evidence for spin liquids in frustrated lattices
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We present a Gutzwiller-projected variational state appropriate for Heisenberg quantum antiferromagnets
which incorporates staggered magnetization as a continuous variational parameter. Although we ‘@btain Ne
ordered ground states with appropriate sublattice magnetization on the square, honeycomb, and triangular
lattice spin% quantum antiferromagnets, we find no such order orktigomeattice, providing evidence that
the ground state on tHeagomelattice is disordered. The spin-spin correlations we obtain for spins separated
by more than a lattice constant are similar to those obtained by exact diagonalization of small clusters.
[S0163-18296)07821-9

A fundamental issue in quantum antiferromagnetism iscludes that the Kalmeyer-Laughlin=2 wave function'® or
the existence of long-range order in the ground state. In onequivalently a resonating-valence-bofRR\VB) state, closely
dimension, the ground state of the linear chain spiquan-  approximates the exact ground state. Our present results do
tum antiferromagnetQAFM) is disordered with unbroken not support this suggestion.
translational symmetfy? — a “spin-liquid.” To date no two- Anothef candidate for a two-dimensional spin-liquid is
dimensional lattice QAFM has been shown to have a spinthe kagomelattice'® spin QAFM, which has been studied
liquid ground state, though it is generally believed that lat-by small cluster diagonalizatiorl linear spin-wave theors,
tices with low coordination number and frustrated classicand series expansions about the Ising Ifhit No convinc-
antiferromagnetism are the best candidates. The search forizg evidence of Nel order atT=0 has yet been found.
two-dimensional spin liquid has been refueled by exotic This paper is organized as follows. Section | presents our
theories of cuprate superconductivity, and because the exisihethod of constructing spif-QAFM variational states. On
ence(or nonexistendeof such a state is an interesting and the square lattice, the resulting variational state has been em-
unanswered question of principle in the theory of quanturrPloyed previousl? using small clusters. Our approach al-
antiferromagnetism. lows us to confirm these results and extend them to larger

The two-dimensional square lattice sgirQAFM, a rea- €mbedded clusters, permitting extrapolation to the thermody-
sonable model of spin dynamics in the parent insulators opamic limit. In Sec. Il we consider a pair of bipartite lattices
the superconducting cupratéss now believed to have a Which are believed to_exhibit ordered ground statte
Néel-ordered ground state. A variety of theoretical tech-square and honeycorfft?”’lattices, and show that our varia-
niques including small cluster diagonalizatibhyariational ~ tional states yield results in agreement with other calcula-
Monte Carlo®’ and series expansions of anisotropic Heisenlions. In Sec. Ill we present results obtained with our varia-
berg model are all consistent with an ordered ground statetional states on two tripartite Iattices,whose ground states are
retaining 61% of the classical WEeorder, in excellent agree- controversialthe triangular andtagome. These suggest that
ment with linear spin-wave theory. the triangular lattice spig-QAFM does possess Mkorder,

The two-dimensional triangular lattice spJnQAFM was  but that thekagomielattice spin; QAFM does not. In Sec.
proposed by Andersdfito have a spin-liquid ground state. IV we summarize our findings and discuss possible flaws in
Subsequent theoretical studies have supported the conclusi@Hr approach.
that the ground state has either very weak or no three-
sublattice Nel order,”‘l_5 although linear spin-wave theory L VARIATIONAL STATES
predict$® Neel order with 48% of the classical staggered
magnetization and a variational approach which works well
on the square lattice prediét68% of the classical N or-
der. At T=0 this system may be at or near a critical
point12 making accurate characterization of the ground-
ﬁjtg(t)t&n properties difficult using any method short of exact so- W=+ 2 S-S, 1)

. (ij)

An argument has been made that the triangular lattice
spin+ QAFM should have a spin-liquid ground stafeThe  whereS is the spin operator on sifeand the sum runs over
argument given by the authors of Ref. 17 is based on a magll pairs of nearest-neighbor sitesindj.
ping of the triangular spig- QAFM onto the quantum Hall To obtain our variational states, we start with half-filled
effect Hamiltonian for electrons in a magnetic field, and con-Slater determinant statdgb) with antiferromagnetic order

We consider variational states for a sginHeisenberg
antiferromagnet, whose Hamiltonian has the form
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adjustable between zero and the classical vailie 1/2. Lo-
cal number fluctuations i) are removed by projecting out
all configurations having doubly occupied sit@utzwiller
projectior), leaving the variational state

|W)=I1;(1—n;;n; )| ). 2

On the square lattice|¥) yields excellent variational
energie$ > when the proper correlations are built into the
Slater determinanit$). This can be achieved by taking)

to be the ground state of a tight-binding Hamiltonian which  FIG. 1. Possible arrangements of the three magnetic sublattices
incorporates dpossibly nonuniformfictitious magnetic flux A, B, andC on thekagonieattice. (8) =0 and(b) 3% 3.

