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The two known nonperturbative theories of localization in disordered wires, the Fokker-Planck approach due
to Dorokhov, Mello, Pereyra, and Kumar, and the field-theoretic approach due to Efetov and Larkin, are shown
to be equivalent for all symmetry classes. The equivalence had been questioned as a result of field-theoretic
calculations of the average conductance by Zirnbauer@Phys. Rev. Lett. 69, 1584~1992!#, which disagreed with
the Fokker-Planck approach in the symplectic symmetry class. We resolve this controversy by pointing to an
incorrect implementation of Kramers degeneracy in these calculations, and we derive modified expressions for
the first two conductance moments that agree well with existing numerical simulations from the metallic into
the localized regime.

I. INTRODUCTION

There are two known approaches to the theory of phase-
coherent conduction and localization in disordered wires:
The first is the Fokker-Planck approach of Dorokhov, Mello,
Pereyra, and Kumar.1–5 The second is the field-theoretic ap-
proach of Efetov and Larkin, which leads to a supersymmet-
ric nonlinears model.6,7 Both approaches provide a descrip-
tion of quantum transport that is independent of microscopic
details of the disordered wire. The only properties which
enter are its lengthL, the elastic mean free pathl , the
numberN of propagating transverse modes at the Fermi level
~referred to as ‘‘channels’’!, and the symmetry indexb
P$1,2,4% ~depending on the presence or absence of time-
reversal and/or spin-rotational symmetry!. In the first ap-
proach, the transfer matrix is expressed as a product of a
large number of random matrices. As more matrices are
added to this product, the transmission eigenvaluesTn ex-
ecute a Brownian motion.~TheTn are theN eigenvalues of
the transmission matrix productt†t.) The resulting Fokker-
Planck equation for theL dependence of the distribution
P(T1 , . . . ,TN) is known as the Dorokhov-Mello-Pereyra-
Kumar ~DMPK! equation. In the second approach, one starts
from the random Hamiltonian of the disordered wire and
then expresses averages of Green’s functions6,7 or moments
of the transmission eigenvalues8–11as integrals over matrices
Q containing both commuting and anticommuting variables.
These so-called supermatrices are restricted by the nonlinear
constraintQ251 and give rise to a field theory known as the
one-dimensional nonlinears model.

In the past decade, research on the Fokker-Planck and
field-theoretic approach has proceeded quite independently.
Recently, exact results for the average conductance^G&, its
variance varG, and the densityr(T)5^(nd(T2Tn)& of
transmission eigenvalues were obtained from both ap-
proaches. For the unitary symmetry class~no time-reversal
symmetry;b52), the DMPK equation was solved exactly

by Beenakker and Rejaei.12 The construction of a set of bior-
thogonal polynomials for this exact solution then allowed for
the exact computation of^G&, varG, andr(T) for arbitrary
N andL in the caseb52.13 Although there exists a formal
solution for the other two symmetry classes@orthogonal class
~time-reversal symmetry without spin-orbit scattering;
b51) and symplectic class~time-reversal symmetry with
spin-orbit scattering;b54)#,14 no exact results for̂G&,
varG, and r(T) have been obtained. Concerning thes
model, an important and substantial progress was the devel-
opment of ‘‘super-Fourier analysis’’ by Zirnbauer.10 This al-
lowed the exact calculation10,11of ^G& and varG for all b in
the thick-wire limit N→`, L/l →` at fixed ratioNl /L.
The eigenvalue densityr(T) was computed from thes
model by Rejaei,15 in the thick-wire limit and for the case
b52.

If one takes the thick-wire limit of theb52 results for
^G&, varG, andr(T) from the DMPK equation, they agree
precisely with those from thes model.13,15 For b51 and
4, a comparison of the two approaches has only been pos-
sible in the metallic regimel !L!Nl , where the results for
^G& and varG from the DMPK equation3–5 and from the
s model9,11,16agree with conventional diagrammatic pertur-
bation theory.17–20 The equivalence of the two approaches
outside the perturbative regime has been questioned13 as a
result of recent work by Zirnbauer,10 and by Mirlin, Müller-
Groeling, and Zirnbauer.11 Starting from thes model in the
thick-wire limit, they obtained a finite limit̂G&→e2/2h as
L/Nl →` in the caseb54. On the other hand, one can
prove rigorously13 that the DMPK equation gives
limL→`^G&50 for all b. It was this puzzling contradiction
that motivated us to search for a general proof of equivalence
of the DMPK equation and thes model, without the restric-
tion to b52.

In this paper, we present a general proof of the equiva-
lence of the two approaches, which applies to all three
symmetry classesb, to all length scalesL, and to the
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complete distribution of transmission eigenvalues des-
cribed by the p-point functions rp(T1 , . . . ,Tp)5@N!/
(N2p)!] *dTp11 . . . *dTNP(T1 , . . . ,TN) for arbitrary p.
We cannot relax the assumption that the numberN of propa-
gating channels in the disordered wire is@1, since it is
needed for the derivation of the one-dimensionals model.11

However, we can consider thes model formulation of a
thick disordered wire, which is coupled to the leads by
means of a point contact withN1<N transmitted modes,9

and show that it is mathematically equivalent to a DMPK
equation for a wire withN1 propagating channels. The
equivalence proof demonstrates that limL→`^G&50 in the
s model, in apparent contradiction with Zirnbauer’s work.
We have reexamined the calculation of Refs. 10 and 11, and
argue that forb54 the Kramers degeneracy of the transmis-
sion eigenvalues was not taken into account properly in the
super-Fourier analysis. This leads to a spurious ‘‘zero
mode,’’ which does not decay asL→`. Restoring Kramers
degeneracy, we obtain modified expressions for^G& and
varG, which decrease exponentially in the localized regime
and moreover agree well with numerical simulations.21

