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Quantum transport in disordered wires: Equivalence of the one-dimensional> model
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The two known nonperturbative theories of localization in disordered wires, the Fokker-Planck approach due
to Dorokhov, Mello, Pereyra, and Kumar, and the field-theoretic approach due to Efetov and Larkin, are shown
to be equivalent for all symmetry classes. The equivalence had been questioned as a result of field-theoretic
calculations of the average conductance by Zirnb@abys. Rev. Lett. 69, 1584992 ], which disagreed with
the Fokker-Planck approach in the symplectic symmetry class. We resolve this controversy by pointing to an
incorrect implementation of Kramers degeneracy in these calculations, and we derive modified expressions for
the first two conductance moments that agree well with existing numerical simulations from the metallic into
the localized regime.

[. INTRODUCTION by Beenakker and Reja¥i The construction of a set of bior-
thogonal polynomials for this exact solution then allowed for
There are two known approaches to the theory of phasehe exact computation d¢fG), var G, andp(T) for arbitrary
coherent conduction and localization in disordered wiresN andL in the case3= 213 Although there exists a formal
The first is the Fokker-Planck approach of Dorokhov, Mello,solution for the other two symmetry clasgesthogonal class
Pereyra, and Kumar.> The second is the field-theoretic ap- (time-reversal symmetry without spin-orbit scattering;
proach of Efetov and Larkin, which leads to a supersymmetg=1) and symplectic clas&time-reversal symmetry with
ric nonlineare model®’ Both approaches provide a descrip- spin-orbit scattering;3=4)],** no exact results fo{G),
tion of quantum transport that is independent of microscopicvar G, and p(T) have been obtained. Concerning the
details of the disordered wire. The only properties whichmodel, an important and substantial progress was the devel-
enter are its length, the elastic mean free pati, the  opment of “super-Fourier analysis” by ZirnbaulrThis al-
numberN of propagating transverse modes at the Fermi levelowed the exact calculatidhi of (G) and varG for all 8 in
(referred to as “channel9; and the symmetry index38  the thick-wire limit N—c«, L//—« at fixed ratioN//L.
€{1,2,4 (depending on the presence or absence of timeThe eigenvalue density(T) was computed from ther
reversal and/or spin-rotational symmetryn the first ap- model by Rejaet? in the thick-wire limit and for the case
proach, the transfer matrix is expressed as a product of g=2.
large number of random matrices. As more matrices are If one takes the thick-wire limit of thegg=2 results for
added to this product, the transmission eigenvaligex- (G), varG, andp(T) from the DMPK equation, they agree
ecute a Brownian motior(The T, are theN eigenvalues of precisely with those from the model***® For =1 and
the transmission matrix produttt.) The resulting Fokker- 4, a comparison of the two approaches has only been pos-
Planck equation for thé. dependence of the distribution sible in the metallic regim&’<L <N/, where the results for
P(T4, ... Ty) is known as the Dorokhov-Mello-Pereyra- (G) and varG from the DMPK equatiofr> and from the
Kumar (DMPK) equation. In the second approach, one startsr modef-**®agree with conventional diagrammatic pertur-
from the random Hamiltonian of the disordered wire andbation theory:’~2° The equivalence of the two approaches
then expresses averages of Green’s functibos moments outside the perturbative regime has been questicresl a
of the transmission eigenvalifed! as integrals over matrices result of recent work by Zirnbaué?,and by Mirlin, Muler-
Q containing both commuting and anticommuting variables Groeling, and Zirnbaueéf: Starting from thes model in the
These so-called supermatrices are restricted by the nonlinetlrick-wire limit, they obtained a finite limi{G)—e?/2h as
constraintQ?=1 and give rise to a field theory known as the L/N/— in the casef=4. On the other hand, one can
one-dimensional nonlinear model. prove rigorously® that the DMPK equation gives
In the past decade, research on the Fokker-Planck arlim__...{(G)=0 for all 8. It was this puzzling contradiction
field-theoretic approach has proceeded quite independentlihat motivated us to search for a general proof of equivalence
Recently, exact results for the average conductde its  of the DMPK equation and the model, without the restric-
variance vaiG, and the densityp(T)=(Z,8(T—T,)) of tiontoB=2.
transmission eigenvalues were obtained from both ap- In this paper, we present a general proof of the equiva-
proaches. For the unitary symmetry clds® time-reversal lence of the two approaches, which applies to all three
symmetry; 8=2), the DMPK equation was solved exactly symmetry classes3, to all length scaled, and to the
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complete distribution of transmission eigenvalues desfunction, which allows us to establish the equivalence of the
cribed by the p-point functions p,(Ty, ..., Tp)=[N!/ o model and the DMPK equation at the level pfpoint
(N=p)1JdTpsq ... JATYP(Ty, ..., Ty) for arbitrary p. functions p,(Ty, . ..,Tp), without actually having to com-
We cannot relax the assumption that the nunivexf propa-  pute this function. This approach works also f@+=1 and
gating channels in the disordered wire 3sl, since it is 4, where no explicit solution of thee model is available.
needed for the derivation of the one-dimensiomahodel*! The outline of the paper is as follows: In Sec. I, an out-
However, we can consider the model formulation of a line of the equivalence proof is given. The full proof for the
thick disordered wire, which is coupled to the leads byo model with 8<8 supermatrices follows in Secs. Ill and IV,
means of a point contact witN;<N transmitted mode%, with technical material in Appendixes A—C. For tpepoint

and show that it is mathematically equivalent to a DMPKfunctionspy(T4, ...,T,), we have to consider the model
equation for a wire withN; propagating channels. The with 8pX8p supermatrices. This extension is described in
equivalence proof demonstrates that lim(G)=0 in the Appendix D. In Sec. V, we discuss the symplectic symmetry
o model, in apparent contradiction with Zirnbauer’s work. class (3=4) in relation to Refs. 10 and 11. By accounting
We have reexamined the calculation of Refs. 10 and 11, anfbr Kramers degeneracy, we obtain modified expressions for
argue that fo3=4 the Kramers degeneracy of the transmis-(G) and varG, which we compare with numerical simula-
sion eigenvalues was not taken into account properly in th&ions of the IWZ model by Mirlin and Miler-Groeling?! We
super-Fourier analysis. This leads to a spurious “zercconclude in Sec. VI.