coupled to the particles orbital motion, and a staggered mag-

netic field coupled to spiff. tices may be arranged in thg=0 (3 spins per unit cell
_ Explicitly, |¢) is the half-filled ground state of the tight- arrangement shown in Fig(a, or the /3% y/3 (9 spins per
binding Hamiltonian unit cell) arrangement shown in Fig(d). (The latter pattern
is obtained by starting with the triangular lattig®8x /3
Hy=— > €dicl ci,+h> €,i)-S - (3)  Neel state and deleting sites to obtain #egomelattice)
|

(ij)e To compute spin correlationsS - S;) and sublattice mag-
Herec netlzat|oan(h)E(l/N)_Ei<eM(i)-S)h,_ we use the embed-

N ded cluster methotf Briefly, we consider a small cluster of
i, andS = 3 3, 4¢],07,4Ci i the spin operator at site The N, sites embedded in an infinite system. Correlations within
vector potential;; describes the fictitious fluxw (i) labels  the cluster are computed exactly, while correlations outside
the magnetic sublattice to which sitebelongs, anc, is a  the cluster are accounted for only approximately. The ther-
unit vector pointing in the direction of a spin on sublattice modynamic limit is usually reached rapidly when the cluster
w in a classical Nel ground state. The variational parametersize exceeds the correlation lengthThis method converges
h adjusts the strength of the antiferromagnetic order presemhuch more rapidly than exact Gutzwiller projection on a
in |¢), and hence¥). It is chosen to minimize the varia- series of progressively larger finite systeffs.
tional energy for a system dd spins,

+

ia

creates a fermion with spin projectianat the site

T(I.Z¥(h Il. BIPARTITE LATTICES
ey (EOLAY () 1

(P(h)|w(h)) EZN<S “Sns @ On the square lattice, the loop rules described above sug-
. o i . gest that each elementary plaquette should hhye flux,
wherez is the coordination number of the lattice and S'tesi.e.,zaij = r around each square. For the honeycomb lattice,
i and]j are nearest neighbors. _ _ the rules suggest that no fictitious flux is required through
The dimensionless “flux” through a plaquette is the di- g5ch hexagonal plaquette, aag=0. These patterns duot
rected sum of the phase factdfs;; around the plaquette. preak time-reversal or parity symmetry.
(In these units a full flux quantum corresponds to a flux of  Fqr poth the square lattice flux state and the fluxless hon-
27_7.)_ The distribution of theaij’s is only determined to eycomb state, the=0 spectra oH , are gapless, although
within a gauge transformation. We choose the flux throughney have vanishing density of states at the Fermi level, and
each elementary plaquette to be that which minimizes thgossess particle-hole symmetry. The resulting correlations
sum of single-particle energies below the Fermi level on @Yecay fast enough for the embedded cluster method to
isolated plaquett& Specifically, forn an integer, plaquettes converge’> When h#0, a complete gap is opened in the
with 4n+2 sites require no added flux, while those with gpectrum for both lattices, and particle-hole symmetry is pre-
4n sites requirer added flux. Plaquettes with odd numbers served[see Figs. @) and 2b)].
of sites requiret 7/2 added flux. These rules are successful Figure 3a) shows our results computed using embedded
predictors of the best variational staté) for an infinite  clysters containing 8, 12, and 18 sites on the square lattice.
periodic lattice, and seem to work on mafiiough not all - These clusters have not yet converged to the thermodynamic
finite systems: - limit. For clusters larger thar 20 sites we must use a Monte
The proper addition of fluxnonzeroa;;) and/or magne- carlo algorithnd® to sum over spin configurations, which
tization (nonzeroh) in Eq. (3) opens a gap in the spectrum of |eads to error bars that blur the variational minimum with
H, at the Fermi level, making all physical correlations in respect tam!. For the 18-site cluster, the extrapolated mini-
|¢) short ranged. The correlation lengghis defined by the  mum occurs whem'=0.38, which is within the range of
asymptotic decay of the Green'’s function for large separaresyits obtained with other methotis.
tion, <¢)|C;racja|¢> ~ e ik, Fixing h near the 18-site minimum and extrapolating us-
On the square and honeycomb lattices, there are two Sling clusters containing 8—44 sites as shown in the inset of
blatticesu € {A,B} apd we takeep=z andeg=—2z. Onthe Fig. 3@, we obtain a variational energy of
triangular anckagomelattices, the classical ground state hasg/N= —0.68+0.01, comparable to estimates derived from
three sublatticesu € {A,B,C} whose magnetization direc- exact diagonalization of small clustérsand series
tions are 120° apart, e.gea=Y, eg=(\/3%X—¥)/2, and expansion§ E/N=—0.677+0.008.
€c= —(\/§§<+§/)/2. On thekagomelattice the three sublat- For the honeycomb latticiFig. 3(b)], we obtain a varia-
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FIG. 2. Density ofH , single-particle eigenstates(E) for the
lattices studied in this paper. Dashed lines sh@{(&) when there
is no fictitious flux @;=0) and no induced Ne order h=0).
Solid lines showZ(E) and a fictitious flux as specified by the loop
rules in the text, withh#0 (a)—(c), h=0 (d). Note that the flux
and/or induced Nal order opens a gap at half filling, and estab-
lishes particle-hole symmetry.

