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The dynamics of models described by a one-dimensional discrete nonlinear Schro¨dinger equation is studied.
The nonlinearity in these models appears due to the coupling of the electronic motion to optical oscillators
which are treated in an adiabatic approximation. First, various sizes of nonlinear clusters embedded in an
infinite linear chain are considered. The initial excitation is applied either at the end site or at the middle site
of the cluster. In both the cases we obtain two kinds of transition:~i! a cluster-trapping transition and~ii ! a
self-trapping transition. The dynamics of the quasiparticle with the end site initial excitation are found to
exhibit ~i! a sharp self-trapping transition,~ii ! an amplitude transition in the site probabilities, and~iii ! propa-
gating solitonlike waves in large clusters. Ballistic propagation is observed in random nonlinear systems. The
effect of nonlinear impurities on the superdiffusive behavior of the random-dimer model is also studied.
@S0163-1829~96!00922-8#

I. INTRODUCTION

The strong interaction with the lattice vibrations is one of
the basic mechanisms influencing the transport of quasipar-
ticles such as electrons or exitons in solids. The conse-
quences have been investigated employing different
methods.1 A recent approach to this problem is based on
nonlinear equations.2–4 One of the simple models with vari-
eties of applications in different areas is the one-dimensional
discrete nonlinear Schro¨dinger equation5–12

i
dcm
dt

5V~cm111cm21!1~em2xmucmu2!cm . ~1!

Herecm(t) is the probability amplitude of the quasiparticle
at sitem at time t, V is the nearest-neighbor transfer matrix
element, andem andxm are the on-site energy and nonlin-
earity strength of themth site, respectively. Without any loss
of generality we assumeV51. Equation~1! arises in the
general problem of polaron formation due to the coupling of
quasiparticles with optical oscillators in the adiabatic ap-
proximation. The simple form of the Eq.~1! with em50 and
xm5x for all m has been studied numerically.5 However, in
a two-site system which is called the nonlinear adiabatic
quantum dimer, the self-trapping transition4,5 occurs at a
critical value of nonlinearity for arbitrary initial
conditions.6–9,11 The applications of the nonlinear dimer
analysis have been made to several experimental situations.
They are neutron scattering off hydrogen atoms trapped at
the impurity sites in metals,7 fluorescence depolarization,9

muon spin relaxation,11 nonlinear optical response of
superlattices,13 etc. The self-trapping transition also occurs in
extended nonlinear systems.12 A possible application is the
trapping of hydrogen ions around the oxygen atoms in metal
hydrides.14 All these studies have been performed for a finite
number of nonlinear sites by assuming that the quasiparticle
is localized within the nonlinear sites. However, the effect of
nonlinear sites embedded in a host lattice on the dynamics of
quasiparticles has been hardly studied in spite of its impor-

tance in real systems. Dunlapet al.15 studied the self-
trapping transition at a single nonlinear impurity embedded
in a host lattice. Chenet al.16 studied the time-averaged
probability at the initial occupation site in an infinite linear
chain containing one or many nonlinear impurities. In this
study the adiabatic assumption has been removed. They have
also studied the adiabatic case, albeit not in detail. So in this
paper we plan to study first the dynamics of a quasiparticle in
an infinite linear chain containing adiabatic Holstein-type
impurities.1 We use two different kinds of initial conditions.
The initial excitation is applied either at the end site or at the
middle site of the cluster of the impurities.

If we consider randomness in site energiesem and
xm50 for all m in Eq. ~1! Anderson theory17 predicts that
the particle will remain localized within a finite region of the
chain after a sufficient time. So it is important to investigate
the dynamics of~i! random nonlinear systems~randomness
in the nonlinearity parameter! and ~ii ! systems where disor-
der in site energies and nonlinearity coexists. Regarding the
first question Molina and Tsironis18 showed the ballistic
propagation of the untrapped electronic fraction in a nonlin-
ear random binary alloy. In this paper we study the transport
properties of completely random nonlinear systems.
Feddersen19 has studied the effect of nonlinearity on the
Anderson localization. Shepelyansky20 has obtained subdif-
fusive behavior in on-site-energy-disordered systems only
when the nonlinearity parameter exceeds a critical value. It is
well known that superdiffusive behavior is obtained in the
random-dimer model~RDM!.21 The RDM is characterized
by a set of nonscattered states around the dimer energy. This
leads to the superdiffusive behavior of the mean square dis-
placement of a particle. We study here the effect of nonlin-
earity on the superdiffusive behavior of the RDM.

