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The dynamics of models described by a one-dimensional discrete nonlineadifigercequation is studied.
The nonlinearity in these models appears due to the coupling of the electronic motion to optical oscillators
which are treated in an adiabatic approximation. First, various sizes of nonlinear clusters embedded in an
infinite linear chain are considered. The initial excitation is applied either at the end site or at the middle site
of the cluster. In both the cases we obtain two kinds of transifigra cluster-trapping transition ard) a
self-trapping transition. The dynamics of the quasiparticle with the end site initial excitation are found to
exhibit (i) a sharp self-trapping transitiofii) an amplitude transition in the site probabilities, diid propa-
gating solitonlike waves in large clusters. Ballistic propagation is observed in random nonlinear systems. The
effect of nonlinear impurities on the superdiffusive behavior of the random-dimer model is also studied.
[S0163-182606)00922-9

. INTRODUCTION tance in real systems. Dunlagt al’® studied the self-
trapping transition at a single nonlinear impurity embedded
The strong interaction with the lattice vibrations is one ofin a host lattice. Cheret al’® studied the time-averaged
the basic mechanisms influencing the transport of quasipairobability at the initial occupation site in an infinite linear
ticles such as electrons or exitons in solids. The consechain containing one or many nonlinear impurities. In this
quences have been investigated employing differen$tudy the adiabatic assumption has been removed. They have
methodst A recent approach to this problem is based onalso studied the adlabat_lc case, albelt'not in detall._ Soin thls
nonlinear equation®:* One of the simple models with vari- PaPer we plan to study first the dynamics of a quasiparticle in

eties of applications in different areas is the one-dimensiongf" INfinité linear chain containing adiabatic Holstein-type
discrete nonlinear Schdinger equatiofr 2 Impurities: We use two different kinds of initial conditions.

The initial excitation is applied either at the end site or at the
dec middle site of the cluster of the impurities.
i—=V(Crs1+Cm-1)+ (€m— XmlCmlDCm. (D) If we consider randomness in site energies and

dt xm="0 for all m in Eq. (1) Anderson theory/ predicts that
. . , ... the particle will remain localized within a finite region of the
:te;ﬁg;‘](gt It?rr:r;? F:;Oi:aéggltxeir:]epslmgfgﬁ;éﬁg#gﬂf%gﬁ& chain after.a suff_icient time. So 'it is important to investigate

’ . .~ the dynamics ofi) random nonlinear system{sandomness

element, and, and x,, are the on-site energy and nonlin- j, yhe nonlinearity parameteand (i) systems where disor-
earity strength of thenth site, respectively. Without any loss ey i site energies and nonlinearity coexists. Regarding the
of generality we assum¥'=1. Equation(1) arises in the first question Molina and Tsirori& showed the ballistic
general problem of polaron formation due to the coupling ofpropagation of the untrapped electronic fraction in a nonlin-
quasiparticles with optical oscillators in the adiabatic ap-ear random binary alloy. In this paper we study the transport
proximation. The simple form of the E¢l) with e,,=0 and  properties of completely random nonlinear systems.
xm= x for all m has been studied numericafiydowever, in  Feddersel? has studied the effect of nonlinearity on the
a two-site system which is called the nonlinear adiabaticAnderson localization. Shepelyangfyjas obtained subdif-
quantum dimer, the self-trapping transitfénoccurs at a fusive behavior in on-site-energy-disordered systems only
critical value of nonlinearity for arbitrary initial when the nonlinearity parameter exceeds a critical value. It is
conditions® %! The applications of the nonlinear dimer well known that superdiffusive behavior is obtained in the
analysis have been made to several experimental situationsandom-dimer mode(RDM).?* The RDM is characterized
They are neutron scattering off hydrogen atoms trapped diy a set of nonscattered states around the dimer energy. This
the impurity sites in metalS,fluorescence depolarizatidn, leads to the superdiffusive behavior of the mean square dis-
muon spin relaxatioht nonlinear optical response of placement of a particle. We study here the effect of nonlin-
superlattice$? etc. The self-trapping transition also occurs in earity on the superdiffusive behavior of the RDM.
extended nonlinear systertfsA possible application is the The organization of the paper is as follows. In Sec. II, we
trapping of hydrogen ions around the oxygen atoms in metastudy the dynamics of the quasiparticle in a cluster of non-
hydrides!* All these studies have been performed for a finitelinear sites embedded in a lattice. The initial excitation is
number of nonlinear sites by assuming that the quasiparticlapplied either at the end site or at the middle site of the
is localized within the nonlinear sites. However, the effect ofcluster. In Sec. Ill, we study the dynamics of different kinds
nonlinear sites embedded in a host lattice on the dynamics aff random systems. We end this article by summarizing our
quasiparticles has been hardly studied in spite of its impormain results.
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Il. CLUSTER OF NONLINEAR IMPURITIES EMBEDDED nonlinear cluster. A sharp transition ifP,) occurs at
IN'A LATTICE Xcrz~4.23 for all values oh. In the region betweeg,,; and

