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Hysteresis loops are often seen in experiments at first-order phase transformations, when the system goes
out of equilibrium. They may have a macroscopic jump~roughly as in the supercooling of liquids! or they may
be smoothly varying~as seen in most magnets!. We have studied the nonequilibrium zero-temperature random-
field Ising-model as a model for hysteretic behavior at first-order phase transformations. As disorder is added,
one finds a transition where the jump in the magnetization~corresponding to an infinite avalanche! decreases
to zero. At this transition we find a diverging length scale, power-law distributions of noise~avalanches!, and
universal behavior. We expand the critical exponents about mean-field theory in 62e dimensions. Using a
mapping to the pure Ising model, we Borel sum the 62e expansion toO(e5) for the correlation length
exponent. We have developed a method for directly calculating avalanche distribution exponents, which we
perform toO(e). Our analytical predictions agree with numerical exponents in two, three, four, and five
dimensions@Perkovićet al., Phys. Rev. Lett.75, 4528~1995!#. @S0163-1829~96!05118-1#

I. INTRODUCTION

The modern field of disordered systems has its roots in
dirt. An important effect of disorder is the slow relaxation to
equilibrium seen in many experimental systems.3 This paper
is an attempt to unearthuniversal, nonequilibriumcollective
behavior buried in the muddy details of real materials and
inherently due to their tendency to remain far from equilib-
rium on experimental time scales. In particular, we focus on
two distinctly nonequilibrium effects:~a! the avalanche re-
sponse to an external driving force and~b! the internal his-
tory dependence of the system~hysteresis!.

Systems far from equilibrium often show interesting
memory effects not present in equilibrium systems. Far from
equilibrium, the system will usually occupy some metastable
state that has been selected according to the history of the
system. Jumps over large free-energy barriers to reach a
more favorable state are unlikely. The system will move
through the most easily accessible local minima in the free-
energy landscape as an external driving field is ramped, be-
cause it cannot sample other, probably lower-lying minima,
from which its current state is separated by large~free-
energy! barriers. The complexity of the free-energy land-
scape is usually greatly enhanced by the presence of disor-
der. It is well known3–7 that disorder can lead to diverging
barriers to relaxation and consequent nonequilibrium behav-
ior and glassiness.

~a! Avalanches. In some systems, collective behavior in
the form of avalanches is found when the system is pushed
by the driving field into a region of descending slope in the
free-energy surface. In experiments avalanches are often as-
sociated with crackling noises as in acoustic emission and
Barkhausen noise.8–11 There are other nonequilibrium sys-
tems where no such collective behavior is seen. Bending a
copper bar, for example, causes a sluggish, creeping re-
sponse due to the entanglement of dislocation lines. In con-
trast, wood snaps and crackles under stress due to ‘‘ava-
lanches’’ of fiber breakings.12

Although avalanches are collective events of processes

happening on microscales, in many systems they can become
monstrously large so that we—in spite of being large, slow
creatures—can actually perceive them directly without tech-
nical devices. This reminds one of the behavior observed
near continuous phase transitions, where critical fluctuations
do attain human length and time scales if a tunable parameter
is close enough to its critical value. Correspondingly one
might expect to find universal features when the sizes and
times of the avalanches get large compared to microscopic
scales. Interesting questions concerning thedistribution of
avalanche sizes arise. Many experiments show power-law
distributions over several decades. For example, experiments
measuring Barkhausen pulses in an amorphous alloy, in iron,
and in alumel revealed several decades of power-law scaling
for the distribution of pulse areas, pulse durations, and pulse
energies.13–21Similarly, Field, Witt, and Nori22 recorded su-
perconductor vortex avalanches in Nb47%Ti53% in the Bean
state as the system was driven to the threshold of instability
by the slow ramping of the external magnetic field. The ava-
lanche sizes ranged from 50 to 107 collectively moving vor-
tices. The corresponding distribution of avalanche sizes re-
vealed about three decades of power-law scaling. Numerous
other hysteretic systems show similar power-law scaling
behavior.23–28

Why should there be avalanches of many sizes? In this
paper we propose that the large range of observed avalanche
sizes in these systems might be a manifestation of a nearby
critical point with both disorder and external magnetic field
as tunable parameters. We have modeled the long-
wavelength, low-frequency behavior of these systems using
the nonequilibrium zero-temperature random-field Ising
model ~RFIM!. Some of our results have been published
previously.1,29,30In contrast to some other hysteresis models,
like the Preisach model31 and the Stoner-Wohlfarth model,9

where interactions between the individual hysteretic units
~grains! are not included and collective behavior is not an
issue, in the RFIM the intergrain coupling is the essential
ingredient and cause for hysteresis and avalanche effects.
Tuning the amount of disorder in the system we find a
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second-order critical point with an associated diverging
length scale, measuring the spatial extent of the avalanches
of spin flips. A power-law distribution with avalanches ofall
sizes is seen only at the critical value of the disorder. How-
ever, our numerical simulations1,2 indicate that the critical
region is remarkably large: almost three decades of power-
law scaling in the avalanche size distribution remain when
measured 40% away from the critical point. At 2% away, we
extrapolate seven decades of scaling.~The size of the critical
region is nonuniversal and will therefore vary with the physi-
cal system.! One reason for this large critical range is trivial:
avalanche sizes are expressed in terms of volumes rather
than lengths, one decade of length scales translates to three
decades of size~or less if the avalanches are not compact,
i.e., if the Hausdorff dimension is less than three!. Some
experiments that revealed three decades of power-law scal-
ing have been interpreted as being spontaneously self-similar
~‘‘self-organized critical’’!.13,22,32 Our model suggests that
many of the samples might just have disorders within 40% of
the critical value. Tuning the amount of disorder in these
systems might reveal a plain old critical point rather than
self-organized criticality.

~b! Hysteresis. At the critical disorder we also find a tran-
sition in the shape of the associated hysteresis loops: Sys-
tems with low disorder relative to the coupling strength, have
rectangle-shaped hysteresis loops and a big~Barkhausen!
discontinuity, while systems with large disorder relative to
the coupling show smooth hysteresis loops without macro-
scopic jumps. At the critical disorderRc separating these two
regimes, the size of the jump seen in the low disorder hys-
teresis loops shrinks to a point at a critical magnetic field
Hc(Rc), where the magnetization curveM (H) has infinite
slope. The power law with which it approaches this point is
universal. Initial experimental results in thin magnetic films
seem to show the same kind of crossover.33,34The disorder in
these systems was changed by annealing the samples at vari-
ous temperatures. Detailed discussions of Barkhausen
experiments,14–21 and related experiments in nonmagnetic
avalanching systems ~in shape memory alloys,23,35

supercondutors,22,36 liquid helium in Nuclepore,24 and oth-
ers!, and a quantitative comparison with our theory is given
in forthcoming publications.1,37,38

~c! Results. The main point of this paper is to report a
history-dependent renormalization-group~RG! description
for the nonequilibrium zero-temperature random-field Ising
model. One of the triumps of the RG is to show from first
principles that near the critical point the interesting long-
wavelength properties are given byhomogeneous functions
with respect to a change of length scale in the system. This
observation leads to Widom scaling forms for the various
macroscopic quantities. The main motivation of the work
presented here is then to provide a formal justification of the
scaling ansatz used in the data analysis and an explanation
for the broad universality of the observed critical exponents.
We would like it to be viewed as the ultimate justification for
the attempt to extract useful predictions about real complex
materials from an extremely simple caricature of the micro-
scopic physics.

In particular, we have used the RG description to derive
an expansion for the critical exponents around their mean-
field values in powers of the dimensional parametere5dc

2d, whered is the dimension of the system anddc56 is the
upper critical dimension of the transition. Note that thee
expansion is an asymptotic expansion in terms of a quite
unphysical parameter. Nevertheless it has proven very suc-
cessful for mathematical extrapolations. In this paper we
shall apply its basic ideas to our problem and refer the reader
for further details to excellent reviews in the existing
literature.39–47

The calculation turns out to be interesting in its own right.
In contrast to RG treatments of equilibrium critical phenom-
ena, a calculation for our hysteresis problem has to take into
account the entire history of the system. It reveals formal
similarities to related single interface depinning
transitions.48–55Although our problem deals with the seem-
ingly more complex case ofmany interacting advancing in-
terfaces or domain walls,56–59 the calculation turns out to be
rather simple, much simpler in fact than in the single inter-
face depinning problem. The simplicity of the RG calcula-
tion in fact allowed us to develop a method to calculate the
avalanche exponents directly in thee expansion, which, to
our knowledge, so far has not been possible in depinning
transitions. The method involves replicas of the system in a
very physical way. We have used it to calculate the ava-
lanche exponents to first order ine. The techniques em-
ployed here are likely to be applicable to other nonequilib-
rium systems as well.

This paper is organized as follows: The model is intro-
duced in Sec. II and a summary of our results is given in Sec.
III. In Sec. IV the RG description is set up using the Martin-
Siggia-Rose formalism, and a description of the perturbative
expansion of the critical exponents is given in Sec. V. Sec-
tion VI contains a formal discussion of the mapping of our
62e expansion to the corresponding 62e expansion for the
equilibrium or thermal RFIM. We extract corrections to
O(e5) for most of the exponents and show a comparison
between the Borel resummation of thee expansion and nu-
merical results. The mapping does not, however, render the
exponents governing the avalanche size distribution. In Sec.
VII a new method to calculate avalanche exponents directly
in an e expansion is described and performed toO(e). Fi-
nally, in Sec. VIII we compare the results to extensive nu-
merical simulations in two, three, four, and five dimensions.2

Some of the details of the mean-field calculation are given
in Appendix A. Details on the implementation of the history
in the RG calculation are given in Appendix B. The behavior
near the infinite avalanche line in systems with less than
critical randomness is discussed in Appendix C. Appendix D
renders details on the calculation of the avalanche exponents
by the use of replicas. Some related problems and the stabil-
ity of the universality class against changes in the model are
discussed in Appendix E.

II. THE MODEL

As is well known from equilibrium phenomena, behavior
on long length scales can often be well described by simple
microscopic models that only need describe a few basic
properties correctly, such as symmetries, interaction range,
and effective dimensions. This notion has been successfully
applied in particular to equilibrium magnetic systems: the
scaling behavior found in some pure anisotropic ferromag-
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nets near the Curie temperature is mimicked reliably by the
regular Ising model.39,60 At each sitei in a simple cubic
lattice there is a~spin! variable si561,61 which interacts
with its nearest neighborssj on the lattice through a ‘‘ferro-
magnetic’’ exchange interaction,Ji j[J/z. z is the coordina-
tion number of the lattice andJ is a positive constant. The
Hamiltonian of the system is

H52(
i j

Ji j sisj2H(
i
si , ~1!

where it is understood that the sum runs over nearest-
neighbor pairs of spins on sitesi and j andH is a homoge-
neous external magnetic field. To model nonequilibrium ef-
fects we now impose a straightforward local dynamics,
assuming that each spinsi will always be aligned with the
total effective field at its site

hi
eff52(

j
Ji j sj2H. ~2!

We find that the resulting magnetization curve at zero tem-
perature becomes history dependent. The system will typi-
cally be in some metastable state rather than the ground state.
The upper branch of the rectangular shaped hysteresis curve
corresponds to the case where the external magnetic field is
lowered monotonically and adiabatically, starting fromH5
1`, where all spins were pointing up. At the negative coer-
cive fieldHc

l 522dJi j[2J all spins flip down in a single
system spanning event or ‘‘avalanche.’’ Similarly, for in-
creasing external magnetic field, they all flip up at the posi-
tive coercive fieldHc

u52dJi j[1J. It becomes clear that the
underlying cause for hysteresis in this model is the interac-
tion between the spins.

In real materials there will usually also be inhomogene-
ities and disorder~defects, grain boundaries, impurities!
leading to random crystal anisotropies and varying interac-
tion strengths in the system. Consequently not all spins will
flip at the same value of the external magnetic field. Instead,
they will flip in avalanches of various sizes that can be bro-
ken up or stopped by strongly ‘‘pinned’’ spins or clusters of
previously flipped spins.

A simple way to implement a certain kind of uncorrelated,
quenched disorder is by introducing uncorrelated random
fields into the model. In magnets the random fields might
model frozen-in magnetic clusters with net magnetic mo-
ments that remain fixed even if the surrounding spins change
their orientation. In contrast to random anisotropies they
break time-reversal invariance by coupling to the order pa-
rameter ~rather than its square!. In shape memory alloys,
ramping temperature, the random fields can be thought of as
concentration fluctuations that prefer martensite over the aus-
tenite phase.62 In the martensitic phase, ramping stress, they
model strain fields that prefer one martensitic variant over
another.62 ~Other kinds of disorder are discussed in Appen-
dix E.! Including the random fields, the energy function be-
comes

H52(
i j

Ji j sisj2(
i

~H1 f i !si . ~3!

The total effective field becomes

hi
eff52(

j
Ji j sj2H2 f i , ~4!

and the local dynamics remains otherwise unchanged. We
assume a Gaussian distributionr( f i) of standard deviationR
for the fieldsf i , which is centered atf i50:

r~ f i !5
1

A2pR
expS 2

f i
2

2R2D . ~5!

As we will show, the critical exponents do not depend on the
exact shape of the distribution of random fields. To pick a
Gaussian is a standard choice, which@due to the central limit
theorem~Ref. 63!# is also more likely to be found in some
real experiments than, for example, rectangular
distributions.64

III. RESULTS

The nonequilibrium model of Eq.~3! can be solved in the
mean-field approximation where every spin interacts equally
strongly with every other spin in the system. The coupling is
of sizeJi j5J/N, whereN is the total number of spins~i.e.,
all spins act as nearest neighbors!. The Hamiltonian then
takes the form

H52(
i

~JM1H1 f i !si , ~6!

i.e., just as in the Curie-Weiss mean-field theory for the Ising
model, the interaction of a spin with its neighbors is replaced
by its interaction with the magnetization of the system.

It turns out that the mean-field theory already reflects
most of the essential qualitative features of the long-length
scale behavior of the system in finite dimensions: Sweeping
the external field through zero, the model exhibits hysteresis.
As disorder is added, one finds a continuous transition where
the jump in the magnetization~corresponding to an infinite
avalanche! decreases to zero. At this transition power-law
distributions of noise~avalanches! and universal behavior are
observed. As we will show later in a RG description of the
model, the critical exponents describing the scaling behavior
near the critical point are correctly given by mean-field
theory for systems in six and higher spatial dimensions. The
RG allows us to calculate their values in~62e! dimensions
in a power-series expansion ine.0 around their mean-field
values ate50. In the following we briefly present the results
from mean-field theory, from thee expansion and from nu-
merical simulations in three dimensions. More details will be
given in later sections.

A. Results on the magnetization curve
Figure 1 shows the hysteresis curve in mean-field theory

at various values of the disorderR,Rc5A(2/p)J, R5Rc ,
and R.Rc . For R,Rc , where the coupling is important
relative to the amount of disorder in the system, the hyster-
esis curve displays a jump due to an infinite avalanche of
spin flips, which spans the system. Close toRc the size of the
jump scales asDM;r 3, with r5(Rc2R)/R, andb51/2 in
mean-field theory. Using a mapping to the pure Ising model,
we find in 62e dimensions65
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b51/22e/610.00617685e220.035198e310.0795387e4

20.246111e51O~e6!. ~7!

