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We show that an optical second harmonic~SH! is generated in a magnetic colloid if a static magnetic field
which breaks the fluid isotropy is applied. We propose a statistical model in which all the magnetic nanopar-
ticles are supposed to be identical with a nonzero complex second-order polarizability tensor bound to their
magnetic moment. These grains align under a static magnetic field according to Boltzmann’s statistics. The
nonlinear second-order macroscopic electric susceptibility tensor, ruled by a Langevin-like model, is found to
be zero without any applied magnetic field and to be an increasing function of its strength. The nonlinear
susceptibility tensor of the colloidal solution exhibits an axialC` ~and notC`v! symmetry around the magnetic
field. The measurements of the generated SH intensity as a function of the applied field strength, in all the
independent input and output electric polarization directions, are in perfect agreement with our model and
confirm the expectedC` symmetry. Under oblique incidence and without any applied magnetic field, the
surface SH is generated by particles adsorbed on the glass cell walls and orientated normally to the interfaces.
The complex values of the nonzero elements of the second-order polarizability tensor~leading to the observed
SH wave ellipticity! are determined with a high precision, as well as that of the particle magnetic moment. The
magnetic size found for the nanoparticle is in accordance with those given by other methods and could imply
quantum confinement effects. A correlation between the ferrite particle atomic structure and the magnetic
moment is found to be responsible of the noncentrosymmetry and of the chirality of the colloid under applied
magnetic field.@S0163-1829~96!03022-6#

INTRODUCTION

Optical second harmonic generation~SHG! is a technique
frequently used in the optical investigation of materials1 and
as a tool for studying interfaces.2,3 In the electric dipolar
approximation, SHG is allowed neither in isotropic media
nor in centrosymmetrical media. Since 1962, several SHG
experiments have been performed in isotropic media~solids,
fluids! or in noncentrosymmetrical molecules of liquid crys-
tals poled by a surface2,3 or by a static electric field.4–8 The
loss of their symmetry makes second-order phenomena pos-
sible. Kielich has proposed a model in which two indepen-
dent mechanisms account for SHG in solutions of microsys-
tems under an applied static electric field. In the first one,
each microsystem bears a permanent electric dipolar moment
and exhibits a nonlinear polarizability; then SHG arises from
a statistical orientation. In the second one, the applied field
induces a deformation in centrosymmetrical microsystems
which in turn gives an induced nonlinear polarizability.9

SHG has also been observed in solid-state magnetic systems
in which isotropy is broken, either by applying a static mag-
netic field10,11 or by the antiferromagnetic properties of the
materials.12

We report an experiment and a theoretical study of second
harmonic generation in a magnetic fluid13 ~MF! in which the
isotropy is broken by applying a static external magnetic
field. The magnetic fluids, which exhibit many attractive
properties,14 have already been studied by optical methods.15

The magnetic fluid~or ferrofluid! we use is a colloidal sus-

pension of magnetic particles in water; their mean diameter
is about 10 nm. They are synthesized by a coprecipitation
technique16 and made of cobalt ferrite. Each particle is a
magnetic monodomain. Without any external applied mag-
netic field, the permanent magnetic moments are randomly
oriented and the colloidal suspension is optically isotropic.
Under a magnetic field, the magnetic moments of the indi-
vidual grains tend to align along it. In our ferrofluid, each
magnetic moment is frozen in the grain crystalline lattice so
that a rotation of the magnetic moment induces the same
rotation of the grain.17 The contributions in the SHG phe-
nomenon of atomic or electronic deformations inside the par-
ticles or in their vicinity induced by the magnetic field are
much smaller than those due to global grain rotations and
then neglected here. We have assumed that the microscopic
origin of SHG has to be investigated in the particles, i.e., that
the macroscopic second-order polarization is simply the sum
of the electric nonlinear dipolar moments of the noncen-
trosymmetrical independent particles. This is reinforced by
the fact that the SH intensity is, for low concentrations, ex-
perimentally proportional to the square of the particle vol-
ume fraction, as it will be developed in a forthcoming paper.
In order to connect the microscopic particle behavior to the
macroscopic behavior of the whole fluid, we develop a sta-
tistical model derived from Kielich’s work.9 In our model, as
already proved for birefringence,18 the magnetic and the
second-order electric properties of the particles are at first
glimpse decoupled. They are only both bound to the crystal
lattice of the grain. For simplicity~and it will be further
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justified!, we suppose that all the particles are identical; no
strong change in the SH response is expected because of this
assumption. At this stage of the model, we make no symme-
try restriction at all, about their second-order polarizability
tensor: contrarily to Kielich’s model, we introduce the pos-
sibility for the particles to exhibit ‘‘triclinic’’ properties and
not only to have a symmetry of rotation around their mag-
netic moment; it compels us to consider a new degree of
freedom in the particle orientation.

The transmitted SH intensity is measured as a function of
the magnetic field strength in various geometries so as to
determine all the nonzero elements of the nonlinear electric
susceptibility tensor of the magnetic fluid. The very good
consistency between the experiments and the statistical
model predictions allows us to evaluate some of the nonzero
elements of the second-order polarizability tensor of an indi-
vidual particle even with their complex values. Angular SHG
experiments are also presented which increase the reliability
of the model and provide by complementarity with the
former main experiments, a more precise value of the
second-order polarizability tensor of the particles. An unex-
pected surface effect, but quite consistent with the bulk sta-
tistical model, is also observed. All the measurements are
difficult for three reasons: without phase matching, the phe-
nomenon is weak~conversion efficiency about 10213!; the
magnetic fluid absorbs the fundamental optical beam~ab-
sorption coefficient of about 51 cm21 for the sample used!
and even more the generated second harmonic one~about
2800 cm21!; the damage threshold of the material is low
~about 60 MW/cm2! compared to that of usual crystals used
as frequency doublers,19 and depends on its particle volume
fraction through absorption phenomena.

In view of the numerical results obtained for the nonlinear
polarizability of the colloidal particles, we are able to discuss
the origin of their SHG activity. Our initial choice of allow-
ing in the model, ‘‘triclinic’’ properties to the particles is
justified by the fact that some critical elements present non-
zero values. The cubic symmetry of the spinel ferrite mate-
rial is lost in the actual nanoparticles because of their shape,
their finite size, their boundary layer structure and because
they are clothed by solvent molecules. It is evident from the
beginning that the particles must be noncentrosymmetrical so
as to exhibit a nonzero nonlinear second-order polarization
but a precise study of the polarizability tensor elements
shows that the particles are chiral too. These two particle
properties, inconsistent with those of the bulk ferrite mate-
rial, will be discussed in the fifth paragraph about the origin
of the particle SHG activity and in the conclusion together
with their possibly enhanced nonlinear properties~quantum
confinement!.

I. PARTICLE ORIENTATION UNDER MAGNETIC FIELD:
THEORETICAL SH MODEL

Our first step is to show theoretically how the isotropy of
a colloidal magnetic fluid can be broken by a static magnetic
applied field, to generate second harmonic. The complex am-
plitude components of the second-order polarization vector,
induced in the medium by the complex amplitudesE j

v and
E k

v of the componentsEj (t) andEk(t) of the electric field
oscillating at the frequencyv, can be written as20,21

Pi
2v5di jkEj

vEk
v ,

where Ej (t)5Re[E j
veivt], E j

2v5(E j
v)* , and

P i
2v(t)5Re[P i

2vei2vt]. The complex third-rank tensordi jk
is the second-order electric susceptibility. Asdi jk5dik j , P i

2v

can be expressed withdim , a contracted tensor written as a
~3*6! matrix:20

Pi
2v5dim~EvEv!m , ~1!

with the following conventions: i51,2,3 for x,y,z;
(EE)m5Em

2 for m51,2,3; (EE)452EyEz ; (EE)552ExEz ;
(EE)652ExEy . In the electric dipole approximation, the
tensordi jk of a medium exhibiting an inversion symmetry or
isotropy is equal to zero and we must consider higher-order
approximations~electric quadrupole, magnetic dipole ap-
proximations! to get nonzero components. These processes
should be taken into account but we shall see they can be
neglected in this study. An applied static magnetic field
breaks the symmetry of the fluid by introducing a favored
direction: we take advantage of the magnetic properties of
the material to study its electric nonlinear properties, both
seeming in a first step, completely distinct. The second-order
polarization as well as the nonlinear electric susceptibility
tensor of the material depend on the strength of the applied
static magnetic field. This susceptibility tensor, characteriz-
ing the macrosystem, i.e., the magnetic fluid, is connected to
the second-order polarizability tensor of an individual ferrite
grain ~microsystem! by statistical effects which depend on
the particle volume fraction in the fluid and the volume of
the grains.

The basis of our work is given by Kielich’s model9 for
isotropic media containing molecules, with a permanent or
induced static electric dipolar moment, immersed in a static
electric field. In order to determine the orientation probabil-
ity of the dipolar microsystems, the polarizability coeffi-
cients have to be calculated in the laboratory frame from
those given in the microsystem axes and his model involves
two anglesu and w. This calculation is correct only if the
microsystems which may be molecules but also more or less
well-crystallized microstructures, have a symmetry of rota-
tion around their electric dipolar moment. In the case of at-
oms or molecules of any shape, we must introduce a third
anglec ~u, w, andc being the Eulerian angles!. This new
possibility can let us hope to obtain a deeper knowledge of
the microsystems and Kielich’s results, which concern mol-
ecules having an axial symmetry, constitute a particular case
in our calculation.