The organization of the paper is as follows. In Sec. II, we
study the dynamics of the quasiparticle in a cluster of non-
linear sites embedded in a lattice. The initial excitation is
applied either at the end site or at the middle site of the
cluster. In Sec. III, we study the dynamics of different kinds
of random systems. We end this article by summarizing our
main results.
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II. CLUSTER OF NONLINEAR IMPURITIES EMBEDDED
IN A LATTICE

A. Initial excitation at the end of the cluster

We consider a system containing a cluster ofn number of
nonlinear impurity sites of equal strengthx embedded in a
host lattice. All the site energies are assumed to be zero. The
initial excitation is applied at left end site of the nonlinear
cluster. We call this the zeroth site. The sites on the left and
right of the initial occupation site are numbered as
m521,22,23, . . . andm51,2,3, . . . , respectively. We
first study here the time-averaged probability of the nonlin-
ear sites. For themth site it is defined as

^Pm&5 lim
T→`

1

TE0
T

ucm~ t !u2dt, ~2!

with ucm(0)u25dm,0 . Here,ucm(t)u2 is the probability of the
quasiparticle at themth site at timet. We solve the first-
order coupled nonlinear differential equations numerically
by using a fourth-order Runge-Kutte method. The system is
taken as a self-expanding lattice to avoid boundary effects.
For time averaging we have takenT5200 with an interval
DT50.01. The accuracy of the numerical integration is
checked through the total probability. Here, we consider the
cases forn52,3,4,5 and an asymptotically large value ofn
(n→`). For n→` we mean that the system contains two
semi-infinite chains. The perfect chain without any nonlin-
earity is connected to the other one which is a perfect non-
linear chain. The initial excitation is applied at the junction
where the nonlinear impurity exists. In Fig. 1 we have plot-
ted the time-averaged probability at the initial occupation
site,^P0&, as a function ofx for different values ofn. In all
these cases we find that^P0& starts increasing significantly
from x5xcr1. Forn52 the value ofxcr1 is;2.8. In general
the value ofxcr1 increases with increasing the size of the

nonlinear cluster. A sharp transition in̂P0& occurs at
xcr2;4.23 for all values ofn. In the region betweenxcr1 and
xcr2 we obtain fluctuations in̂P0&. For a better understand-
ing of this behavior we study next the time-averaged prob-
ability of the unoccupied nonlinear sites.

In Fig. 2 we have plotted the time-averaged probability of
the initially unoccupied nonlinear site (^P1&) of the dimer as
a function ofx. For comparison we have also plotted^P0&.
When the nonlinearity strengthx exceedsxcr1 we observe
both a ^P0& and ^P1& increase with increasingx and their
values are almost equal. This implies that the particle oscil-
lates with a finite probability among the dimer sites. This
partial localization or trapping within the cluster can be un-
derstood from the following. Att50 the energy level of the
sitesm521,0, and 1 are 0,2x, and 0, respectively. With
increasing the time the site probability ofm50 decreases
and ofm51 increases. Consequently, the energy level of the
sitesm50 and 1 moves upward and downward from the
original positions, respectively. Thus, the energy gap be-
tween the sitesm50 and 1 becomes smaller than the gap
betweenm521 and 0. So the initially localized particle at
site m50 favors the nearest-neighbor nonlinear site~i.e.,
m51) and the energy level of that site decreases. At the
same time the energy gap between the sitesm51 and 2
increases. Thus the particle feels a quantum well and it os-
cillates within the well with a finite probability. Of course,
some probability will escape along the leads in both direc-
tions of the dimer. Now the leakage of the probability
through the leads reduces with the increase ofx due to the
increase in the energy gaps between the sitesm50 and
21 and betweenm51 and 2. Whenx attains a critical
value, say,xcr1, these gaps become sufficiently large to trap
the particle within the cluster. Soxcr1 marks the onset of the
cluster-trapping transition of the particle. With a further in-
crease inx, the competition among the nonlinear sites to trap