At R5Rc the magnetization curve scales asM
2M „Hc(Rc)…;h(1/d), whereh5H2Hc(Rc) andHc(Rc) is
the ~nonuniversal! magnetic field value at which the magne-
tization curve has infinite slope. In mean-field theory
Hc(Rc)50, and M „Hc(Rc)…50, and bd53/2. In 62e
dimensions65

bd53/210.0833454e220.0841566e310.223194e4

20.69259e51O~e6!. ~8!

Numerical simulations in three dimensions yieldb50.036
60.036 andbd51.8160.36.2

ForR.Rc the disorder can be considered more important
than the coupling. Consequently there are no system span-
ning avalanches~for infinite systems size! and the magneti-
zation curve is smooth.

Note that the hard-spin mean-field theory does not show
any hysteresis forR>Rc . This is only an artifact of its par-
ticularly simple structure and not a universal feature. In finite
dimensions the model does show hysteresis for all values of
R. Also, an analogous soft-spin model, which is introduced
for the RG description in Sec. IV, has the same critical ex-
ponents and shows hysteresis at all disordersR, even in
mean-field theory as seen in Fig. 2.

Close toRc andHc(Rc) the magnetization curve is de-
scribed by a scaling form:

M2M „Hc~Rc!…[m~r ,h!;r bM6~h/r bd!, ~9!

whereM6 is a universal scaling function~6 refers to the
sign of r!. It is computed in mean-field theory in Appendix
A.66 Perturbative corrections to the mean-field equation of
state in 62e dimensions are given toO(e2) in Sec. VI.

B. Results on the mean-field phase diagram

Figure 3 shows the phase diagram for the lower branch of
the hysteresis curve as obtained from the simple hard-spin
mean-field theory, defined through Eq.~6!. The bold line
with the critical endpoint„Rc ,Hc(Rc)… indicates the function
Hc
u(R) for the onset of the infinite avalanche for the history

of an increasingexternal magnetic field. The dashed line
describesHc

l (R) for a decreasingexternal magnetic field.
The three dotted vertical lines marked~a!, ~b!, and ~c! de-
scribe the paths in parameter space which lead to the corre-
sponding hysteresis loops shown in Fig. 1. Figures 2 and 4
show the corresponding results for the soft-spin model.

C. Results on scaling near the onsetHc„R…
of the infinite avalanche line„R<Rc…

The mean-field magnetization curve scales near the onset
of the infinite avalanche as

@M2Mc„Hc~R!…#;@H2Hc~R!#z ~10!

with z51/2. @Hc(R) stands, respectively, forHc
u(R) or

Hc
l (R) for the history of an increasing or decreasing external

magnetic field.# Curiously we do not observe this scaling
behavior in numerical simulations with short-range interac-
tions in two, three, four, and five dimensions. Indeed, the RG
description suggests that the onset of the infinite avalanche
would be an abrupt~‘‘first-order’’ type! transition for all di-
mensionsd,8 ~see Appendix C!, and a continuous transition
for d.8. Our initial numerical simulations in seven and nine
dimensions for system sizes 77 and 59 at less than critical
disorders do in fact seem to confirm the RG prediction.2 In
the following we will mostly focus on the critical endpoint at
„Rc ,Hc(Rc)…, where the mean-field scaling behavior is ex-

FIG. 1. Mean-field magnetization curves for the nonequilibrium
zero-temperature random-field Ising model at various values of the
disorderR50.6J,Rc ~a!, R5Rc5A(2/p)J50.798J ~b!, andR
5J.Rc ~c!.

53 14 875HYSTERESIS, AVALANCHES, AND DISORDER-INDUCED . . .



pected to persist in finite~more than two! spatial dimensions
with slightly changed critical exponents.

D. Results on avalanches

Magnetization curves from simulations of finite-size sys-
tems are not smooth. They display steps of various sizes.
Each step in the magnetization curve corresponds to an ava-
lanche of spin flips during which the external magnetic field

is kept constant. Figure 5 shows histogramsD(S,r ) of all
avalanche sizesSobserved in mean-field systems at various
disordersr when sweeping through the entire hysteresis loop.
For small r the distribution roughly follows a power law
D(S,r );S2(t1sbd) up to a certain cutoff sizeSmax
;ur u21/s which scales to infinity asr is taken to zero.

FIG. 2. Mean-field magnetization curves for the soft-spin ver-
sion of the zero-temperature random-field Ising model at various
values of the disorderR51.3J,Rc ~a!, R5Rc52kJ/@(k
2J)A2p#51.6J ~see Appendix A 6! ~b!, andR52J.Rc ~c!.

FIG. 3. Mean-field phase diagram for the nonequilibrium zero-
temperature random-field Ising model. The critical point studied in
this paper is atR5Rc , H5Hc(Rc), with Hc(Rc)50 in the hard-
spin mean-field theory. There are two relevant directionsr5(Rc

2R)/R andh5H2Hc(Rc) near this critical point. The bold line
indicates the threshold fieldHc

u(R) for the onset of the infinite
avalanche upon monotonically increasing the external magnetic
field. The dashed line describesHc

l (R) for a decreasing external
magnetic field. The three dotted vertical lines marked~a!, ~b!, and
~c! describe the paths in parameter space which lead to the corre-
sponding hysteresis loops shown in Fig. 1.

FIG. 4. Mean-field phase diagram for the soft-spin version of
the nonequilibrium zero-temperature random-field Ising model. The
diagram is plotted analogously to Fig. 3. Magnetic field sweeps
along the lines~a!, ~b!, and~c! lead to the corresponding soft-spin
hysteresis curves shown in Fig. 2. Note that here, in contrast to the
hard-spin model, the value of the critical fieldHc(Rc) does depend
on the history of the system: for monotonically increasing external
magnetic fieldHc(Rc)5Hc

u(Rc)5k2J, and for monotonically de-
creasing external magnetic fieldHc(Rc)5Hc

l (Rc)52(k2J) ~see
Appendix A 6!. This implies that in contrast to the hard-spin mean-
field theory of Fig. 3, the soft-spin mean-field theory displays hys-
teresis forall finite disorder values, i.e., even atR>Rc .
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In Appendix A we derive a scaling form for the avalanche
size distribution for systems near the critical point: Let
D(S,r ,h) denote the probability of finding an avalanche of
sizeS in a system with disorderr at external magnetic fieldh
upon increasingh by an infinitesimal amountdh. For largeS
one finds

D~S,r ,h!;1/StD6~Sr1/s,h/r bd!. ~11!

The scaling form forD(S,r ) of the histograms in Fig. 5 is
obtained by integratingD(S,r ,h) over the entire range of the
external magnetic field2`,h,1`.

In mean-field theory we finds51/2 andt53/2. In 62e
dimensions we obtain from the RG calculations51/2
2e/121O(e2). Numerical simulations in three dimensions
renders50.23860.017 andt51.6060.08.2

E. Results on correlations near„Rc ,Hc„Rc……

With the mean-field approximation we have lost all infor-
mation about length scales in the system. The RG descrip-
tion, which involves a coarse-graining transformation to long
length scales, provides a natural means to extract scaling
forms for various correlation functions of the system.

1. Avalanche correlations

The avalanche correlation functionG(x,r ,h) measures
the probability for the configuration of random fields in the
system to be such that a flipping spin will trigger another at

relative distancex through an avalanche of spin flips. Close
to the critical point and for largex the functionG(x,r ,h)
scales as

G~x,r ,h!;1/xd221hG 6„x/j~r ,h!…, ~12!

whereh is called ‘‘anomalous dimension’’ andG 6 is a uni-
versal scaling function. The correlation lengthj(r ,h) is the
important ~macroscopic! length scale of the system. At the
critical point, where it diverges, the correlation function
G(x,0,0) decays algebraically—there will be avalanches on
all length scales. Close to the critical point the correlation
length scales as

j~r ,h!;r2nY6~h/r bd!, ~13!

whereY6 is the corresponding scaling function. From thee
expansion one obtains65

1/n522e/320.1173e210.1245e320.307e410.951e5

1O~e6!, ~14!

and

h50.0185185e210.01869e320.00832876e4

10.02566e51O~e6!. ~15!

The numerical values in three dimensions are 1/n50.704
60.085 andh50.7960.29.2

2. Spin-spin (‘‘cluster’’) correlations

Another correlation function measures correlations in the
fluctuations of the spin orientation at different sites. It is
related to the probability that two spinssi and sj at two
different sitesi and j, that are distanced byx, have the same
value.39 It is defined as

C~x,r ,h!5Š~si2^si& f !~sj2^sj& f !‹f , ~16!

where ^ & f indicates the average over the random fields.
From the RG description we find that for largex it has the
scaling form

C~x,r ,h!;x2~d241 h̄ !C 6„x/j~r ,h!…, ~17!

wherej(r ,h) scales as given in Eq.~13! andC 6 is a uni-
versal scaling function. At the critical pointC(x,0,0) decays
algebraically—there will be clusters of equally oriented spins
on all length scales. Thee expansion renders65

h̄50.0185185e210.01869e320.00832876e4

10.02566e51O~e6!, ~18!

which is in fact the same perturbation expansion as forh
to all orders ine. ~The two exponents however do not have
to be equal beyond perturbation theory, see also, Refs. 37
and 38!.

F. Results on avalanche durations

Avalanches take a certain amount of time to spread, be-
cause the spins are flipping sequentially. The further the ava-
lanche spreads, the longer it takes till its completion. The RG

FIG. 5. Mean-field avalanche size distribution integrated over
the hysteresis loop for systems with 1 000 000 spins at various dis-
order valuesR.Rc50.798J: ~a! R51.46J ~averaged over ten dif-
ferent configurations of random fields!, ~b! R51.069J ~averaged
over five different configuration of random fields!, and ~c!
R50.912J ~averaged over ten different configurations of random
fields!. Each curve is a histogram of all avalanche sizes found as the
magnetic field is raised from2` to 1`, normalized by the number
of spins in the system. For smalluru5uRc2Ru/R the distribution
roughly follows a power lawD(S,r );S2(t1sbd) up to a certain
cutoff sizeSmax;ur u21/s which scales to infinity asr is taken to
zero. The straight line above the three data curves in the figure
represents an extrapolation to the critical pointR5Rc in an infinite
system, where one expects to see a pure power-law distribution on
all length scalesD(S,r );S2(t1sbd) with the mean-field values of
the corresponding exponentst1sbd52.25.
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treatment suggests that there is a scaling relation between the
durationT of an avalanche and its linear extentl

T~ l !; l z ~19!

with z5212h to O(e3),67 i.e.,

z5210.037037e210.03738e31O~e4!. ~20!

Our numerical result in three dimensions isz51.760.32

~While we expect the 62e results for the static exponentsb,
d, n, h, h̄, t, s, etc. to agree with our hard-spin simulation
results close to six dimensions, this is not necessarily so for
the dynamical exponentz. There are precedences for the dy-
namics being sensitive to the exact shape of the potential,
sometimes only in mean-field theory48,49,68 and sometimes
even in thee expansion.49,69! The fractal dimension for the
biggest avalanchesSmax;r21/s;j1/(sn) is

dfractal51/~sn!, ~21!

so that the timeT for the biggest finite avalanchesSmaxscales
asT(Smax);Smax

snz .

G. Results on the area of the hysteresis loop

In some analogy to the free-energy density in equilibrium
systems, one can extract the scaling of the area of the hys-
teresis loop for this system near the critical endpoint.~This is
the energy dissipated in the loop per unit volume.! From the
fact that the singular part of the magnetization curve scales
asm(h,r );r bM6(h/r

bd) @Eq. ~9!# we conjecture that the
singular part of the area scales asAsing;*m(h,r )dh;r 22a

with 22a5b1bd. ~The scaling form for the total areaAtot
will also have an analytical piece:Atot5c01c1r1•••
1cnr

n1•••1Asing; near critical point the terms with
n<22a are dominant.! In mean-field theorya50. Numeri-
cal and analytical results can be derived from the results for
b andbd quoted earlier.

H. Results on the number of system-spanning avalanches
at the critical disorder R5Rc

In percolation in less than six dimensions, there is at most
one infinite cluster present at any value of the concentration
parameterp, in particular also at its critical valuepc .

70 In
contrast, in our system at the critical pointR5Rc the number
N` of ‘‘infinite avalanches’’ found during one sweep
through the hysteresis loop, diverges with system size as
N`;Lu in all dimensionsd.2.37,38

The e expansion for our system yields

un51/22e/61O~e2!. ~22!

Numerical simulations show clearly thatu.0 in four and
five dimensions. In three dimensions one findsun50.021
60.021 andu50.01560.015.2

I. List of exponent relations

In the following sections we list various exponent rela-
tions, for which we give detailed arguments in Refs. 37 and
38.

1. Exponent equalities

The exponents introduced above are related by the follow-
ing exponent equalities:

b2bd5~t22!/s if t,2, ~23!

~22h!n5bd2b, ~24!

b5 n
2 ~d241h̄ !, ~25!

and

d5~d22h1h̄ !/~d241h̄ !. ~26!

~The latter three equations are not independent and are also
valid in the equilibrium random-field Ising model.71–73

2. Incorrect exponent equalities

In our system there are two different violations of hyper-
scaling.

~1! In Refs. 37 and 38, we show that the connectivity
hyperscaling relation 1/s5dn2b from percolation is vio-
lated in our system. There is a new exponentu defined by

1/s5~d2u!n2b, ~27!

with un51/22e/61O(e2) and un50.02160.021 in three
dimensions.2 u is related to the number of system spanning
avalanches observed during a sweep through the hysteresis
loop ~see above!.

~2! As we will discuss in Sec. VI there is a mapping of the
perturbation theory for our problem to that of the equilibrium
random-field Ising model to all orders ine. From that map-
ping we deduce the breakdown of an infamous~‘‘energy’’ !-
hyperscaling relation

b1bd5~d2 ũ !n, ~28!

with a new exponentũ, which has caused much controversy
in the case of theequilibrium random-field Ising model.71

In Refs. 37 and 38 we discuss the relation of the exponent
ũ to the energy output of the avalanches. Thee expansion
yields ũ52 to all orders ine. Nonperturbative corrections are
expected to lead to deviations ofũ from 2 as the dimension is
lowered. The same is true in the case of the equilibrium
RFIM.37,38 The numerical result in three dimensions is
ũ 51.560.5.2 ~In the three-dimensional equilibrium RFIM
it is ũeq51.560.4.71,74!

Another strictly perturbative exponent equality, which is
also obtained from the perturbative mapping to the random-
field Ising-model37,38 is given by
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h̄5h. ~29!

It, too, is expected to be violated by nonperturbative correc-
tions below six dimensions.

3. Exponent inequalities

In Refs. 37 and 38 we give arguments75 for the following
two exponent-inequalities@from the normalization of the
avalanche size distributionD(s,r ,h), see Eq.~11!, follows
that t.1#:

n/bd>2/d, ~30!

which is formally equivalent to the ‘‘Schwartz-Soffer’’ in-
equality, h̄<2h, first derived for the equilibrium random-
field Ising model,76 and

n>2/d, ~31!

which is a weaker bound than Eq.~30! so long asbd>1, as
appears to be the case both theoretically and numerically at
least ford>3.