mode,” which does not decay ds—~. Restoring Kramers
degeneracy, we obtain modified expressions @) and
var G, which decrease exponentially in the localized regime

and moreover agree well with numerical simulatiéhs. Although our equivalence proof is technically rather in-
Both theo model and the DMPK equation were derived volved, the basic idea can be described in a few paragraphs.
from a number of different models for a disordered wire. The|n this section, we present an outline of the equivalence
original derivation of the DMPK equation by DOfOkth, proof for the smallc model (8}(8 Supermatrices The de-
which started from a model dl coupled chains with de- tails are given in the following two sections and in the Ap-
fects, was followed by the random-matrix formulation of pendixes A—C. Appendix D contains the necessary modifi-
Mello, Pereyra, and Kumar.These authors considered a cations to extend the proof @ models with supermatrices
product of random transfer matrices, drawn from an enof arbitrary size.
semble of maximum entropy. Later it was shown that the part of the complexity of the problem is that temodel
DMPK equation is insensitive to the choice of the ensembleand the DMPK equation focus on totally different objects. In
the only relevant assumptions being weak scattefmgan  the o model, transport properties are expressed as functional
free path/” much greater than the Fermi wave length)  integrals over supermatric€s ®* (A supermatrix is a matrix
and equivalence of the Scattering Chanﬁ%?glt is this latter Containing an equai number of Commuting and anticommut-
assumption that restricts the DMPK equation to a wire geing elements. We follow the notation and conventions of

ometry. From the mathematical point of view, the DMPK Refs. 8, 9, and 11.For the smallo model, the 88 super-
equation is the diffusion equation on a certain coset space Qhatrices are parametrized’4s

transfer matrice$’ The one-dimensionat model was origi-
nally derived by Efetov and Larkif from a white noise

Il. OUTLINE OF THE EQUIVALENCE PROOF

model for the disorder potential. Two later derivations used 10
random-matrix models for the Hamiltonian of the disordered Q=T AT, A=|go -1/, (219
wire. lida, Weidenmller, and Zuk(IWZ) adapted Wegner’s
n-orbital modef® to the study of transport propertign this
description, the wire is modeled by a large number of disor- il o 0 19\ /u o
2

dered segments in series, each segment having a random

Hamiltonian drawn from the Gaussian ensemble. An alterna- =l o vt|®R1p o0 v (2.1b

tive derivation of the o model, due to Fyodorov and

Mirlin,?® uses a random band matrix to model the Hamil-

tonian of the disordered wire. In the present paper, we followwhereu andv are pseudounitary X4 supermatrices. Notice

Ref. 11 and use the IWZ formulation of tle model. that Q satisfies the nonlinear constrai@®=1, hence the
Our proof of equivalence of the DMPK equation and thename “nonlinear”s model.(The lettero is used for histori-

o model builds on the ideas which were used by Refdel  cq reasons.The 4x 4 supermatrixd is called the radial part
calculatep(T) from theo model for 3= 2. Inspired by Naz-  of Q. It has the form

arov’s diagrammatic calculation of(T) in the metallic
regime?’ Rejaei introduced a generating functién which

depends both on the transmission eigenvailyeand on the 01 0, 0 0
radial parameter®; of the supermatrices in the unitargy - 0, 6, O 0
model. Rejaei was able to solve thd &r model exactly for 0= 0 0 6. io, | (219
B=2 and thus obtained the denspyT) as a function oL, . 3 ) 4
by taking derivatives of with respect to theg;’s. The re- 0 0 i6, 65

sulting p(T) could then be compared with the result from the
DPMK equation®* We introduce a more general generatingwith the symmetry restrictions
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6,=0 if B=1, eigenvalues are twofold degenerdieramers degeneragy
The matrix\ then contains only thBl-independent eigenval-
0,=60,=0 if B=2, (2.19 ues. The conductandg is directly related to tha.,'s by the
Landauer formufa®®
2 N 2 N
While the ¢ model works with the radial part of a super- G= ziz T zzi 1 2.2
matrix, the DMPK equation works with the radial part of an hast " h &1, '

ordinary matrix(containing only commuting element§ his

is the transfer matrixX. The radial part ofX is an NXN since theN-independent transmission eigenvalUgsare re-
diagonal matrixx, related to the eigenvalues ®X'. The lated to thex,’s by T,=(1+\,) .

eigenvalues oK X' come inN inverse paire™*n, related to We connect both approaches by considering a generating
the diagonal elements, of A by A ,=sinl?x,. For 3=4, the  function F(6,\), which depends on both radial matrices:

N
F(o.0=1I1 (8.0, (2.39

[1+2\+cog O3+ 0,)][1+ 2\ +cog 63— 60,)] |92

y: _ d/2 y: _
f(6.0)=Sdet [\ +cost(012)]=| 5 o g. % 0, 1 2n T cosh 6= 6,)]| (2.39
d=1 if g=1,2; d=2 if B=4. (2.30
|
The symbol Sdet stands for the superdeterminant of a super- j( 4, ,6,, ;) =sinhg; sinhg, sin’é;,
matrix. For 8=2, this is the generating function introduced
by Rejaei. X sinh [ 3( 01+ 5,60,+is,60
An ensembIAe of disordered wires of qug{hprovides a sl,szllil [2(617516,71S765)]
distribution of .. The ensemble averad&(6,\)) contains .
all statistical properties that are accessible from the small if B=1,

model. These include the average conductd@g its vari-
ance varG, anq .the densit'y of transmission eigenvalues J(6y,65) =sinhg, sind, H Sint [ (0, +is,605)]
p(T). We explain in Appendix A how to extract these quan- s;=+1

tites by taking derivatives of(F(#,\)). The average )

(F(@,X)) can be determined by each of the two approaches if p=2, (2.49
independently, in terms of a partial differential equation for
the L dependence and an initial condition lat 0. For the

o model on the one hand, the evolution equation reads

J(60y,63,0,)=sinb; sind, sinito,

x I sinh2[3(0,+is,05+iS.04)]
Sl,Szzil

2

AR, (2.49 if g=4.