FIG. 1. Time-averaged prob-
ability at the initial excitation site
(^P0&) as a function ofx for dif-
ferent sizes (n) of the nonlinear
cluster. The initial excitation is ap-
plied at the end site (m50) of the
cluster.
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the particle starts. Depending on the strength of the nonlin-
earity the particle is preferentially trapped either at the ini-
tially occupied site or at the unoccupied site~see the inset of
Fig. 2!. Whenx is just belowxcr2, the value of̂ P1& is much
larger than̂ P0&. But whenx crossesxcr2, we find a sharp
fall in ^P1& and an increase in̂P0&. For a further increase of
x, ^P0& increases and̂P1& decreases gradually. We do not
obtain any further transition. Soxcr2 is called the critical
value ofx for the self-trapping transition.

To understand the behavior in the fluctuation regime of
time-averaged site probabilities we study their temporal be-
havior. This is shown in Fig. 3. After a few oscillations, we
observe a transition where the amplitude of the two oscilla-
tions decreases suddenly and the phases are just opposite to
each other@see Fig. 3~a!#. The amplitude transition in the site
probabilities always occurs simultaneously. Furthermore, the
transition occurs from a peak of the oscillation in one case
and from a dip in the other one. Consequently, one of the site

FIG. 3. Plot of site probabili-
ties of the dimer sites embedded in
a host lattice as a function of time
(t) for different values of nonlin-
earity parameterx as follows:~a!
x53.72, ~b! x53.77, ~c! x54,
and ~d! x54.4. In all these cases
the initial excitation is applied at
the end site (m50) of the dimer.

FIG. 2. Time-averaged prob-
ability of initially occupied
(^P0&) and unoccupied (^P1&)
sites of the nonlinear dimer em-
bedded in a host lattice as a func-
tion of x. The inset shows details
of the^P0& and^P1& with x in the
fluctuation regime. The initial ex-
citation is applied at the end site
(m50) of the dimer.
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probabilities oscillates with a more mean probability than the
other. Thenceforth, the amplitude of the oscillation of the
probabilities decreases with time. This kind of transition is
obtained in the nonadiabatic nonlinear quantum dimer prob-
lem in the presence of rapid vibrational relaxation caused by
the damping in the lattice vibration.22 Two transitions are
observed, a static transition atx52V ~Ref. 5! and a dynamic
transition atx54V.6 The static transition is governed by the
relaxation term of the lattice vibration. Here, it seems that
the leads at both ends of the nonlinear dimer introduce ef-
fectively a damping term in the lattice vibration. This effect
appears through the escape probability from the dimer clus-
ter. However, the main difference here is that the transition
occurs at different values ofx. The transition time as well as
the number of the dynamical adiabatic dimer type oscilla-
tions decreases with increasingx @compare Figs. 3~a! and
3~b!#. Furthermore, nearxcr2 the number of dynamical adia-
batic dimer kind oscillations does not reduce for a wide
range ofx. Consequently, we do not find any fluctuation in
the time-averaged probability in this region~see the region
3.87,x,4.23 of the inset of Fig. 2!. The amplitude transi-
tion in the site probabilities occurs after half a period of the
oscillation @see Fig. 3~c!#. Thus, just belowxcr2, ^P1& is
found to be much larger than̂P0&. When x just crosses
xcr2 the transition occurs at a time which is even less than the
half period@see Fig. 3~d!#. As there is no dynamical adiabatic
dimer-type oscillation we do not find any further transition in
the amplitude of the site probabilities with the increase of
x. So in contrast to Ref. 16, we find that the quasiparticle
recognizes both the nonlinear impurities just abovexcr1 and
for a further increase ofx, the amplitude transition of the site
probabilities occurs. Furthermore, we obtain damped oscilla-
tion in the site probabilities forx.xcr2. This has to be con-
trasted with the regular oscillation abovex54 in an isolated
nonlinear dimer.6 We also study the time-averaged probabil-
ity at the nonlinear sites forn53, 4, and 5. In all these cases
we observe the same behavior as observed in the dimer em-
bedded in a host lattice.