A. Langevin-like model

The magnetic fluid we use in our experiment is a suspen-
sion of magnetic dipolar particles. Each grain bears a mac-
roscopic permanent magnetic momentm~umu'104mB , mB
is Bohr’s magneton!. If a static magnetic fieldB is applied,
the magnetic moments, submitted to thermal agitation, tend
to rotate in order to align parallely to the field. We assume
that the particles are rigid dipoles: the magnetic moments
are linked to the grain crystalline lattices. The magnetic mo-
ment rotation makes the whole particle rotate and the
second-order polarizability tensor is submitted to the same
rotation operation.
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Let a2v be the second-order polarizability tensor of one
particle in the particle frame (x,y,z) anda82v the one in the
laboratory frame (x8,y8,z8) bound toB, as shown in Fig. 1.
The transformation of this tensor is given by the following
relation, using implicit summations:21

a8 i jk
2v~u,w,c!5ail ajmakna lmn

2v , ~2!

where ai j are the coefficients of the rotation matrixR21

~u,w,c!. u, w andc are the Eulerian angles which define the
transformationR from the laboratory axes to the particle
axes. This determination ofa82v consists in a tedious calcu-
lation of 27 elements~or 18 by using contracted matrices!.
The polarizability tensor elementsa lmn

2v depend on the par-
ticle characteristics. Thez8 axis has been chosen along the
direction of B and thez axis along the direction ofm to
simplify further calculations. The (x8,y8,z8) frame is not,
strictly speaking, a laboratory frame as the direction ofB is
sometimes changed in some experiments.

The macroscopic susceptibility tensor is given by the
probability of finding a microsystem in the direction~u,w,c!
and therefore of havinga82v @Eq. ~2!#. We suppose in a first
approximation that the particles are monodisperse~magnetic
moment of mean valuem! and that the magnetic fluid is
diluted enough to neglect correlations between particles.
This allows us to simply add the polarizability tensors in
order to obtain the macroscopic susceptibility tensord in the
laboratory axes~the macroscopic electric field being sup-
posed equal to the local one!. If we make the assumption that
all the particles have strictly identical properties, which is
more restrictive than assuming the monodisperse property,
we obtain

di jk5
F

V
^a8 i jk

2v&V , ~3!

whereF represents the particle volume fraction,V the vol-
ume of the particles.̂a8 i jk

2v&V is an average ofa8 i jk
2v, taking

into account the probability of orientation of the particle in
the elementary domaindV of the Eulerian angle space:

^a8 i jk
2v&V5E

0

2p

dcE
0

2p

dwE
0

p

du sinu P~u,w,c!

3a8 i jk
2v~u,w,c!, ~4!

whereP ~u,w,c! is the orientation distribution function. This
averaging is only orientational. The particles obey a
Maxwell-Boltzmann distribution and thereforeP depends
only on u by

P~u,w,c!5
1

~2p!2
P~u!

5
1

~2p!2
exp~mB cosu/kT!

*0
pdu sinu exp~mB cosu/kT!

which ensures that*0
2pdc* 0

2pdw* 0
pdu sinu P~u,w,c!51.

This function involves~2m–B! the orientation energy of the
magnetic particles and (kT) the thermal energy wherek is
the Boltzmann’s constant andT the absolute temperature.

Our theory which is built on symmetryless and strictly
identical particles could seem unrealistic. Our reasoning for
the determination of the nonlinear susceptibility tensor of the
medium can be seen as a modelization in which the nonlin-
ear polarizability tensor of all the actual particles in the col-
loid is averaged in two main steps. In the first one, the aver-
aging process is done on each tensor element by an
integration on a size variable, the frames of reference being
parallel for all the particles and fixed versus the magnetic
moment and versus their crystal lattice. The second main
step is the orientational averaging which is described all
along this paper. This presentation in two independent steps
is not perfectly rigorous because the orientational averaging
@Eq. ~4!# depends on particle size, viam.

B. Symmetry of the poled MF for second-order phenomena

The third-rank tensorsa2v and a82v are written as con-
tracted matrices. No assumption is made about the symmetry
of the matrixa2v characterizing the particle in its frame~C1
point symmetry group!. The only ‘‘negative’’ supposition is
that the grain has no inversion symmetry to be able to exhibit
a bulk second harmonic polarization. After the two first in-
tegrations ofa8 im

2v on w andc, only seven coefficients are
nonzero, and four of them are independent; the new point
symmetry group of the magnetic fluid under an applied field
has a statistical origin:

^a825
2v~u!&w,c5 1

4 ~3 cos2u21!~a25
2v2a14

2v!,

^a824
2v~u!&w,c5 1

4 $cos3u~a15
2v1a24

2v!1~cosu2cos3u!

3@2~a31
2v1a32

2v!12a33
2v#%,

^a831
2v~u!&w,c5 1

4 $22~cosu2cos3u!@~a15
2v1a24

2v!2a33
2v#

1~cosu1cos3u!~a31
2v1a32

2v!%,

FIG. 1. Representation of the particle in the different referen-
tials. The magnetic fieldB is applied along thez8 axis and the
particle magnetic moment is parallel to thez axis. X and Y are
intermediate axes used in the rotation operation of the polarizability
tensor from the particle axes (x,y,z) to the laboratory ones
(x8,y8,z8).
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^a833
2v~u!&w,c5cos3ua33

2v1 1
2 ~cosu2cos3u!@2~a15

2v1a24
2v!

1~a31
2v1a32

2v!#,

and ^a82v~u!&w,c has the following form, according to Nye’s
notation:21

~5!

where~•! represents a zero element,~•! a nonzero element;
~•—•! denotes two equal elements;~•—+ ! corresponds to
equal elements but of opposite signs.

The orientational tensor averaging can be seen as a three-
step process. The first one, an integration onc, is a rotational
averaging around the magnetic momentm. It provides a first
step averaged polarizability tensor which exhibits aC` sym-
metry aroundm. We will call it ‘‘intrinsic averaged polariz-
ability tensor’’ because in the averaging process, it is ob-
tained at the last step where only intrinsic properties of the
particles are taken into account. The second one, an integra-
tion onw, is a rotational averaging around the magnetic field
B of the first step averaged polarizability tensor. The result is
a twice averaged polarizability tensor which exhibits aC`

symmetry aroundB. Lastly the third one, an integration onu,
brings the energetical aspect to the statistical average.

The ^a82v~u!&w,c matrix is obtained by an averaging pro-
cess on a symmetryless particle which involves only proper
rotations. Its symmetry must be searched among the point
groups which leave the fluid invariant. The macrosystem has
a symmetry of rotation around the applied field. There is no
wonder that this matrix corresponds to the symmetry group
C` . Notice that among crystallographic point groups, the
hexagonal~C6! and tetragonal~C4! point groups give the
same matrix. TheC`v group would have been found if
^a814

2v~u!&w,c52^a825
2v~u!&w,c50. But it cannot appear with a

symmetryless particle because it would need improper rota-
tions in the averaging process. If̂a814

2v~u!&w,c and
^a825

2v~u!&w,c which have opposite values@Eq. ~5!# were found
to be experimentally zero, it would be the sign of a certain
symmetry in the polarizability tensora2v and in the particle,
and conversely, experimental nonzero values of^a814

2v~u!&w,c
and of ^a825

2v~u!&w,c would prove a lack of symmetry ofa2v

versus improper rotations, which is usually called chirality.

C. Field dependence of the MF nonlinear susceptibility

The integrations onu of the four independent coefficients
involve the first and second-order Langevin functions. We
use Raikher and Shliomis’s definition17 for Langevin’s func-
tions: L0(a)51, L1(a)5coth(a)21/a ~first order! and the
higher-order functions are given by the following recurrence
relation Ln21(a)2Ln11(a)5[(2n11)/a]Ln(a), which
gives an orthogonal function set. For the second order, one
obtainsL2(a)5123 coth(a)/a13/a2. The variablea is Lan-
gevin’s parametermB/kT. If a tends to zero, all these func-
tions tend to zero and ifa tends to infinity, their limit values
are one. This definition is different from that of Kielich.9 The
independent nonzero elements^a8 im

2v&V are then written as

^a825
2v&V5

a25
2v2a14

2v

2
L2~a!,

^a824
2v&V5

a15
2v1a24

2v

2
L1~a!2ã 2v

L2~a!

a
,

^a831
2v&V5

a31
2v1a32

2v

2
L1~a!2ã 2v

L2~a!

a
,

^a833
2v&V5a33

2vL1~a!12ã 2v
L2~a!

a
, ~6!

with

ã 2v5
2~a15

2v1a24
2v!

2
1

a31
2v1a32

2v

2
2a33

2v .

L2(a)/a is used in Eqs.~6! instead of~1/5![L1(a)2L3(a)]
for the sake of simplicity. The response of the material is
given by seven one-particle coefficients but only the four
following independent combinations~a25

2v2a14
2v!, ~a15

2v1a24
2v!,

~a31
2v1a32

2v!, anda33
2v step in. As expected, the second-order

polarizability terms tend to zero if the magnetic field tends to
zero. The SH wave is generated in the magnetic fluid by
orientation of the microsystems parallely to the field and
cannot exist without it. It is worth noticing that^a825

2v&V is an
even function ofB while the other averaged polarizability
elements are odd ones. They depend on different symmetry
properties of the intrinsic averaged polarizability tensor, as it
will be commented later.

In the case of a very strong static magnetic field, the sys-
tem tends to ‘‘saturation.’’ All the particle magnetic mo-
ments are aligned in the fluid~m andB parallel! and Eqs.~6!
come down to the following simpler formulas:

^a825
2v&Vsat

5 1
2 ~a25

2v2a14
2v!,

^a824
2v&Vsat

5 1
2 ~a15

2v1a24
2v!,

^a831
2v&Vsat

5 1
2 ~a31

2v1a32
2v!,

^a833
2v&Vsat

5a33
2v . ~7!