J. Results on the upper critical dimension
of the critical endpoint „Rc ,Hc„Rc……

The consistency of the mean-field theory exponents for
d>6 can be shown by a Harris-criterion-type argument,39

which also leads to Eq.~30!.38 Approaching the critical point
along ther 850 line, one finds a well-defined transition point
only if the fluctuationsdh8 in the critical fieldHc due to
fluctuations in the random fields are always small compared
to the distanceh8 from the critical point, i.e.,dh8/h8!1 as
h8→0. With dh8;j2d/2 and j;(r 8)2n f6„h8/(r 8)bd

…

;(h8)2n/(bd) at r 850, one obtainsdh8/h8;j2d/2/j2bd/n

!1, or n/bd>2/d. This inequality is fulfilled by the mean-
field exponentsn51/2 andbd53/2 only if d>6, i.e.,d56 is
the upper critical dimension.

IV. ANALYTICAL DESCRIPTION

Our system is at zero temperature and far from equilib-
rium. For a given configuration of random fields, the system
will follow a deterministic path through the space of spin
microstates as the external magnetic field is raised adiabati-
cally. Systems with different configurations of random fields
will follow different paths. It seems plausible to introduce
time t into the otherwise adiabatic problem and to apply RG
methods developed for dynamical systems. We writeH(t)
5H01Vt, whereH0 is the magnetic field at timet50, and
V.0 is the sweeping rate for a monotonically increasing
external magnetic field. We write down an equation of mo-
tion for each spin such that the resulting set of coupled dif-
ferential equations has a unique solution which corresponds
to the correct path which the system takes for a given his-
tory. The sweeping frequencyV is taken to zero in the end.
For convenience we introduce soft spins that can take values
ranging from2` to 1`. This will allow us later to replace
traces over all possible spin configurations by path integrals.
We assume that each spin is moving in a double-well poten-

tial V(si) with minima at the ‘‘discrete’’ spin valuessi5
61:5

V~si !5 H k/2~si11!2 for s,0
k/2~si21!2 for s.0. ~32!

To guarantee that the system takes a finite magnetization at
any magnetic field, one needsk.0 andk/J.1. The Hamil-
tonian of the soft-spin model is then given by

H52(
i j

Ji j sisj2(
i

@ f isi1Hsi2V~si !#. ~33!

A spin flip in this model corresponds to a spin moving from
the ‘‘down’’ ~s,0! to the ‘‘up’’ ~s.0! potential well, after
which point the spin slides to the bottom of the new potential
well (ds>2). We impose purely relaxational dynamics

~1/G0!] tsi~ t !52dH/dsi~ t !, ~34!

whereG0 is a ‘‘friction constant.’’
This model shows qualitatively similar behavior to real

magnets: As the external magnetic field is ramped, we ob-
serve spin flips, which correspond to irreversible domain-
wall motions. The linear relaxation between the spin flips
corresponds to the reversible domain-wall motion.

The soft-spin mean-field theory, where every spin inter-
acts equally with every other spin yields the same static criti-
cal exponents as we have obtained earlier for the hard-spin
model. We have also checked that replacing the linear cusp
potential by the more common, smooths4 double-well po-
tential does not change the static mean-field exponents.77

A. Formalism

In equilibrium systems one usually calculates the en-
semble averaged correlation functions from a partition func-
tion which is the sum over the thermal weights or probabili-
ties of all possible spin states of the system. Here we use the
formalism introduced by Martin, Siggia, and Rose78 ~which
is similar to the Bausch-Janssen-Wagner method79! to define
an analogous quantity for a dynamical system. The partition
function for the disorder-averaged dynamical system is the
sum over the probabilities of all possiblepaths ~i.e., spin
states as functions of time as the external magnetic field is
slowly increased! which the system follows for different con-
figurations of the disorder. To calculate the path probability
distribution one first assigns ad-function weight to the~de-
terministic! path for a given, fixed configuration of random
fields and then averages this weight-function over all pos-
sible configurations of random fields. The emerging expres-
sion is the analog of the probability distribution for the pos-
sible states in equilibrium systems. The analog of ensemble
averaging for equilibrium systems is random-field averaging
in our system. The sum over all possible paths weighted by
their corresponding probability then plays the role of a par-
tition functionZ for our nonequilibrium system from which
we can derive the various response and correlation functions.

We start by calculatingZ before random-field averaging:
it is given by integral over a product ofd functions~one for
each spin!, each of which imposes the equation of motion at
all times on its particular spin:48

53 14 879HYSTERESIS, AVALANCHES, AND DISORDER-INDUCED . . .



1[Z5E @ds#T @s#)
i

d~] tsi /G01dH/dsi !. ~35!

@ds# denotes the path integral over all spins in the lattice at
all times, andT @s# is the necessary Jacobian, which fixes
the measures of the integrations over thesi such that the
integral over eachd function yields one.48 One can show that
T @s# merely cancels the equal time response
functions.48,80,81

In order to writeZ in an exponential form in analogy to
the partition function in equilibrium problems, we express
thed functions in their Fourier representation, introducing an
unphysical auxiliary fieldŝj (t):

d„] t /G0si~ t !1dH/dsi~ t !…;1/2pE dŝ expS i(
j
ŝj~ t !

3@] tsj~ t !/G01dH/]sj~ t !# D .
~36!

Absorbing any constants intoT @s#, this yields for the~not
yet random-field averaged! generating functional~in continu-
ous time!:

15Z5E E @ds#@dŝ#T @s#exp~W!, ~37!

with the action

W5 i(
j
E dt ŝj~ t !@] tsj~ t !/G01dH/dsj~ t !#

5 i(
j
E dt ŝj~ t !S ] tsj~ t !/G02(

l
Jj l sl2H2 f j

1dV/dsj D . ~38!

We can express correlation and response functions of
si(t) as path integrals in terms ofW, because solely the
unique deterministic path of the system for the given con-
figuration of random fields makes a nonzero contribution to
the path integral over@ds# in Eq. ~37!. For example the
value of spinsj at time t8 is given by

sj~ t8!5Z21E E @ds8#@dŝ8#T @s8#sj8~ t8!exp~W!, ~39!

and the correlation function is given by

sj~ t8!sk~ t9!5Z21E E @ds8#

3@dŝ8#T @s8#sj8~ t8!sk8~ t9!exp~W!. ~40!

To calculate the response ofsj at time t8 to a perturbative
field Jek(t8,t9) switched on at sitek at time t9, we add the
perturbation to the magnetic field at sitek, such that the
action becomes

We5 i(
jÞk

E dt ŝj~ t !S ] tsj~ t !/G02(
l
Jj l sl2H2 f j1dV/dsj D

1 i E dt ŝk~ t !S ] tsk~ t !/G02(
l
Jklsl2H2 f k1dV/dsk2Jek~ t,t9! D . ~41!

Taking the derivative with respect toJek and the limit
ek→0 afterwards one obtains

dsj~ t8!/dek~ t9!5~2 i !Z21E E @ds#@dŝ#

3T @s#sj~ t8!ŝk~ t9!exp~W!, ~42!

so ŝ acts as a ‘‘response field.’’ Henceforth we shall suppress
T @s#, keeping in mind that its only effect is to cancel equal
time response functions.80

SinceZ51, independent of the random fields, we could
have left out theZ21 factors in Eqs.~39!, ~40!, and ~42!.
This greatly facilitates averaging over the random fields: The
average response and correlation functions are generated by
averagingZ directly over the random fields. Unlike in equi-
librium problems with quenched disorder it is not necessary

to calculate the~more complicated! average of lnZ. One ob-
tains for the random-field-averaged correlation functions

^sj~ t8!sk~ t9!& f5E E @ds#@dŝ#sj~ t8!sk~ t9!^exp~W!& f ,

~43!

and similarly

^sj~ t8!/dek~ t9!& f5^sj~ t8!ŝk~ t9!& f5E E @ds#@dŝ#

3sj~ t8!ŝk~ t9!^exp~W!& f , ~44!

It is not obvious how to calculatêexp(W)&f directly, since
W involves terms likeJi j si ŝj which couple different sites.
Following Sompolinsky and Zippelius,82 and Narayan and
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Fisher,48 we can circumvent this problem by performing a
change of variables from the spinssj to local fields Jh̃ i
5( j Ji j sj . ~We introduce the coefficientJ on the left-hand
side to keep the dimensions right.! At the saddle point of the
associated action the new variablesh̃ j ~for all j! are given by

the mean-field magnetization and the different sites become
decoupled. A saddle-point expansion becomes possible, be-
cause the coefficients in the expansion can be calculated in
mean-field theory—they are also the same for all sitesj.
Formally we insert intoZ the expression

151/2pE E @dĥ̃ #@dh̃#T @h̃#expF i(
j
E dt ĥ̃~ t !S sj~ t !2(

i
Ji j

21Jh̃ i~ t ! D G , ~45!

whereT @h̃# stands for the suitable Jacobian, which is simply a constant and will be suppressed henceforth. Integrating out the

auxiliary fieldsĥ̃ j , one recovers that the expression in Eq.~45! is the integral over a product ofd functions which impose the
definitionsJh̃ i(t)5( j Ji j sj (t) at all times for alli.

After some reshuffling of terms and introducing some redefinitions that are motivated by the attempt to separate the
nonlocal from the local terms, one obtains

Z5E E @dĥ̃ #@dh̃#)
j
Z̄ j@h̃ j ,ĥ̃ j # expF2E dt ĥ̃ j~ t !S (

l
Jj l

21Jh̃ l~ t ! D G , ~46!

where Z̄@h̃ j ,ĥ̃ j # is a local functional

Z̄ j@h̃ j ,ĥ̃ j #5E E @dsj #@dŝj # K expH J21E dt@Jĥ̃ j~ t !sj~ t !1 i ŝ j~ t !~] tsj~ t !/G02Jh̃ j~ t !2H2 f j1dV/dsj !#J L
f

~47!

~we have absorbed a factori in the definition ofĥ̃ j ). In short
this can also be written as

Z[E @dh̃#@dĥ̃ #exp~S̃eff! ~48!

with the effective actionS̃eff , now expressed in terms of the

‘‘local field’’ variables h̃ and ĥ̃

S̃eff52E dt(
j

ĥ̃ j~ t !(
l

Jj l
21Jĥ̃ l~ t !

1(
j

ln~ Z̄j@h̃ j ,ĥ̃ j # !. ~49!

Physically we can interpret the functional

F@h#[E @dĥ̃ #exp~S̃eff! ~50!

as the random-field-averaged probability distribution for the
possible paths the system can take through the ‘‘local field’’
(Jh̃ j ) configuration space as the external magnetic field is
slowly increased.Z is the integral of this~normalized! prob-
ability distribution over all possible paths of the system and
is therefore equal to 1.

The stationary point@h̃ j
0,ĥ̃ j

0# of the effective action is
given by

@dS̃eff /dh̃ j #h̃
j
0,h̃
ˆ
j
050 ~51!

and

@dS̃eff /dĥ̃ j #h̃
j
0,h̃
ˆ
j
050. ~52!

With Eqs.~47! and ~49! we find the saddle-point equations:

~2 i !^ŝi& l ,h̃ˆ 0,h̃02(
j

JJi j
21ĥ̃ j

050, ~53!

and

^si& l ,h̃ˆ 0,h̃02(
j

JJi j
21h̃ j

050. ~54!

The notation ^ & l ,h̃ˆ 0,h̃0 here denotes alocal average,
obtained from thelocal partition functionZ̄i , after having

fixed ĥ̃ i and h̃ i to their stationary-point solutionsĥ̃ i
0

and h̃ i
0. Equation~53! and~54! have the self-consistent so-

lution

ĥ̃ i
0~ t !50, ~55!

and

h̃ i
0~ t !5M ~ t !5^si~ t !& l ,h̃ˆ 0,h̃0, ~56!

whereM~t! is the random-field average of the solution of the
mean-field equation of motion83
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] t sj~ t !/G05Jh̃ j
0~ t !1H1 f i2dV/dsj . ~57!

We can now expand the effective actionS̃eff in the variables

ĥ j[( ĥ̃ j2 ĥ̃ j
0) andh j[(h̃ j2h̃ j

0), which corresponds to an
expansion around mean-field theory:

Z5E E @dh#@dĥ#exp~Seff! ~58!

with an effective action~expressed in the new variablesh
and h̃!:

Seff52(
j ,l

E dtJjl
21Jh̃ j~ t !h l~ t !1(

j
(

m,n50

`
1

m!n! E dt1•••dtm1num,n~ t1 ,...,tm1n!ĥ j~ t1!•••ĥ j~ tm!nj~ tm11!•••h j~ tm1n!.

~59!

Here, as seen by inspection from Eqs.~49! and ~47!

um,n5
]

]h j~ tm11!
•••

]

]h j~ tm1n!
Fdm@ ln Z̄j2ĥ j~ t !h̃ j

0~ t !#

dĥ j~ t1!•••dĥ j~ tm!
G

ĥ50,h50

5
]

]e~ tm11!
•••

]

]e~ tm1n!
^@s~ t1!2h0~ t1!#•••@s~ tm!2h0~ tm!#& l ,ĥ0,h0, ~60!

i.e., the coefficientsumn are equal to the local~l!, connected
responses and correlations in mean-field theory. Again,local
~l! means48 that we do not vary the local fieldh j

0 in the
mean-field equation

1

G0
] tsj~ t !5Jh j

0~ t !1H1 f j2
dV

dsj~ t !
1Je~ t ! ~61!

when we perturb with the infinitesimal forceJe(t).

B. Source terms

Correlations ofs and ŝ can be related to correlations ofh
and ĥ.48 If we introduce the source terms

E dt@sj~ t ! l̂ j~ t !2 i ŝ j~ t !l j~ t !# ~62!

into the action, we can write the correlations ofs and ŝ as
functional derivatives with respect tol̂ and l at l5 l̂50. A
shift in the variablesh and ĥ by l and l̂ , respectively, leads
to a source term for the fieldsh and ĥ from

JJi j
21@ĥ i~ t !2 l̂ i~ t !#@h j^t !2 l j~ t !#, ~63!

so that derivatives with respect tol and l̂ give correlation
functions ofĥ andh. For low momentum behavior the factor
JJi j

21 can be replaced by one since( iJi j
215J21.

C. Implementing the history

Up to here the effective actionSeff manifestly involves the
entire magnetic-field range2`,H,1`. As we discuss in
Appendix B it turns out, however, that in the adiabatic limit
a separation of time scales emerges. The relaxation rate
kG0 in response to a perturbation is fast compared to the
driving rateV/k of the external magnetic field. The static
critical exponents can then be extracted self-consistently
from a RG calculation performed at a single, fixed valueH
of the external magnetic field. The analysis is much simpler

than one might have expected. Instead of dealing with the
entire effective action which involvesall field valuesH, it
suffices in the adiabatic limit to calculate all coefficients
umn in Eq. ~59! at one single fixed magnetic fieldH, and then
to coarse grain the resulting actionSeff(H)[SH .

Physically this corresponds to the statement that increas-
ing the magnetic field within an infinite ranged model~mean-
field theory! and then tuning the elastic coupling to a short-
ranged form ~RG! would be equivalent to the physical
relevant critical behavior, which actually corresponds tofirst
tuning the elastic coupling to a short-ranged form andthen
increasing the force within a short-range model.49 In their
related calculation for charge-density waves~CDW’s! below
the depinning threshold,49 Narayan and Middleton give an
argument that this approach is self-consistent for their prob-
lem. In the Appendix B we first show that their argument
applies to our system as well, and then discuss the consis-
tency of the magnetic field decoupling within the RG treat-
ment of the entire history for separated time scales.