Both thes model and the DMPK equation were derived
from a number of different models for a disordered wire. The
original derivation of the DMPK equation by Dorokhov,1

which started from a model ofN coupled chains with de-
fects, was followed by the random-matrix formulation of
Mello, Pereyra, and Kumar.2 These authors considered a
product of random transfer matrices, drawn from an en-
semble of maximum entropy. Later it was shown that the
DMPK equation is insensitive to the choice of the ensemble,
the only relevant assumptions being weak scattering~mean
free pathl much greater than the Fermi wave lengthlF)
and equivalence of the scattering channels.22,23It is this latter
assumption that restricts the DMPK equation to a wire ge-
ometry. From the mathematical point of view, the DMPK
equation is the diffusion equation on a certain coset space of
transfer matrices.24 The one-dimensionals model was origi-
nally derived by Efetov and Larkin6,7 from a white noise
model for the disorder potential. Two later derivations used
random-matrix models for the Hamiltonian of the disordered
wire. Iida, Weidenmu¨ller, and Zuk~IWZ! adapted Wegner’s
n-orbital model25 to the study of transport properties.9 In this
description, the wire is modeled by a large number of disor-
dered segments in series, each segment having a random
Hamiltonian drawn from the Gaussian ensemble. An alterna-
tive derivation of thes model, due to Fyodorov and
Mirlin, 26 uses a random band matrix to model the Hamil-
tonian of the disordered wire. In the present paper, we follow
Ref. 11 and use the IWZ formulation of thes model.

Our proof of equivalence of the DMPK equation and the
s model builds on the ideas which were used by Rejaei15 to
calculater(T) from thes model forb52. Inspired by Naz-
arov’s diagrammatic calculation ofr(T) in the metallic
regime,27 Rejaei introduced a generating functionF, which
depends both on the transmission eigenvaluesTn and on the
radial parametersu i of the supermatrices in the unitarys
model. Rejaei was able to solve the 1d s model exactly for
b52 and thus obtained the densityr(T) as a function ofL,
by taking derivatives ofF with respect to theu i ’s. The re-
sultingr(T) could then be compared with the result from the
DPMK equation.13 We introduce a more general generating

function, which allows us to establish the equivalence of the
s model and the DMPK equation at the level ofp-point
functionsrp(T1 , . . . ,Tp), without actually having to com-
pute this function. This approach works also forb51 and
4, where no explicit solution of thes model is available.

The outline of the paper is as follows: In Sec. II, an out-
line of the equivalence proof is given. The full proof for the
s model with 838 supermatrices follows in Secs. III and IV,
with technical material in Appendixes A–C. For thep-point
functionsrp(T1 , . . . ,Tp), we have to consider thes model
with 8p38p supermatrices. This extension is described in
Appendix D. In Sec. V, we discuss the symplectic symmetry
class (b54) in relation to Refs. 10 and 11. By accounting
for Kramers degeneracy, we obtain modified expressions for
^G& and varG, which we compare with numerical simula-
tions of the IWZ model by Mirlin and Mu¨ller-Groeling.21We
conclude in Sec. VI.

II. OUTLINE OF THE EQUIVALENCE PROOF

Although our equivalence proof is technically rather in-
volved, the basic idea can be described in a few paragraphs.
In this section, we present an outline of the equivalence
proof for the smalls model (838 supermatrices!. The de-
tails are given in the following two sections and in the Ap-
pendixes A–C. Appendix D contains the necessary modifi-
cations to extend the proof tos models with supermatrices
of arbitrary size.

Part of the complexity of the problem is that thes model
and the DMPK equation focus on totally different objects. In
thes model, transport properties are expressed as functional
integrals over supermatricesQ.9,11 ~A supermatrix is a matrix
containing an equal number of commuting and anticommut-
ing elements. We follow the notation and conventions of
Refs. 8, 9, and 11.! For the smalls model, the 838 super-
matrices are parametrized as7,8

Q5T21LT, L5S 1 0

0 21D , ~2.1a!

T5S u21 0

0 v21D expS 0 1
2 û

1
2 û 0 D S u 0

0 vD , ~2.1b!

whereu andv are pseudounitary 434 supermatrices. Notice
that Q satisfies the nonlinear constraintQ251, hence the
name ‘‘nonlinear’’s model.~The letters is used for histori-
cal reasons.! The 434 supermatrixû is called the radial part
of Q. It has the form

û5S u1 u2 0 0

u2 u1 0 0

0 0 iu3 iu4

0 0 iu4 iu3

D , ~2.1c!

with the symmetry restrictions
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u450 if b51,

u25u450 if b52, ~2.1d!

u250 if b54.

While thes model works with the radial part of a super-
matrix, the DMPK equation works with the radial part of an
ordinary matrix~containing only commuting elements!. This
is the transfer matrixX. The radial part ofX is anN3N
diagonal matrixl̂, related to the eigenvalues ofXX†. The
eigenvalues ofXX† come inN inverse pairse6xn, related to
the diagonal elementsln of l̂ by ln5sinh2xn . Forb54, the

eigenvalues are twofold degenerate~Kramers degeneracy!.
The matrixl̂ then contains only theN-independent eigenval-
ues. The conductanceG is directly related to theln’s by the
Landauer formula2,28

G5
2e2

h (
n51

N

Tn5
2e2

h (
n51

N
1

11ln
, ~2.2!

since theN-independent transmission eigenvaluesTn are re-
lated to theln’s by Tn5(11ln)

21.
We connect both approaches by considering a generating

functionF( û,l̂), which depends on both radial matrices:

F~ û,l̂!5 )
n51

N

f ~ û,ln!, ~2.3a!

f ~ û,l!5Sdet2d/2@l1cosh2~ û/2!#5F @112l1cos~u31u4!#@112l1cos~u32u4!#

@112l1cosh~u11u2!#@112l1cosh~u12u2!#
Gd/2, ~2.3b!

d51 if b51,2; d52 if b54. ~2.3c!

The symbol Sdet stands for the superdeterminant of a super-
matrix. Forb52, this is the generating function introduced
by Rejaei.

An ensemble of disordered wires of lengthL provides a
distribution of l̂. The ensemble average^F( û,l̂)& contains
all statistical properties that are accessible from the smalls
model. These include the average conductance^G&, its vari-
ance varG, and the density of transmission eigenvalues
r(T). We explain in Appendix A how to extract these quan-
tities by taking derivatives of^F( û,l̂)&. The average
^F( û,l̂)& can be determined by each of the two approaches
independently, in terms of a partial differential equation for
the L dependence and an initial condition atL50. For the
s model on the one hand, the evolution equation reads

]

]L
^F~ û,l̂!&5

2

j
Dû^F~ û,l̂!&, ~2.4a!

whereDû is the~radial part of the! Laplacian on thes model
space, and wherej5bNl is the localization length. The
explicit form of Dû is given by7

Dû5
b

2d(i J21~ û !
]

]u i
J~ û !