Xcrz We obtain fluctuations iPg). For a better understand-
) o ing of this behavior we study next the time-averaged prob-
We con_suder a sy_stem containing a clustenm‘umber_ of ability of the unoccupied nonlinear sites.
nonllnee}r impurity sites of e‘?“a' strengthembedded in a In Fig. 2 we have plotted the time-averaged probability of
T‘??t Iatt|c¢. A” the site energies are ass.umed to be ZE€ro. Tk{ﬁe initially unoccupied nonlinear sitéR,)) of the dimer as
initial excitation is applied at left end site of the nonlinear f . .
: . i unction ofy. For comparison we have also plott€d).
cluster. We call this the zeroth site. The sites on the left an hen th i it st i d b
right of the initial occupation site are numbered as en the noniineanty s rengti ExceedSyern We Observe
m=-1-2-3,... andm=1.23..., respectively. We both a(Py) and(P,) increase .Wlth' increasing and. their '
first study here the time-averaged probability of the nonlin-values are almost equal. This implies that the particle oscil-
ear sites. For thenth site it is defined as lates with a finite probability among the dimer sites. This
partial localization or trapping within the cluster can be un-
1T ) derstood from the following. At=0 the energy level of the
(Pm)= lim $j0 |cm()|*dt, (2 sitesm=-1,0, and 1 are & y, and O, respectively. With
T increasing the time the site probability ai=0 decreases
with [c,(0)|?= Smo- Here,|cy(t)|? is the probability of the and ofm=1 increases. Consequently, the energy level of the
quasiparticle at thenth site at timet. We solve the first- sitesm=0 and 1 moves upward and downward from the
order coupled nonlinear differential equations numericallyoriginal positions, respectively. Thus, the energy gap be-
by using a fourth-order Runge-Kutte method. The system i¢ween the sitesn=0 and 1 becomes smaller than the gap
taken as a self-expanding lattice to avoid boundary effectdhetweenm=—1 and 0. So the initially localized particle at
For time averaging we have takdn=200 with an interval site m=0 favors the nearest-neighbor nonlinear dite.,
AT=0.01. The accuracy of the numerical integration ism=1) and the energy level of that site decreases. At the
checked through the total probability. Here, we consider thesame time the energy gap between the sitesl and 2
cases fom=2,3,4,5 and an asymptotically large valuerof increases. Thus the particle feels a quantum well and it os-
(n—®). Forn—c we mean that the system contains two cillates within the well with a finite probability. Of course,
semi-infinite chains. The perfect chain without any nonlin-some probability will escape along the leads in both direc-
earity is connected to the other one which is a perfect nontions of the dimer. Now the leakage of the probability
linear chain. The initial excitation is applied at the junction through the leads reduces with the increasg afue to the
where the nonlinear impurity exists. In Fig. 1 we have plot-increase in the energy gaps between the sies0 and
ted the time-averaged probability at the initial occupation—1 and betweerm=1 and 2. Wheny attains a critical
site,(Py), as a function ofy for different values oh. In all ~ value, say1, these gaps become sufficiently large to trap
these cases we find théPy) starts increasing significantly the particle within the cluster. Sg,,; marks the onset of the
from xy= xcr1. Forn=2 the value ofy., is ~2.8. In general cluster-trapping transition of the particle. With a further in-
the value ofy. increases with increasing the size of the crease iny, the competition among the nonlinear sites to trap