Note that the values of the coefficientsumn at fieldH are
still history dependent~in the way the mean-field solution
is!. Also, causality must be observed by the coarse-graining
transformation, so that even in the adiabatic limit the intrin-
sic history dependence of the problem does not get lost.

D. Calculating some of theumn coefficients at fieldH

In Appendix B we show thatumn basically assume their
static values in the adiabatic limit. In this section we will
briefly outline their derivation and quote the relevant results.

We have to be consistent with the history of an increasing
external magnetic field, when expanding around the ‘‘mean-
field path’’ h̃0(t). This implies that for calculating responses
from Eq. ~60! we must only allow a perturbing forceJe(t)
that increaseswith time in Eq.~61!. For example, foru1,1 we
add a forceJe(t)[JeQ(t2t8) in Eq. ~61!, where Q(t
2t8) is the step function, and solve for^s(t)uH1Je(t)& f . The
local response function is then given by the derivative of
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lime→0{ @^s(t)uH1Je(t)& f2^s(t)uH& f #/e} with respect to
~2t8!. The higher response functions are calculated corre-
spondingly.~See also Appendix B.! One obtains in the low-
frequency approximation for the first few terms of the effec-
tive action of Eq.~59! at fieldH

SH52(
j ,l

E dt Jjl
21Jĥ j~ t !h l~ t !2(

j
E dt ĥ j~ t !@a] t /G0

2u11
stat#h j~ t !1(

j
E dt 1

6 uĥ j~ t !„h j~ t !…
3

1(
j
E dt1E dt2

1
2 u2,0ĥ j~ t1!ĥ j~ t2!, ~64!

with

a5@J/k14r~2Jh02H1k!#/k, ~65!

u11
stat52Jr~2Jh02H1k!1J/k, ~66!

w522J2r8~2Jh02H1k!, ~67!

u52J3r9~2Jh02H1k!, ~68!

and

u2,05R2/k214S E
2`

2H2h01k
r~h!dhD

24S E
2`

2H2h01k
r~h!dhD 2

24S E
2`

2H2h01k
~h/k!r~h!dhD . ~69!

Equation~69! implies thatu2,0>0 for any normalized distri-
bution r( f ).

V. PERTURBATIVE EXPANSION

A. The Gaussian theory ford>dc :
Response and correlation functions

One can show39,42 that for systems with dimensiond
above the upper critical dimensiondc , the nonquadratic

terms in the action become less important on longer length
~and time! scales. Near the critical point, where the behavior
is dominated by fluctuations on long-length scales, the sys-
tem is then well described by the quadratic parts of the ac-
tion, and the calculation of correlation and response func-
tions amounts to the relatively simple task of solving
Gaussian integrals. It should come as no surprise that the
mean-field exponents are recovered, since the quadratic parts
of the action represent the lowest-order terms in the saddle-
point expansion around mean-field theory.

In our problem the actionSH of Eq. ~64! has the quadratic
part

Q~h,ĥ !52(
j ,l

E dt Jjl
21Jĥ j~ t !h l~ t !2(

j
E dt ĥ j~ t !

3@a] t /G02u11
stat#h j~ t !

1~1/2!(
j
E dt1E dt2ĥ j~ t1!ĥ j~ t2!u2,0. ~70!

In the long-wavelength limit we can writeJ21(q)51/J
1J2q

2.40 Rescalingĥ, v, andq we can replace the constants
J2J anda by 1. The low-frequency part of theĥh term in
Q(h,ĥ) is then given by

2E ddqE dt ĥ~2q,t !~] t /G
01q22x21/J!h~q,t !,

~71!

where

x215J~u11
stat21!52J2r~2JM2H1k!2J~k2J!/k

~72!

is the negative static response to a monotonically increasing
external magnetic field, calculated in mean-field theory.

In frequency spaceQ(h,ĥ) can be written as

Q~h,ĥ !52E dvE ddq@ĥ~2q,2v!,h~2q,2v!#S 21/2u2,0d~v! ~2 iv/G01q22x21/J!

~ iv/G01q22x21/J! 0 D S ĥ~q,v!

h~q,v!
D .

~73!

Inverting the matrix48 one obtains for the response and
correlation function at fieldH to lowest order

Gĥh~q,v!5^ĥ~2q,2v!h~q,v!&

'1/~2 iv/G01q22x21/J! ~74!

and

Gĥĥ~q,v!5^h~2q,2v!h~q,v!&

'u2,0d~v!/u2 iv/G01q22x21/Ju2. ~75!

The d~v! in Eq. ~75! is a consequence of the underlying
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separation of time scales. It will lead to an essentially static
character of the RG analysis of the problem. This may have
been expected, since the critical phenomena we set out to
describe are essentially static in nature. At the critical point

x2150 we have Gĥh(q,v50);q22h with h50 and
Ghh(q,v50);q42 h̄ with h̄50 at lowest order in perturba-
tion theory. One can Fourier transform the correlation func-
tions back to time

Gĥh~q,t,t8![^ĥ~q,t !h~2q,t8!&5 HG0 exp$2G0~q
22x21/J!~ t82t !% for t8.t

0 for t8<t ~76!

and

Ghh~q,t,t8!5E dt1E dt2Gĥh@q,2~ t82t !1t11t2#u2,0Gĥh~q,t2!5u2,0/~q
22x21/J!2. ~77!

B. The RG analysis

In dimensiond,dc the nonquadratic parts of the action
become important near the critical point. One obtains correc-
tions to the mean-field behavior. The Wilson-Fisher coarse-
graining procedure is an iterative transformation to calculate
the effective action for the long-wavelength and low-
frequency degrees of freedom of the system. Fixed points
under the coarse-graining transformation correspond to criti-
cal points where no finite~correlation! length determines the
long-wavelength behavior and the system is self-similar on
all length scales. In each coarse-graining step41,42,48,84one
integrates out high momentum modes ofall frequencies
ĥ(q,v) and h(q,v), with q in a momentum shell
@L/b,L#, b.1, and afterwards rescales according toq
5b21q8, v5b21v8, ĥ(q,v)5bĉpĥ8(q,v),and h(q,v)
5bcph8(q,v). As usual, the field rescalingĉp and cp are
chosen such that the quadratic parts of the action at the criti-
cal point ~x2150) remain unchanged, so that the rescaling
of the response and the cluster correlation function under
coarse graining immediately gives their respective power-
law dependence on momentum~i.e., this is an appropriate
choice of the scaling units!. Without loop correlations to the
mean-field theory this implies thatz52, ĥ(x,t)
5b2d/22zĥ8(x,t) andh(x,t)5b2d/212h8(x,t).

Performing one coarse-graining step for the expansion for
SH of Eq. ~64! yields a coarse grained action which can be
written in the original form, with ‘‘renormalized’’ vertices
um,n8 . Without loop corrections, the vertices of the coarse-
grained action are simply rescalings of the original vertices,
which can be easily read off using the rescaling ofq, v, h,
and ĥ. Taking into account that eachd/de(t) involves a
derivative with respect to time, and therefore another factor
b2z under rescaling, we arrive at (x21)85b2x21 and

um,n8 5b@2~m1n!12#d/212num,n . ~78!

This shows that above eight dimensions all vertices that are
coefficients of terms of higher than quadratic order in the
fields, shrink to zero under coarse graining and are therefore
‘‘irrelevant’’ for the critical behavior on long length scales
and at low frequencies.

Below eight dimensions the vertex u1,2[w
52Jr8(2Jh02H1k) is the first coefficient of a nonqua-
dratic term to become relevant. An action with the original

parametersx2150 andwÞ0 corresponds to a system with
less than critical randomnessR,Rc at the onset field of the
infinite avalanche. In Appendix C we show how to extract
the mean-field exponents for the infinite avalanche line from
the scaling above eight dimensions and that the RG treatment
suggests a first-order transition for the same systems in less
than eight dimensions.

In systems where the bare value ofw is zero at the critical
fixed point with x2150, all nonquadratic terms are irrel-
evant abovedc56 dimensions. As can be seen from Appen-
dix A, this case constitutes the interesting ‘‘critical end-
point’’ at R5Rc andH5Hc(Rc), which we have discussed
in the introduction. Also,w50 implies that the bare vertex
x21;(Rc2R)/R. For d,6, the vertexu1,35u becomes rel-
evant, while all higher vertices remain irrelevant. We are left
with the effective action which includes all vertices relevant
for an expansion around six dimensions:

S̃52E ddqE dtĥ~2q,t !@] t /G01q22x21/J#h~q,t !

1~1/6!(
j
E dtĥ j~ t !„h j~ t !…

3u

1~1/2!(
j
E dt1E dt2ĥ j~ t1!ĥ j~ t2!u2,0. ~79!

We will perform the coarse-graining transformation in per-
turbation theory inu. At the fixed point, in 62e dimensions,
u will be of O(e). The perturbation series for the parameters
in the action and thus also for the critical exponents, be-
comes a perturbation series in powers ofe. From the form of
the action one can derive Feynman rules~see Appendix B!,
which enable us to write down the perturbative corrections in
a systematic scheme. Examples of their derivation for the
f4 model are given elsewhere.39,40,42

VI. MAPPING TO THE THERMAL RANDOM-FIELD
ISING MODEL

A. Perturbative mapping and dimensional reduction

In this section we will show that thee expansion for our
model is the same as thee-expansion for theequilibrium

14 884 53KARIN DAHMEN AND JAMES P. SETHNA



random-field Ising model to all orders ine.85 Once this
equivalence is established, we can use that the~62e! expan-
sion of theequilibrium random-field Ising has been mapped
to all orders ine to the corresponding expansion of the regu-
lar Ising model in two lower dimensions.86,87

The easiest way to recognize that thee expansion for our
model and for theequilibrium RFIM should really be the
same is by comparing the corresponding effective actions. In
a dynamical description of theequilibrium RFIM at zero
external magnetic field the following effective Langevin
equation of motion for the spin-fieldf(r ,t) was used67

] tf~x,t !52G0@2¹2f~x,t !1r 0f~x,t !11/6g0f
3~x,t !

2hR~x!2hT~x,t !#. ~80!

hR(x) represents spatially uncorrelated quenched random
fields distributed according to a Gaussian of widthD and
mean zero.hT(x,t) is the thermal noise field, which is taken
to be Gaussian with vanishing mean value and the variance

^hT~x,t !hT~x8,t8!&52kT/G0d~x2x8!d~ t2t8!. ~81!

The corresponding Martin-Siggia-Rose generating functional
is

ZH0

thermal5E @df̂#E @df#expH 2E ddqE dtf̂~2q,t !~] t /G01q21r 0!f~q,t !1E ddxE dt f̂~x,t !~21/6g0!f~x,t !3

1E ddxE dt f̂~x,t !@hR~x!1hT~x,t !#J . ~82!

Since againZH0

thermal51, we can average the partition function directly over the random fieldshR and the thermal noisehT :

Z̄H0

thermal5^ZH0

thermal&hR. ~83!

The average over the random fields at eachx and over the thermal noise fields at eachx and t yields, ~after completing the
square!:

Z̄H0

thermal5E @df̂#E @df#expH 2E ddqE dtf̂~2q,t !~] t /G01q21r 0!f~q,t !1E ddxE dt f̂~x,t !~2 1
6 g0!f

3~x,t !

1E ddxE dt1E dt2f̂~x,t1!f̂~x,t2!D
2/21E ddxE dt f̂2~x,t !~2kT!/G0J . ~84!

With the identifications r 052x21(H0), u521/6g0,
u2,05D2 andT50, we see that the argument of the expo-
nential function is the same action as the effective action for
our zero-temperature, nonequilibrium model in Eq.~64!. Set-
ting T to zero in the action for the equilibrium RFIM does
not change the expansion for the static behavior, since it
turns out that corrections involving temperature are negli-
gible compared to those involving the random magnetic
field67,87,88—the temperaturedependence is irrelevant in the
thermalRFIM and thetime dependence is irrelevant in our
zero-temperaturedynamicalRFIM, leaving us with the same
starting point for the calculation. This equivalence implies
that in 62e dimensions we should obtain the same critical
exponents to all orders ine for our model, as were calculated
for the thermal random-field Ising model, which in turn are
the same as those of the pure equilibrium Ising model in 42e
dimensions.86,87

This observation is rather convenient, since it provides us
with results from the regular Ising model toO(e5) for free.
In 62e dimensions we read off65

1/n522e/320.1173e210.1245e320.307e410.951e5

1O~e6!, ~85!

h50.0185185e210.01869e320.00832876e410.02566e5

1O~e6!, ~86!

b51/22e/610.00617685e220.035198e310.0795387e4

20.246111e51O~e6!, ~87!

bd53/210.0833454e220.0841566e310.223194e4

20.69259e51O~e6!. ~88!

b andd have been calculated fromh andn using the pertur-
bative relations: b5(n/2)(d241h̄) and d5(d22h
1h̄)/(d241h̄) ~see Sec. III I 1!, with h5h̄ to all orders in
e.67

B. Perturbative mapping of the equation of state

By the same mapping we obtain the universal scaling
function for the magnetization toO(e2).89,90 Since the cor-
responding calculation has been explained in great detail for
the equation of state of the Ising model in 42e dimensions in
the article by Wallace in Ref. 90, we will only briefly outline
the main steps and quote the result for the scaling function in
the end.
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Following the Wallace article one expands the action
around thetrue ~note mean-field! magnetizationh̃05M true
and expands the bare vertices in terms of the deviationsh
5H2Hc(Rc), r5(Rc2R)/R, andm5M true2Mc of the pa-
rametersH, R, andM true from their values at the mean-field
critical point {Hc(Rc)5k2J, Rc52kJ/@A(2p)(k2J)#,
andMc511, as given in Appendix A%. One obtains to low-
est order38 u1,05h/k12J/(A2pR)rm1(2J3/3!)r9(0)m3

1•••, x21522Jr/(A2pR)11/2um21••• @see Eq.~72!#,
w5um1••• @see Eq.~67!#, andu52J3r9(0)1••• @see Eq.
~68!#, where ••• denotes higher orders inh, m, and r, and
r9( f ) is the second derivative of the distribution of random
fields with respect to its argument.

Calculating loop corrections in thee expansion of the
equation of state is then completely analogous to the calcu-
lation described by Wallace for the Ising model in two lower
dimensions. For details on solving the loop integrals, etc. we
refer the reader to Ref. 90, especially Eq.~3.35!. @In fact,
with the following formal identifications, the resulting equa-
tions of state in the two systems can be mapped onto each

other: h/k52hw , 2Jr/(A2pR)52tw , 2J3r9(0)5
2(u0)w , m52mw . We have denoted the quantities in Wal-
lace’s article by an index ‘‘w.’’ #

One obtains the following result:

h5md f ~x5r /m1/b! ~89!

in which the renormalizations ofx and the universal scaling
function f are chosen such that

f ~0!51, f ~21!50. ~90!

The expansion to second order ine is then

f ~x!511x1e f 1~x!1e2f 2~x! ~91!

with

f 1~x!5 1
6 @~x13!ln~x13!23~x11!ln312x ln 2#

~92!

and

f 2~x!5@ 1
18 #2$@6 ln 229 ln 3#@3~x13!ln~x13!16x ln 229~x11!ln 3#1 9

2 ~x11!@ ln2~x13!2 ln23#

136@ ln2~x13!2~x11!ln231x ln22#254 ln 2@ ln~x13!1x ln 22~x11!ln 3#

125@~x13!ln~x13!12x ln 223~x11!ln 3#%. ~93!