]

]u i
, ~2.4b!

where the sum runs over the independent coordinates
u i@see Eq.~2.1d!# andJ( û) is the integration measure for the
radial decomposition~2.1!,

J~u1 ,u2 ,u3!5sinhu1 sinhu2 sin
3u3

3 )
s1 ,s2561

sinh22@ 1
2 ~u11s1u21 is2u3!#

if b51,

J~u1 ,u3!5sinhu1 sinu3 )
s1561

sinh22@ 1
2 ~u11 is1u3!#

if b52, ~2.4c!

J~u1 ,u3 ,u4!5sinu3 sinu4 sinh
3u1

3 )
s1 ,s2561

sinh22@ 1
2 ~u11 is1u31 is2u4!#

if b54.

The DMPK equation on the other hand, yields the evolu-
tion equation

]

]L
^F~ û,l̂!&5

2

j
^D l̂F~ û,l̂!&, ~2.5a!

whereD l̂ is a second order differential operator in the pa-
rametersln ,

D l̂5J21~ l̂! (
n51

N
]

]ln
J~ l̂!ln~11ln!

]

]ln
, ~2.5b!

J~ l̂!5 )
n.m

uln2lmub. ~2.5c!
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The key ingredient of the equivalence proof is the identity,

DûF~ û,l̂!5D l̂F~ û,l̂!, ~2.6!

which shows that the evolution withL of ^F( û,l̂)& is the
same in both approaches. Showing that the initial conditions
at L50 coincide as well, completes the equivalence proof.

III. ONE-DIMENSIONAL s MODEL

We begin the detailed exposition of the equivalence proof
with a formulation of thes model. As in Ref. 11, we use the
formulation of Iida-Weidenmu¨ller-Zuk ~IWZ!.9

A. The IWZ model

The IWZ model9,16 applies Wegner’sn-orbital model25 to
a wire geometry and supplements it by a coupling to ideal
~not disordered! leads, as in Landauer’s approach to
conduction.29 The left and right leads~labeled by indices 1
and 2! containN1 andN2 propagating modes each~per spin
direction forb51,2, or per Kramers doublet forb54). The
disordered wire of lengthL is assumed to consist ofK seg-
ments in series~Fig. 1!. The HamiltonianH of the disordered
wire without leads is represented by a matrixHmn

i j , where the
upper indicesi , j label the segments 1< i , j<K and the
lower indicesm, n label theM states~per spin direction or
Kramers doublet! within each segment. The elements ofH
are real (b51), complex (b52), or quaternion (b54)
numbers. The coupling between the states inside one seg-
ment is described by the matricesHmn

i i , which are distributed
according to the Gaussian ensemble,

P~Hii !5const3exp„2 1
4bMv1

22 Tr~Hii !2…. ~3.1!

Here,v1 is a parameter that governs the level density at the
Fermi level (E50). The coupling between the states of ad-
jacent segments is given by another set of Gaussian distrib-
uted random matricesHi j5(Hji )† ~with coupling parameter
v2),

P~Hi j !5const3exp~2 1
2bM2v2

22 TrHi jH ji !,

j5 i61. ~3.2!

Segments that are not adjacent are uncoupled,Hi j50 if
u i2 j u>2. The coupling to the ideal leads is described by a
fixed KM3(N11N2) rectangular matrixW5W11W2 with
real (b51), complex (b52), or quaternion (b54) ele-
ments. The matrixW has elementsWmn

i , wherei labels the
segment,m the states in the segment, andn the modes in the
leads. The elements ofW1 ~which describes the coupling to
lead 1! are nonzero only fori51 and 1<n<N1; the ele-
ments ofW2 ~coupling to lead 2! are nonzero only fori5K
andN1,n<N11N2 .

The scattering matrixS ~matrix elementsSnm) of the sys-
tem at energyE is given by9

S5122p iW†~E2H1 ipWW†!21W. ~3.3!

The indicesn,m correspond to lead 1 if 1<n,m<N1 and to
lead 2 if N1,n,m<N11N2 . The reflection and transmis-
sion matricesr ,r 8,t,t8 are submatrices ofS,

S5S r t 8

t r 8D . ~3.4!

SinceS is unitary, the productst†t and t8†t8 have the same
set of nonzero eigenvalues, denoted byTn5(11ln)

21. ~If
N2.N1 , there are alsoN22N1 transmission eigenvalues
which are zero, and can, therefore, be disregarded.!

B. The generating function

We now define the generating functionF( û,l̂) introduced
in the previous section. We start from the the relationship
~3.3! between the scattering matrix and the Hamiltonian in
the IWZ model. We consider the generating function,

F5Sdet21/2~E2H1 ipW1W1
†Q1 ipW2W2

†L!,
~3.5a!

H5H18 if b51,4;

H5~ReH !181 i ~ ImH !t3 if b52. ~3.5b!

Here, 18 is the 838 supersymmetric unit matrix andt3 is a
diagonal matrix, with elements (1,21,1,21,1,21,1,21).
The matrixL was defined in Eq.~2.1a!. Note thatQ is an
arbitrary supermatrix as in Eq.~2.1! and that it replaces the
matrix L in the coupling term of lead 1. In Appendix B we
show thatF depends only on the radial partû of the matrix
Q and that the only dependence onH is through the trans-
mission eigenvaluesTn5(11ln)

21. We also show that Eq.
~3.5! reduces to the functionF( û,l̂) defined in Eq.~2.3! of
the previous section.

In the following, we evaluate the ensemble average^F&,
using the supersymmetric formalism. We first express^F& as
a Gaussian integral over an 8MK-dimensional supervector
c:

^F&5 K E Dc exp@ 1
2 ic

†L~E2H1 ipW1W1
†Q

1 ipW2W2
†L1 i eL!c# L . ~3.6!

FIG. 1. Schematic drawing of the disordered wire and the leads
according to the IWZ model description. The left lead~lead 1!
containsN1 , the right lead~lead 2! N2 propagating channels. The
number of propagating channels in the disordered wire isN. In the
IWZ model, the disordered wire is divided intoK segments, each
having a random Hamiltonian drawn from the Gaussian ensemble.
The derivation of the 1d s model from the IWZ model assumes
N@1, but allows for finiteN1 andN2 .
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The convergence of the Gaussian integral is assured by the
parametrization~2.1! of the matrixQ. Performing the stan-
dard steps, described in Refs. 9 and 11, we obtain in the
relevant limitM→`,

^F&5E dQ1E dQKf 1~Q,Q1! f 2~L,QK!W~Q1 ,QK!,

~3.7a!