A. Initial excitation at the end of the cluster
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the particle starts. Depending on the strength of the nonlin- To understand the behavior in the fluctuation regime of
earity the particle is preferentially trapped either at the ini-time-averaged site probabilities we study their temporal be-
tially occupied site or at the unoccupied sigee the inset of havior. This is shown in Fig. 3. After a few oscillations, we
Fig. 2. Wheny is just belowy.,,, the value of P;) is much  observe a transition where the amplitude of the two oscilla-
larger than(Pg). But wheny crossesy..,, we find a sharp tions decreases suddenly and the phases are just opposite to
fallin {(P,) and an increase iP). For a further increase of each othefsee Fig. 8a)]. The amplitude transition in the site

X, (Po) increases andP,) decreases gradually. We do not probabilities always occurs simultaneously. Furthermore, the
obtain any further transition. Sg, is called the critical transition occurs from a peak of the oscillation in one case

value of y for the self-trapping transition. and from a dip in the other one. Consequently, one of the site
X
1 T T T 1 T T T
m=0 — (a) m=0 — (b)
m=1 ---—- m=1 -—-
08 . 08 | e
0.6 | - 06 | .
4

04 04 I
>-‘ f . e
Hooe 02 AR A A AR A ~ FIG. 3. Plot of site probabili-
= VYV YV VVVV ties of the dimer sites embedded in
5% 0 , : . 0 \ . . a host lattice as a function of time
faa) ) 50 100 150 200 ] 50 100 150 200 (t) for different values of nonlin-
8 1 f T T T 1 Y T T earity parametey as follows:(a)
a0 © me0 (d x=3.72, () x=3.77, (¢) x=4,
M o8}l - . 0.8 . and(d) y=4.4. In all these cases
= M the initial excitation i [ t
7 AR EbM b tnatnsaisriarannnesins € initial excitation is applied a
D2 o finianahttibAnAEAALAARAARAALARAAR R 0.6 . the end site ifn=0) of the dimer.

LR Y
i
0.4 . 04 | .
0.2 . 02 f 4
WAWWWWWWWY LTI .
0 1 1 1 0 ‘”‘ [l 1 1
0 50 100 150 200 0 50 100 150 200

TIME (t)



14 932 P. K. DATTA AND K. KUNDU 53

probabilities oscillates with a more mean probability than thedifferent regions of the cluster. We study the particle propa-
other. Thenceforth, the amplitude of the oscillation of thegation in a lattice for the case of= 30 for different values of
probabilities decreases with time. This kind of transition isy. For small values of (=3.1) we obtain the delocalization
obtained in the nonadiabatic nonlinear quantum dimer probbehavior of the particle. For a further increaseyove find

lem in the presence of rapid vibrational relaxation caused byhat a solitonlike wave, extended over a few sites, moves
the damping in the lattice vibratidd. Two transitions are through the nonlinear cluster. Thus, we obtain an oscillation
observed, a static transition gt=2V (Ref. 5 and a dynamic  ©f the solitonlike wave in the cluster. This is shown for
transition aty=4V.® The static transition is governed by the X=3-51 in Fig. 4. It should be noted that the maximum
relaxation term of the lattice vibration. Here, it seems thatProbability is found within this solitonlike wave. The time
the leads at both ends of the nonlinear dimer introduce efP€riod of the oscillation of the wave within the cluster is
fectively a damping term in the lattice vibration. This effect increased with time. This indicates that if we increase the