It is not surprising to find that the asymptotic expressions of
^a8 im

2v&V are simply the averages of the particle polarizability
elementsa im

2v over a 2p rotation aroundB. If particles have
any shape, more precisely if they are not invariant under a
rotation aroundm, we have no means to get more informa-
tion about them by a SHG experiment since we only have
access to the following four global terms:~a25

2v2a14
2v!,

~a15
2v1a24

2v!, ~a31
2v1a32

2v!, anda33
2v . We shall see later that they

are experimentally nonzero. But all the other elements which
are not mentionned could be zero without changing the re-
sult. In this case, the particles could exhibit some point sym-
metry groups, such asC2, C3, C4, or C6; the point symme-
try groups Cn ~nÞ2,3,4,6! and C` are mathematically
thinkable but they are very unlikely for a particle. The mac-
rosymmetry~C`! necessarily differs from the microsymme-
try since there is always a symmetry of revolution around the
magnetic field in a magnetic fluid. Kielich asserted that the
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macroscopic and the microscopic symmetries are identical9

whereas, in a general model, the particle can have a smaller
symmetry than the whole fluid.

Knowing the nonvanishing elements of the second-order
electric susceptibility tensor@Eq. ~5!#, we are able to describe
the SH macroscopic polarization vector in the magnetic fluid,
for an incident laser beam atv, whose electric field inside
the magnetic fluid is notedEv:

Px8
2v

52
F

V
@2^a825

2v&VEy8
v Ez8

v
1^a824

2v&VEx8
v Ez8

v
#,

Py8
2v

52
F

V
@^a824

2v&VEy8
v Ez8

v
1^a825

2v&VEx8
v Ez8

v
#,

Pz8
2v

5
F

V
@^a831

2v&V@~Ex8
v

!21~Ey8
v

!2#1^a833
2v&V~Ez8

v
!2#,

~8!

x8,y8,z8 being the laboratory axes. A good choice of differ-
ent configurations of the fundamental wave vectorkv and of
the polarization directionEv in the fluid with respect toB
will help us to determine experimentally the values of vari-
ous ^a8 im

2v&V elements as a function ofB.

II. EXPERIMENTAL SETUP AND QUALITATIVE
ASPECTS OF SHG

A. Experimental choices: Material and device

We use in our experiments a chemically synthesized mag-
netic fluid16 based on cobalt ferrite particles~CoFe2O4!, of
mean diameter 14.1 nm~x-ray measurements!, suspended in
water. These compounds crystallize in the spinel
structure22,23 but the exact structure of the particle is more
complicated.24 They are magnetic monodomains and bear a
permanent magnetic momentm. The volume fractionF of
the colloid is about 6%. The ratio between the magnetic an-
isotropy energyKV of the grain~K being the magnetic an-
isotropy constant,25,26 V the volume of the microsystems!
and the thermal energykT is large: about 100 at room tem-
perature, using the bulkK value. The high magnetic energy
barrier KV prevents the magnetic moment from reversing
without rotating the particle and this moment is thus linked
to the grain crystalline frame.

The experimental setup is the following: a high peak
power Nd:YAG laser provides picosecond pulses~80 ps, 125
kW at most! by packets~length 200 ns, repetition rate 1
kHz!, of wavelength 1.064mm. Its beam is focused onto a
cell containing the magnetic fluid and submitted to a static
magnetic field ranging from 0 to 0.3 T. SHG has been stud-
ied in transmission and we find that the best SH efficiency is
provided by a 10-mm cell thickness because of strong ab-
sorption phenomena in magnetic fluids at 0.532mm. The
excitation power density is restricted to a very narrow range.
The lower limit arises from SH detection possibilities and the
upper one originates from the damage caused to the sample.
The damage power density threshold and the optimized cell
thickness will not be studied in this paper. The infinitesimal
second harmonic generated signal is detected by a photomul-
tiplier followed by a 20 dB amplifier, a boxcar-integrator and
then anx(t) recorder. In order to measure it, we have to get

rid of the whole infrared power left and it is achieved by a
second harmonic separator, placed just behind the sample, a
visible filter and an interferential bandpass filter ofDl51 nm
at 532 nm. The whole set has a 10210 transmission rate for
the IR beam and eliminates also radiations observed near 532
nm which are generated at 510–520 nm in the sample itself
and may come from two-photon process luminescence.27

Furthermore we take advantage of the poor quantum effi-
ciency of the photomultiplier in the infrared range so that the
measured electric current due to the infrared power left in-
tensity can be weaker than the SH signal. This is in accor-
dance with the very weak SH conversion efficiency found in
the fourth part of this paper~about 10213 times the incident
infrared power!. The SH signal is not very stable and this
yields a relative error on the SH intensity measurements of
about65% in the best cases. It is caused by laser fluctua-
tions and instabilities occurring inside the ferrofluid~mass
transports induced by thermoconvection, thermodiffusion,
and electrostriction!.

In our experiment, the incident beam of wave vectorkv

and the applied magnetic fieldB are both horizontal. The
thin cell containing the sample is vertical and is kept in the
(y8Oz8) plane, i.e., parallel toB, to get rid of demagnetizing
effects induced by the platelet cell shape. Letuv andu2v be
the angles betweenB and the polarization vectorEv of the
incident beam and the SH beam analyzer direction, respec-
tively. Let cv be the angle definingkv in the (x8Oz8) hori-
zontal plane~Fig. 2!.

FIG. 2. Disposition of elements and notations.

FIG. 3. Second harmonic generated intensityI 2v vs mean inci-
dent intensityIv. The slope of the best-fit curve is equal to 2,
proving a second-order nonlinear optical phenomenon. Experimen-
tal parameters areB50.3 T,S50.5 mm2, uv590°, andcv50°.
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B. Qualitative verifications of the model

Except for an unexpected but normal observation in
which the SH beam is found not to be always linearly polar-
ized @Fig. 6~b!#, the qualitative foreseen aspects of the SHG
are evidenced in Figs. 3, 4~a!, and 4~b!. We verify that we
are in presence of a quadratic nonlinear effect since SH in-
tensity is clearly proportional to the square of the incident
light power, as shown in Fig. 3. In Figs. 4~a! and 4~b!, our
experimental results about SH intensity are presented as a
function of the applied magnetic field strength in four differ-
ent configurations for the directions ofB and ofEv. We also
give in the same figures and for a better understanding, their
best-fit curves, the determination of which will be explained
further. Three of the configurations correspond to experi-
ments made atcv50° anduv50°, 45° or 90°@curves (A),
(B), and (C)#; the fourth one is obtained bycv540° and
uv50° @curve (D)#. With the different values used foru2v,
the actually measured bulk nonlinear coefficients are
^a833

2v&V , ^a824
2v&V , ^a832

2v&V , and ^a825
2v&V . From relations~5!

between coefficients, these four configurations are sufficient
to determine all the nonzero elements^a8 im

2v&V of the bulk
nonlinear susceptibility tensor of our model. Conversely,
with uv590°, cv50°, and u2v590° for instance, we find
experimentally that the coefficient^a822

2v&V is equal to zero as
predicted. As put forward in the theoretical part, no fre-
quency doubling is experimentally evidenced in the magnetic
fluid when no magnetic field is applied~the electric dipolar
approximation is justified! except in the tilted cell configu-
ration as we will see few lignes further. The SH intensity
increases with the magnetic field intensity. In all the four
configurations, the bulk nonlinear electric susceptibility co-
efficients saturate for high magnetic fields~about 0.3 T!, as
qualitatively expected. These results are studied in detail in
the fourth part of this paper.

C. Surface SHG effects

Actually, in curve (D) which corresponds to a tilted po-
sition of the cell ~cv540°!, we observe a signal atB50
which does not arise from noise. AtB50, no bulk polariza-
tion P2v(B50) is expected in the limit of the electric dipole
approximation. In the ‘‘colloid-cell’’ system the only places
which do not exhibit any inversion symmetry, are the
‘‘colloid-cell wall’’ interfaces and a nonlinear surface polar-
izationPS

2v can appear on them.2,28,29As the fused silica cell
walls have an amorphous glass structure, the minimal sym-
metry group of the ‘‘colloid-cell wall’’ system isC` . Larger
groups, such asC`v , which haveC` as a subgroup, are also
allowed; the experiment will determine to which symmetry
group the ‘‘colloid-cell wall’’ system belongs. Surface polar-
izationPS

2v arises from particles adsorbed on the fused silica
input and output faces. If thermal effects are neglected, their
magnetic moments bound to their crystalline frames make
with the cell normaln an angleu which corresponds to a
minimum in the interaction energy between particles and the
glass surface. They are displayed in ann-axis cone. Two
limit cases are noticeable: ifu50 all the magnetic moments
are parallel ton and if u590° they lay in the cell plane
without any privileged orientation. The study of the collec-
tive behavior at finite temperature of particles at the interface
is beyond the aim of this paper.

The nonzero coefficients of the surface nonlinear electric
susceptibility tensor can be found by noticing a similarity
between the orientating role of the cell wall normal on this
surface tensor and that of an applied magnetic field on the
bulk nonlinear electric susceptibility tensor. Asn is parallel
to the~Ox8! axis in the laboratory frame~Fig. 2!, the surface
nonlinear electric susceptibility contracted matrix can be
written with the same notations as in Eq.~5!:

~9!

V8 being a solid angle aroundn, analogous toV for the bulk
contribution. In the case of aC`v symmetry of the two-
dimensional system,̂a8S 25

2v &V8 and ^a8S 36
2v &V8 would be

zero. The nonzero surface nonlinear terms are only seen in
tilted configurations~Ex8

v Þ0 or Px8
2vÞ0!. Some of the non-

zero surface nonlinear terms cannot be obtained with our
actual experimental setup~Fig. 2!. Let nin andnout52nin be
the normals to the input and output faces pointing outside the
cell. The ‘‘colloid-output wall’’ system is obtained from the
‘‘colloid-input wall’’ system by a rotation ofp. This is
equivalent to rotate the incident electric fieldEv and the
surface polarization vectorPS

2v of p around they8 direction
~Fig. 2! and it leads to the following relation:

^a8S25
2v &V8 input5^a8S25

2v &V8 output.