The scaling functionf (x) has actually been calculated up
to order e3.43 As it stands the expression~91! meets the
Griffith analyticity requirements91 only within the framework
of thee expansion, but not explicitly. These subtleties can be
avoided by writing it in a parametric form,89 which can then
be compared directly with our numerical results for the uni-
versal scaling function ofdM/dH in five, four, three, and
two dimensions. We will present the results in a forthcoming
paper.2

The dynamic exponentz cannot be extracted from the
mapping to the regular Ising model. It was calculated sepa-
rately to O(e3) for the equilibrium RFIM ~Ref. 67! and
found to be given to this order by@Equation~94! is only a
perturbative result forz which does not reveal the presence
of diverging barrier heights that lead to the observed slow
relaxation towards equilibrium.4,5–7,71 Nonperturbative cor-
rections are expected to be important in the equilibrium
random-field Ising model.#

z5212h5210.037037e210.03738e31O~e4!. ~94!

Because of the perturbative mapping of our model to the
equilibrium RFIM, Eq.~94! also gives the result forz in our
nonequilibrium hysteretic system.

We have performed a Borel resummation38,92 of the cor-
rections toO(e5) for h, n, and the derived exponentbd ~see
Sec. III I 1!. The exponentb is then given throughb5bd
2~22h!n @Eq. ~24!#. Figure 6 shows a comparison with our
numerical results in three, four, and five dimensions.

The agreement is rather good near six dimensions. How-
ever the apparent dimensional reduction through the pertur-
bative mapping to the Ising exponents in two dimensions
gradually loses its validity at lower dimensions. It is after all
only due to the equivalence of two asymptotic series, both of
which have radius of convergence zero. Table I shows a
comparison between the numerical exponents for our model
and for the equilibrium RFIM in three dimensions.

C. Nonperturbative corrections

The mapping of thee expansion for the thermal random-
field Ising model to the expansion for the Ising model in two
lower dimensions caused much controversy when discov-
ered. The problem was that it had to break down at the lower
critical dimension, where the transition disappears. There is
no transition in the pure Ising model ind51, but the equi-
librium RFIM is known rigorously to have a transition in
d53.93,94The same is true for our model: numerical simula-
tions indicate1,2 that the lower critical dimension is lower
than three—probably equal to 2.

In the case of the equilibrium random-field Ising model it
was finally agreed71,87 that this breakdown might be due to
nonperturbative corrections. The point is that proving a rela-
tion to all orders ine does not make it true. In the equilib-
rium RFIM there are at least two sources of nonperturbative
corrections:

~a! The ‘‘embarrassing’’ correction:It was found that
there was a calculational error in the~62e! expansion for the
RFIM. The perturbation series was tracing over many un-
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physical metastable states of the system, instead of just tak-
ing into account the ground state, which the system occupies
in equilibrium. There were indications that this error leads to
nonperturbative corrections, which would destroy the dimen-
sional reduction outside of perturbation theory.87

In our calculation we have avoided the embarrassing
source of nonperturbative corrections found in the equilib-
rium random-field Ising problem. Given the initial conditions
and a historyH(t), the set of coupled equations of motion
for all spins will have only one solution. In the Martin-
Siggia-Rose~MSR! formalism, the physical state is selected
as the only solution that obeys causality, there are no un-
physical metastable states coming in. Therefore we believe
our results should also apply to systems below the critical
randomness, at least before the onset of the infinite ava-
lanche.

~b! Instanton corrections:Even without the embarrassing
correction, there is no reason why a perturbative mapping of
the expansions about the upper critical dimensions should
lead to a mapping of the lower critical dimensions also. The
e expansion is only an asymptotic expansion—it has radius
of convergence zero. As we discuss in Refs. 38 and 92, there
is no known reason to assume that thee expansion uniquely
determines an underlying function. It leaves room for func-
tions subdominant to the asymptotic power series: If the se-
ries(0

` f kz
k is asymptotic to some functionf (z) in the com-

plex plane asz→0, then it is also asymptotic to any function
which differs fromf (z) by a functiong(z) that tends to zero
more rapidly than all powers ofz asz→0.95 An example of
such a subdominant function would beg(z)5exp(21/z).
While some asymptotic expansions can be proven to
uniquely define the underlying function, this has not been
shown for thee expansion38,92—not for our problem, nor for
the equilibrium pure Ising model, nor for the equilibrium
thermal random-field Ising model.

At this point, thee expansion for our model is on no
worse formal footing than that for the ordinary Ising model.
We believe, the asymptotic expansion is valid for both mod-
els, despite the fact that their critical exponents are different:
the exponents for the Ising model ine542d and the expo-
nents for our model ine562d are different analytic func-
tions with the same asymptotic expansion. Thee expansion
cannot be used to decide whether the lower critical dimen-
sion is ate53 or ate54.

We conclude that because of instanton corrections the di-
mensional reduction breaks down for the equilibrium RFIM
as well as for our nonequilibrium, deterministic zero-
temperature RFIM. In addition there is another ‘‘embarrass-
ing’’ source of nonperturbative corrections in the equilibrium
RFIM, which we do not have in our problem. There is no
reason to expect our exponents to be the same as those of the
equilibrium RFIM,96 though the perturbation series can be
mapped. There might actually be three different underlying
functions for the samee expansion for any exponent: one for
the pure Ising model, one for the equilibrium random-field
Ising model, and one for our model, so that the exponents in
all three models would still be different although theire ex-
pansions are the same.

VII. e EXPANSION FOR THE AVALANCHE EXPONENTS

The exponents whosee expansion we have calculated so
far using the mapping to the equilibrium RFIM aren, h, h̄,
b, bd, ũ , andz. Unfortunately, we cannot extract the ava-
lanche exponentst, 1/s, andu from this mapping. The two
exponent relations involving these exponents

t225sb~12d! ~95!

and

TABLE I. Numerical results for the critical exponents in three dimensions for our hysteresis model~Refs.
1 and 2! and for the equilibrium zero-temperature random-field Ising model~Refs. 71 and 119!. The break-
down of hyperscaling exponentũ is calculated for the hysteresis model from the relationb1bd5~d2ũ!n ~see
Sec. III I 2 and Refs. 38 and 37!. The values of the critical exponents of the two models remain within each
other’s error bars; their equality was conjectured by Maritanet al. ~Ref. 96!. This may not be so surprising,
if one remembers that the 62e expansion is the same for all exponents of the two models. Nevertheless there
is always room for nonperturbative corrections, so that the exponents might still be different in three dimen-
sions~see Sec. VI C!. Physically the agreement is rather unexpected, since the nature of the two models is
very different. While the hysteresis model is far from equilibrium, occupying a history dependent, metastable
state, the equilibrium RFIM is always in the lowest free-energy state. One may speculate, however, about a
presumably universal crossover from our hysteresis model to the equilibrium random-field Ising model as
temperature fluctuations and a finite field-sweeping frequencyV are introduced~see Appendix E 2!.

Exponents

Hysteresis loop~Ref. 2!
in three dimensions

~courtesy Olga Perkovic´!
Equilibrium RFIM ~Ref. 120!
in three dimensions

n 1.4260.17 0.97, 1.30, 1.0560.1 ~Ref. 119!
b 0.060.43 20.1, 0.05
bd 1.8160.36 1.6, 1.960.4
h 0.7960.29 0.25, 0.560.5

ũ 1.560.5 1.45, 1.560.45

Rc ~Gaussian! 2.1660.03 2.360.2 ~Ref. 119!
Hc(Rc) 1.43560.004 0~by symmetry!
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1/s5~d2u!n2b ~96!

are not enough to determine all three exponents from the
information already obtained.

In the following we will computet ands directly in ane
expansion. The method employed makes use of the scaling
of the higher moments of the avalanche size distribution.
They are being calculated usingn replicas of the system for
thenth moment.

A. The second moment of the avalanche-size distribution

When calculatingh andn we have already used all infor-
mation from the scaling behavior of the first moment^S& of
the avalanche size distribution: It is easy to see38 that ^S&
scales as the spatial integral over the avalanche-response-
correlation function, which in turn scales as the ‘‘upward
susceptibility’’ dM/dh calculated consistently with the his-
tory of the system. In the Martin-Siggia-Rose formalism it is
given by97

^S&;E dt0E ddx^ŝ~ t0 ,x0!s~ t,x!& f

5E dt0E ddx^ds~ t,x!/de~ t0 ,x0!& f . ~97!

The second moment^S2& of the avalanche size distribution is
the random-field average of the squared avalanche response.
Note that it is not simply the square of the expression in Eq.
~97! for the first moment—the product rule for taking deriva-
tives gets in the way: A quantity such as

^ŝ~ t0 ,x0!s~ t1 ,x1!ŝ~ t2 ,x0!s~ t3 ,x3!& f[A1B, ~98!

not only contains the term which we need

A5 K ds~ t1 ,x1!

de~ t0 ,x0!

ds~ t3 ,x3!

de~ t2 ,x0!
L
f

~99!

but also the terms

B5 K d2s~ t1 ,x1!

de~ t0 ,x0!de~ t2 ,x0!
s~ t3 ,x3!L

f

1 K s~ t1 ,x1! d2s~ t3 ,x3!

de~ t0 ,x0!de~ t2 ,x0!
L
f

, ~100!

which are not related tôS2&. To separateA andB we intro-
duce a second replica of the system with the identical con-
figuration of random fields, the same initial conditions, and
the same history of the external magnetic field. One can then
calculate the response in each of the two replicas separately,
multiply the results and afterwards take the average over the
random fields. Denoting the quantities in the first replica
with superscripta and those in the second replica with su-
perscriptb one obtains

A2[^ŝa~ t0 ,x0!s
a~ t1 ,x1!ŝ

b~ t2 ,x0!s
b~ t3 ,x3!& f

5 K dsa~ t1 ,x1!

dea~ t0 ,x0!

dsb~ t3 ,x3!

deb~ t2 ,x0!
L
f

, ~101!

since

dsa

deb 50, ~102!

and

dsb

dea 50. ~103!

Similarly for thenth moment^Sn& of the avalanche-size
distribution one would usen replicas of the system. In Ap-
pendix D we make this argument more precise and derive the
scaling relation between̂S2& andA2

^S2& f;E dt1E dtadtbd
dxad

dxb^ŝa~ ta ,x0!

3sa~ t0 ,xa!ŝb~ tb ,x0!s
b~ t1 ,xb!& f . ~104!

In the following we generalize the RG treatment from previ-
ous sections to the case of two replicas, and extract the scal-
ing behavior of^S2& from Eq. ~104! near the critical point.
We will compare the result to the scaling relation

^S2&5E S2D~S,r ,h!dS;E S2/StD6~Sr1/s,h/r bd!dS

;r ~t23!/sS 6
~2!~h/r bd!, ~105!

whereS 6
(2) is the corresponding scaling function, and obtain

the missing information to compute the exponentst ands.

B. Formalism for two replicas

The generalization of the MSR generating functional to
two replicas is rather straightforward. The equation of mo-
tion for each spin is the same in both replicas

] tsi
a/G02dH~sa!/dsi

a50 ~106!

and

] tsi
b/G02dH~sb!/dsi

b50, ~107!

where the HamiltonianH is given by Eq.~33!.
The new generating functional is a double path integral

over twod functions which impose the equations of motion
for both replicas. Again we can write thed functions in their
‘‘Fourier’’ representation by introducing two auxiliary fields
ŝa and ŝb.

One obtains simply the square of the generating func-
tional from Eq.~35!, expressed in terms of two replicas:
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Zab5E E @dsa#@dŝa#E E @dsb#@dŝb#J@sa#J@sb#expS i(
j
E dt ŝj

a~ t !@] tsj
a~ t !/G0

2dH~sa!/dsj
a~ t !# DexpS i(

j
E dt ŝj

b~ t !@] tsj
b~ t !/G02dH~sb!/dsj

b~ t !# D . ~108!

We note that the two replicas do not interact before the average over the random fields is taken. SinceZ51 we can again
averageZ directly over the random fields.

We rewrite the action using the same kinds of transformations to the local fieldsh̃a, ĥ̃a, h̃b, andĥ̃b which we introduced
previously@see Eq.~46!#, i.e.,

Zab5E @dh̃a#@dĥ̃a#@dh̃b#@dĥ̃b#)
j
Z̄ j@h̃ j

a ,ĥ̃ j
ah̃ j

b ,ĥ̃ j
b#expH 2E dt(

j
ĥ̃ j

a~ t !S (
l

Jj l
21Jh̃ l

a~ t ! D
2E dt(

j
ĥ̃ j

b~ t !S (
l

Jj l
21Jh̃ l

b~ t ! D J , ~109!

whereZ̄j@h̃ j
a ,ĥ̃ j

ah̃ j
b ,ĥ̃ j

b# is a local functional

Z̄ j@h̃ j
a ,ĥ̃ j

ah̃ j
b ,ĥ̃ j

b#5E @dsa#@dŝa#@dsb#@dŝb#

3^exp S̃effj
ab & f , ~110!

and

S̃effj
ab 5

1

JE dtH Jĥ̃ j
a~ t !sj

a~ t !1 i ŝ j
a~ t !S ] tsj

a~ t !2Jh̃ j
a2H2 f j

1
]Va

dsj
a D J 1

1

JE dtH Jĥ̃ j
b~ t !sj

b~ t !1 i ŝ j
b~ t !S ] tsj

b~ t !

2Jh̃ j
b2H2 f j1

]Vb

dsj
b D J . ~111!

Here Va and Vb are given by the linear cusp potentialV
defined in Eq.~32!, to be understood as a function ofsa and
sb, respectively.

Again, we expand the action around its stationary point. It
is specified by four coupled equations, which turn out to be

solved self-consistently by the replica symmetric mean-field
solution, which we found earlier when studying just one rep-
lica:

ĥ̃ 0
a50, ~112!

ĥ̃ 0
b50, ~113!

h̃ 0
a5^sa& f , ~114!

h̃ 0
b5^sb& f , ~115!

Analogously to before30 we will now expand around the
mean-field solutionh̃ 0

a , h̃ 0
b @Jh̃ 0

a and Jh̃ 0
b denote the

local-field configurations about which the log of the inte-
grand in Eq.~109! is stationary#. Introducing shifted fields
ha[h̃a2h̃0

a so that ^ha& f50, and ĥa[ĥ̃a ~and corre-
spondingly forhb, and ĥb!, leaves one with the generating
functional

Z̄5E @dha#@dĥa#@dhb#@dĥb#exp~Sab! ~116!

with an effective action

Sab52(
j ,l

E dt Jjl
21Jĥ j

a~ t !h l
a~ t !2(

j ,l
E dt Jjl

21Jĥ j
b~ t !h l

b~ t !1(
j

(
m,n,p,q50

`
1

m!n!p!q!

3E dt1•••dtm1n1p1qumnpq
ab ~ t1 ,...,tm1n1p1q!ĥ j

a~ t1!•••ĥ j
a~ tm!h j

a~ tm11!•••h j
a~ tm1n!

3ĥ j
b~ tm1n11!•••ĥ j

b~ tm1n1p!h j
b~ tm1n1p11!•••h j

b~ tm1n1p1q!. ~117!