tional minimum nearm'=0.35 for all clusters containing
more than 10 sites. The extrapolation to lar§eis not as
smooth as that of the square lattice, so we instead quote the
energy associated with the largest cluster we considered
(N=54 siteg, E/N=—0.54+0.01. This compares favorably
with estimates of the ground-state energy and staggered
magnetization off/N=—0.545 andm’=0.22 from Monte
Carlo?® E/N=—0.549 andn'=0.24 from second-order spin
waves?’ and E/N=-0.544 andm'=0.27 from series
expansiorf’
A more stringent test of the variational state is obtained F|G. 3. Vvariational energyE(h) vs. m'(h), computed using
by examining the spin-spin correlations at distances fartheémbedded clusters da) square(b) honeycomb(c) triangular, and
than nearest neighbor. Table | presents a comparison of th@) kagonidattices. The lines are guides to the eye(dhthe solid
spin-spin correlations computed using large embedded clugines connect results witj=0 magnetization, while dashed lines
ters with those obtained by exactly diagonalizing the Heiseneonnect those with/3x 3 magnetizatiorisee text The points in
berg model on a 32-site square lattice with periodic boundaryhe inset of(a) illustrate the extrapolation of the lowest energy state
conditions. As Table | indicates, there is generally goodvs. the inverse of the embedded cluster si2¢.1/Also appearing
agreement between the spin-spin correlations calculated in (8—(d) are illustrations of some of the clusters used; the spin-
our variational state and those calculated by exact diagona$pin correlation was computed between sites marked by filled
ization of small periodic system@/\Ne do not show compari- circles.
son with the honeycomb lattice because we are unaware of
any exact diagonalizations which report correlation func-resulting from these flux patterns.
tions) Figure 3c) showsE(h) versusm'(h) for the triangular
lattice using embedded clusters. The variational minimum
Il TRIPARTITE LATTICES occurs atrnTj:O:3, indicating a trip_artite Nal state rqther
than a spin-liquid ground state. Using clusters containing as
For the triangular lattice, the loop rules prescribe a uni-many as 54 sites, we estimate the infinite cluster size varia-
form flux ®,/4. For thekagomelattice, the loop rules sug- tional energy to béE/N=—0.490+0.005. This is substan-
gest a uniform flux of ®y/4 through the triangles tially higher than the exact energy of a 36-site periodic
(Sa;;=m/2), and 0 through the hexagons. Both of these fluxcluster}® E/N= —0.560 37.
patterns break time-reversal and parity symmetry, but intro- To investigate possible reasons for this discrepancy, we
duce particle-hole symmeff/into the tight-binding Hamil-  performed our calculation with=0 on a finite system,
tonianH ;. Figures 2c) and 2d) shows the density of states rather than an infinite one. Table Il shows our results using
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TABLE |. Spin-spin correlation function for squareagome  bedded cluster results. This strong boundary condition de-
and triangular spiry QAFM’s. The middle column reports our em- pendence suggests that the discrepancy between the energy

bedded cluster results, while the last column reports the correlationge report for the triangular lattice and those reported for

of the largest published exact diagonalizations. exact diagonalization of small periodic lattices is due to the
_ difference in lattice boundary conditions, which affects the

_ Square latticg S - S) _ energy on the triangular lattice more strongly than on the
Tij 44 site cluster Ref. §32 sites other lattices. This is somewhat surprising, since for these
1 —0.335+ 0013 03401 stgtﬁtsttrr]]e s]?ln—spln cotrrlelatlc()jns degay exponﬁntlal(ljy, and ogg
2 +0.204+0.002 40.2090 g]c;?]s erefore expect less dependence on boundary condi-
2 +0.188+0.002 +0.1874 Figure 3d) showsE(h) versusm'(h) for the kagome
NG —0.179+0.002 —0.1830

lattice using embedded clusters, for both the0 and
\/§>< \/§ magnetization patterns. In both cases the variational