^a8S 25
2v &V8 is an even function ofn. Phase mismatch between

output and input 2v generated waves is aboutp for a 10-mm
cell thickness with nv2n2v50.028 ~Appendix A! but
PS input
2v contribution can be neglected because of the large

absorption coefficient of the medium at 2v.
Particle orientation near the surface is necessarily affected

by applying a static magnetic field. Magnetic grains cannot
be pulled out of the surface because the magnetic field gra-
dient at the interface is not large enough in our experiment,
but surface polarizationPS

2v is necessarily modified byB as
well as, in return, bulk polarizationP2v(B) is influenced by
a change inPS

2v. We assume that these effects are small and
we will consider thatPS

2v does not depend onB and that
further calculations on bulk nonlinear coefficients are not
modified byPS

2v. In our model it means that the volume
fraction may be modified by an adsorption phenomenon but
does not change withB. For clarity and in spite of their
different nature, we represent the sum of bulk and of surface
contributions in the same contracted matrix with circles and
triangles, respectively:

The only nonlinear term common to both phenomena is
^a8Total 25

2v & and it is in fact the element for which we have
experimentally evidenced a nonlinear contribution atB50
@measurement for a tilted cell atuv50° andcv540° pre-
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sented in Fig. 4~b!#. It is the reason why SHG atB50 has not
been seen in three configurations among four@Figs. 4~a! and
4~b!#. Reciprocally the observed lack of SHG at anyB in
geometries which correspond to zero elements of^a8Total

2v &
proves that nonlinear combinations of surface and volume
particle orientations are negligible.

After a first assumption about the constancy ofPS
2v ver-

susB, we can try to find a link betweenPS
2v and the non-

linear bulk polarization. As we have already assumed that
nout plays the same orientating role for surface SHG asB for
the bulk one, tensors are similar for both phenomena. As the
bulk SH polarizationy8 component is given by

Py8
2v

~B!5^a825
2v~B!&V

~Ein
v!2

2
sin2cv ,

E in
v being the real amplitude in vacuum of the input funda-

mental electromagnetic field, its corresponding output sur-
face component is obtained fromPy8

2v by a rotation ofp/2
aroundy8 for a particular valueB0 of B, whereB0 is a virtual
magnetic field corresponding to the particle binding energy
to the glass wall:

PS y8 output
2v

5k^a825
2v~B0!&V

~Ein
v!2

2
sin2S cv1

p

2 D .
k is a length dimensioned constant which can be seen as the
ratio of a surface particle concentration and of a volume
particle concentration. If, as assumed, particles orientated by
B and bynout had the same characteristics,k should be a
positive constant and this would lead to a substractive effect
because of the anglep/2 in the above expression. Complex
bulk and surface contributions are summed in the output gen-
erated SH electromagnetic wave amplitudeEout y8

2v . Let
Hoblique be the complex proportionality coefficient for the
bulk contribution~Appendix B! andHS be the similar coef-
ficient for the surface contribution inEout y8

2v which can be
written as

Eout y8
2v

5@Hobliquê a825
2v~B!&V

2kHS^a825
2v~B0!&V#

F~Ein
v!2

2V«0
sin2cv . ~10!

This wall orientation hypothesis will be compared with the
experimental results.

D. Magnetic particle and magnetic fluid symmetries

The uncertainty about the bulk contribution corresponding
to the ^a825

2v&V term in curve~D!, is large but this term is
undeniably nonzero. The fact that^a8S 25

2v &V8 is also nonzero
proves that the magnetic fluid symmetry is notC`v butC` if
the colloid is orientated by a glass cell wall. Surface and bulk

FIG. 4. ~a! and~b! Second harmonic generated intensity vsB for
all the four independent~Ev,B! direction configurations.

~A! l, uv5u2v50°,

~B! m, uv545°, u2v590°,

~C! s, uv590°, u2v50°,
J cv50°,

~D ! 3, uv50°, u2v590°, cv540°.

The plots correspond to the measured intensityI 2v under normal
incidence@curves (A), (B) and (C)# and to I 2v divided by the
factor ~2 coscv sincv!2 @Eq. ~B3!# under oblique one@curve (D)#.
In the latter case, the detected intensity is very small but is divided
by a weak factor. For a better understanding, experimental data are
presented together with the best-fit curves, calculated with an effec-
tive magnetic field taking into account the magnetic interactions
between particles.

FIG. 5. Second harmonic generated intensityI 2v for different
incident polarization directions in the configurationcv50° and for
an applied magnetic field of 0.15 T. Experimental data and the
best-fit curve are presented.
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SH analyses converge to establish that ferrofluids, whose
particles are orientated in a favored direction, are invariant
under aC` symmetry group without any reflection plane
invariance. This agrees with our model in which no assump-
tion is made about particle symmetry properties. From Eq.
~6!, it simply proves thata14

2vÞa25
2v : in the case of aCn

symmetry of the particle, theCnv symmetry is not observed.
If the particle has no particular symmetry~n51!, one can see
it as a rock for instance.

The Kleinman conjecture30 which applies only for lossless
media, would provide additional relations between polariz-
ability tensor elements and fora825

2v , we would have

a814
2v5a825

2v5a836
2v .

These relations, joined to those arising from theC` symme-
try @Eq. ~5!# of the medium, would imply that

^a814
2v&V5^a825

2v&V5^a836
2v&V50.

Therefore theC` symmetry of a medium can be distin-
guished from aC`v symmetry by SHG measurements only
in the case of a strong optical absorption. It is the case of our
ferrofluid atl5532 nm.

III. BULK SHG MACROSCOPIC ANALYSIS

In a first step, our model can be tested in its macroscopic
symmetry aspects. More precisely, the SH intensity mea-
sured in geometries in which only bulk effects take place, is
compared to formulas arising from Eq.~5!. The symmetry of
the system can be proved and numerical relations between
some of thedim elements can be evaluated and then com-
pared to values given by the statistical study in the fourth
part of the paper.

A. SH intensity analysis as a function
of input polarization direction

Two kinds of experiments are done: in both, the incident
beam direction is perpendicular to the cell plane~cv50°!
and the applied magnetic field strength is fixed. In the first
one ~B50.15 T!, the SH intensity is measured without ana-
lyzer, by varying the angleuv between the incident wave
polarization direction and the applied field, as it is shown in
Fig. 5. Using Eqs.~A1!, ~A3!, ~A6! of Appendix A and the
definition relations I in

v5~1/2!S«0cuE in
v u2 and

I out
2v5~1/2!S«0cuEout

2v u2 for the input and output powers in
vacuum atv and 2v, the second harmonic generated power
measured at the output of the cell forcv50 is written as

I out
2v~uv,0!5

2~ I in
v!2

S«0c
H UD24

«0
U2sin22uv

1UD32

«0
sin2uv1

D33

«0
cos2uvU2J .

S is the laser beam cross section in the sample,«0 is the
vacuum permittivity, andc is the light velocity. The complex
termsDim are defined as the product ofdim and ofHi jk , the
latter accounting for the Fabry-Perot effects in the sample,
magnetic field birefringence and dichroism effects for the
different configurations of polarization~see Appendix A!.

Complex factorsHi jk do not depend very much oni , j ,k and
on the magnetic field strength~Appendix A!. They can be
factorized in the above expression so that the nonlinear sus-
ceptibility d will be used further instead of the effective one
D. As it will be seen further, our experiments lead us to take
dim terms as complex quantities which is often forgotten
because it is rarely proved. As our setup exhibits a slightly
different response at 2v for vertical and horizontal polariza-
tions, the measured intensity takes the following form with
the experimental transmission factorg50.75:

Imes
2v ~uv,0!5

2~ I in
v!2

S«0c
uHu2H Ud24«0

U2g sin22uv

1Ud32«0
sin2uv1

d33
«0

cos2uvU2J . ~11!

The least-squares-fit value found forud33/d32u is 0.9160.04
at 0.15 T and the phase differenced betweend32 and d33
obeys to~d.56.6°!. Both results can be compared with those
obtained by the statistical study in the fourth part of the
paper which areud33/d32u50.9360.02 andd5147° which is
indeed larger than 56.6°.

FIG. 6. ~a! and~b! Polarization analysis of the second harmonic
generated intensityI 2v in two configurations:~a! uv590° and~b!
uv545°. u2v is the analyzer direction with respect to the horizontal
plane. The applied magnetic field is 0.2 T.
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B. Ellipticity of the generated SH wave

In the second series of experiments of this macroscopic
analysis, the SH intensity is measured as a function of the
analyzer directionu2v for a fixed polarization directionuv of
the fundamental wave and a fixed magnetic field strength
~B50.2 T!. At uv50° anduv590° @Fig. 6~a!#, the SH wave
is linearly polarized parallel toz8 @Eq. ~8!#. For an oblique
polarization direction atv ~uv545° here!, a SH vertical com-

ponent due tod24 appears which is not in phase with thed32
andd33 horizontal one. No wonder that an elliptic polariza-
tion be clearly found@see Fig. 6~b!#. The output SH intensity
takes into account three different angles:uv and u2v which
are already defined~Fig. 2! andb which expresses the slight
lack of horizontality ofB due to its nonhomogeneity between
polar pieces. The measured SH intensity is written as@Eq.
~8!#:

Imes
2v ~uv ,cv50,b,u2v!'~g cos2u2v1sin2u2v!u~D32sin

2uv1D33cos
2uv!cos~u2v2b!1D24sin 2uvsin~u2v2b!u2.