Here, theumnpq
ab are the derivatives of lnZ̄j

ab with respect to the fieldsĥ j
a , h j

a , ĥ j
b andh j

b and thus are equal to the local,
connected responses and correlations in mean-field theory:

umnpq
ab 5

]

]ea~ tm11!
•••

]

]ea~ tm1n!

]

]eb~ tm1n1p11!
•••

]

]eb~ tm1n1p1q!
^sa~ t1!•••s

a~ tm!sb~ tm1n11!•••s
b~ tm1n1p!& f ,l ,c .

~118!
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As before, local48 ~l! means that we do not vary the local
field ~h0

a) j in the mean-field equation

] tsj
a~ t !5J~h 0

a! j~ t !1H1 f i2
dVa

dsj
a~ t !

1Jea~ t ! ~119!

when we perturb the replicaa with the infinitesimal force
Jea(t) ~and correspondingly for replicab!. The indexc to
the average in Eq.~118! is a reminder that these arecon-
nectedcorrelation and response functions. In the same way
as we discussed in Sec. IV D the forceJea(t) is only al-
lowed to increasewith time consistently with the history we
have chosen. From Eq.~118! one sees thatu0npq50 if nÞ0,
umn0q50 if qÞ0, andu0n0q50, just as we hadu0n50 in
our earlier calculation for just one replica.

C. Coarse-graining transformation

The coarse-graining transformation is defined in the same
way as in the single replica case. In Appendix D we give the
Feynman rules for loop corrections, and derive the canonical
dimensions of the various operators in the action.

D. The scaling of the second moment
of the avalanche size distribution

In order to find the scaling dimension of^S2& from Eq.
~104! we need to know how

^ŝa~ ta ,x0!s
a~ t0 ,xa!ŝb~ tb,x0!s

b~ t1 ,xb!& f ~120!

scales under coarse graining. The topology of the diagrams
permits noO~e! loop corrections to the corresponding vertex
function. Since the anomalous dimensions of the external
legs~i.e., Greens functions! in the two replicas are also zero
at O~e! it is sufficient to use the plain field rescalings to
extract the scaling behavior of̂ŝaŝbsasb& under coarse
graining. As shown in Appendix D one obtains

^ŝaŝbsasb&;L@2~d1z!24#, ~121!

whereL is the cutoff in the momentum shell integrals.
Inserting this result into Eq.~104! along with the canoni-

cal dimensions of the various times@t#;L 2z and coordinates
@x#;L21, one obtains

^S2&;L2~41z!. ~122!

@Formally including the anomalous dimensionsh5h̄
501O~e 2!, one obtains ~to first order in e! ^S2&
;L2@z1(22h)2#. Similarly, one finds for the higher moments
^Sn&;L2@(n21)z1(22h)n#.#

On the other hand, from Eq.~105! we know that^S2&
;r (t23)/sS 6

(2)(h/r bd). If we use thatr has scaling units
L1/n, and thatt225sb~12d! ~see Sec. III I, and Refs. 37
and 38!, we find by comparison with Eq.~122! that 1/s5zn
1~22h!n to first order ine. One gets the same result from
comparing the dimensions for thenth moment, which scales
as ^Sn&;r (t2(n11))/sS 6

(n)(h/r bd).

E. Results

We have seen that

1/s5zn1~22h!n1O~e2!521e/31O~e2!. ~123!

If one inserts this into the relationt225sb~12d!, one ob-
tains

t53/21O~e2!. ~124!

From the violated hyperscaling relation 1/s5~d2u!n2b one
finds

un51/22e/61O~e2!. ~125!

This concludes the perturbative approach to the problem.

VIII. COMPARISON WITH NUMERICAL SIMULATIONS
IN TWO, THREE, FOUR, AND FIVE DIMENSIONS

Figures 6 and 7 show a comparison between the theoreti-
cal predictions for various exponents and their values as ob-
tained from numerical simulations in two, three, four, and
five dimensions.1 A complete list of the numerical exponents
that were measured in the simulations, and a detailed de-
scription of the algorithm that allowed to simulate systems
with up to 10003 spins is given in a forthcoming
publication.2 A quantitative comparison of the results to ex-
periments can be found in Refs. 1, 38, and 37. Some first
results and conjectures about the behavior in two dimen-
sions, which is likely the lower critical dimension of our
critical point, are presented elsewhere.1,2 As is seen in the
figure, the agreement between the numerics and the results
from the e expansion is surprisingly good, even down to
e53.

The numerical values in three dimensions forb, bd, n,

FIG. 6. Borel resummed critical exponents and simulation re-
sults. Shown are the numerical values of the exponents 1/n, h, and
bd5n~d2h!/2 ~triangles, diamonds, and circles, respectively! in
three, four, and five dimensions and in mean-field theory~dimen-
sion 6 and higher!. The error bars denote systematic error in finding
the exponents from collapses of curves at different values of disor-
derR. Statistical errors are smaller. The dashed lines are the Borel
sums to fifth order ine for the same exponents, using the method of
Refs. 116 and 117~see also Ref. 92!.
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andh seem to have overlapping error bars with the corre-
sponding exponents of the equilibrium RFIM~see Table I!.
Maritan et al.96 conjectured that the exponents might be
equal in a comment to our first publication29 on this system.
Why this should be is by no means obvious. The physical
states probed by the two systems are very different. While
the equilibrium RFIM will be in the lowest free-energy state,
our system will be in a history-dependent metastable state.
Nevertheless, as we have seen, the perturbation expansions
for the critical exponents can be mapped onto another to all
orders ine. In Appendix E 2 we discuss possible connections
between the two models that might become clear if tempera-
ture fluctuations are introduced in our zero-temperature ava-
lanche model.
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APPENDIX A:
HARD-SPIN AND SOFT-SPIN MEAN-FIELD THEORY

1. Hard-spin mean-field theory

In this appendix we derive the scaling forms near the
critical point for the magnetization and the avalanche-size
distribution in the hard-spin mean-field theory. At the end we
briefly discuss changes of nonuniversal quantities for the
soft-spin mean-field theory.

We start from the hard-spin mean-field Hamiltonian:

H52(
i

~JM1H1 f i !si , ~A1!

where the interaction with the nearest neighbors from the
short-range model Eq.~3! has been replaced by an interac-
tion with the average spin value or magnetizationM
5((si)/N. This would be the correct Hamiltonian if every
spin would interact equally strongly with every other spin in
the lattice, i.e., for infinite range interactions.

2. Mean-field magnetization curve

Initially, at H52`, all spins are pointing down. The
field is slowly increased to some finite valueH. Each spin
si flips, when it gains energy by doing so, i.e., when its local
effective fieldhi

eff5JM1H1 f i changes sign. At any given
field H all spins withhi

eff,0 will still be pointing down, and
all spins withhi

eff.0 will be pointing up. Self-consistency
requires thatM5*r( f )sid f . One obtains

M5~21!E
2`

2JM2H

r~ f !d f1E
2JM2H

`

r~ f !d f

5122E
2`

2JM2H

r~ f !d f . ~A2!

As in the main textr( f )5exp(2f 2/2R2)/(A2pR) is the dis-
tribution of random fields.

For R.A2/pJ[Rc the solutionM (H) of Eq. ~A2! is
analytic at all values ofH. For R5Rc there is a critical
magnetic fieldHc(Rc)50 where the magnetization curve

FIG. 7. Comparison to numerical results. Numerical values
~filled symbols! of the exponentst1sbd, t, 1/n, snz, and sn
~circles, diamond, triangles up, squares, and triangle left! in two,
three, four, and five dimensions. The empty symbols are values for
these exponents in mean-field~dimension 6!. Note that the value of
t in two dimensions was not measured. The empty diamond repre-
sents the expected value~Refs. 1 and 37!. The numerical results are
courtesy of Olga Perkovic´ ~Refs. 1 and 2! from simulations of sizes
up to 70002, 10003, 804, and 505 spins, where for 3203, for example,
more than 700 different random-field configurations were mea-
sured. The long-dashed lines are thee expansions to first order for
the exponentst1sbd, t, snz, andsn. They aret1sbd5

9
42e/8,

t5
3
21O~e2!, andsnz51

21O~e2!, andsn5
1
41O~e2! wheree562d

andd is the dimension. The short-dashed lines are the Borel sums
~Ref. 22! @92,118# for 1/n to fifth order in e. The lowest is the
variable-pole Borel-sum from LeGuillouet al. ~Ref. 92!, the middle
uses the method of Vladimirovet al.. to fifth order, and the upper
uses the method of LeGuillouet al. ~but without the pole and with
the correct fifth-order term!. The other exponents can be obtained
from exponent equalities~see Sec. III I in the text!. The error bars
denote systematic errors in finding the exponents from collapses of
curves at different values of disorderR. Statistical errors are
smaller.
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M (H) has diverging slope. ForR,Rc andH between the
two branching fieldsHc

l (R) andHc
u(R) there are two stable

and one unstable solution forM (H). Unlike equilibrium sys-
tems, which will always occupy the solution with the lowest
overall free energy, our nonequilibrium~zero-temperature!
system is forced by the local dynamics to stay in the current
local energy minimum until it is destabilized by the external
magnetic field. For increasing~decreasing! external magnetic
field this implies that the system will always occupy the
metastable state with the lowest~highest! possible magneti-
zation. One obtains a hysteresis loop forM (H) with a jump,
or ‘‘infinite avalanche,’’ and with diverging slopedM/dH at
the upper and lower coercive fieldsHc

u(R) andHc
l (R), re-

spectively~see Fig. 1!. From Eq.~A2! follows thatdM/dH
52r(x)/@122Jr(x)# ~with x52JM2H) diverges if
2Jr(2JM2H)51. Expanding around such a point one ob-
tains

dM/dH[x5@2r~xc!#/$J@r8~xc!~x2xc!

11/2r9~xc!~x2xc!
21•••#% ~A3!

with xc[2JM„Hc(R)…2Hc(R). @Hc(R) meansHc
u(R) or

Hc
l (R) depending on the history#. For a general analytic dis-

tribution of random fieldsr(x) with one maximum with non-
vanishing second derivative@r9(xc),0#, this suggests two
different scaling behaviors corresponding to the cases
r8(xc)50 andr8(xc)Þ0.

a. The ‘‘critical endpoint’’ (Rc , Hc„Rc……

Consider the caser8(xc)50 first. For a Gaussian distri-
bution of widthR[Rc with zero mean this implies thatxc
52JM(Hc)2Hc50, r(xc)51/(A2pRc)51/(2J) and con-
sequentlyRc5A2/pJ. This is in fact the largest possible
value ofR for which M (H) has a point of diverging slope.
Integrating Eq.~A3! leads to a cubic equation forM and the
leading-order scaling behavior

M ~r ,h!;ur ubM6~h/ur ubd!, ~A4!

for smallh5H2Hc(Rc) andr5(Rc2R)/R, with the mean-
field critical exponentsb51/2 andd53.M6 is given by the
smallest real rootg6(y) of the cubic equation

g37
12

p
g2

12A2
p3/2Rc

y50, ~A5!

where6 refers to the sign ofr.

b. The ‘‘infinite avalanche line’’ Hc„R… for R<Rc

The other case@r(xc)51/(2J) and r8(xc)Þ0] is found
for distributions withR,Rc . Integrating Eq.~A3! with xc
52JM„Hc(R)…2Hc(R) yields a quadratic equation for the
magnetization and the scaling behavior

M2M „Hc~R!…;@H2Hc~R!#z ~A6!

with z51/2 for H close to Hc(R). From Eq. ~A2! and
2Jr(xc)2150 one findsHc(Rc)50, Hc(R);,6r bd for
small r.0, andHc(R50)56J ~6 indicates the two mono-
tonic histories!. The corresponding phase diagram was
shown in Fig. 3. Note that the scaling results forR close to

Rc as given in Eq.~A4! remind us of the scaling results of
the Curie-Weiss mean-field theory for the equilibrium Ising
model near the Curie temperature~T5TC). ForT,TC, how-
ever, the equilibrium model has a discontinuity in the mag-
netization atH50, while for R,Rc our model displays a
jump in the magnetization at a history-dependent nonzero
magnetic fieldHc(R), where the corresponding metastable
solution becomes unstable. Our infinite avalanche line
Hc(R) is in fact similar to the spinodal line in spinodal
decomposition.39 Note also that this mean-field theory does
not show any hysteresis forR>Rc ~see Fig. 1!. As was ex-
plained earlier, this is only an artifact of its particularly
simple structure and not a universal feature.

3. Mean-field avalanche-size distribution

As we have already discussed in the main text, one finds
avalanches of spin flips as the external field is raised adia-
batically. Due to the ferromagnetic interaction a flipping spin
may cause some of its nearest neighbors to flip also, which
may in turn trigger some of their neighbors, and so on. In
mean-field theory, where allN spins of the system act as
nearest neighbors with couplingJ/N, a spin flip changes the
effective field ofall other spins by 2J/N. For largeN, the
average number of secondary spins that will be triggered to
flip in response to this change in the effective local field is
then given byntrig52Jr(2JM2H). If ntrig,1, any ava-
lanche will eventually peter out, and even in an infinite sys-
tem all avalanches will only be of finite size. Ifntrig51, the
avalanche will be able to sweep the whole system, since each
flipping spin triggers on average one other spin. This hap-
pens when the magnetic fieldH takes a value at the infinite
avalanche lineH5Hc(R), with R<Rc .

Considering all possible configurations of random fields,
there is a probability distribution for the numberS of spins
that flip in an avalanche. It can be estimated for avalanches
in large systems, i.e., forS!N: For an avalanche of sizeS
to happen, given that the primary spin has random fieldf i ,
it is necessarythat there are exactlyS21 secondary spins
with corresponding random fields in the interval@ f i ,
f i12(J/N)S]. Assuming that the probability density of ran-
dom fields is approximately constant over this interval, the
probability P(S) for a corresponding configuration of ran-
dom fields is given by the Poisson distribution, with the av-
erage value l52JSr(2JM2H)5S(t11), where t
[2Jr(2JM2H)21:

P~S!5
l~S21!

~S21!!
exp~2l!. ~A7!

This includes cases in which the random fields of thes spins
are arranged in the interval@ f i , f i12S(J/N)# in such a way
that they do not flip in one big avalanche, but rather in two
separate avalanches triggered at slightly different external
magnetic fields. Imposing periodic boundary conditions on
the interval@ f i , f i12S(J/N)# one can see that for any ar-
rangement of the random fields in the interval there is ex-
actly one spin which can trigger the rest in one big ava-
lanche. In 1/S of the cases, the random field of this particular
spin to trigger the avalanche will be the one with the lowest
random field, as desired. Therefore we need to multiply
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P(S) by 1/S to obtain the probabilityD(S,t) for an ava-
lanche of sizeS starting with a spin flip at random fieldf i
52JM2H

D~S,t !5S~S22!/~S21!! ~ t11!~S21!e2S~ t11!. ~A8!

With Stirling’s formula we find for largeS the scaling form

D~S,t !;
1

A2pS3/2
exp~2St2/2!. ~A9!

To obtain the scaling behavior near the two different critical
points, we will insert into the expression in Eq.~A9! the
expansion oft(x) aroundxc .