W~Q1 ,QK!5E dQ2 . . . E dQK21

3expS 2
dv2

2

2v1
2 (

i51

K21

Str~QiQi11!D ,
~3.7b!

f 1~Q,Q1!5expS 2
1

2
d (

n51

N1

Str ln~11xnQQ1!D ,
~3.7c!

f 2~Q,QK!5expS 2
1

2
d (
n5N111

N11N2

Str ln~11xnQQK!D .
~3.7d!

The numbersxn denote the eigenvalues of the matrices
(p/v1)W1

†W1 ~if 1<n<N1) or (p/v1)W2
†W2 ~if N1,n

<N11N2). The integerd was defined in Eq.~2.3c!.
Following Ref. 11, we consider the limitv1

2!v2
2 . Then

the sum in~3.7b! can be replaced by an integral and theQi
integrals yield a path integral. The discrete number of seg-
mentsK becomes the continuous~dimensionless! variables.
The propagator~3.7b! can be identified with the heat kernel
of the supersymmetric space, determined by the heat
equation,11

2b~v2 /v1!
2

]

]s
W~Q8,Q9!5DQ8W~Q8,Q9!,

lim
s→0

W~Q8,Q9!5d~Q8,Q9!. ~3.8!

The precise definition of the LaplacianDQ and the detailed
justification of Eq.~3.8! are contained in Ref. 11@DQ in Eq.
~3.8! differs by an additional factorb/(8d), with respect to
the notations of Ref. 11#. We, thus, arrive at the expression

^F&5E dQ8E dQ9 f 1~Q,Q8!W~Q8,Q9! f 2~L,Q9!.

~3.9!

The next step is to notice thatf 1(Q,Q8) has the
same symmetry as the heat kernel, i.e.
f 1(T

21QT,T21Q8T)5 f 1(Q,Q8), where T is an arbitrary
element as described in ~2.1a!. This implies
DQ8 f 1(Q,Q8)5DQf 1(Q,Q8) and hencê F& also satisfies
the heat equation,

2b~v2 /v1!
2

]

]s
^F&5DQ^F&. ~3.10!

Since ^F& only depends on the radial partû of Q, it is
sufficient to consider the radial partDû of the Laplacian

DQ . This radial partDû can be written as in Eq.~2.4b!. We,
thus, find that the ensemble average^F( û,l̂)& of the gener-
ating function defined in Eq.~2.3! satisfies the partial differ-
ential equation,

2b~v2 /v1!
2

]

]s
^F~ û,l̂!&5Dû^F~ û,l̂!&, ~3.11!

with the initial condition implied by Eq.~3.8!,

lim
s→0

^F~ û,l̂!&5E dQ8 f 1~Q,Q8! f 2~L,Q8!. ~3.12!

Together, Eqs.~3.11! and~3.12! determine the ensemble av-
erage of the generating functionF( û,l̂) evaluated in the
framework of the nonlinears model.

The two limits of the IWZ model, which were needed for
the derivation of Eq.~3.12!, M→` and v1

2/v2
2→0, restrict

the validity of Eq. ~3.12! to the case of weak disorder
(l @lF) and thick wires (N@1), respectively.9,11 Whereas
the requirement of weak disorder is also needed for the
DMPK equation, the requirement that the number of chan-
nels in the disordered wire be large is not. To see how the
latter requirement follows from the conditionv1

2!v2
2 , we

consider the expression for the average conductance^G& in
the diffusive metallic regime (l !L!Nl ),9,11

^G&5
2e2

h

Nl

L
5
2e2

h

4v2
2

v1
2s
. ~3.13!

Taking the linear dimension of a segment of the disordered
wire in the IWZ model of orderl ~i.e., s'L/l , see Ref. 9!,
we find thatv1

2!v2
2 corresponds toN@1. However, no re-

striction has been put to the numbersN1 andN2 of propa-
gating channels in the leads in the above derivation of the
s model, which allows us to consider finite values ofN1 and
N2 . This situation corresponds to the case in which the thick
disordered wire is coupled to the leads 1 and 2 by means of
point contacts, withN1 , N2 open channels. As in Ref. 11, the
case of a disordered wire without point contacts is recovered
in the limit N1 ,N2→`.

We conclude this section with some remarks about the
choice of initial conditions. In usual s model
calculations,10,11,15 one considers ideal coupling (xn51,
n51, . . . ,N11N2) and identifiesN5N15N2 ~equal num-
ber of channels in the leads and in the wire!. In the thick-
wire limit N→`, the function f i(Q,Q8) is just the d
function11 d(Q,Q8), and ^F& becomes identical to the heat
kernel itself@cf. Eq. ~3.9!#:

^F&5W~Q,L!, N15N25N@1. ~3.14!

For b52, this result was derived by Rejaei.15 In this case,
^F& has the d-function initial condition lims→0^F&
5d(Q,L). To make contact with the DMPK equation, we
need a different ‘‘ballistic’’ initial condition, such that all
Tn’s are unity in the limit of zero wire length. To achieve
this, we take ideal coupling and assume that one of the leads
has many more channels than the other. To be specific, we fix
N1 and take the limitN2→`. One then finds the initial con-
dition,
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lim
s→0

^F&5exp@2 1
2N1d Str ln~11QL!#

5S cosu31cosu4
coshu11coshu2

D N1d, 1<N1!N2 . ~3.15!

In the next section, we will see that this is precisely the
ballistic initial condition of the DMPK equation.

IV. DMPK EQUATION

Let us now evaluate the ensemble average of the generat-
ing function ~2.3! from the DMPK equation. The DMPK
equation is a Fokker-Planck-type equation for theL evolu-
tion of the probability distributionP(l̂) of theln’s:

1–5

1

2
~bN122b!l

]

]L
P~ l̂!

5 (
n51

N
]

]ln
ln~11ln!J~ l̂!

]

]ln
J21~ l̂!P~ l̂!, ~4.1a!