It can be identified to a Fourier expansion onu2v:

Imes
2v 5a1b cos2~u2v1w1!1c cos4~u2v1w2!.

The lack of horizontality ofB is critical in this experiment
because the analyzer is rotated at the sample output. It has
not to be considered in the other experiments@Figs. 4~a!,
4~b! and 5# since a 7° slope ofB gives only a 1.5% admix-
ture between thed32 and d33 contributions@Eq. ~11!#. The
values ofa/b andw1 are obtained by least-squares fits on the
Fourier expansion of the experimentalI mes

2v curves@partially
presented in Figs. 6~a! and 6~b!#. They are given in Table I
for three experiments in which the parameter~uv1b!, the
really measured angle, is equal to 0°, 45°, or 90°. The quan-
tities c and w2 are not given here since they give a weak
imprecise contribution in the fitting.

The ratiosa/b and the anglesw1 are also calculated at 0.2
T for uv1b50°, 45°, and 90°, with the values ofa im

2v found
by the statistical study in the fourth part of the paper@Eq.
~12a!#. The macroscopic and the statistical studies give ex-
actly the same results in the three configurations with a lack
of horizontality ofb'7°. The comparison between these two
methods are led more precisely foruv1b545° because in
this geometry SH polarization is elliptic and the relative
phases of three complex polarizability tensor elements play
an important role. In this configuration, the values found for
a/b andw1 are used to adjust@Eq. ~12b!# the values ofa im

2v

given in Eq. ~12a! within their uncertainty range. This en-
hanced precision comes from the complementarity of the two
measurements. Experimental values ofa/b, w1, and b ~b
57.2°60.3°! are found with a global accuracy of 0.5%. The
y8 and thez8 components of the SH electric fields at 0.2 T
are found to be dephased of an angled8579.2°. This phase
difference cannot arise only from the MF optical birefrin-

gence contribution:31 with the 10-mm-thick cell, an approxi-
mative birefringence of 531023 for the sample used at 0.2 T
gives at most a dephasing angle of634° ~its sign being still
unknown!. Then one must consider thedim terms as complex
values. The determination ofud25u with respect to the other
elements is not already done because it needs a continuous
variation ofcv which is difficult to achieve with our experi-
mental device.

IV. VALIDITY OF THE STATISTICAL MODEL
AND DETERMINATION OF THE SECOND-ORDER

POLARIZABILITY TENSOR COEFFICIENTS
OF AN INDIVIDUAL FERRITE GRAIN

A. Relative determination of the extended Langevin-like
model parameters

After this macroscopic study, we can, with our statistical
model, get information about the individual particles sus-
pended in the fluid, which is the main goal of this paper.
There are two possibilities to obtain the values of the second-
order polarizability tensor coefficients for one particle: the
first one by considering the nonlinear effects at saturation;
the second one by verifying the theoretical laws implying
Langevin’s functions, through their fitting to the experimen-
tal results shown in Figs. 4~a! and 4~b!.

If the fluid is submitted to a high magnetic field, all the
grains tend to align parallely to the field and, by selecting
input polarizer and output analyzer directions, we have a
direct access to the moduli of the three nonlinear coefficients
of the particle @global terms~a15

2v1a24
2v!, ~a31

2v1a32
2v!, and

a33
2v# according to Eqs.~7!. These values are determined by

the saturation level of curves~A, B, and C, respectively!
shown in Figs. 4~a! and 4~b!. The direct determination of
~a25

2v2a14
2v! from the saturation level in curve (D) cannot be

made because the surface polarizationPS
2v must be taken

into account and is not known with this method. In our de-
vice the highest homogeneous magnetic field we can apply is
0.3 T and we will suppose, in this first step, that the values
measured at 0.3 T are saturation ones. Results are given in
arbitrary units, which accounts for the coefficient
@2~I in

v!2F2/S«0cV
2#uHu2 coming from Eqs.~3! and ~11! and

for the detection device gain. An error of 5% has been taken
into account on the SH intensity values which gives a 2.5%
error on the three following amplitude-type terms:

TABLE I. Values of the parametersa/b andw1 determined by
least-squares fits of three experiments of polarization analysis. Two
among three of these experiments are presented in Figs. 6~a! and
6~b! with their least-squares fits on a second-order limited Fourier
expansion.

uv1b w1 a/b-SH polarization

0° 210.83° '1-almost linear
45° 5.00° 2.10-elliptic
90° 25.56° '1-almost linear
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1
2 ua15

2v1a24
2vu50.4660.01 arb. units,

1
2 ua31

2v1a32
2vu51.0060.02 arb. units,

ua33
2vu50.9860.02 arb. units.

A better method consists in comparing the complete ex-
perimental data set, obtained for all values of the applied
magnetic field strength@Figs. 4~a! and 4~b!#, with the theo-
retical curves given by Eqs.~3!, ~6!, ~A4!, ~A6!, and ~11!
under normal incidence~see Appendix A! and Eqs.~3!, ~6!,
~B3!, ~B4!, and~B5! under oblique one~see Appendix B!. In
this case, Eq.~6! must be modified to include the constant
surface contribution̂a8S 25

2v &V8 which has already been dis-
cussed:

^a825
2v&V5 1

2 ~a25
2v2a14

2v!L2~a!1^a8S25
2v &V8

with a5mB/kT. This complete comparison is more reliable
than using measures made at a doubtful saturation level. This
is achieved by fitting simultaneously four different functions
to the experimental data given in the four curves (A), (B),
(C), and (D) shown in Figs. 4~a! and 4~b!. This global fit-
ting, done according to the nonlinear Levenberg-Marquardt
method, is needed by the fact that some parameters appear
simultaneously in different functions to be fitted. It is also an
opportunity for finding complex values of thea im

2v param-
eters, one of them being arbitrarily chosen as real, and for
bringing a great precision into the final results. As the
~1/2!~a25

2v2a14
2v! parameter is only coupled tôa8S 25

2v &V8 and
vice versa,̂ a8S 25

2v &V8 can also be chosen as real. The fol-
lowing nine parameters have to be determined, the real and
imaginary parts of~1/2!~a25

2v2a14
2v!, of ~1/2!^a15

2v1a24
2v! and

of a33
2v , the real parts of~1/2!~a31

2v1a32
2v! and of ^a8S 25

2v &V8
~their imaginary parts being zero by hypothesis! andm/kT.
The first seven parameters are weights for Langevin’s func-
tions L1(mB/kT) andL2(mB/kT) and the last one is Lan-
gevin’s parameter divided byB. An additional parameterg
accounts for the different transmission factors of the second
harmonic separator according to the SH polarization direc-
tions ~it concerns the transmission factors of the experimen-
tal device, external to the nonlinear material!. The same
65% error is estimated on the SH intensity data for the fit-
ting. The very good agreement between the four theoretical
curves and their corresponding data set proves the validity of
our Langevin-like model. The cobalt ferrite particles used in
our experiment are then characterized by

^a8S 25
2v &V85~0.6760.03! arb. units,

1
2 ~a25

2v2a14
2v!5~0.7260.10!e6 i ~1.9960.17! arb. units,

1
2 ~a15

2v1a24
2v!5~0.4960.02!ei ~0.5260.04! arb. units,

1
2 ~a31

2v1a32
2v!5~1.0460.10! arb. units,

a33
2v5~1.0260.04!ei ~2.6160.05! arb. units. ~12a!

These results are actually obtained by an effective magnetic
field model32 which will be presented at the same time as the
value found form/kT since it depends strongly on this cor-
rection whereas thea im

2v coefficients are almost not affected
by it. A more precise determination of the last three terms

given in Eqs.~12a! within their uncertainty range is made by
comparing these results to those obtained by a polarization
analysis@Fig. 6~b!# and it gives

1
2 ~a15

2v1a24
2v!50.51ei0.52 arb. units,

1
2 ~a31

2v1a32
2v!51.01 arb. units,

a33
2v51.01ei2.61 arb. units. ~12b!

Two comments can be brought about the first two values
found in Eq.~12a!. First the phase sign of~1/2!~a25

2v2a14
2v!

remains undetermined by our technique. Second an identifi-
cation of the modified expression of^a825

2v&V with that given
by our wall orientated model for surface SHG and expressed
by Eq. ~10!, implies that

^a8S 25
2v &V8

~1/2!~a25
2v2a14

2v!
52

kHS

Hoblique
L2~a0!

with a05mB0/kT. HS , Hoblique, k, anda0 are dimensionless
quantities. In this relationk anda0 are unknown but there is
a relation between the phases of the different elements,k and
L2(a0) being real.Hoblique is defined in Appendix B and its
phaseFB is equal to 0.45432p rad. A formulation ofHS can
be made from Ref. 29 by taking the cell thickness~10 mm!
and the phase mismatch~see Appendix A! into account.
When SHG arises only from the cell output face, its phase
FS is equal to 21.78332p rad. If Eq. ~10! is valid,
(FS2FB1p61.99)/2p should be an integer@the value
1.99 coming from Eq.~12a!#. Effectively we find21.783
20.45410.521.99/2p522.054, which is a mark in favor of
our hypothesis in which the cell normal plays a role similar
to that of a magnetic field.