The DMPK equation on the other hand, yields the evolu-
tion equation

ﬁ RS —
SC(F(BR) =

whereAj is the(radial part of thg¢ Laplacian on ther model
space, and wheré= 8N/ is the localization length. The

17 ~ o~ 2 PO
explicit form of A is given by SL(F(O.N)= E<DXF(9J\)>- (2.5a

whereD; is a second order differential operator in the pa-
rametersh ,,

_B NN
AH—EZJ (0)753(0) 55 (2.4b N ;
~—1"1 . .
D;=J ()\)zl&)\nJ()\))\n(lJr)\n)m\n, (2.5h
where the sum runs over the independent coordinates
0,[see Eq(2.1d] andJ(#) is the integration measure for the I = I1 = A . (2.50
radial decompositiori2.1), asmoo M
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Segments that are not adjacent are uncouphd=0 if
li—j|=2. The coupling to the ideal leads is described by a
fixed KM X (N;+ N,) rectangular matridsV=W, + W, with

real (3=1), complex (3=2), or quaternion g=4) ele-
ments. The matriXV has element$V,,, wherei labels the
segmentu the states in the segment, amdhe modes in the
leads. The elements &%, (which describes the coupling to
lead 1 are nonzero only for=1 and l=n=<N;; the ele-
ments ofW, (coupling to lead Rare nonzero only for=K

FIG. 1. Schematic drawing of the disordered wire and the leads,,q Ny <n<N;+N,.

according to the IWZ model description. The left leddad 1
containsN, the right lead(lead 2 N, propagating channels. The
number of propagating channels in the disordered wil.i$n the
IWZ model, the disordered wire is divided int6 segments, each

having a random Hamiltonian drawn from the Gaussian ensemble.

The derivation of the d o model from the IWZ model assumes
N>1, but allows for finiteN; andN,.

The key ingredient of the equivalence proof is the identity,
AF(6,0)=D;F(6,\), (2.6)

which shows that the evolution with of (F(Ae,)A\)) is the

The scattering matri$ (matrix elementss,,,,) of the sys-
tem at energyE is given by
S=1-27iWH(E-H+izWW")w. (3.3

The indicesn,m correspond to lead 1 if£n,m=<N; and to
lead 2 if Ny<n,m=N;+N,. The reflection and transmis-
sion matrices,r’,t,t’ are submatrices ds,

(3.9

same in both approaches. Showing that the initial conditiongince S is unitary, the products’t andt’'t’ have the same

atL=0 coincide as well, completes the equivalence proof.

Ill. ONE-DIMENSIONAL o MODEL

set of nonzero eigenvalues, denotedTgy=(1+\,,) L. (If
N,>N,, there are alsd\,—N; transmission eigenvalues
which are zero, and can, therefore, be disregajded.

We begin the detailed exposition of the equivalence proof

with a formulation of thes model. As in Ref. 11, we use the
formulation of lida-Weidenmiler-Zuk (IWZz).°

A. The IWZ model
The IWZ model*® applies Wegner’'si-orbital modef® to

a wire geometry and supplements it by a coupling to ideal

(not disorderedl leads, as in Landauer's approach to
conductior?® The left and right lead¢labeled by indices 1
and 2 containN; andN, propagating modes eacper spin
direction for3=1,2, or per Kramers doublet f@#=4). The
disordered wire of length is assumed to consist &f seg-
ments in seriegFig. 1). The HamiltoniarH of the disordered
wire without leads is represented by a matﬂigv, where the
upper indicesi, j label the segments<li,j<K and the
lower indicesu, v label theM states(per spin direction or
Kramers doublgtwithin each segment. The elementstbf
are real 3=1), complex 3=2), or quaternion g=4)
numbers. The coupling between the states inside one se
ment is described by the matrice, ,, which are distributed
according to the Gaussian ensemble,

P(H")=constxexp(— 8Mv; ? Tr(H")?).  (3.1)

B. The generating function

We now define the generating functiéifé,\) introduced
in the previous section. We start from the the relationship
(3.3) between the scattering matrix and the Hamiltonian in
the IWZ model. We consider the generating function,

F=Sdet YAE— 77+ 7W,WIQ+i7W,W}A),
(3.53

T=H1g if B=14;

F=(ReH)1g+i(ImH) 75 if B=2. (3.5b
Here, % is the 8x 8 supersymmetric unit matrix antg is a
diagonal matrix, with elements (£1,1,—1,1,—1,1,—1).
The matrix A was defined in Eq(2.19. Note thatQ is an
arbitrary supermatrix as in Eq2.1) and that it replaces the
matrix A in the coupling term of lead 1. In Appendix B we
Show thatF depends only on the radial pattof the matrix
Q and that the only dependence binis through the trans-
mission eigenvalues,=(1+\) ‘Al. We also show that Eqg.
(3.5 reduces to the functioR (6,\) defined in Eq.2.3) of
the previous section.