For a relatively large size nonlinear cluster~e.g.,n530)
the partial localization of the particle is found to occur at

different regions of the cluster. We study the particle propa-
gation in a lattice for the case ofn530 for different values of
x. For small values ofx (<3.1) we obtain the delocalization
behavior of the particle. For a further increase ofx we find
that a solitonlike wave, extended over a few sites, moves
through the nonlinear cluster. Thus, we obtain an oscillation
of the solitonlike wave in the cluster. This is shown for
x53.51 in Fig. 4. It should be noted that the maximum
probability is found within this solitonlike wave. The time
period of the oscillation of the wave within the cluster is
increased with time. This indicates that if we increase the
time, the oscillation will cease and the solitonlike wave will
be localized within a few sites of the nonlinear cluster. This
is exactly obtained~see Fig. 4!. The number of oscillations
decreases before localization with increasingx. The position
of the localization of the wave, however, depends on the
value ofx but the pattern is not discerned here. For a further
increase ofx we do not find any oscillation. It moves along
the cluster and gets trapped within a few sites of the nonlin-
ear cluster. With increasing the value ofx the trapping re-
gion in general moves towards the initial excitation site and
we obtain a sharp self-trapping transition atxcr2;4.23. It
should be noted that the width and peak value of the soliton-
like wave decrease and increase, respectively, with increas-
ing the value ofx. Though we are not able to probe the value
of x where the solitonlike wave starts to form, it is within
x53.1 and 3.2. It should also be noted that the movement of
the solitonlike wave is obtained only when the size of the
nonlinear cluster is much larger than the width of the wave.

In asymptotic limit~i.e.,n→`) we also obtain the forma-
tion of a solitonlike wave extended over a few sites in the
nonlinear cluster. Here, we do not find any oscillation of the
wave as obtained in the case ofn530. For lower values of
x the wave moves along the lattice but finally it is trapped in
a region as shown in Fig. 5. If we increase the value ofx, the
localization regime of the wave moves towards the initially
occupied site and thus we obtain a sharp self-trapping tran-
sition at xcr2;4.23. The width and the peak value of the
wave decrease and increase, respectively, with increasing
x. However, we did not probe the region ofx where the
solitonlike wave starts to form.

B. Initial excitation at the middle of the cluster

We study here the same system but the initial excitation is
given at the middle site (m50) of the cluster. The cluster

FIG. 4. Electronic probability propagation profile as a function
of time (t) for x53.51. Here,n530 and the initial excitation is
applied at the end site (m50) of the nonlinear cluster. FIG. 5. Same as Fig. 4 butn→` andx53.6.
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contains an odd number of sites. As the system is symmetric
around the initial occupation site we do not find the asym-
metric probability distribution. So the properties in this sys-
tem should be different from the earlier cases. The time-
averaged probability at the initial excitation site is shown in
Fig. 6 for different valuesx andn. In the case of a single
nonlinear impurity system we obtain the self-trapping transi-
tion at xcr1;3.2.15,16 For higher values ofn we find that
^P0& increases significantly fromx5xcr1 and it characterizes
the cluster-trapping transition. The value ofxcr1 for n53 is
;2.4 which is much less than the self-trapping transition
value ofx for n51. The value ofxcr1 in general increases
with increasing the size of cluster. In the asymptotic limit
~i.e., a perfect nonlinear system! the value of the transition
point is xcr1