B. Absolute evaluation of the nonlinear coefficients

The SH intensity generated in the ferrofluid under mag-
netic field is too weak to be measured with a power meter
and using a photomultiplier is necessary. In order to obtain
values in SI units for the macroscopic nonlinear coefficients
^a im8

2v&V we use a calibrated 482-mm-thick bulk GaP sample
oriented normally to thê111& direction, of effective coeffi-

cient deff GaP/«052/A631.0310210m V21 at 1.318mm.33

This sample is adequate for a comparison since its absorption
coefficients at 532 nm and 1.06mm are comparable to those
of our magnetic fluid. LetI out sat

2v be the measured SH inten-
sity for the magnetic fluid sample andI out82v for the GaP one.
For the magnetic fluid sample, the experiment is done under
a 0.3-T field considered for simplicity as the saturation level,
and for uv590° andcv50°. These measurements are very
imprecise for both materials and lead to the ratio

I out sat
2v

I 8out
2v 5~1.1460.42!31025 ~13!

and from Eqs.~A5!, ~A6!, and~11!, we have

d32sat
deff Gap

5A F8

uHu2
I out sat
2v

I 8out
2v . ~14!
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The dimensionlessF8 factor, accounting for the Fabry-Perot
effects in the GaP sample, is already known from Ref. 33
~F850.0061!; the valueuHu258.60 concerns the MF sample
contained in the fused silica cell and is proportional toF
~analogous factor for the ferrofluid to the factorF8, defined
for GaP, see Appendix A!. uHu2 is larger thanF8 because the
refractive indices atv and 2v are very close to each other in
our magnetic fluid. The SH susceptibilities of the magnetic
fluid determined from Eqs.~3!, ~6!, ~12a!, ~13!, and~14! are

Ud25sat
«0

U5~3.8561.99!310215 m V21,

d32sat
«0

5~5.5962.06!310215 m V21,

d24sat
«0

5~2.6461.29!310215ei ~0.5260.04! m V21,

d33sat
«0

5~5.4562.73!310215ei ~2.6160.05! m V21. ~15!

An effective nonlinear coefficient of the bulk material can
be defined asdim bulk5dim/F. For instance, thed32 bulksat
value can be compared to that ofdeff GaP from Eq. ~14! and
with F56%:

d32 bulksat
5~1.160.4!310233deff Gap.

The d32 bulk value, at the saturation and in the limitF51,
corresponds to an almost ‘‘dry magnetic fluid’’ and is not
very far from that of many well-known SH generating crys-
tals. For example, the nonlinear coefficientd8 of KH2PO4
~KDP! ~Ref. 33! is only about six times larger than thed32
bulk one at saturation@Eq. ~15!#.

In spite of thed32 bulk value, the actually measured SH
intensity is very small. Considering the termd32sat directly
determined from Eqs.~13! and ~14!, the conversion effi-
ciency in vacuum and at the saturation level, defined as
rsat5I out sat

2v /I in
v , is given by Eq.~25! in Ref. 33 and Eq.~A5!:

rsat5
2I in

v

S«0c
S d32sat

«0
D 2uHu252.2310213,

whereI in
v is the peak power atv ~I in

v5125 kW! andS50.2
mm2. The smallness of the conversion efficiency enlights the
difficulty to measureI out

2v and the problems to eliminate the
important infrared incident beam in the detection device.

For further studies about the particle origin of SHG, we
give the values of the second-order polarizabilities calculated
from relations~3!, ~6!, and~15! and from the ratios between
best-fit coefficients@relations~12a!#:

1
2 ua25

2v2a14
2vu5~0.8360.43!310248 J m3 V23, ~16!

1
2 ~a31

2v1a32
2v!5~1.2160.44!310248 J m3 V23,

1
2 ~a15

2v1a24
2v!5~0.5760.28!310248ei ~0.5260.04! J m3 V23,

a33
2v5~1.1860.59!310248ei ~2.6160.05! J m3 V23.

V. GEOMETRICAL ASPECTS OF THE MAGNETIC
PARTICLE AND ORIGIN OF THE SHG ACTIVITY

A. Particle size

Moreover, the same fitting gives a value for
the ratio m/kT. Our model takes into account the local
magnetic field which results from the magnetic interac-
tions between particles by an effective fieldBeff which
is larger than the measured one@mBeff/kT5mB/kT
1lm0mSF(m/kT)L1~mBeff/kT!#.32 This correction is justi-
fied here by the important particle volume fractionF. l is a
dimensionless parameter~l50.22 from Ref. 32!, mS is the
particle magnetization at saturation equal to 3.053105 A/m
for cobalt ferrite particles.26 The ratiom/kT obtained from
the fitting presented in Figs. 4~a! and 4~b! is m/kT5323.0
616.7 T21. The magnetic momentm depends onmS and on
the magnetic diameterd of the particle, as follows:
m5mSp(d

3/6). The temperature of the sample in the laser
illuminated area lies between 300 K~room temperature! and
373 K ~boiling-destruction temperature!. In this temperature
range, the value obtained form/kT leads to a diameter of
21.161.1 nm for the grains.

In our model, the particle size is monodispersed but usu-
ally the magnetic fluids are supposed to obey a log-normal
distribution.34 The mean size of our particles, determined by
x-ray measurements, is 14.1 nm whereas the values of the
most probable diameterdmp and of the standard deviations
of the log-normal distribution, determined by our static bire-
fringence measurements according to the technique given in
Ref. 35, are, respectively,dmp511 nm ands50.3. The mo-
ment of the size distribution in a SHG experiment depends
on the magnetic field strength~weak or at saturation! and it
also depends on the origin of SHG in particles~bulk or sur-
face process!. From Eqs.~3!, ~6!, ~A6!, ~11! and the latter
hypotheses, the size distribution moment is found to range
from 0 to 12. If we take the highest value for the distribution
moment, the log-normal polydispersity model gives from the
above static birefringence results a 20.7 nm diameter which
is in rather good accordance with the size found by the SHG
experiment. However, if the distribution moment is smaller
than 12, it is possible that the sample contains a more impor-
tant proportion of large particles~or aggregates! than in the
log-normal distribution, which would favor the SH intensity.
With magnetic fluids, such a problem has already been en-
countered in dynamic birefringence measurements.36

B. Lacks of symmetry and structure of the particles

Some hypotheses can be presented about the origin of the
nonlinear polarizability of the particle but before, let us re-
sume what we know about the symmetry of this tensor. First,
the properties of the single particle of our model are actually
the averages of the properties of all the real ones with iden-
tical crystalline lattices. Point symmetry groups including
improper rotations cannot be obtained at the end of an aver-
aging process on a symmetryless particle because it is the
result of proper rotations only. Conversely, as a ferrofluid
under field cannot be centrosymmetrical because of its SHG
activity and, as aC` symmetry and not aC`v one, is experi-
mentally observed, it proves, for the single particle, two dif-
ferent lacks of symmetry versus improper rotations, the first
one being the noncentrosymmetry, the second one being also

53 14 951SECOND-HARMONIC GENERATION IN MAGNETIC COLLOIDS . . .



called chirality. Some of the characteristics of the particle
can be guessed from those of the intrinsic averaged polariz-
ability tensor. It is worth noticing that, at first sight, a con-
fusion is often made between this intrinsic averaged tensor
and an ill-defined ‘‘averaged radius particle’’ which would
in fact show a cylindricalC`v symmetry. In short the intrin-
sic averaged polarizability tensor is not centrosymmetrical
and exhibits aC` symmetry. Magnetic crystal~or point!
symmetry groups are not used here, they would bring no new
information.

If we go into the origin of SHG more thoroughly it is
better to discuss now the nature of the real particles rather
than that of the model one. If individual particles were just
pieces of perfect cubic crystal, their SHG activity could only
arise from an asymmetry of their shape which would break
the centrosymmetry of the bulk spinel ferrite structure. The
particle surface is effectively known to be ‘‘rocklike.’’
Moreover two extra observations weaken this assumption.
First it has been seen that the boundary zone of the particle is
nonmagnetic, which is a sign that the spinel structure is
modified in it;26 is this zone amorphous or only ill-
crystallized? Second the citrated particles we use are clothed
by electrically charged molecules, which ensures the repul-
sion between particles and therefore the stability of the col-
loid. This complexation due to covalent bonds between each
particle and surrounding citric acid molecules may introduce
asymmetries.37 These two facts may also contribute to some
lost of symmetry for the whole system.

The former considerations which deal with the ability for
a particle to generate second harmonic, provide no informa-
tion about its magnitude. If particles are made up of three
parts, a semiconductor crystalline core, a boundary zone and
an outer molecular shell, the separation between surface ef-
fects given by discontinuities in the electric28,29 or magnetic
properties11 and bulk effects cannot be achieved in such
small systems. Particles must be considered as a whole and
the role of quantum confinement cannot be overlooked. In
these quantum confined nanostructures~quantum dots!, the
magnitude of the second-order polarizability depends on the
potential asymmetry which can be affected by confinement.38

C. Origins of the asymmetries
of the particle nonlinear averaged tensor

Knowing the different locations in the particle where
asymmetries could appear, a question still remains without
any answer: Why does the ‘‘averaged particle’’ exhibit such
an asymmetry whereas it seems reasonable to think that the
size and shape averaging process should destroy the asym-
metries of the real particle even before the orientational av-
eraging? The two observed lacks of symmetry will be con-
sidered separately. Let us begin with the lack of ‘‘vertical
plane’’ symmetry. A symmetryless real particle gives for
^a825

2v&c , after a rotational averaging aroundm, a nonzero
value. The symmetrical particle obtained by a ‘‘vertical’’
mirror plane keepingm, gives for^a825

2v&c , the opposite value
if purely electronic asymmetry effects arising from the par-
ticle magnetic moment are neglected. Therefore in this case a
measured nonzero value ford25 proves that the particle
population, giving a positive value for^a825

2v&c , is not equal
to the particle population giving a negative one. The chirality
observed in the second-order susceptibility of the magnetic

colloid under an applied magnetic field, is therefore due to
the difference of the contributions of these two types of
population, one of them dominating. Ifm had no other cor-
relation with the particle atomic structure than of being
bound to the particle core crystal lattice, there should be as
many particles with a precise atomic structure as with the
mirror one and this would give a zero^a825

2v&V value. In this
case a weak nonzero value ford25 could be observed in the
case of an unlikely population fluctuation or if the electronic
asymmetry due to the particle magnetic moment is no more
negligible. Both assumptions seem unable to account for the
magnitude of^a825

2v&V . The atomic structure of the clothed
particle is therefore correlated withm which entails its
chirality property. The magnetic momentm may bring asym-
metric distortions in the core, in the boundary zone or in the
covalent bonds. The origin of this correlation could also arise
from the particle synthesis process; in fact however small the
particle may be, it is already a magnetic monodomain and
the atoms or molecules which stick to it during the synthesis
period, feel the magnetic field created by the magnetic mo-
ment of the ‘‘young’’ particle.22 Another possibility is to
consider aggregates of particles whose existence has already
been encountered.36 In this case the ‘‘particle’’ studied by
the statistical model would be the aggregate itself. The lack
of symmetry which is discussed above could be due to the
position of the particles in the structure of the aggregate.