Here,v, is a parameter that governs the level density at the In the following, we evaluate the ensemble averglg,

Fermi level E=0). The coupling between the states of ad-

using the supersymmetric formalism. We first exprdssas

jacent segments is given by another set of Gaussian distritit Gaussian integral over arMK-dimensional supervector

uted random matriceld' = (HI")T (with coupling parameter
U2)1

P(H)=consi exp(— 38M?%v, 2 TrHIHI!),

j=i+1. (3.2

v
(F)= < f T exfd iy A(E— 7+i7W,WIQ

+iww2w;A+ieA)¢]>. (3.6
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The convergence of the Gaussian integral is assured by the,. This radial partA; can be written as in Eq2.4b). We,
parametrizatior(2.1) of the matrixQ. Performing the stan- thus, find that the ensemble averddd 6,\)) of the gener-

dard steps, described in Refs. 9 and 11, we obtain in thating function defined in Eq2.3) satisfies the partial differ-
relevant limitM — oo, ential equation,

<F>:f dQlj dQkf1(Q,Q1) f2(A, Q)W(Q1,Qk), 23(02/vl)2%<F(b,X)>=Aé<F(¢A9,)A\)>, (3.11

(3.79
with the initial condition implied by Eq(3.9),

W(QliQK):f dQZ---JdQKfl o
Iim<F(61)\)>:fdQ,fl(QaQ,)fZ(A-Q/)- (3.12
p( dov? Kil ) 50
e ex 271 i=1 SMQQi+) | Together, Egs(3.11) and(3.12 determine the ensemble av-
(3.7H erage of the generating functiof(6,\) evaluated in the
framework of the nonlineas- model.
1 M The two limits of the IWZ model, which were needed for
fl(Q,Q1)=ex;;( — §d > str In(1+anQ1)), the derivation of Eq(3.12, M—o andv?/v3—0, restrict
n=1 the validity of Eq. (3.12 to the case of weak disorder
(3.79 (/>\g) and thick wires N>1), respectively:}! Whereas
N;+N, the requirement of weak disorder is also needed for the
fZ(Q,QK)zex;{ - Ed > st In(1+anQK))_ DMPK equation, the requirement that the number of chan-
n=N;+1 nels in the disordered wire be large is not. To see how the
(3.7  |atter requirement follows from the conditiort<v3, we

The numbersx, denote the eigenvalues of the matricesconsider the expression for the average conductéBoen
(mlv)WIW, (if 1<n=N;) or (w/v)WiW, (if N;<n the diffusive metallic regimeA<L<N/),”
=<N;+N,). The integerd was defined in Eq(2.30.
i i imit2<p2 2¢? N/ 2€? 4v}

Following Ref. 11, we consider the limitf<v;. Then (G)= e Yo _es 2 3.13
the sum in(3.7b can be replaced by an integral and Qg h L h v3s’ '
integrals yield a path integral. The discrete number of seg- . ) . . )
mentsk becomes the continuoddimensionlessvariables. ~ 12king the linear dimension of a segment of the disordered
The propagatof3.7b can be identified with the heat kernel WIF€ In the IWZ model of order” (i.e.,s~L//, see Ref. §

of the supersymmetric space, determined by the hedte find thatvi<vj corresponds tdNs>1. However, no re-
equationtt striction has been put to the numbéds and N, of propa-

gating channels in the leads in the above derivation of the

, 0 o o o model, which allows us to consider finite values\bf and
2B(valvy) 7SW(Q Q") =40 W(Q",Q"), N,. This situation corresponds to the case in which the thick
disordered wire is coupled to the leads 1 and 2 by means of
IMW(Q’,Q")=46(Q’,Q"). (3.9  point contacts, witlN,, N, open channels. As in Ref. 11, the
s—0 case of a disordered wire without point contacts is recovered

in the limit Ny ,N,— o0,

We conclude this section with some remarks about the
choice of initial conditions. In usual ¢ model
calculations’®!**> one considers ideal couplingx{=1,
n=1,... N;+N,) and identifiesN=N;=N, (equal num-

ber of channels in the leads and in the wirln the thick-
<F>=fdQ’fdQ”fl(Q,Q’)W(Q’,Q”)fz(A,Q”). wire limit N—o, the function f;(Q,Q’) is just the &
3.9 function" 5(Q,Q’), and(F) becomes identical to the heat
kernel itself[cf. Eq. (3.9]:

The precise definition of the Laplaciak, and the detailed
justification of Eq.(3.8) are contained in Ref. 1A in Eq.
(3.8) differs by an additional factog/(8d), with respect to
the notations of Ref. J1We, thus, arrive at the expression

The next step is to notice thaf;(Q,Q’) has the
samel symlmetry as the heat kernel, i.e. (F)=W(Q,A), N;=N,=N>1. (3.19
(];Ilglr-nen(tg-r,;s Q JgscIilb(gj’Q 3n ghle{;eT Jl_shizn aimgg For B=2, this result was derived by Rejdgiln this case,
Ao f1(Q.Q")=Af1(Q.Q") and hence(F) also satisfies (F) has the é&-function initial  condition IlngﬂQ(F>
the heat equation, = 5(Q,A)._ To make contact \_/v_lth the DMPK equation, we
need a different “ballistic” initial condition, such that all
J T,’s are unity in the limit of zero wire length. To achieve
23(02/U1)20—,_3<F>:AQ<F>- (3.10 this, we take ideal coupling and assume that one of the leads
R has many more channels than the other. To be specific, we fix
Since (F) only depends on the radial pa#& of Q, it is N, and take the limilN,—o<. One then finds the initial con-
sufficient to consider the radial patt; of the Laplacian dition,
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lim(F)=exd —

s—0

IN;d Str In(1+QA)]
co¥45+ coy
=( 3 4 (3.15

1d
— <N,;<N,.
coshy; + cosh92> R

In the next section, we will see that this is precisely the

ballistic initial condition of the DMPK equation.