P . time, the oscillation will cease and the solitonlike wave wiill
appears through the escape probability _from the dimer g:l_us[-)e localized within a few sites of the nonlinear cluster. This
ter. However, the main difference here is that the transitio

occurs at different values gf. The transition time as well as s exactly obtainedsee Fig. 4 The number of oscillations

: : o . decreases before localization with increasingdrhe position
the number of the dynamical adiabatic dimer type oscilla-pf he |ocalization of the wave, however, depends on the
tions decreases with increasing[compare Figs. @ and  \aye ofy but the pattern is not discerned here. For a further

3(b)]. Furthermore, neag., the number of dynamical adia- jhcrease ofy we do not find any oscillation. It moves along
batic dimer kind oscillations does not reduce for a widethe cluster and gets trapped within a few sites of the nonlin-
range ofy. Consequently, we do not find any fluctuation in ear cluster. With increasing the value pfthe trapping re-
the time-averaged probability in this regi¢see the region gion in general moves towards the initial excitation site and
3.87<x<4.23 of the inset of Fig. 2 The amplitude transi- we obtain a sharp self-trapping transition ya{,~4.23. It

tion in the site probabilities occurs after half a period of theshould be noted that the width and peak value of the soliton-
oscillation [see Fig. &)]. Thus, just belowy.., (P;) is like wave decrease and increase, respectively, with increas-
found to be much larger tha{Py). When x just crosses ing the value ofy. Though we are not able to probe the value
Xerz the transition occurs at a time which is even less than thef x where the solitonlike wave starts to form, it is within
half period[see Fig. &)]. As there is no dynamical adiabatic x=3.1 and 3.2. It should also be noted that the movement of
dimer-type oscillation we do not find any further transition in the solitonlike wave is obtained only when the size of the
the amplitude of the site probabilities with the increase offonlinear cluster is much larger than the width of the wave.
x. So in contrast to Ref. 16, we find that the quasiparticle N asymptotic limit(i.e.,n—2) we also obtain the forma-
recognizes both the nonlinear impurities just abqyg and tion _of a solitonlike wave extended_ over a feV\_/ sites in the
for a further increase of, the amplitude transition of the site Nonlinear cluster. Here, we do not find any oscillation of the
probabilities occurs. Furthermore, we obtain damped oscillaWave as obtained in the case o 30. For lower values of
tion in the site probabilities fog> .. This has to be con- X the.wave moves .along the Iatuqe but finally it is trapped in
trasted with the regular oscillation aboye=4 in an isolated @ région as shown in Fig. 5. If we increase the valug athe
nonlinear dimef. We also study the time-averaged probabil- Iocallz_atlon_ regime of the wave moves towards the _|n|t|ally
ity at the nonlinear sites far=3, 4, and 5. In all these cases °ccupied site and thus we obtain a sharp self-trapping tran-

we observe the same behavior as observed in the dimer efifion at xc~4.23. The width and the peak value of the
bedded in a host lattice. wave decrease and increase, respectively, with increasing

For a relatively large size nonlinear clusterg.,n=30)  x- However, we did not probe the region gf where the
the partial localization of the particle is found to occur atSolitonlike wave starts to form.

B. Initial excitation at the middle of the cluster

We study here the same system but the initial excitation is
given at the middle sitenj=0) of the cluster. The cluster

30

»100

time/10

300

FIG. 4. Electronic probability propagation profile as a function
of time (t) for y=3.51. Here,n=30 and the initial excitation is _
applied at the end siter(=0) of the nonlinear cluster. FIG. 5. Same as Fig. 4 but—c and y=3.6.
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contains an odd number of sites. As the system is symmetriand peak value of the wave decrease and increase, respec-
around the initial occupation site we do not find the asym-ively, with increasing the value of. This is obtained in all
metric probability distribution. So the properties in this sys-cases discussed here.

tem should be different from the earlier cases. The time-

averaged probability at the initial excitation site is shown in

Fig. 6 for different valuesy andn. In the case of a single IIl. RANDOM SYSTEMS
nonlinear impurity system we obtain the self-trapping transi-
tion at yq~3.2.°° For higher values oh we find that The ballistic motion of an initially localized particle in a