J~ l̂!5 )
n.m

uln2lmub, ~4.1b!

where l denotes the mean free path in the disordered wire
andN the number of propagating modes. There isno restric-
tion to N@1 in the DMPK approach. We take the ballistic
initial condition,

lim
L→0

P~ l̂!5 )
n51

N

d~ln201!. ~4.2!

The DMPK equation implies forF( û,l̂) the evolution
equation,2,4

]

]L
^F~ û,l̂!&5

]

]LE dl1 . . . E dlNF~ û,l̂!P~ l̂!

5
2

l
~bN122b!21^D l̂F~ û,l̂!&, ~4.3!

with the differential operatorD l̂ given by Eq.~2.5b!. In Ap-
pendix C, we prove the algebraic identity between the two
different types of Laplacians~2.4b! and ~2.5b! applied to
F( û,l̂),

DûF~ û,l̂!5D l̂F~ û,l̂!. ~4.4!

From Eqs.~4.3!, and ~4.4! we conclude that the average
^F( û,l̂)&, calculated in the framework of the DMPK equa-
tion, also fulfills the evolution equation~3.11! of the nonlin-
ears model, provided that we identify@cf. Eq. ~3.13!#,

4

s
~v2 /v1!

25
Nl

L
5

j

bL
, N@1. ~4.5!

Here, we introduced the localization lengthj5bNl ~notice
that the definition ofj in Ref. 11 differs by a factor 2/b).

The comparison of the initial conditions still remains. The
ballistic initial condition for the DMPK equation implies

lim
L→0

^F~ û,l̂!&5 f ~ û,l50!N5S cosu31cosu4
coshu11coshu2

D Nd,
~4.6!

which equals the initial condition~3.15! for the nonlinears
model@the thick-wire limit limL→0^F&5d(Q,L) is obtained
by letting N→` in the above expression#. This proves the
equivalence of both approaches, as far as the generating
function ~2.3! is concerned. In Appendix D, we extend the
equivalence proof top-point functionsrp(T1 , . . . ,Tp) for
arbitraryp.

V. THE CONTROVERSIAL SYMPLECTIC ENSEMBLE

The main motivation of this work was to resolve a con-
troversy between the DMPK equation and the one-
dimensionals model in the symplectic symmetry class
(b54). On the one hand, the DMPK equation implies13

^G&→0 asL→`. On the other hand, Zirnbauer10 finds from
thes model that̂ G&→ 1

2e
2/h asL→`.

The equivalence proof presented in this paper has as a
logical consequence that^G&→0, asL→`, if ^G& is evalu-
ated in the framework of thes model. To demonstrate this,
we apply the argument of Ref. 13. The DMPK equation im-
plies for the average dimensionless conductance
g5(n(11ln)

21 the evolution equation,4

j
]^g&
]L

52b^g2&2~22b!^g2&, ~5.1!

with g25(n(11ln)
22. This relation also follows from the

evolution equation~3.11! of thes model~expanding the gen-
erating function for smallu i and applying the results of Ap-
pendix A!. Since 0<g2<g2, we have

j
]^g&
]L

<2
1

2
b^g2&<0. ~5.2!

We suppose that limL→`^g& exists. Since ]^g&/]L<0
@Eq. ~5.2!#, this implies limL→`]^g&/]L50. Hence
limL→`^g2&50 by Eq.~5.2!. Since^g&2<^g2&, this implies
that also limL→`^g&50.

Where does the nonzero limit in Refs. 10 and 11 come
from? The ground-breaking contribution of Zirnbauer was to
use a ‘‘super-Fourier expansion’’ of the heat kernel
W(Q,Q8) in terms of eigenfunctions of the Laplacian in the
space of thes model. This type of Fourier analysis is well
understood for classical symmetric spaces.30 The develop-
ment and application of the supersymmetric analog for the
s model enabled Zirnbauer, Mirlin, and Mu¨ller-Groeling to
compute nonperturbatively the first two moments of the con-
ductance for any b. The nonzero limiting value
limL→`^g&51/4 for b54 resulted from a ‘‘zero mode,’’ a
nontrivial eigenfunction of the Laplacian with zero eigen-
value. Since this zero mode does not decay asL→`, it led
to the surprising conclusion of absence of localization in a
wire with spin-orbit scattering in zero magnetic field.10

An explicit expression for the zero mode was not obtained
in Refs. 10 and 11, but only its contribution to the moments
of the conductance was computed. By inspecting the initial
condition ~3.15! of the generating function for thes model,
we have been able to construct a zero mode forb54, but
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only if we ignore the Kramers degeneracy of the transmis-
sion eigenvalues. This unphysical zero mode, given by

f0~u1 ,u3 ,u4!5
cosu31cosu4
212 coshu1

, ~5.3!

arises by taking the initial condition~3.15!, with N151 and
b54, butwithout the extra factor two in the exponent, re-
quired by Kramers degeneracy. This unphysical initial con-
dition solves the evolution equation~3.11! for the ensemble
average of the generating function and implies an
L-independent average conductance^g&51/4. Although we
can not prove that Eq.~5.3! is Zirnbauer’s zero mode, the
coincidence with the limiting value limL→`^g&51/4,
limL→` var g51/16 is quite suggestive.

The reason why we have to exclude the zero mode~5.3!
from the Fourier expansion of the heat kernel is that it is not
single valued on thes model space of supermatricesQ,
although it is a well-defined function ofû. The parametriza-
tion ~2.1! of Q is 2p periodic in the anglesu65u36u4 . We
can then consider on the space of anglesu3 , u4 a parity
operationP, which consists of addingp to both of these
angles. This parity operation does not changeQ, but it
changes the zero mode~5.3!. The Laplacian~2.4b! commutes
with P and the eigenfunctions have, therefore, either even or
odd parity~eigenvalues11 or 21 of P, respectively!. The
physical modes of thes model must have even parity, since
only these functions are single valued. Forb54, it is the
Kramers degeneracy that ensures that the initial condition
~3.15! has even parity.