IV. DMPK EQUATION
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lim (F(8,\))=f(6,\=0)N=

( co¥3+ Ccosh, ) Nd
L—0

coshy, + coslv,
(4.6

which equals the initial conditiofB.15 for the nonlinears
model[the thick-wire limit lim__ o(F)= 8(Q,A) is obtained

by letting N—« in the above expressignThis proves the
equivalence of both approaches, as far as the generating
function (2.3) is concerned. In Appendix D, we extend the
equivalence proof tg-point functionsp,(Ty, ... ,Tp) for

Let us now evaluate the ensemble average of the generadtbitraryp.

ing function (2.3) from the DMPK equation. The DMPK
equation is a Fokker-Planck-type equation for thevolu-

tion of the probability distributiorP()\) of the \,’s:*™®

1 PR
5 (BN+2-p)/5-P(\)

N

e n(1+>xn>J(x> )T VPO, (419
IN=TT INg=2nl?, (4.1b

where/” denotes the mean free path in the disordered wird =2

andN the number of propagating modes. Theradsestric-
tion to N>1 in the DMPK approach. We take the ballistic
initial condition,

N

lim P()\)—H S(Ay—07").
L—0

4.2

The DMPK equation implies forF(@,X) the evolution
equatior®*

d ~a 0 PENY=Ta¢
I<F(9,)\)>_IJ’ d)\l...Jd)\NF(H,)\)P(A)

2 ~ o~
=Z(BN+2=p)"YDiF(6.N), (4.3

with the differential operatoD; given by Eq.(2.5b. In Ap-

pendix C, we prove the algebraic identity between the twd4S€ @

different types of Laplaciang2.4b and (2.5 applied to
F(o,N),

AyF(6,\)=D3F(0,\). (4.9

From AEqs.(4.3), and (4.4) we conclude that the average
(F(6,N)), calculated in the framework of the DMPK equa-
tion, also fulfills the evolution equatiof8.11) of the nonlin-
ear o model, provided that we identificf. Eq. (3.13)],

_ £
-

Here, we introduced the localization lengtl BN/ (notice
that the definition of in Ref. 11 differs by a factor &).

N/
L

N> 1. (4.5

5(02/01)2:

V. THE CONTROVERSIAL SYMPLECTIC ENSEMBLE

The main motivation of this work was to resolve a con-
troversy between the DMPK equation and the one-
dimensional ¢ model in the symplectic symmetry class
(B=4). On the one hand, the DMPK equation implies
(G)—0 asL—o. On the other hand, Zirbau&finds from
the o model that{ G)— 3e?/h asL —oe.

The equivalence proof presented in this paper has as a
logical consequence th&6)—0, asL— o, if (G) is evalu-
ated in the framework of the- model. To demonstrate this,
we apply the argument of Ref. 13. The DMPK equation im-

plies for the average dimensionless conductance
2(1+X,) ! the evolution equatiof,
<9>
— =~ B0)—(2-B)g2), (5.1)

with g,=3,(1+ )\n)*z. This relation also follows from the
evolution equatiori3.11) of the o model(expanding the gen-
erating function for small9 and applying the results of Ap-

pendix A). Since 6<g,=<g? we have
Kg) 1
E— - =—5B(g")=0. (5.2

We suppose that lim,..(g) exists. Sinced{g)/dL<0
[Eg. (5.2], this implies lim_.d(g)/dL=0. Hence
lim__..(g?>)=0 by Eq.(5.2). Since(g)?<(g?), this implies
that also lim_,..(g)=0.

Where does the nonzero limit in Refs. 10 and 11 come
from? The ground-breaking contribution of Zirnbauer was to
“super-Fourier expansion” of the heat kernel
W(Q,Q’) in terms of eigenfunctions of the Laplacian in the
space of thes model. This type of Fourier analysis is well
understood for classical symmetric spate3he develop-
ment and application of the supersymmetric analog for the
o model enabled Zirnbauer, Mirlin, and NMer-Groeling to
compute nonperturbatively the first two moments of the con-
ductance for any 8. The nonzero limiting value
lim__..{g)=1/4 for B=4 resulted from a “zero mode,” a
nontrivial eigenfunction of the Laplacian with zero eigen-
value. Since this zero mode does not decay. as», it led
to the surprising conclusion of absence of localization in a
wire with spin-orbit scattering in zero magnetic fieft.

An explicit expression for the zero mode was not obtained
in Refs. 10 and 11, but only its contribution to the moments
of the conductance was computed. By inspecting the initial

The comparison of the initial conditions still remains. The condition(3.15 of the generating function for the model,

ballistic initial condition for the DMPK equation implies

we have been able to construct a zero modefder4, but
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only if we ignore the Kramers degeneracy of the transmis-
sion eigenvalues. This unphysical zero mode, given by

COY3+ C0Y,

$o(01,03,04)= 272 costd, ’ (5.3 w2
=
arises by taking the initial conditio8.15), with N;=1 and ‘A” i .
B=4, butwithout the extra factor two in the exponent, re- w o

quired by Kramers degeneracy. This unphysical initial con-
dition solves the evolution equatidB.11) for the ensemble
average of the generating function and implies an
L-independent average conductarigé= 1/4. Although we o o S SRS LR
can not prove that Eq5.3) is Zirnbauer's zero mode, the 0 ° 4L/ 10 15
coincidence with the limiting value lim,..(g)=1/4,

lim,_. var g=1/16 is quite suggestive. FIG. 2. The average conductancég) multiplied by
The reason why we have to exclude the zero mi@ug AL/E=L/N/ for the symplectic symmetry class as a function of

from the Fourier expansion of the heat kernel is that it is not

sinale valued on ther model space of supermatric 4L/ ¢ for N>1. Shown are our resulb.8) (solid), the numerical
9 P ~ P €, simulation of Ref. 21 K1 =100,N=25) (dashegl and the result of

although it is a well-defined function @f. The parametriza- et 11 (dotted.