(Po) increases significantly from= x and it characterizes one-dimensional nonlinear random binary alloy has been ob-
the cluster-trapping transition. The value gf, for n=3 is  served recently? Here we also show the ballistic motion of
~2.4 which is much less than the self-trapping transition@ particle in completely random nonlinear systems. The ran-
value of y for n=1. The value ofy. in general increases dom nonlinear systems are characterized by random distribu-
with increasing the size of cluster. In the asymptotic limittion of the nonlinearity parametery with the values

(i.e., a perfect nonlinear systerthe value of the transition O0<xm<Xmax- All the site energies are assumed to be zero.

point is x2¥~3.52 We further study the time-averaged The initial excitation is applied at the zeroth site. Further-

probability of the neighboring nonlinear sites of the zerothMore, we assume that the value )gf is xmax. The mean
site forn=5 (see Fig. J. We find that the time-averaged Sduare displacemefiMSD) is defined as

probability of the other nonlinear sites also starts increasing "

from x.1. The value of P,,,) decreases as we go away from o 2 2

the initial occupation sKite, >i.e., dm| increases. This means (m >_m;w meem(O1%, ®

that beyondy,; the particle lies within a few sites of the

cluster with center at the initial excitation site. Again, as bothwith the initial condition|c,(0)|?= 8y,0. After some initial
sides of the zeroth site contain nonlinearity the particle igransient behavior the speed((mz)/t) of the particle settles
attracted by the nonlinear sites in both directions. Thus, wittdown to a constant which depends pR... The speed of the
increasing the size of the cluster we find thB) decreases particle decreases with increasing,... Around a critical
and consequently the value gf,; increases. Beyong.; we  value of x,axthe speed decreases drastically and beyond this
find that the time-averaged probability of the nonlinear sitegegion we observe the slow decay of the speed. The un-
(except the zeroth sixefirst increases and then decreasestrapped portion of the probability leads to the ballistic mo-
with increasing the value of. But(P,) gradually increases tion of the particle above the critical value Fnax- 2 TO
with increasing the value gf. Thus, we obtain the localiza- obtain the critical value of,,x We have plotted the time-
tion of the particle am=0 with maximum probability which averaged probability of the initial excitation site for different
is called self-trapping. However, in this case we do not ob+ealizations in Fig. 8. The critical values f,., are found to
tain any sharp self-trapping transition as seen in the previoulse in the range betweer 3 and~3.5. Beyond the critical
case. In the study of particle propagation we observe a localkalue,(P,) in general increases very fast with increasjng
ized solitonlike wave with the peak valuerat=0. The width  but with a certain degree of sample-to-sample variation.
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Within the region betweery~3 and y~4.5 we obtain a The RDM is a binary alloy containing two types of atoms

large deviation inPy) for different realizations. Beyond this with site energie, ande,. The restriction on the random-
region(Py) increases slowly agmax goes up and the prob- ness is that the site energy appear in a pair which is called
ability of all other sites decreases. In this limit the randoma dimer. So the system is the random distribution of the
nonlinear lattice to a good approximation can be replaced bgimer and other site energs,. If we assumee,=0 and

a perfect lattice with a single nonlinear defect of strengthvV=1, then we obtain~+/N number of nonscattered states
Xmax- This is also true for perfect nonlinear system. It can bearounde, .?* Here,N is the length of the sample. The MSD
shown that beyond the transition region ypfthe speeds of goes as{m?)~t%22! This is obtained only whefe,|<2.

the particles in random nonlinear systems, in perfect nonlinwe now study the effect of nonlinearity on the transport
ear systems, and in single nonlinear defect systems are gdroperties of the RDM. We assume that all the sites have
most equal. We study next the effect of nonlinearity in theequal nonlinearity strength and itjs It should be noted that

superdiffusive motion of the random-dimer modBDM). by adding the nonlinearity the effective site energies are al-
1 T i 1 T T T T T T
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0.7 |
0.6 |
A FIG. 8. Time-averaged prob-
a7 ost ability of the initial excitation site
\Y ({(Po)) as a function ofymay for
04 | different realizations of random
nonlinear systems.
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6 - transition aty.; due to the localization of the quasiparticle
— within the nonlinear cluster. Foi> x.1 the amplitude
_ 7 transition in the probabilities of the nonlinear sites is ob-