Triangular lattice(S - S;) minimum occurs ath=0, indicating a disordered ground

Fij 42 site cluster Ref. 1836 sites state. Our estimate of the variational energy, considering
1 —0.163+0.002 ~0.1868 clusters containing as many as 52 sites, s
J3 +0.161+0.002 +0.1535 E/N=-0.4092+0.006. As with the triangular lattice, this

2  0.065-0.002 _0.0548 numbe_r is.significar_ltlly highe_r than that yielded by exact di-
7 +0.0760.002 0.0066 agonalization of a finite 36-site clustérF/N=—0.438 38.

To confirm that our variational states have the same char-
acter as the true ground states, we can again compare further

Kagomelatice (- 5) range spin-spin correlations with exact diagonalization stud-

Fij 52 site cluster Ref. 1486 sites ies of 36-site periodic clusters of the triangdfarand

1 — 0.205+0.004 ~0.2192 kagomé* lattices(Table ). Qualitatively, the agreement with
V3 —0.007+0.004 +0.0116 exact diagonalization results is similar to that obtained on
2 (in line) +0.032+-0.004 10,0527 bipartite Iattices._ln c_ontras’F with the bipartite Iat_tices, corre-
2 (across hexagon —0.028-0.004 —0.0090 lations on the tripartite lattices decay very rapidly, to near

zero on thekagomelattice and to a weak three-sublattice
order on the triangular lattice. These longer-range correla-

. . . L tions, however, are consistently larger in our calculations
lattices of sites which have andM sites in each of the two than in the exact diagonalization studies.

lattice translations of the triangular lattice and whose bound-
ary conditions are periodic.
We find that our variational state does indeed have a IV. CONCLUSIONS

lower energy on these small triangular lattice systems than in . .
our embedded cluster calculation for an infinite system. In The variational stat¢’) appears to be a good approxi-

fact, all of theL=2 systems we studied have an energymatlon to the true ground state as measured by its variational

below that reported in the literature for the energy extrapo-energy and, more significantly, because the short-range cor-

lated to infinite system siz€We note that because our varia- E)?Iha(;urogjlcﬂgt(i:gntggsneﬂ?; tggugigu;: dSrt]ztr?éJgoamgl;eIZ?iigtsvgli;h
tional state is constructed from Hamiltonians of the type Eq. e )
onal state is constructed fro amittonians of the type =4, QAFM, our best variational states exhibit &eorder. On

(3), some of the small periodic systems studied in the litera2 X . e .
ture are essentially inaccessible because they do not decmﬁ-e triangular lattice, our best variational state also contains

k4 . TN . _
pose into magnetic unit cells when the flux state is contVeel Iorder, ;’V'thr?;(_o'g:dm _sharp_c?ntrzfzt',vlour best varia
structed. That is, adding flux to these systems requires a ndlpna sta(tje or th&agom atft|ce spinz Q | co.ntamﬁ, n'(l)'h'
fictitious flux through the system which is not a multiple of staggered magnetization for any S'm.p? unit cell. IS
the flux quantum 2-.] On the other hand, the single=4 strongly suggests that tlk@gomdattice spins QAFM has a

system accessible to us has an energy above even our em_sorder_ed ground_ state. . . .
As with any variational calculation, errors in the “ground

state” order may result from an insufficiently general class

) . . - o of trial states. The variational states we consider overesti-

‘év.'tt.h h:Ohonlsm.a” té'.anguw lattices Wéth p?r'Od'Cth‘;”ﬁary €ON" mate the importance of N order in obtaining an energy
itions. The lattice dimensions ate and M in each of the two .minimum; our predicted staggered magnetizations are

fundamental lattice translations of the triangular lattice, and Conta'r}oughly 20% larger than obtained by other methods. These

TABLE II. Energy per siteE/N for the variational state Eq2)

N=LM sites. overestimates of N& order on the square and honeycomb
System size (X M) E/N lattice suggest Fhat the states we consid'er are overly prone to
developing antiferromagnetic order. This may explain why
2x2 -0.500 000 this class of variational state predicts éll@rder on the tri-
2X4 -0.701 283 angular lattice while other methods do not.
2X6 -0.686 685 Our previous worfe leads us to believe that the finite-size
2Xx8 -0.629 483 effects associated with clusters embedded into an infinite
A% 4 -0.459 370 system are generally of the same magnitude as those associ-

ated with a finite system. Thus the actual energy of the infi-
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