4. Avalanches near the critical endpoint

Near the critical point„Rc ,Hc(Rc)…, where xc50 and
r8(xc)50 we obtaint52Jr(0)211Jr9(0)(2JM2H)2,
which implies

t;r @171/4pg6~h/ur ubd!2# ~A10!

@see Eqs.~A4! and~~A5!#. With Eq. ~A9! we then obtain the
scaling form for the avalanche-size distribution:

D~S,r ,h!;S2tD6~S/ur u21/s,h/ur ubd!, ~A11!

with the mean-field resultst53/2, s51/2, bd53/2, and the
mean-field scaling function

D6~x,y!5
1

A2p
e2xF17

p

4
g6~y!2G2/2. ~A12!

5. Mean-field avalanche-size distribution
near the `-avalanche line„‘‘spinodal line’’ …

ForR,Rc one hasr8(xc)Þ0, so that the expansion fort
becomes

t52Jr8~xc!~x2xc!1•••

52Jr8~xc!$2J@M2M ~Hc~R!!#2@H2Hc~R!#%1••• .

~A13!

Following the steps that led to Eq.~A6! we arrive at

t522AJr8~xc!~H2Hc~R!!

1higher orders in@H2Hc~R!#, ~A14!

so that forH close to the onset to infinite avalanche@with
H<Hc

u(R) for increasing fieldH andH>Hc
l (R) for decreas-

ing field#

D$S,@H2Hc~R!#%;
1

A2pS3/2
exp $22@r8~2JM

2H !J#SuH2Hc~R!u%. ~A15!

or

D@S,H2Hc~R!#;1/StF ~SuH2Hc~R!u1/k!, ~A16!

with k51 and t53/2 in mean-field theory, andF is the
corresponding mean-field scaling function.

6. Modifications for the soft-spin mean-field theory

a. The static case

In Sec. IV we have, for calculational convenience,
switched from the hard-spin model, where each spinsi could
only take the values61, to a soft-spin model, wheresi can
take any value between2` and 1`. In realistic systems
these soft spins can be considered as coarse-grained versions
of the elementary spins. The corresponding Hamiltonian
with the newly introduced double-well potential

V~si !5 H k/2~si11!2 for s,0,
k/2~si21!2 for s.0, ~A17!

to mimic the two spin states of the hard-spin model, was
given in Eq. ~33!. In the mean-field approximation, where
the coupling term2Ji j sisj is replaced by2( iJMsi with
M5( j sj /N, we obtain

H52(
i

$~JM1H1 f i !si2V~si !%. ~A18!

For adiabatically increasing external magnetic field the local
dynamics introduced earlier implies that each spin will be
negative so long as the ‘‘down’’ well Hamiltonian

H2[k/2~si11!22~H1JM1 f i !si ~A19!

does have a local minimum withdH/ds50 for negative
si . This implies thatsi,0 if

d

dsi
@k/2~si11!22~H1 f i1JM!si #s50>0, ~A20!

elsesi will be stable only at the bottom of the positive po-
tential well, where

d

dsi
H15

d

dsi
@k/2~si21!22~H1JM1 f i !si #50.

~A21!

We conclude that for the given history

H si<0 for f i<2JM2H1k,
si.0 for f i.2JM2H1k. ~A22!

From the self-consistency condition

^si&[E r~ f i !sid f i5M , ~A23!

we derive forincreasingexternal magnetic field:

Mu~H !5~k1H !/~k2J!22k/~k2J!E
2`

2JM2H1k

r~ f !d f ,

~A24!

and fordecreasingexternal magnetic field:

Ml~H !5~k1H !/~k2J!22k/~k2J!E
2`

2JM2H2k

r~ f !d f .

~A25!
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Figure 2 shows the corresponding hysteresis loops in the
three disorder regimesR,Rc5A2/pJ@k/(k2J)#, where the
hysteresis loop has a jump,R5Rc , where the jump has
shrunk to a single point of infinite slopedM/dH, andR
.Rc , where the hysteresis loop is smooth. In contrast to the
hard-spin model, this model displays hysteresis even forR
>Rc .

The critical magnetic fieldsHc
u(R) andHc

l (R) where the
slope of the static magnetication curvedM/dH;1/t di-
verges are given by the zeroes of

x2152J2r~2JMstat2H1k!2J~k2J!/k. ~A26!

To find the scaling behavior near the critical point one can
expand Eq.~A24! aroundHc

u(R), and correspondingly Eq.
~A25! aroundHc

l (R). For increasing external magnetic field
the critical point R5Rc , H5Hc

u(Rc), and M5Mc

[Mu(Hc
u(Rc)… is characterized byx2150 and r8(2JMc

2Hc1k)50, i.e., 2JMc2Hc1k50. It follows that Rc

5(1/A2p)@2kJ/k2J#. From Eq. ~A24! one obtainsMc
u

51 andHc
u(Rc5k2J. Similarly for a decreasing external

magnetic field one findsHc
l (Rc)52(k2J) and Mc

l

5Ml„Hc
l (Rc)…521. The corresponding modified phase dia-

gram is depicted in Fig. 4, withHc
u(R50)51k andHc

l (R
50)52k.

Expanding Eqs.~A24! and ~A25! aroundMc , Hc , and
Rc yield a cubic equation for the magnetization and one ob-
tains the same scaling behavior near the critical point as we
derived earlier for the hard-spin model. The same is true for
the scaling of the avalanche-size distribution near the critical
point. In fact, it turns out that none of the universal scaling
features we discussed for the hard-spin model is changed for
the soft-spin model.~A ‘‘spin-flip’’ in the hard-spin model
corresponds to a spin moving from the ‘‘down’’ to the ‘‘up’’
potential well in the soft-spin model.!

b. The dynamic mean-field theory
at finite sweeping frequencyV

In Sec. IV A, Eq. ~61!, we have derived the following
equation of motion for each spin in the dynamical soft-spin
mean-field theory, as the external magnetic fieldH(t)5H0
1Vt is slowly increased

1

G0
] tsj~ t !5Jh j

0~ t !1H1 f i2
dV

dsj~ t !
1Je~ t !. ~A27!

With the definition of the potentialV from Eq. ~32! this
becomes

1/~G0k!] tsj~ t !52sj~ t !1Jh j
0~ t !/k1H~ t !/k1 f i /k

1sgn~sj !1Je~ t !/k. ~A28!

From Eq.~54! we know thath0(t)5^s&[M (t) is the time-
dependent mean-field magnetization of the system. It can be
calculated by taking the random-field average of Eq.~A28!
and solving the resulting equation of motion forh0(t). One
can show38 that for driving rateV/k small compared to the
relaxation ratekG0 of the system, for all values ofH0 the
solutionh0(t) can be expanded in terms of (V/G0) in the
form

h0~ t ![M ~ t !5M stat~H0!1~V/G0!
p1f i~H0!t

1~V/G0!
p2f 2~H0!t

21••• ~A29!

with 0,pi,p2,••• . Thepi depend on whetherR,Rc or
R5Rc . M stat(H0) is the solution of the static mean-field
theory equation~A24! for the given history. If the series
converges forV→0, it follows that h0(t) approaches the
constantmagnetizationM stat(H0) in the adiabatic limit. This
is certainly expected forH0 away from the critical field
Hc(R), where the static magnetization is non-singular: asV
tends to zero the time-dependent magnetizationM~t! simply
lags less and less behind the static valueM stat„H(t)…. The
magnetizationM~t! can be expanded asM (t)5M stat(H0)
1@dM/dH#H0

Vt1••• and converges towardsM stat(H0) as

V→0, as long as all derivatives@dnM stat/dH
n#H0

are well
defined and finite. This argument, however, does not obvi-
ously hold at the critical fieldsH05Hc(R) with R<Rc ,
wheredMstat/dH and all higher derivatives diverge. Using
boundary layer theory one can show38 that even at these
singular points M~t! converges toward its static limit
M „Hc(R)… asV→0, though with power laws smaller than
one in V, as indicated in Eq.~A29!. This convergence is
reassuring, since we useM stat(H0) as the foundation for our
e expansion.

APPENDIX B:
SOME DETAILS OF THE RG CALCULATION

1. Calculating someumn coefficients

In Sec. IV A in Eq.~60! we have given an expression for
the coefficientsumn in the expansion around mean-field
theory:

um,n5
]

]e~ tm11!
•••

]

]e~ tm1n!
^@s~ t1!2h0~ t1!#•••@s~ tm!

2h0~ tm!#& l ,ĥ0,h0, ~B1!

wheresj (t) is the solution of thelocal mean-field equation

1/~G0k!] tsj~ t !52sj~ t !1Jh j
0~ t !/k1H~ t !/k1 f j /k

1sgn~sj !1Je~ t !/k. ~B2!

In order to calculate the higher response and correlation
functionsumn as given in Eq.~B1! one needs to insert the
solution forh0(t) from Appendix A 6 into Eq.~B2!. As is
explained in Appendix A 6,h0(t) can be expanded in terms
of V @at least forR>Rc and forR,Rc before the jump up to
Hc(R)#:

h0~ t !5M ~H0!1Vpt1•••, ~B3!

whereM (H0) is the static magnetization,p.0, and••• im-
plies higher orders inV. Inserting this expansion into Eqs.
~B2! and ~B1! allows us to calculate the coefficientsumn
perturbatively inV. Only the lowest order remains asV→0.
The calculation is rather straightforward, some details are
given in Ref. 38. One obtains
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u1,0~ t !5^sj~ t !& l2h0~ t !50 ~B4!

by construction. The vertex functionu11(t1 ,t2) is given by

limV→0@]2t1
~ lime→0^s~ t2!uH~ t2!1Jeu~ t22t1!

2s~ t2!uH~ t2!& f /e!#, ~B5!

whereu~x! is the Heavyside step function. In the correspond-
ing term in the action the above expression is multiplied by
h(t2) andĥ(t1) and integrated overdt1 anddt2 . After some
algebra and integration by parts int1 one obtains two terms:
the boundary term which has a purely static integrand and
leaves only one time integral, and a time-dependent transient
part with two time integrals. The static term contributing to
the action is

2E
2`

1`

dt1ĥ~ t1!h~ t1!@2J/k22Jr~ f i52Jh02H1k!#.

~B6!

The dynamical part can be written as

E
2`

1`

dt2E
2`

1`

dt1Q~ t22t1!ĥ~ t2!@] t1h~ t1!#

3exp@2kG0~ t22t1!#$2J/k22J@11kG0~ t22t1!#%

3r~2Jh02H1k!. ~B7!

In the low-frequency approximation this becomes

E
2`

`

dt1ĥ~ t1!] t1h~ t1!@2J/k24Jr~2Jh02H1k!#/~G0k!

52E
2`

`

dt1ĥ~ t1!] t1h~ t1!a/G0 , ~B8!

with

a5@J/k14Jr~2Jh02H1k!#/k. ~B9!

Equation~B8! contributes to the ‘‘iv’’ term in the propagator
expressed in frequency space.

The above results were computed for the caseH(t1)
5H(t2). If instead one keepsH(t2)2H(t1)5DHÞ0 fixed
asV→0 ~i.e., t22t1→`), one obtains

lime→0^si~ t2!uH~ t21Jeu~ t22t1!2si~ t2!uH~ t2!& f /e

5J/k12Jr@2Jh0~ t2!2H~ t2!1k# ~B10!

up to dynamical corrections of the form
@exp(2DHG0 /V)#, which are negligible asV→0. Conse-
quently, the derivative with respect to (2t1) in Eq. ~B5!
yields zero in this limit. There is no contribution to the action
from these cases and the result converges to the expressions
in Eqs.~B6! and ~B7! asV→0.

The coefficientsu1,2 and u1,3 at field H are calculated
similarly. One obtains for the terms in the action correspond-
ing to u1,2 in the adiabatic limit:

E ddxE
2`

1`

dt ĥ~x,t !Sw@h~x,t !#2

1E
2`

t

dt2a~ t,t2 ,t2!] t2h~x,t2!

1E
2`

t

dt2E
2`

t2
dt1a~ t,t1,t2!] t2h~x,t2!] t1h~x,t1! D .

~B11!

Here,w522J2r8( f i52Jh02H1k), and a(t,t1 ,t2) is a
transient function due to the relaxational dynamics of the
system. It consists of terms proportional to exp{2G0(t
2t1)} or exp{2G0(t2t2)}. The transient terms propor-
tional toa(t,t1 ,t2)} turn out to be irrelevant for the critical
behavior observed on long length scales.

The static and the transient terms in the action contributed
by u1,3 are calculated similarly. Again, only the static part
turns out to be relevant for the calculation of the exponents
below the upper critical dimension. It is given by

E ddxE
2`

1`

dt uĥ~x,t !@h~x,t !#3, ~B12!

with u52J3r9( f i52Jh02H1k).
Finally, the vertexu2,0(t1 ,t2)5^si(t1)si(t2)& is a local

correlation function. The timest1 andt2 can be infinitely far
apart, i.e., even forH(t1)ÞH(t2) the vertexu2,0 is still non-
zero. One obtains

u2,0~ t1 ,t2!5R2/k21S E
2`

2H~ t2!2h0~ t2!1k
r~h!dhD S 424E

2H~ t2!2h0~ t2!1k

2H~ t1!2h0~ t1!1k
r~h!dhD 24S E

2`

2H~ t2!2h0~ t2!1k
r~h!dhD 2

24S E
2`

2H~ t2!2h0~ t2!1k
~h/k!r~h!dhD 22S E

2H~ t2!2h0~ t2!1k

2H~ t1!2h0~ t1!1k
~h/k!r~h!dhD , ~B13!

which is positive~or zero! for any normalized distribution
r~f!.

2. Feynman rules

In the following discussion we denote withumn the static
part of umn(t1 ...tm1n), i.e., the part which,~for nÞ0, after

taking the time derivative and integrating by parts! is not
multiplied by any time derivative of the fields. This is usu-
ally the only part of the vertex which is not irrelevant under
coarse graining~except for the propagator term, which also
has a contribution proportional toiv!.

In our Feynman diagrams for the perturbation expansion a
vertexu1,n is denoted by a dot withm outgoing arrows~one
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for eachĥ operator! andn incoming arrows~one for eachh
operator!. Figure 8~a! shows the graph for the vertexu. Fig-
ure 8~c! shows the graph for the vertexu2,0. The black el-
lipse connects the two parts of the vertex that are taken at
different times. From the integration over the short-
wavelength degrees of freedom~of all frequencies! one ob-
tains loop corrections to various vertices. Figures 9~a! and
9~b! show the corrections tox21 andu which are important
for anO~e! calculation.

We consider theĥh term in the action as propagator and
all other terms as vertices. An internal line in a diagram
corresponds to the contraction

^ĥ~q,t !h~2q,t8!&

5 HG0exp$2G0~q
22x21/J!~ t82t !% for t8.t,

0 for t8<t
~B14!

with q in the infinitesimal momentum shellL/b,q
,L (b.1) over which is integrated. This expression can
be approximated by d(t2t8) in the low-frequency
approximation.48 Note, however, that causality must be
obeyed, i.e.,t8.t. Figure 9~c! shows an example of a dia-

gram that violates causality and is therefore forbidden. Ex-
ternal~loose! ends in a diagram correspond to operators that
are not integrated out, i.e., modes of momentumq,L/b
outside of the momentum shell. Each internal line carrying
momentum contributes a factor

1/~q22x21/J!. ~B15!