tion (2.1) of Q is 27 periodic in the angleg. = 63+ 6,. We

can then consider on the space of anglgs 04 a parity  the subsidiary series with quantum numbers(i, |1 +2) of
operationP, which consists of addingr to both of these Refs, 10 and 11, for which the asymptotic behavi®#) is
angles. This parity operation does not char@e but it gis0 valid, and multiplying the surviving terms with a factor

changes the zero mo@&.3). The Laplaciar(2.4h commutes  f 2 tg account for Kramers degeneracy, yields et 4 and
with P and the eigenfunctions have, therefore, either even of, the limit N;=N,=N—, the expression

odd parity(eigenvaluest 1 or —1 of P, respectively. The

physical modes of thee model must have even parity, since o

only these functions are single valued. @« 4, it is the (gn=2"" > f dx A(\?+1)
Kramers degeneracy that ensures that the initial condition :iif;lf(‘fné@’ 0

(3.19 has even parity.

This observation led us to check the parity of the eigen- Xtanh( wA/2)111,ps(N,11,15)
functions¢,(Q) of the Laplacian in the super-Fourier analy-
sis of Refs. 10 and 11. We consider the eigenvalue equation, x 11 (—1+ioh+ oyl + oyt
0,01,0p=%1
Ayd,(01,05,04)=—e(v)dh,(01,03,04), (5.4 s 2 2
_ o ) S Xexgd — (N +HI1+15—1)L/(28)], (5.89
for B=4 in the limit §,— o at fixed 63, 8,. In this limit, the
Laplace operator simplifies considerably, wheren=1,2 and
J J 1 90 0 (Nl =N+ 134131 (5.8
NN e N 7 7 P1(A 11,12 17274
Ai—et oy e o Sing, 90, S350,
5 5 PN 11l2) = G[2MH 1T+ 15+ 302(15+1)
* sing, 96, 5% 50, (5.5 —ON24+12412-2]. (5.89

From this expression, one may identify the set of quantunNote that in our notations, the dimensionless conductance
numbersy=(\,1+2n,,1+2n,), where\ is a real number is by a factor 2 smaller thag in the notations of Ref. 11.
andn,, n, are non-negative integers. The asymptotic behavComparison of Eq(5.8) with the =4 result of Ref. 11,
ior of the eigenfunctions), (64,63, 6,) is given by where the parity selection rule was not implemented, shows
that the perturbation expansion arountt=0 is the same.
b, ( 01,03,04)~exp[%(1+i)\)01][Pn1(c0993)Pn2(c0894) [We checked this numerically up to orddr/¢)3.] Outside
the perturbative regime, the two expressions are completely
+Pn (cost3) P (costy) ], (5.6) different. Instead of a nonzero limig) =1/4 forL/&>1, we

_ _ i find from Eq.(5.8) the exponential decay
with the Legendre polynomialB,,(x) and the eigenvalues

~ 16 —3/2,—L/2
s(L A4+ 20,14 20) = E[N24 (142n,)2+ (14 2n,)2— 1]. (g)~ 3 (2LImg) e . 5.9
(5.7) To test our result, we have compared it with a direct nu-
The parity of this eigenfunction is just-(1)"1*"2 and we merical simulation of the IWZ model by Mirlin and
have to restrict ourselves to thosg and n, with n;+n, Mdller-Groeling* (with M=100, N=25, and an average
even. Applying this selection rule to the expressions forover 100 different samplgsThe comparison is shown in
{(g) and(g?) of Refs. 10 and 11, omitting the zero md@ed  Figs. 2 and 3. It is clear that our E¢5.8) (solid curve
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FIG. 3. As in Fig. 2 for the variance vguof the conductance. FIG. 5. Same as Fig. 4, for the variance yaf the conduc-

tance.

agrees quite well with the simulation, while the result of Ref. ) )
11 does notdotted curve sions for (G) and varG, which decay exponentially as
Notice that this issue of the parity of the eigenfunctionsL—<, and which agree well with existing numerical
does not occur foB=1,2, since there is only one compact simulations?*
angle (3) in those cases. The parity operation on the  Our equivalence proof has both conceptual and practical
matrices exists only fop=4. For completeness, we collect implications. The DMPK equation and thel - model origi-
in Figs. 4 and 5 the results fqg) and varg for all three ~ nated almost sgmultaneously in the early eighties, and at the
symmetry classes. Th@=1,2 results are from Ref. 11, the Same mstltutéz Nevertheless, work on both approaches pro-
B=4 result is our Eq(5.9). ceeded independently in the next decade. Knowing that, in-
stead of two theories, there is only one, seems to us a con-
siderable conceptual simplification of the field. It implies that
VI. CONCLUSION the microscopic derivations and random-matrix models de-

We have established the exact mathematical equivalencveemped for thes model apply as well to the DMPK equa-

of the two nonperturbative theoretical approaches to phasé'—on’ and vice versaWe see only the restriction, that tiee

coherent transport and localization in disordered wires: ThémOde! require_s the thick-wire limil o, while the D.MPK
Fokker-Planck equation of Dorokhov, Mello, Pereyra, angtauation applies to any number .Of chanridlg Practically,
Kumar*5 and the one-dimensional supersymmetric nonlin_each of the two approaches has its own advantages, and now

earo model®7911.26The equivalence has the logical conse-that we know that they are equivalent, we can choose the

guence that the absence of localization in the sympIecti(fflppro""Ch which is best suited to our needs and skills.
symmetry class, obtained by Zirnbauer by super-Fourier

analysis of thes model, is not correct. By applying a selec- ACKNOWLEDGMENTS
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APPENDIX A: TRANSPORT PROPERTIES DETERMINED
BY THE GENERATING FUNCTION