This observation led us to check the parity of the eigen-
functionsfn(Q) of the Laplacian in the super-Fourier analy-
sis of Refs. 10 and 11. We consider the eigenvalue equation,

Dûfn~u1 ,u3 ,u4!52«~n!fn~u1 ,u3 ,u4!, ~5.4!

for b54 in the limitu1→` at fixedu3 , u4 . In this limit, the
Laplace operator simplifies considerably,

Dû→eu1
]

]u1
e2u1

]

]u1
1

1

sinu3

]

]u3
sinu3

]

]u3

1
1

sinu4

]

]u4
sinu4

]

]u4
. ~5.5!

From this expression, one may identify the set of quantum
numbersn5(l,112n1,112n2), wherel is a real number
andn1 , n2 are non-negative integers. The asymptotic behav-
ior of the eigenfunctionsfn(u1 ,u3 ,u4) is given by

fn~u1 ,u3 ,u4!;exp@ 1
2 ~11 il!u1#@Pn1

~cosu3!Pn2
~cosu4!

1Pn2
~cosu3!Pn1

~cosu4!#, ~5.6!

with the Legendre polynomialsPn(x) and the eigenvalues

«~l,112n1,112n2!5 1
4 @l21~112n1!

21~112n2!
221#.

~5.7!

The parity of this eigenfunction is just (21)n11n2 and we
have to restrict ourselves to thosen1 and n2 with n11n2
even. Applying this selection rule to the expressions for
^g& and^g2& of Refs. 10 and 11, omitting the zero mode@and

the subsidiary series with quantum numbersn5( i ,l ,l62) of
Refs. 10 and 11, for which the asymptotic behavior~5.6! is
also valid#, and multiplying the surviving terms with a factor
of 2 to account for Kramers degeneracy, yields forb54 and
in the limit N15N25N→`, the expression

^gn&5252n (
l1 ,l251,3,5, . . . ,
l11 l2[2 ~mod4!

E
0

`

dl l~l211!

3tanh~pl/2!l 1l 2pn~l,l 1 ,l 2!

3 )
s,s1 ,s2561

~211 isl1s1l 11s2l 2!
21

3exp@2~l21 l 1
21 l 2

221!L/~2j!#, ~5.8a!

wheren51,2 and

p1~l,l 1 ,l 2!5l21 l 1
21 l 2

221, ~5.8b!

p2~l,l 1 ,l 2!5 1
4 @2l41 l 1

41 l 2
413l2~ l 1

21 l 2
2!

22l21 l 1
21 l 2

222#. ~5.8c!

Note that in our notations, the dimensionless conductanceg
is by a factor 2 smaller thang in the notations of Ref. 11.
Comparison of Eq.~5.8! with the b54 result of Ref. 11,
where the parity selection rule was not implemented, shows
that the perturbation expansion aroundL/j50 is the same.
@We checked this numerically up to order (L/j)3.# Outside
the perturbative regime, the two expressions are completely
different. Instead of a nonzero limit^g&51/4 for L/j@1, we
find from Eq.~5.8! the exponential decay

^g&' 16
9 ~2L/pj!23/2e2L/2j. ~5.9!

To test our result, we have compared it with a direct nu-
merical simulation of the IWZ model by Mirlin and
Müller-Groeling21 ~with M5100, N525, and an average
over 100 different samples!. The comparison is shown in
Figs. 2 and 3. It is clear that our Eq.~5.8! ~solid curve!

FIG. 2. The average conductancêg& multiplied by
4L/j5L/Nl for the symplectic symmetry class as a function of
4L/j for N@1. Shown are our result~5.8! ~solid!, the numerical
simulation of Ref. 21 (M5100,N525) ~dashed!, and the result of
Ref. 11~dotted!.
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agrees quite well with the simulation, while the result of Ref.
11 does not~dotted curve!.

Notice that this issue of the parity of the eigenfunctions
does not occur forb51,2, since there is only one compact
angle (u3) in those cases. The parity operation on theû
matrices exists only forb54. For completeness, we collect
in Figs. 4 and 5 the results for^g& and varg for all three
symmetry classes. Theb51,2 results are from Ref. 11, the
b54 result is our Eq.~5.8!.

VI. CONCLUSION

We have established the exact mathematical equivalence
of the two nonperturbative theoretical approaches to phase-
coherent transport and localization in disordered wires: The
Fokker-Planck equation of Dorokhov, Mello, Pereyra, and
Kumar1–5 and the one-dimensional supersymmetric nonlin-
ears model.6,7,9,11,26The equivalence has the logical conse-
quence that the absence of localization in the symplectic
symmetry class, obtained by Zirnbauer by super-Fourier
analysis of thes model, is not correct. By applying a selec-
tion rule enforced by Kramers degeneracy to the eigenfunc-
tions of Refs. 10 and 11, we have obtained modified expres-

sions for ^G& and varG, which decay exponentially as
L→`, and which agree well with existing numerical
simulations.21

Our equivalence proof has both conceptual and practical
implications. The DMPK equation and the 1d s model origi-
nated almost simultaneously in the early eighties, and at the
same institute.1,6Nevertheless, work on both approaches pro-
ceeded independently in the next decade. Knowing that, in-
stead of two theories, there is only one, seems to us a con-
siderable conceptual simplification of the field. It implies that
the microscopic derivations and random-matrix models de-
veloped for thes model apply as well to the DMPK equa-
tion, and vice versa.~We see only the restriction, that thes
model requires the thick-wire limitN→`, while the DMPK
equation applies to any number of channelsN.! Practically,
each of the two approaches has its own advantages, and now
that we know that they are equivalent, we can choose the
approach which is best suited to our needs and skills.
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APPENDIX A: TRANSPORT PROPERTIES DETERMINED
BY THE GENERATING FUNCTION

We list the transport properties of interest that can be
generated fromF( û,l̂), following Rejaei.15 Let us consider
the function

f ~z1 ,z2!5 K det~11z2t
†t !

det~11z1t
†t ! L , ~A1!

which equalŝ F( û,l̂)& at z252sin2(12u3), z15sinh2(12u1),
andu25u450. We write Eq.~A1! in the form

FIG. 3. As in Fig. 2 for the variance varg of the conductance.

FIG. 4. The average conductancêg& multiplied by
bL/j5L/Nl for the three symmetry classes, as a function of
bL/j for N@1. The curves forb51,2 are taken from Refs. 10 and
11 and the curve forb54 is calculated from Eq.~5.8!. Notice that
j5bNl is proportional tob, so that the scaling of the axes isb
independent.