. 1 tained, showing that the escape probability through linear
f\’v“ sites is analogous to a damping term in the oscillator equa-
N

Tt O

i

X
5 X
= X

<m?> [13/73 3 tion of motion. The absence of any well-defined transition
"""""""""""""""""" in the amplitude of the site probabilities beyowrg,, indi-
cates the self-trapping at this value pf This value ofy..
] is ~4.23 for any size of the clusters of the nonlinear
sites. This clearly indicates that a single mechanism is re-
O 100 200 300 100 500 600 700 800 00 1000 sponsible for self-trapping. For relatively large size clusters
time (¢) we observed that the localization of the quasiparticle occurs
in the cluster in the form of a solitonlike wave extending
FIG. 9. Plot of(m?)/t%? as a function of timet for the RDM over a few sites. This cluster 'Iocalization §tarts between
with different values ofy. Here, e,=1. x=31 and 3.2. In the :_alsymptotlcally Igrge_sme of the non-
linear cluster we also find that the solitonlike wave moves
tered. Thus initially the dimer correlation is distorted. As the@long the cluster but after some time it localizes in a region.
system contains an escape probability, the distortion of thdhis localization time and the trapping region depend on
dimer correlation decreases with increasing time. So we exx- When the initial excitation is applied at the middle site of
pect the superdiffusive behavior in the MSD. This is exactlythe cluster, cluster localization also occurs. The critical value
obtained(see Fig. 9. The exponent of the MSD is 1.5. We  In general increases with increasing the size of the cluster.
also study the time-averaged probability of the initial excita-However, here we do not find any sharp self-trapping transi-
tion site which is one of the dimer sites. We obtain a shargion as well as the transition in the amplitude of site prob-
self-trapping transition at different values gf,, which in- abilities. _ _
creases as, increases. Thus, by increasing the site energy The MSD in random nonlinear systems shows that the
we can alter the value of..,. For negative values of, the ballls.t|_c motlo.n and the _spged depre_ases_ S|gn|f|_cant_ly in .the
value of y.» remains almost constant. If the initial excitation fransition regime. The initial excitation is applied in this
is applied at the site where dimer is absent, we obtain th€2S€ at the site with maximum nonlinearity. The time-
opposite behavior. That is, for positive values ef the aver_aged pr_obablllty of_ the initial excitation site is _also
Yoo @lMost remain constant and for negative values of stuqheq for d|fferent realllza.tlons. In each case we obtained a
and y.,, changes significantly. Abovg,,, we also obtain the aPid increase inPq) within a range ofy. It should be
superdiffusive behavior in the MSD. n_oted_ that_ beyond_thls region thh_e dyngmlcs of the_qua-
siparticle in the single nonlinear impurity system, in ran-
dom nonlinear systems, and in the perfect nonlinear sys-
tem are similar. The effect of nonlinearity on the superdiffu-
sive behavior of the RDM has also been studied. The expo-
We have studied the dynamics of quasiparticles in dif-nent of the MSD remains almost same. With increasing the
ferent kinds of nonlinear systems. We first studied the dystrength of the nonlinearity the prefactor of the MSD de-
namics of the quasiparticle in a cluster of nonlinear im-creases with the increase jn The self-trapping transition
purities embedded in a perfect linear host lattice. The initiablso occurs in this case. The self-trapping valueyoin-
excitation is applied either at the end site or at the middlecreases with increasing, providedy ande, both are posi-
site of the nonlinear cluster. In both the cases we studietive quantities. For negative values ef, this value ofy
the time-averaged site probabilities and the particle proparemains almost constant with increasipgThis aspect will
gation. In the former case we observed the cluster-trappinge studied later.
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