asy;3.5.23 We further study the time-averaged
probability of the neighboring nonlinear sites of the zeroth
site for n55 ~see Fig. 7!. We find that the time-averaged
probability of the other nonlinear sites also starts increasing
from xcr1. The value of̂ Pm& decreases as we go away from
the initial occupation site, i.e., asumu increases. This means
that beyondxcr1 the particle lies within a few sites of the
cluster with center at the initial excitation site. Again, as both
sides of the zeroth site contain nonlinearity the particle is
attracted by the nonlinear sites in both directions. Thus, with
increasing the size of the cluster we find that^P0& decreases
and consequently the value ofxcr1 increases. Beyondxcr1 we
find that the time-averaged probability of the nonlinear sites
~except the zeroth site! first increases and then decreases
with increasing the value ofx. But ^P0& gradually increases
with increasing the value ofx. Thus, we obtain the localiza-
tion of the particle atm50 with maximum probability which
is called self-trapping. However, in this case we do not ob-
tain any sharp self-trapping transition as seen in the previous
case. In the study of particle propagation we observe a local-
ized solitonlike wave with the peak value atm50. The width

and peak value of the wave decrease and increase, respec-
tively, with increasing the value ofx. This is obtained in all
cases discussed here.

III. RANDOM SYSTEMS

The ballistic motion of an initially localized particle in a
one-dimensional nonlinear random binary alloy has been ob-
served recently.18 Here we also show the ballistic motion of
a particle in completely random nonlinear systems. The ran-
dom nonlinear systems are characterized by random distribu-
tion of the nonlinearity parameter,x with the values
0,xm,xmax. All the site energies are assumed to be zero.
The initial excitation is applied at the zeroth site. Further-
more, we assume that the value ofx0 is xmax. The mean
square displacement~MSD! is defined as

^m2&5 (
m52`

`

m2ucm~ t !u2, ~3!

with the initial conditionucm(0)u25dm,0 . After some initial
transient behavior the speed (A^m2&/t) of the particle settles
down to a constant which depends onxmax. The speed of the
particle decreases with increasingxmax. Around a critical
value ofxmax the speed decreases drastically and beyond this
region we observe the slow decay of the speed. The un-
trapped portion of the probability leads to the ballistic mo-
tion of the particle above the critical value ofxmax.

18 To
obtain the critical value ofxmax we have plotted the time-
averaged probability of the initial excitation site for different
realizations in Fig. 8. The critical values ofxmax are found to
be in the range between;3 and;3.5. Beyond the critical
value,^P0& in general increases very fast with increasingx
but with a certain degree of sample-to-sample variation.

FIG. 6. Time-averaged prob-
ability of the initial excitation site
(^P0&) as a function ofx for dif-
ferent values ofn. The initial ex-
citation is applied at the middle
site (m50) of the nonlinear clus-
ter.
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Within the region betweenx;3 and x;4.5 we obtain a
large deviation in̂ P0& for different realizations. Beyond this
region ^P0& increases slowly asxmax goes up and the prob-
ability of all other sites decreases. In this limit the random
nonlinear lattice to a good approximation can be replaced by
a perfect lattice with a single nonlinear defect of strength
xmax. This is also true for perfect nonlinear system. It can be
shown that beyond the transition region ofx the speeds of
the particles in random nonlinear systems, in perfect nonlin-
ear systems, and in single nonlinear defect systems are al-
most equal. We study next the effect of nonlinearity in the
superdiffusive motion of the random-dimer model~RDM!.

The RDM is a binary alloy containing two types of atoms
with site energiesea andeb . The restriction on the random-
ness is that the site energyea appear in a pair which is called
a dimer. So the system is the random distribution of the
dimer and other site energyeb . If we assumeeb50 and
V51, then we obtain;AN number of nonscattered states
aroundea .