FIG. 5. Same as Fig. 4, for the variance varg of the conduc-
tance.
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f ~z1 ,z2!5^exp@Tr ln~11z2t
†t !2Tr ln~11z1t

†t !#&.
~A2!

The standard expansion,8,9 with respect to smallz1 andz2 ,
yields the first two moments of the dimensionless conduc-
tanceg5(1/d)Trt†t ~with d511d4,b),

^g&5
1

d

]

]z2
f ~z1 ,z2!uz1505z2

52
1

d

]

]z1
f ~z1 ,z2!uz1505z2

, ~A3!

^g2&52
1

d2
]

]z1

]

]z2
f ~z1 ,z2!uz1505z2

. ~A4!

We may also consider15,27 derivatives of f (z1 ,z2) at
z15z2 . This may require the analytic continuation ofu1 ,
u3 to complex values, ifz1,0, z2.0, orz2,21. Therefore,
we introduce the functionf (z1) as

f ~z1!5
]

]z2
f ~z1 ,z2!uz25z1

5^Tr@~11z1t
†t !21t†t#&

5 (
n50

`

~2z1!
n^Tr~ t†t !n11&

5z1
21
„Tr~1!2^Tr@~11z1t

†t !21#&…. ~A5!

The average density of transmission eigenvalues now fol-
lows from

r~T!5^Trd~T2t†t !&

52
1

pT2
Imf @2~T1 i01!21#. ~A6!

The application of Eq.~A6! requires the analytical continu-
ation of both variablesz1 andz2 to values,21.

APPENDIX B: THE GENERATING FUNCTION
IN TERMS OF THE TRANSMISSION MATRIX

In this appendix, we show that Eq.~3.5! for the generating
function in the IWZ model equals Eq.~2.3!. We first consider
the two casesb51,4 of time-reversal symmetry, when
H5H18 in Eq. ~3.5a!. The necessary modifications for
b52 are described at the end.

We make use of the folding identity,

SdetS 1n A

B 1mD 5Sdet~1n2AB!5Sdet~1m2BA!.

~B1!

We abbreviateG65(E2H6 ipWW†)21. Taking out the
factor (E2H1 ipWW†L) ~with unit superdeterminant!, we
may rewrite Eq.~3.5a! as

F5Sdet21/2F 11S G1 0

0 G2D ipW1W1
†~Q2L!G

5Sdet21/2F 11 ipSW1
†G1W1 0

0 W1
†G2W1D ~Q2L!G ,

~B2!

where we have applied Eq.~B1! on B5W1
† . We now insert

the reflection matrixr5122p iW1
†G1W1 @see Eqs.~3.4!

and ~3.3!# into Eq. ~B2! and obtain

F5Sdet21/2F 12 ~11LQ!1
1

2 S r 0

0 r †D ~12LQ!G .
~B3!

Now we use the parametrization~2.1! for Q. Notice that Eq.
~B3! does not depend on the angular part ofQ @the matrices
u,v in ~2.1b!#. Hence, we may chooseQ as

Q5T21LT, T5exp~ 1
2Q!, Q5S 0 û

û 0D , ~B4!

which leads to

1
2 ~11LQ!5cosh~ 1

2 Q!T, 1
2 ~12LQ!52sinh~ 1

2 Q!T.

Inserting this in Eq.~B3! and taking out the factorT ~with
unit superdeterminant!, we get

F5Sdet21/2S cosh~ 1
2 û ! 2r sinh~ 1

2 û !

2r †sinh~ 1
2 û ! cosh~ 1

2 û ! D
5Sdet21/2@cosh2~ 1

2 û !2sinh2~ 1
2 û !r †r #

5Sdet21/2@11sinh2~ 1
2 û !t†t#, ~B5!

where we have again used~B1! and the relation
r †r512t†t imposed by unitarity of the scattering matrix.

The matrix t†t has eigenvalues Tn5(11ln)
21

(n51, . . . ,N1), which are twofold degenerate forb54,
hence

F5 )
n51

N1

Sdet2d/2@11sinh2~ 1
2 û !Tn#

5 )
n51

N1

Sdet2d/2@ln1cosh2~ 1
2 û !#. ~B6!

Here,d511db,4 . Equation~B6! establishes the connection
between the two expressions~2.3! and ~3.5! for the generat-
ing function.

The above calculation assumesH5H18 , hence
b51 or b54. In the case b52, one has instead
H5Re(H)181 i Im(H)t3 . Instead of two subblocks withr
andr † @see Eq.~B3!#, one now needs four subblocks withr ,
r T, r †, andr * . Repeating the calculation, one finds that the
final result~B6! remains the same.
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APPENDIX C: IDENTITY OF LAPLACIANS

The goal of this appendix is to prove Eq.~2.6!. Hereto, we
first analyze the structure of the left-hand side of Eq.~2.6! in
more detail.

The derivatives ofF( û,l̂), with respect tou j , are calcu-
lated using

]F~ û,l̂!

]u j
5S (

n51

N
1

f ~ û,ln!

] f ~ û,ln!

]u j
DF~ û,l̂!, ~C1!

]2F~ û,l̂!

]u j
2 5S (

n51

N
1

f ~ û,ln!

]2f ~ û,ln!

]u j
2 DF~ û,l̂!

1S (
nÞm

N
1

f ~ û,ln! f ~ û,lm!

] f ~ û,ln!

]u j

] f ~ û,lm!

]u j
D

3F~ û,l̂!. ~C2!

Inspection of Eqs.~2.4b!, ~C1!, and ~C2! shows that
DûF( û,l̂) has two contributions, one involving a single
summation over the channel indicesn, and another one in-
volving a double summation over channel indicesnÞm,

DûF~ û,l̂!5S (
n51

N

g1~ û,ln!DF~ û,l̂!

1S (
nÞm

N

g2~ û,ln ,lm!DF~ û,l̂!. ~C3!

Using the definition~2.3b! of f ( û,l̂), one may straightfor-
wardly calculate the functionsg1 and g2 . The expressions
are rather lengthy and will not be given here.

The right-hand side of Eq.~2.6! contains the differential
operatorD l̂ , which is given by Eq.~2.5b!. Simple algebra
yields

D l̂5 (
n51

N S ln~11ln!
]2

]ln
2 1~112ln!

]

]ln
D

1
b

2 (
nÞm

N

~ln2lm!21S ln~11ln!
]

]ln

2lm~11lm!
]

]lm
D . ~C4!