The same reasoning can be followed for the observed lack
of inversion symmetry of the magnetic fluid under an applied
magnetic field. If certain values are found for^a815

2v&V ,
^a833

2v&V , and^a831
2v&V after a rotational averaging on a sym-

metryless particle, the particle obtained from the first one by
an inversion, provides opposite values for^a815

2v&V , ^a833
2v&V ,

and ^a831
2v&V . We find a similar conclusion to the one ob-

tained for chirality: there is a correlation between the atomic
structure of the real particles and their magnetic momentm.
This correlation entails also the noncentrosymmetrical prop-
erties of the averaged particle even before the rotational av-
eraging and the noncentrosymmetrical properties of the fluid.

CONCLUSION

Second harmonic generation in magnetic colloids is made
possible by applying to them a static magnetic field which
breaks their fluid isotropy. We measure the macroscopic
nonlinear elements of the third-rank electric susceptibility
tensor of the magnetic colloid and find that its symmetry is
C` and notC`v .

We assume that the microscopic origin of the second-
order polarization of the medium is located inside the mag-
netic particles and that the magnetic field orientates the par-
ticle magnetic moments, bound to their crystalline frames, in
a favored direction. A link between the microscopic polariz-
ability and the macroscopic SH susceptibility which becomes
nonzero by a Boltzmann’s statistical effect in presence of a
magnetic field, has to be found. We propose a Langevin-like
model in which all the particles are identical and indepen-
dent. The identity of the particles arises from a first size and
shape averaging of the real particles with identical crystalline
lattices. The statistical calculation of the nonlinear suscepti-
bility tensor components as a function of applied magnetic
field strength and temperature, takes into account the three
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degrees of freedom~i.e., Eulerian angles! of the particle.
Among the nonzero susceptibility components, four of them
are independent. One would vanish for aC`v symmetry; it is
the signature of an average chirality of the particles and is
ruled by the even second-order Langevin function of the
Langevin parametermB/kT. The other three independent
components are the sums of a saturation value term,
weighted by the first-order Langevin function, and of a cou-
pling term weighted by a combination of first- and third-
order Langevin functions. These three parameters are odd
functions of the Langevin parameter. The saturation values
of the susceptibility tensor elements are deduced by simple
volume proportionality relations from the polarizability ten-
sor elements; the coupling term arises from the orientational
disorder of the particles at low magnetic field.

The parameter values of this model are fitted simulta-
neously to four independent experimental SHG intensity
curves as a function of the applied field intensity. The cou-
pling term due to the colloid orientational disorder enables us
to even determine the relative phases of the complex values
of some particle polarizability tensor components. It makes
this determination very precise. The validity of this
Langevin-like model is not only proved by the very good
consistency between theoretical curves and data but also by
other observed angular characteristics of the output SH beam
such as its ellipticity. The statistical determination provides a
value for the size of the magnetic particles which is consis-
tent with values found by other techniques. Moreover a sur-
face second harmonic generation phenomenon is experimen-
tally evidenced for an oblique incidence of the laser beam. It
seems that the magnetic field orientating role should be re-
placed by that of the surface normal but a general study,
similar to the present bulk one, has to be done. In particular,
the energetic aspect of the link between the magnetic particle
submitted to a static magnetic field and a surface should be
interesting.

Some hypotheses about the origin of SHG in our particles,
the last step of our work, are expressed from considerations
about the point symmetry group of the MF under static mag-
netic field. In our statistical orientation model, the identical
particles must be noncentrosymmetrical to exhibit a bulk SH
polarization: the lost of their symmetry arises from their
shape but also from their atomic structure which is not that
of a ferrite crystal because of size and surface complexation
effects. Moreover, the magnitude of SHG may be connected
to quantum confinement properties of these nanostructures.
Finally, it is shown that there is a correlation between the
magnetic moment and the atomic structure of the particles,
the magnetic moment causing asymmetrical distorsions dur-
ing the particle synthesis period. An aggregation of particles
may also play the same role as the particle synthesis step for
the noncentrosymmetry and for the chirality properties of the
fluid.
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APPENDIX A: CALIBRATION FORMULAS
FOR BULK SHG IN A LOSSY MEDIUM

UNDER NORMAL INCIDENCE

One of the goals of this paper is to characterize the par-
ticles through their nonlinear polarizability coefficients. For
that purpose, we propose the following treatment in which
we use the inputE in

v and the outputEout
2v electric fields in

vacuum which are the only observable quantities. We restrict
the following presentation to experiments in which the inci-
dent beam has a normal incidence on the cell~cv50°!. Ap-
pendix B is devoted to the study of the general case~cvÞ0!.
With the notations defined in Fig. 2, the components of the
incident electric field atv and of the output one at 2v are in
vacuum:

Ein x8
v

50,

Ein y8
v

5Ein
v sinuv ,

Ein z8
v

5Ein
v cosuv ,

and

Eout x8
2v

50,

Eout y8
2v ,

Eout z8
2v .

~A1!

We consider the SHG in a plane-parallel plate of lossy ma-
terial in the case of normal incidence.33We use the transmis-
sion factor defined in Ref. 33, taking into account the mul-
tiple reflexions of the beams atv and 2v in the nonlinear
medium. It is needed in the view of a calibration of the
experimental SH intensities for magnetic fluids with respect
to a reference sample. In our case, one needs to calculate it
with the fused silica as input and output media. We neglect
the plane-parallel plate effects in the glass cell so that thei
components of the incident electric field in the fused silica
mediumEG i

v and of the output oneEout i
2v in vacuum are

written as

EG i
v 5Ein i

v tv,

Eout i
2v 5EG i

2v t2v, ~A2!

where tv52/(11nG
v) and t2v52nG

2v/(11nG
2v) are the

Fresnel transmission coefficients between vacuum and the
silica cell at the frequenciesv and 2v, respectively.nG

v and
nG
2v are the refractive indices of the fused silica cell contain-

ing the sample at the frequenciesv and 2v @nG
v51.4493 at

1.064mm andnG
2v51.4604 at 0.532mm ~Ref. 39!#.

Under an applied magnetic field, the magnetic fluid be-
comes optically uniaxial, the extraordinary axis being paral-
lel to the field.31 The angleuv in vacuum corresponds to an
angleuv8 in the nonlinear medium. If the laser beam polar-
ization is parallel to the principal axes of the ellipsoid of
indices,uv8 is equal to 0° or 90° and it is the case foruv too.
Let us define the ordinary and the extraordinary complex
refractive indices of the magnetic fluid atv and 2v by n o

v,
n e

v, n o
2v, and n e

2v, respectively. The ordinary and the
extraordinary SH wave vectorsk o

2v andk e
2v in the medium

remain both perpendicular to the cell plane: from Eqs.~8!
and ~A1!, we see that the three components ofP2v are gen-
erally nonzero,Px8

2v andPy8
2v corresponding to the ordinary

part of the SH polarization vector,Pz8
2v to the extraordinary

one.Px8
2v is a nonpropagative component. The electromag-
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netic radiation at 2v is generated by the componentsPy8
2v

5Po
2v andPz8

2v
5Pe

2v of the SH polarization vector perpen-
dicular to the SH wave vectorsk o

2v and k e
2v.40 With the

notations defined in Fig. 2, theC` symmetry of the magnetic
fluid yields the output SH electric field in vacuum:

Eout o
2v 52

d24
«0

HooeEin o
v Ein e

v ,

Eout e
2v 5

d32
«0

Heoo~Ein o
v !21

d33
«0

Heee~Ein e
v !2, ~A3!

where, in these normal incidence experiments,o stands for
y8 and e for z8. The dimensionless factorHi jk is given by
Eq. ~A2! and a generalization of Eq.~22a! of Ref. 33. Trans-
mission factors, birefringence, and dichroism effects for the
different configurations of polarization are included inHi jk .
We give, for example, the expression ofHi jk for an incident
field at v ordinary polarized, the output beam at 2v being
either ordinary (o) or extraordinary (e) polarized~i5o or
e!:

Hioo52~ tv!2t2v
2@exp~2 iko

vd!/~no
v1nG

v!#2

@12Ro
vexp~22iko

vd!#2~ni
2v1nG

2v!

3H ni2v~11Ro
v!1no

v~12Ro
v!

~ni
2v!22~no

v!2
1
2~Ro

v!1/2

ni
2v J ~A4!

with Ro
v5[(n o

v2nG
v)/(n o

v1nG
v)] 2 and k o

v5n o
v(v/c). Ro

v

denotes the energy reflection coefficient between the glass
plate and the magnetic fluid for an ordinary polarization,k o

v

the ordinary wave vector atv, andd the nonlinear material
thickness. The square modulus ofHi jk is equal to the product
of transmission factors and ofFi jk accounting for the Fabry-
Perot effects inside the sample and defined asF in Ref. 33 in
the simple case of a nonlinear medium surrounded by
vacuum. For the ‘‘ioo’’ configuration,

uHioou25~ tv!4~ t2v!2Fioo . ~A5!