0 i o 15 We list the transport properties of interest that can be

BL/E generated fronF(0,\), following Rejaei® Let us consider
the function

o

FIG. 4. The average conductancég) multiplied by
BLIE=LIN/ for the three symmetry classes, as a function of f(2y,2,)=
BL/& for N>1. The curves fo=1,2 are taken from Refs. 10 and o2
11 and the curve fop=4 is calculated from Eq5.8). Notice that A
¢=BN/ is proportional toB, so that the scaling of the axesfis ~ Which equals(F(8,\)) at z,= —sinX(363), z;=sint?(36,),
independent. and 0,= 0,=0. We write Eq.(A1) in the form

de(1+z,t't) > A1)

de(1+z,t't)
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f(21,25)=(exd Tr In(1+z,t"t) = Tr In(1+z,t"t) ).
(A2)

The standard expansiéi,with respect to smalt; andz,,

yields the first two moments of the dimensionless conduc-

tanceg= (1/d) Trt't (with d=1+ 3,),

190
(@9=y3 (9—221‘(21,Zz)|z1:o:z2

aa_zlf(zl’ZZ)|Z1:0:ZZ’ (A3)

1

<g2>: d2 (9_21(9_22f(21’22)|21:0:22' (A4)

We may also consid&t?’ derivatives of f(z;,z,) at
Z,=12,. This may require the analytic continuation 6f,
05 to complex values, i£;<0, z,>0, orz,< —1. Therefore,
we introduce the functiori(z;) as

J
f(z)= (9_sz(21a22)|zz=z1

=(Tr{(1+z,tt) "1t Tt])
=n§O (—zy)™(Tr(tT)"* 1)

=z, }Tr(1) — (T (1+ z5tT) ~1])). (A5)

The average density of transmission eigenvalues now fol-

lows from
p(T)=(Tra(T—t"))

1
== —Imf[—(T+i0") "], (A6)

The application of Eq(A6) requires the analytical continu-
ation of both variableg, andz, to values<<—1.

APPENDIX B: THE GENERATING FUNCTION
IN TERMS OF THE TRANSMISSION MATRIX

In this appendix, we show that E(.5) for the generating
function in the IWZ model equals E¢R.3). We first consider
the two casesB=1,4 of time-reversal symmetry, when
Z#=H1lg in Eq. (3.58. The necessary modifications for
B=2 are described at the end.

We make use of the folding identity,

Sde(

We abbreviateG.=(E—H=*=i7WW') 1. Taking out the
factor (E—.77+imWW'A) (with unit superdeterminahtwe
may rewrite Eq.(3.59 as

1, A

B 1, |=Sdetl,~AB)=Sde(l,~BA).

(B1)

P. W. BROUWER AND K. FRAHM

53
[ G, O
F=Sdet¥q 1+| o g |i7WWI(Q—A)
WiG, W, 0
=Sdef1’2 1+im 0 WIG—Wl (Q—A) ,
(B2)

where we have applied EB1) on B=WI. We now insert
the reflection matrixr=1—27iW]G, W, [see Egs.(3.4)
and(3.3)] into Eq.(B2) and obtain

r O

_ 1/2] 1 1
F=Sdef §(1+AQ)+§ o rf

(1-AQ)

(B3)

Now we use the parametrizati@®.1) for Q. Notice that Eq.
(B3) does not depend on the angular partofthe matrices
u,v in (2.1b]. Hence, we may choos@ as

0 9
Q=T IAT, T=exp30), @z(@ 0), (B4)

which leads to

3(1+AQ)=cosh3 ®)T, 3(1-AQ)=-sinh30)T.

Inserting this in Eq(B3) and taking out the factoF (with
unit superdeterminaptwe get

—r sinh(} )

cosh )

cosh} )
— 1/2 A
F=Sdet™ _ 11sinn3 )

= Sdet Y cost(} ) —sinfR(9)r'r]
=Sdet Y4 1+ sintA(19)t't], (B5)

where we have again usedBl) and the relation
r'r=1—t"t imposed by unitarity of the scattering matrix.

The matrix t't has eigenvalues T,=(1+\,) !
(n=1,...N;), which are twofold degenerate fq8=4,
hence

Ng
F=]] Sdet¥1+sink?(} 6)T,]
n=1

Ny

=11 Sdet ¥\, +cosH(36)]. (B6)
A=

Here,d=1+ 85 ,. Equation(B6) establishes the connection

between the two expressio(.3) and(3.5) for the generat-

ing function.

The above calculation assumes”Z=H1g, hence
B=1 or B=4. In the caseB=2, one has instead
Z=ReH)1g+i Im(H) 5. Instead of two subblocks with
andr' [see Eq(B3)], one now needs four subblocks with
rT, rT, andr*. Repeating the calculation, one finds that the
final result(B6) remains the same.



APPENDIX C: IDENTITY OF LAPLACIANS

The goal of this appendix is to prove EG.6). Hereto, we
first analyze the structure of the left-hand side of £96) in
more detail. o

The derivatives of(6,\), with respect tog;, are calcu-
lated using

8F(6’ )\) N 1 af(g Ay
0 (n§=:1 f(O,N,) 90 )F(‘9 N), (C))
(92F 0)\) N 2f(b,)\n) o
T (E W sz o)

If(O\,) af(@,xm))

a0; a6;

f(B, uexm j J

N
( 2
F ) (C2
Inspection of Egs.(2.4h, (C1), and (C2) shows that
AyF(6,\) has two contributions, one involving a single
summation over the channel indices and another one in-
volving a double summation over channel indicesm,

AgF(@,X)z

N
n; gl<b,xn>) F(O.\)
N

> 92(0, N Ap)

n#m

+

)F(“@,X). (C3

Using the definition(2.3b of f(6,\), one may straightfor-
wardly calculate the functiong; andg,. The expressions
are rather lengthy and will not be given here.