As a consequence,D l̂F( û,l̂) has again the structure of Eq.
~C3!, with g1 andg2 now given by

g1~ û,l!5
1

f ~ û,l!
Fl~11l!

]2f ~ û,l!

]l2 1~112l!
] f ~ û,l!

]l G ,
~C5a!

g2~ û,l1 ,l2!5
b/2

l12l2
Fl1~11l1!

f ~ û,l1!

] f ~ û,l1!

]l1

2
l2~11l2!

f ~ û,l2!

] f ~ û,l2!

]l2
G . ~C5b!

Comparison of Eqs.~C3! and ~C5! shows that the two defi-
nitions of the functionsg1 and g2 are identical. This com-
pletes the proof of Eq.~2.6!.

APPENDIX D: EXTENSION
TO HIGHER-DIMENSIONAL SUPERMATRICES

The argumentation presented in Secs. III and IV can be
generalized tos models, withQ matrices of arbitrary dimen-
sion 8p, with p>1. This generalized equivalence proof ap-
plies to thep-point functionsrp(T1 , . . . ,Tp), instead of to
the limited number of statistical quantities that can be gen-
erated by the ‘‘small’’s model withp51 ~compare Appen-
dix A!. Here, we briefly present the modifications with re-
spect to thep51 case. The modifications concern the
parametrization~2.1! and the generating function~2.3b!.

The main technical difficulty in such a generalization is
due to the radial part of the Laplace operator. The procedure
to calculate it on conventional symmetric spaces is
standard30 and is carried over to the supersymmetrics mod-
els, as described in Appendix B of Ref. 11. It is now more
convenient to use a slightly modified form of the parametri-
zation of theQ matrices, whereû in Eq. ~2.1a! is fully diag-
onal ~rather than block diagonal!:

û5S x̂ 0

0 i ŷ D ,
~ x̂!nm5xndnm , ~ ŷ!nm5yndnm , 1<n,m<2p.

~D1!

The symmetry restrictions are@cf. Eq. ~2.1d!#

yi5yi1p if b51,

xi5xi1p , yi5yi1p if b52, ~D2!

xi5xi1p if b54,

for i51, . . . ,p. In the casep51, we have the relations
x15u11u2 , x25u12u2 , y15u31u4 , andy25u32u4 be-
tween these parameters and theu i used in~2.1c!.

We can directly apply the results of Appendix B in Ref.
11, which are given in terms of the so-calledroots
a(Q)@with Q given as in~B4!#. The roots are linear func-
tions ofQ, which are the eigenvalues of the linear mapping
ad(Q)(Xa):5@Q,Xa#5a(Q)Xa , defined on a certain
super-Lie algebra.11 The eigenvectorsXa of the mapping are
the root vectors,which do not depend onQ. The radial
integration measureJ( û) in Eq. ~2.4b! can be expressed as30

J~ û !5 )
a.0

sinhma@ 1
2a~Q!#, ~D3!

where the integerma is the multiplicity of the roota ~the
dimension of the root space!. Both positive and negative val-
ues ofma can occur. The factor12 is due to the difference
between the normalization~2.1a! of Q and the one used in
Ref. 11. In Appendix A of Ref. 11, explicit formulas for the
roots as well as for the root vectors are given for the case
b51, p51.
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We have calculated the roots and the root vectors for all
b and arbitrary dimension 8p of theQ matrices. For sim-
plicity, we only present the results for the roots and their
multiplicities. Let us denote withpx (py) the number of in-
dependent xi (yi) parameters, i.e.:px52p,p,p and
py5p,p,2p for b51,2,4, respectively. Note that
bpx52py . We find eight different types of~positive! roots:

a~Q!5xj2xl ~1< j, l<px!, ma5b,

a~Q!5xj2 iy l ~1< j<px ,1< l<py!, ma522,

a~Q!5 i ~yj2yl ! ~1< j, l<py!, ma54/b,

a~Q!52xj ~1< j<px!, ma5b21,

a~Q!52iy j ~1< j<py!, ma54/b21, ~D4!

a~Q!5xj1xl ~1< j, l<px!, ma5b,

a~Q!5xj1 iy l ~1< j<px ,1< l<py!, ma522,

a~Q!5 i ~yj1yl ! ~1< j, l<py!, ma54/b.

The radial part of the Laplacian takes the form

Dû5(
j51

px

J21~ û !
]

]xj
J~ û !

]

]xj
1

b

2 (
j51

py

J21~ û !
]

]yj
J~ û !

]

]yj
.

~D5!
The expressions~2.3a! and~3.5a! for the generating function
now remain valid with the modifiedû of Eq. ~D1!, and with
Eq. ~2.3b! replaced by

f ~ û,l!5)
i51

py

@112l1cos~yi !#)
i51

px

@112l1cosh~xi !#
2b/2.

~D6!

It is convenient to use the variablesui5sinh2(12xi) and
v i52sin2(12yi) in terms of which the Laplacian has the form

Dû5(
j51

px

J̃21
]

]uj
uj~11uj !J̃

]

]uj

2
b

2 (
j51

py

J̃21
]

]v j
v j~11v j !J̃

]

]v j
, ~D7a!

J̃5 )
1< i, j<px

~ui2uj !
b )
1< i, j<py

~v i2v j !
4/b

3)
i51

px

)
j51

py

~ui2v j !
22

3)
i51

px

@ui~11ui !#
b/221)

i51

py

@v i~11v i !#
2/b21. ~D7b!

The generating functionF( û,l̂) is given by

F~ û,l̂!5 )
n51

N S )
i51

py

~11ln1v i !)
i51

px

~11ln1ui !
2b/2D .

~D8!

We have verified that the identity of Laplacians@Eq. ~2.6!#
remains true for the modified expressions~D7a! and ~D8!.
The calculations go in a similar way as shown in Appendix C
for p51. Now, we have to keep track of seven different
types of contributions with double and triple sums over func-
tions ofln , ui , v j .

In Appendix A, we have shown that the average density of
transmission eigenvaluesr(T) can be obtained from the gen-
erating function~2.3a!. Using the corresponding function for
the higher-dimensionals model considered here, it is
straightforward to get thep-point correlation functions
rp(T1 , . . . ,Tp).
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