24 Here,N is the length of the sample. The MSD
goes aŝ m2&;t3/2.21 This is obtained only whenueau,2.
We now study the effect of nonlinearity on the transport
properties of the RDM. We assume that all the sites have
equal nonlinearity strength and it isx. It should be noted that
by adding the nonlinearity the effective site energies are al-

FIG. 7. Time-averaged prob-
ability (^Pm&) of the nonlinear
sites of the cluster of sizen55
embedded in a host lattice as a
function of x. The initial excita-
tion is applied at the middle site
(m50) of the cluster. As the sys-
tem is symmetric around the ze-
roth site ^P21&5^P1& and
^P22&5^P2&.

FIG. 8. Time-averaged prob-
ability of the initial excitation site
(^P0&) as a function ofxmax for
different realizations of random
nonlinear systems.
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tered. Thus initially the dimer correlation is distorted. As the
system contains an escape probability, the distortion of the
dimer correlation decreases with increasing time. So we ex-
pect the superdiffusive behavior in the MSD. This is exactly
obtained~see Fig. 9!. The exponent of the MSD is;1.5. We
also study the time-averaged probability of the initial excita-
tion site which is one of the dimer sites. We obtain a sharp
self-trapping transition at different values ofxcr2 which in-
creases asea increases. Thus, by increasing the site energy
we can alter the value ofxcr2. For negative values ofea the
value ofxcr2 remains almost constant. If the initial excitation
is applied at the site where dimer is absent, we obtain the
opposite behavior. That is, for positive values ofea the
xcr2 almost remain constant and for negative values ofea ,
andxcr2 changes significantly. Abovex cr2 we also obtain the
superdiffusive behavior in the MSD.

IV. SUMMARY

We have studied the dynamics of quasiparticles in dif-
ferent kinds of nonlinear systems. We first studied the dy-
namics of the quasiparticle in a cluster of nonlinear im-
purities embedded in a perfect linear host lattice. The initial
excitation is applied either at the end site or at the middle
site of the nonlinear cluster. In both the cases we studied
the time-averaged site probabilities and the particle propa-
gation. In the former case we observed the cluster-trapping

transition atxcr1 due to the localization of the quasiparticle
within the nonlinear cluster. Forx.xcr1 the amplitude
transition in the probabilities of the nonlinear sites is ob-
tained, showing that the escape probability through linear
sites is analogous to a damping term in the oscillator equa-
tion of motion. The absence of any well-defined transition
in the amplitude of the site probabilities beyondxcr2 indi-
cates the self-trapping at this value ofx. This value ofxcr2
is ;4.23 for any size of the clusters of the nonlinear
sites. This clearly indicates that a single mechanism is re-
sponsible for self-trapping. For relatively large size clusters
we observed that the localization of the quasiparticle occurs
in the cluster in the form of a solitonlike wave extending
over a few sites. This cluster localization starts between
x53.1 and 3.2. In the asymptotically large size of the non-
linear cluster we also find that the solitonlike wave moves
along the cluster but after some time it localizes in a region.
This localization time and the trapping region depend on
x. When the initial excitation is applied at the middle site of
the cluster, cluster localization also occurs. The critical value
in general increases with increasing the size of the cluster.
However, here we do not find any sharp self-trapping transi-
tion as well as the transition in the amplitude of site prob-
abilities.

The MSD in random nonlinear systems shows that the
ballistic motion and the speed decreases significantly in the
transition regime. The initial excitation is applied in this
case at the site with maximum nonlinearity. The time-
averaged probability of the initial excitation site is also
studied for different realizations. In each case we obtained a
rapid increase in̂ P0& within a range ofx. It should be
noted that beyond this region ofx the dynamics of the qua-
siparticle in the single nonlinear impurity system, in ran-
dom nonlinear systems, and in the perfect nonlinear sys-
tem are similar. The effect of nonlinearity on the superdiffu-
sive behavior of the RDM has also been studied. The expo-
nent of the MSD remains almost same. With increasing the
strength of the nonlinearity the prefactor of the MSD de-
creases with the increase inx. The self-trapping transition
also occurs in this case. The self-trapping value ofx in-
creases with increasingea providedx andea both are posi-
tive quantities. For negative values ofea , this value ofx
remains almost constant with increasingx. This aspect will
be studied later.
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