The right-hand side of Eq2.6) contains the differential
operatorD;, which is given by Eq(2.5b). Simple algebra
yields

N &2
= }\2+(1+2>\

n=1

B
2

0
. 2

N
o a
2 (N~ A (1N

n#m

+

J
_)\m(l"')\m)w

m

(C4

As a consequenc@gF(@,f\) has again the structure of Eq.
(C3), with g; andg, now given by

.~ *F(O,\) gt (o)
gl(o,x)—f(a,)\) MLHN) —— 7+ (1420 — |,
(C59
. B2 [Ny(1+Xp) af(O,\y)
92(9,7\13\2):)\_)\2 F(On) oW
Ao(14+X\y) 3F(B,N5)
(BN, N (o8
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Comparison of Eqs(C3) and (C5) shows that the two defi-
nitions of the functiongy; and g, are identical. This com-
pletes the proof of E¢2.6).

APPENDIX D: EXTENSION
TO HIGHER-DIMENSIONAL SUPERMATRICES

The argumentation presented in Secs. Il and IV can be
generalized ter models, withQ matrices of arbitrary dimen-
sion 8p, with p=1. This generalized equivalence proof ap-
plies to thep-point functionsp,(T4, ... ,T,), instead of to
the limited number of statistical quantities that can be gen-
erated by the “small”e model withp=1 (compare Appen-
dix A). Here, we briefly present the modifications with re-
spect to thep=1 case. The modifications concern the
parametrization(2.1) and the generating functiai2.3b).

The main technical difficulty in such a generalization is
due to the radial part of the Laplace operator. The procedure
to calculate it on conventional symmetric spaces is
standard® and is carried over to the supersymmetrienod-
els, as described in Appendix B of Ref. 11. It is now more
convenient to use a slightly modified form of the parametri-
zation of theQ matrices, wherd in Eq. (2.19 is fully diag-
onal (rather than block diagonal

o(53)

()A()nmzxngnm- (9)nm:yn5nma 1<sn,m=2p.

(D1)
The symmetry restrictions afef. Eq. (2.1d)]
Yi=VYi+p if B=1,
Xi=Xitp, Yi=Vitp If B=2, (D2)

Xi:Xi+p if ﬂ:4,

for i=1,...p. In the casep=1, we have the relations
X1—01+ 02, X2—01 02 Y11= 03+ 04, andyz— 03 64 be-
tween these parameters and theused in(2.10.

We can directly apply the results of Appendix B in Ref.
11, which are given in terms of the so-calledots
a(®)[with ® given as in(B4)]. The roots are linear func-
tions of ®, which are the eigenvalues of the linear mapping
ad@®)(X,):=[0,X,]=a(0)X,, defined on a certain
super-Lie algebra! The eigenvectorX,, of the mapping are
the root vectors,which do not depend o®. The radial
integration measurd(6) in Eq. (2.4b can be expressed®s

J(O)= 1'[O sinH"[ 2(0)], (D3)
a>

where the integem,, is the multiplicity of the roota (the
dimension of the root spageBoth positive and negative val-
ues ofm, can occur. The factot is due to the difference
between the normalizatio(2.19 of ® and the one used in
Ref. 11. In Appendix A of Ref. 11, explicit formulas for the
roots as well as for the root vectors are given for the case

B=1,p=1.
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We have calculated the roots and the root vectors for allt is convenient to use the variablag=sint?(3x;) and
B and arbitrary dimension 8 of the Q matrices. For sim- v;=—sir(3y;) in terms of which the Laplacian has the form
plicity, we only present the results for the roots and their

multiplicities. Let us denote witlp, (p,) the number of in-

dependent x; (y;) parameters, i.e..p,=2p,p,p and
py=p,p,2p for pB=124, respectively. Note that
Bpx=2py,. We find eight different types dfpositive) roots:
a(@)=x;—x (Isj<Ispy), m,=p,
a(@)=x;—iy; (Isjspy,lslspy), m,=-2
a(@)=i(y;j—y) (Isj<Ispy), m,=4/B,
a(®):2Xj (1SJ$DX)1 m,=pB-1,
a(0)=2iy; (1sjsp,), m,=4/p-1, (D4
a(@)=x;+x (Isj<Ispy), m,=p,
a(@)=x;+iy, (Isjspy,lslspy), m,=-2,
a(@)=i(y;+y) (Isj<Ispy), m,=4/B.
The radial part of the Laplacian takes the form
Px
Ay= J10—J0—+ I 0)—I(0)—.
=2, 3 H(O)7,-300) 2 )ay, ( )WJ
(DY)

The expression€.39 and(3.53 for the generating function
now remain valid with the modified of Eq. (D1), and with
Eq. (2.3b replaced by

P Px
f(b,x)=ﬁl [1+2)\+cos(yi)]l:[l [1+ 2\ +coshx;)] P2

(D6)

8= S I (1) T
1 aujuj( Uz,
B -, 0 .
EJ:]_J %vj(l—f_vj)‘]a’ (D7a)
= (u—up? 11 (Ui_Uj)4/'B
I<i<jspy 1<i<j=py
Px Py
X (ui_vj)_z
1=1j=1
Px
><H [ui(1+u;)]#?~ 1H [vi(1+v))]?f L (D7b)
The generating functioﬁ(b,f\) is given by
~ ~ N py
F(O,N)= H H (1+X\, +v)H (LN +u)~ 3’2)
a=1 \i=1
(D8)

We have verified that the identity of Laplacidi&g. (2.6)]
remains true for the modified expressioii37a) and (D8).
The calculations go in a similar way as shown in Appendix C
for p=1. Now, we have to keep track of seven different
types of contributions with double and triple sums over func-
tions of A, U;, v;.

In Appendix A, we have shown that the average density of
transmission eigenvalugg T) can be obtained from the gen-
erating function(2.33. Using the corresponding function for
the higher-dimensionalr model considered here, it is
straightforward to get thep-point correlation functions
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