In our calculations ofFi jk , we assume that thickness fluc-
tuations do not exceed the fundamental wavelength. Without
applied magnetic field, the complex index values of the mag-
netic fluid used are nv51.36411 i0.0004 and
n2v51.39211 i0.0118. The real parts of the refractive indi-
ces are measured with a dispersion corrected refractometer,
and the imaginary ones with a spectrophotometer. The opti-
cal birefringence depends on the applied magnetic field
strength31 and its magnitude is about five times smaller than
the very small dispersion termn2v2nv which appears in the
denominator of theHi jk factor. According to our measure-
ments at 632.8 nm, the birefringence is almost independent
of temperature and is equal to 0.0061 at 0.3 T for our sample.
However, its sign is undetermined. Knowing that birefrin-
gence and dichroism contributions are smaller than the dis-
persion one, we assume thatFi jk andHi jk are independent of
the indicesi , j ,k; it is useless to give an exact formulation for
Hiee andHioe . One can calculate a mean value forF andH
for any polarization configuration and any magnetic field
strength. This approximation prevents us from studying the
phase mismatch as a function of the magnetic field ampli-

tude. With the above values, the coherence length is about
8.8mm when absorption is neglected.

The temperature in the laser impact area cannot be evalu-
ated. Sample temperature ranges between 300 and 373 K and
F is calculated with the real part values of the refractive
indices at 323 K and the imaginary ones at room temperature
~the imaginary parts appear inF only as a small difference
which does not change very much with temperature!. The
value of uHu2 is then 8.60 ford510 mm.

In the view of an analogy with Eq.~1!, we define the
following effective nonlinear electric susceptibility coeffi-
cients as

Dim5dimH. ~A6!

Dim are complex quantities as it is shown by a polarization
analysis~Fig. 6!. It comes from the Fabry-Perot effects in the
sample cell~dimensionless complex factorH! and from the
fact that dim coefficients can be complex. From~A3! and
~A6!, one obtains the following calibration expression:

Eout i
2v 5

Dim

«0
~Ein

vEin
v!m .

APPENDIX B: CALIBRATION FORMULAS FOR
BULK SHG IN A LOSSY MEDIUM
UNDER OBLIQUE INCIDENCE

This appendix is devoted to the transmitted SH intensity
at the output of the cell, in the case of an oblique incidence
of the laser beam on the sample. This oblique incidence is
needed to determine the nonlinear term^a825

2v&V and in-
volves refractive and birefringence effects. This term in-
cludes a surface contributionaS2582v due to the tilted cell. In
the geometry used~Fig. 2!, the magnetic fieldB is still par-
allel to the cell surface andB andkv remain perpendicular to
the rotation axis~Oy8! of the cell. The treatment of birefrin-
gence and dichroism is therefore simplified because the
plane of incidence containsB which is parallel to the revo-
lution axis of the ellipsoid of indices. Ordinary rays are po-
larized perpendicularly to the plane of incidence and extraor-
dinary rays are parallel polarized~the notationso ande are
equivalent to' andi, respectively!. But for the same reasons
as in Appendix A, birefringence and dichroism effects can be
neglected in front of dispersion effects.

We can then apply the formulas given by Bloembergen
and Pershan40 in the case of an oblique incidence of the laser
beam on a nonlinear isotropic plane-parallel plate. They are
still valid if absorption effects, important in cobalt ferrite
ferrofluids, are considered. At the boundary between the lin-
ear and the nonlinear media, two light waves contribute to
the SH signal: one is the free wave of wave vectork2v,
refracted in the nonlinear medium with an anglec2v8 , and
the other one is the forced wave of wave vector 2kv,
refracted with an anglecv8 , according to the expressions
used by Kleinman.41 The laser beam incidence angle in the
air is cv540°. It corresponds, in the magnetic fluid, to an
angle of refractioncv8 528.12° for the fundamental and the
forced SH waves and toc2v8 527.51° for the free SH wave
~Fig. 7!. As the SH wave is generated all over the sample
thickness~10 mm! and as the free one follows a direction
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different from that of the fundamental one, the SH beam is
broadened of about 0.1mm at the output of the magnetic
fluid and finally of 9.5mm at the output of the cell. It is
completely negligible compared to the width of the infrared
incident beam which is, in the experiment, focused outside of
the cell to avoid sample destruction.

The experiment atcvÞ0 is done foruv50° andu2v590°
@curve (D) in Fig. 4~b!#, which corresponds to the following
components of the incident electric field atv and of the
output one at 2v in vacuum:

Ein x8
v

52Ein
v sincv ,

Ein y8
v

50,

Ein z8
v

5Ein
v coscv ,

and

Eout x8
2v

50,

Eout y8
2v

5Eout
2v ,

Eout z8
2v

50.

~B1!

As in Appendix A, the factorHoblique is determined by ne-
glecting the multiple interferences effects in the fused silica
walls which are the input and output media of the active
medium; for an oblique incidence of the laser beam on the
cell and foruv50°, the ordinary and extraordinary compo-
nents of the incident electric field are given byEG o

v 5EG x8
v

andEG e
v 5EG z8

v , and foru2v590°, the output electric field
has only an ordinary polarization:

EG o
v 5Ein o

v to
v ,

EG e
v 5Ein e

v te
v ,

Eout o
2v 5EG o

2v to
2v ,

wheret o
v, t e

v, andt o
2v are the different Fresnel transmission

coefficients according to the frequency and the polarization
direction of the laser beam:

to
v5

2 coscv

coscv1nG
vcoscGv

,

te
v5

2 coscv

nG
vcoscv1coscGv

,

to
2v5

2nG
2vcoscG2v

nG
2vcoscG2v

1coscv
. ~B2!

The refractive indices,nG
v and nG

2v, and the corresponding
angles of refraction,cGv

andcG2v
, refer to the fundamental

and SH waves in the fused silica cell, respectively~see Fig.
7!. The SH radiation is generated by the three components of
the second-order polarization vector whose ordinary and ex-
traordinary parts are

Pe
2vee5Pz8

2vez8 ,

Po
2veo5Px8

2vex81Py8
2vey8 ,

where e are the different unit vectors.Pe
2v and Po

2v are
equivalent toP i

NLS andP'
NLS , respectively, in Bloembergen

and Pershan’s notations.40 The analyzer keeps only the SH
field generated byPy8

2v . The SH intensity at the output of the
cell ~in vacuum! is given by the ordinary component of the
SH electric field and from Eqs.~3!, ~8!, and~B1!:

I out o
2v 5

2~ I in
v!2

S«0c
4 cos2cvsin

2cvuHobliqueu2S d25«0
D 2 ~B3!

with S5S0 coscv/cosc2v, S0 being the beam section. The
factorHoblique is defined as

uHobliqueu25~ to
2vto

vte
v!2Foblique ~B4!

and Foblique is obtained from~6.8! and ~6.9! of Ref. 40 by
using the same approximation as in Appendix A, in which
magnetic field induced birefringence and dichroism are ne-
glected:

Foblique5U N

@~n2v!22~nv!2#DU
2

~B5!

whose numerator is

N52C2v~CG2v
1Cv!~cosF2v2cosFv!

1 i @@CG2v
Cv1~C2v!2#sinF2v

2C2v~CG2v
1Cv!sinFv#

and whose denominator is

D52CG2v
C2vcosF2v2 i @~CG2v

!21~C2v!2#sinF2v

FIG. 7. Scheme of the cell: refracted rays of the fundamental
and of the second harmonic beams inside the sample. Actually the
MF thickness is 10mm, much smaller than the glass one~2 mm!.
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with Fv5Cvvd/c, F2v5C2vvd/c. TheC quantities used
above are complex functions of the complex refractive indi-
ces and of the complex angles of refractioncv8 andc2v8 in
the magnetic fluid, defined by

CG2v
5A~nG

2v!22~sincv!25nG
2vcoscG2v

,

Cv5A~nv!22~sincv!25nvcoscv8 ,

C2v5A~n2v!22~sinc2v!25n2vcosc2v8 .

This calculation yields the following value for a calibration
under oblique incidence:uHobliqueu

2/uHu250.72.
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12M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pisarev,
Phys. Rev. Lett.73, 2127~1994!.

13J.-C. Bacri, R. Perzynski, and D. Salin, Endeavour12, 76 ~1988!.
14J.-C. Bacri, R. Perzynski, M. I. Shliomis, and G. I. Burde, Phys.

Rev. Lett.75, 2128~1995!.
15J.-C. Bacri, A. Cebers, A. Bourdon, G. Demouchy, B. M. Hee-

gaard, and R. Perzynski, Phys. Rev. Lett.74, 5032~1995!.
16R. Massart, IEEE Trans. Magn.17, 1247~1981!.
17Yu. L. Raikher and M. I. Shliomis, Adv. Chem. Phys.87, 595

~1994!.
18J.-C. Bacri and D. Gorse, J. Phys.~Paris! 44, 985 ~1983!.
19V. Dmitriev and L. Tarassov, Optique Non Lineaire Appliqu´ee

~Mir, Moscow, 1987!, p. 304.
20A. Yariv, Quantum Electronics, 2nd ed. ~Wiley, New York,

1975!, p. 408.
21J. F. Nye,Physical Properties of Crystals~Clarendon Press, Ox-

ford, 1957!.
22P. I. Slick, inFerromagnetic Materials, edited by E. P. Wohlfarth

~North-Holland Physics Publishing, Amsterdam, 1986!, Vol. 2,
Chap. 3.
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