In each diagram, momentum conservation requires that ver-
tices should be connected by loops rather than a single, dead
end propagator line. Figure 8~d! shows an example of a dia-
gram that is zero.84 The entire loop in diagram 9~a! contrib-
utes to the integral

I 15E
L/b

L

ddq/~2p!d1/~q22x21/J!2 ~B16!

~integration over time is already performed!. Similarly the
loop diagram in Fig. 9~b! yields the integral

I 25E
L/b

L

ddq/~2p!d1/~q22x21/J!3. ~B17!

After each integration step we also have to rescale momenta,
frequencies and fields. The recursion relations forx21/J and
u including the lowest-order corrections become

~x21/J!85b2S x21/J1
ux,0
2!

u

3!
6I 1D ~B18!

and

u85beS u3! 1
u2,0
2! F u3!G

2

36I 2D . ~B19!

~There are no loop corrections tou2,08 5u2,0.! The integrals
I 1 and I 2 have to be computed in 62e dimensions in the
usual way.39

3. Implementation of the history

As we have mentioned in Sec. IV C it turns out that on
long length scales different magnetic fields decouple and the
static critical exponents can be extracted from a
renormalization-group analysis performed at a single, fixed
value of the external magnetic fieldH0 due to a separation of
time scales. In the following paragraph we will show that
this statement is self-consistent using an argument by
Narayan and Middleton in the context of the CDW depinning
transition.49

An expansion around mean-field theory in the way per-
formed here corresponds tofirst increasing the magnetic field
H within an infinite ranged model andthentuning the elastic
coupling to a short-ranged form, while the actual physical
behavior coresponds tofirst tuning the elastic coupling to a
short-ranged form andthen increasing the force within the
short-ranged model. The concern is that in the presence of
many metstable states the critical behavior of the two ap-
proaches might not be the same. For example, spins might
tend to flip backwards upon reduction of the interaction
range in the expansion around mean-field theory. Although
there will of course always besomespins for which this is
the case, no such effects are expected on long length scales

FIG. 8. Feynman diagrams. The perturbative expansion about
mean-field theory is presented here by Feynman diagrams.~a!
Graph for the vertexu. Incoming arrows denoteh fields, outgoing
arrows denoteĥ fields. ~b! Example of a diagram which violates
causality and is therefore forbidden.~c! Graph for the vertexu2,0.
~d! Example of a diagram that is zero due to momentum conserva-
tion ~Ref. 84!.

FIG. 9. Feynman diagrams. The relevant corrections to first or-
der in e562d for the constant part inx21/J in the propagator~a!,
and for the vertexu ~b!. ~c! shows an example for a diagram for-
bidden by causality.
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since the susceptibility is actuallymore divergent near the
critical point for d,6 than in mean-field theory. Near the
critical point we have

~dm/dh!h50;r2g ~B20!

and

~dm/dh!r50;h1/d21. ~B21!

Since the numerical and analytical analysis render

g~ in d,6!.g~in mean-field theory) ~B22!

and

~121/d!~in d,6).~121/d!~ in mean-field theory!

~B23!

one expects that on long length scales spins tend to flipfor-
ward rather than backward uponreduction of the coupling
range. This is consistent with the corresponding assumptions
we have made for our expansion around mean-field theory
for a monotonic history of an increasing~decreasing! exter-
nal magnetic field.

Reassured by this self-consistency argument we now
briefly discuss the formal decoupling of the different mag-
netic fields within the RG description for separated time
scales. As discussed in Appendix B 1 the response functions
u1,n(t1 ,...,tn11) with fixed H(t1)ÞH(t j ) with jÞ1 tend to
zero in the adiabatic limit. However, the original actionSof
Eq. ~59! also contains terms of the formu2,0(H1 ,H2) which
do couple different fields even asV→0. These ‘‘multifield’’
vertices however do not contribute to the renormalization of
the vertices evaluated at asinglevalue of the external mag-
netic field, because in the adiabatic limit the propagator does
not couple different field values.@It turns out that the multi-
field vertices are alsoirrelevant on long length scales. For
the vertexu2,0(H1 ,H2) this can be seen from a calculation of
the corresponding corrections to second order in epsilon for
random-field disorder.38 However, even if that would not be
the case these terms would not feed into the calculation pre-
sented here for the reasons discussed above.# Therefore, if
we leave out all the terms in the action that are zero or
irrelevant atd562e, the different magnetic fields are com-
pletely decoupled, and the critical exponents~for R>Rc at
least! can be extracted from coarse graining the following
action at fixed magnetic fieldH0 :

S̃H0
52E ddqE dt ĥ~2q,t !~1/G0] t1q22x21/J!h~q,t !

11/6E ddxE dt ĥ~x,t !h~x,t !3u

11/2E ddxE dt1E dt2u2,0ĥ~x,t1!ĥ~x,t2! ~B24!

where all vertices are evaluated at fieldH0 . The time inte-

grals extend from2` to `. The constant coefficients of the
] t term and theq2 term have been rescaled to 1~see Sec.
V A !.

APPENDIX C: INFINITE AVALANCHE LINE

In most of this paper we have focused on the critical
endpoint„Rc ,Hc(Rc)…, in particular as it is approached from
R>Rc . Our e expansion can be applied to the entire line
Hc(R), R,Rc at which the infinite avalanche occurs~with
some reservations which we will discuss later!. In mean-field
theory the approach to this line is continuous with a power-
law divergence of the susceptibilityx;dM/dH and precur-
sor avalanches on all scales~see Appendix A!. From Eq.
~B24! @or equivalently Eq.~64!# and from the rescaling of the
vertices given in Eq.~78!

um,n8 5b@2~m1n!12#d/212num,n , ~C1!

one sees that on long length scales the effective action is
purely quadratic above eight dimensions. This suggests that
there is acontinuoustransition @as H approachesHc(R)#
with mean-field critical exponents and a diverging correla-
tion length j(x21) with the scaling behaviorj(x21)
5bj(b2x21), i.e., j;(x21)1/2. Sincex21;AuH2Hc(R)u
~see Appendix A! it follows that j;uH2Hc(R)u2nh with
nh51/4 for d.8.98

For d582ẽ ~ẽ.0! the vertexw in the actionSH be-
comes relevant. In contrast to the critical endpoint where
x2150 andw50, the infinite avalanche line is characterized
by the ‘‘bare values’’ x2150 and w522Jr8
@2JM„Hc(R)…2Hc(R)1k#Þ0. With the Feynman rules of
Appendix B 2 the recursion relation to the same order be-
comes

w8/25b~2d/214!Hw/21~u2,0/2!~w/2!38/~4p!4

3E
L/b

L

dq1/~q
22x21/J!4J . ~C2!

Performing the integral over the momentum shellL/b,q,L

and writingb(2d/214)5b( ẽ /2)511 ẽ/2 ln b we find

w8/25w/21~w/2!~ ẽ/21u2.,0~w/2!24/~4p!4 ln b!.
~C3!

Since u2,0.0, this equation has only two fixed pointsw*
with w85w for ẽ.0: eitherw*50 or w*5`. Any system
with bare valuewÞ0 will have effectively largerw on longer
length scales. The system flows to the strong-coupling limit.
We interpret this as an indication that in perturbation theory
the transition is of first-order type below eight dimensions.

There are some questions as to whether in an infinite sys-
tem the onset of the infinite avalanche would be abrupt in
anyfinite dimension due to large rare preexisting clusters of
flipped spins which provide a preexisting interface that might
be able to advancebeforethe perturbatively calculated criti-
cal field Hc(R) is reached. These large rare fluctuations
might be nonperturbative contributions which are not taken
into account by oure expansion. The progression of a pre-
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existing interface has been studied previously in the frame-
work of depinning transitions.50,51,99Our numerical simula-
tion, however, does suggest a smooth onset of the infinite
avalanche in nine dimensions and an abrupt onset in two,
three, four, five, and seven dimensions,2 as predicted by the
RG calculation.

APPENDIX D: DETAILS FOR THE e EXPANSION OF
THE AVALANCHE EXPONENTS

1. The second moment of the avalanche-size distribution

In this section we show that the second moment^S2& f of
the avalanche-size distributionD(S,r ,h) scales in the adia-
batic limit as

^S2& f;E dt1E dtadtbd
dxad

dxb

3^ŝa~ ta ,x0!s
a~ t0 ,xa!ŝb~ tb,x0!s

b~ t1 ,xb!& f ,
~D1!

wherea andb specify the corresponding replica that have
identical configurations of random fields and are exposed to
the same external magnetic fieldH(t)5H01Vt, with V→0.
A heuristic justification of this was given in Sec. VII together
with an explanation of why replicas are necessary.

We start by computing the~not yet random-field aver-
aged! expression

E dtad
dxadtbd

dxb$ŝa~ ta ,x0!s
a~ t0 ,xa!ŝb~ tb ,x0!s

b~ t1 ,xb!%

5E dtad
dxa$ŝa~ ta ,x0!s

a~ t0 ,xa!%E dtbd
dxb$ŝb~ tb ,x0!s

b~ t1 ,xb!%, ~D2!

where$ % stands for the path integral over the product with thed-function weight inZ that singles out the correct path through
the space of possible states for the given configuration of random fields and the given history. In Eq.~D2! the two replicas are
uncoupled since we have not yet averaged over the random fields. As we have seen in Appendix B

~DS/DH !a[E dtad
dxa$ŝa~ ta ,x0!s

a~ t0 ,xa!%5E dtad
dxa

]

]ta
limDH→0@s

a~ t0 ,xa!uH
x0

a ~ t0!5H~ t0!1DHQ~ t02ta!

2sa~ t0 ,xa!uH
x0

a ~ t0!5H~ t0!#/DH ~D3!

is the response of replicaa to a perturbing pulse of ampli-
tudeDH applied at fieldH(ta) at sitex0 integrated over the
entire system.

If no spin flips in response to the perturbation, the total
response will be

~DS/DH !5DSharmonic/DH5C2 , ~D4!

whereC2 is a constant that depends only on the parameters
k, J, and the coordination numberz of the lattice.

If, on the other hand, the perturbation triggers an ava-
lanche of spin flips from the ‘‘down’’ to the ‘‘up’’ potential
well, DS5Sflip[Sa will be of the order of the number of
spins participating in the avalanche100 ~see also Appendix
B 1!.

The expression in Eq.~D2! is the product of the total
response to the same perturbation at sitex0 measured in rep-
lica a at timet0 and in replicab at timet1 . At finite sweep-
ing rate V/k the corresponding values@(DS)a /DH# and
@(DS)b /DH# do not have to be the same, since the responses
are measured at potentially different values of the external
magnetic field@H0[H(t0) and H1[H(t1), respectively#.
~We only consider the adiabatic case, in which the sweeping
rateV/k is small compared to the relaxation rateG0k, so that
the magnetic field can be assumed to be constant during the
course of an avalanche. We take the adiabatic limitV→0 at
finite correlation lengthj, before approaching the critical

point of diverging avalanche size and time to avoid trigger-
ing a new avalanche before the previous one has come to a
halt. This is consistent with our computer simulations at fi-
nite system sizes where avalanches occur only sequentially.!

Without loss of generality let us assume thatH(t1)
>H(t0). First we discuss the case that there is an avalance
Sa triggered by the perturbation of amplitudeDH in replica
a at fieldH0 . We further assume thatt1 is much bigger than
t0 , such thatH1>H01DH. In this case the response to the
pulse in replicab will be substantially different from the
responseSa in replicaa. The spins that are pushed over the
brink by theperturbationat field H0 in replica a, will in
replica b be triggered by the increased external magnetic
field before it reaches the bigger valueH1 at which the re-
sponse is measured. ForV/G0 , DH, and H12H0 small
enough, the response in replicab at fieldH1 will then be just
the harmonic responseC2 or adifferentavalanche. If it is the
harmonic response, the expression in Eq.~D2! takes the form

~DS/DH !a~DS/DH !b5~Sa /DH !C2 . ~D5!

Similarly one might imagine scenarios in which there is an
avalancheSb triggered only in replicab, i.e.,

~DS/DH !a~DS/DH !b5~Sb /DH !C2 , ~D6!

or where there is no avalanche happening at either field value
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~DS/DH !a~DS/DH !b5~C2!
2. ~D7!

It is also possible that twodifferentavalanches are triggered
in the two replicas:

~DS/DH !a~DS/DH !b5~Sa /DH !~Sb /DH ! ~D8!

with SaÞSb .
We are interested however in contributions due to the

same avalancheresponse in both replicas

~DS/DH !a~DS/DH !b5~Sa /DH !~Sb /DH ! ~D9!

with Sa5Sb . As we have seen, a necessary condition is that
H02DH<H1<H01DH. We denote with Pflip5c0DH
1o„(DH)2… ~with c0 a constant in the critical regime! the
fraction of all possible configurations of random fields in
which a local perturbation of amplitudeDH at field H, ap-
plied at sitex0 , causes at least one spin to flip. ForV and
DH small enough the fraction of all possible configurations
of random fields in which the local perturbation will lead to
the same initial spin flip triggering the same avalancheS in
replica a and replicab, is to leading order inDH propor-
tional to the size of the overlapPflip

both of the two intervals
@H0 ,H01DH# and@H1 ,H11DH#, multiplied byPflip, with

Pflip
both5@12Q~ uH12H0u2DH !#~DH2uH12H0u!/DH

~D10!

~see Fig. 10!. We can now compute the random-field average
of the expression in Eq.~D2!, denoted by^ & f to leading
order inDH

K DS

DHa

DS

DHb
L
f

5C̄1

^S2& f
DH2 Pflip

bothPflip

1C̄2

^S& f
DH

~12Pflip
both!Pflip1~C2!

2

1^SaSb&/~DH !2Pflip
2 ~12Pflip

both!,

~D11!

where^S2& f is the mean-square avalanche size, and^S& f is
the mean avalanche size, andC̄1 andC̄2 are constants in the
critical regime. The last term accounts for cases in which two
different avalanchesSaÞSb are triggered in the two replicas.

The last three terms in Eq.~D11! approach a constants as
DH→0, sincePflip;DH. We will now analyze the first term,
which is proportional tô S2& in more detail. The function
multiplying ^S2& f is sharply peaked aroundH05H1 ~see Fig.
10. SincePflip;DH it is proportional toPflip

both/DH. From Eq.
~D10! we have

E
H02DH

H01DH

dH1Pflip
both/DH51 ~D12!

independent ofDH. The same integral applied to the other
terms in Eq.~D11! yields contributions of orderO(DH)
which are negligible compared to the first term asDH is
chosen small. WithH15H01Vt we can express the integral
in terms of time

E
2DH/V

DH/V

Vdt1Pflip
both/DH51. ~D13!

We then obtain

limDH→0limV→0E
2DH/V

DH/V

Vdt1K DS

DHa

DS

DHb
L
f

5C̄1^S
2& f .

~D14!

With Eq. ~D3! this leads to the scaling relation

^S2& f;E dt1E dtadtbd
dxad

dxb^ŝa~ ta ,x0!

3sa~ t0 ,xa!ŝb~ tb ,x0!s
b~ t1 ,xb!& f ~D15!

which was to be shown. In this notation we have suppressed
the factorV and the various limits for clarity. The integrals
over time extend from2` to 1` with an infinitesimal as-
sociated change in magnetic field.

2. Feynman rules for two replicas

We study the behavior ofSab of Eq. ~117! under coarse
graining analogously to the calculation done before for just
one replica, with the difference that instead of two, there are
now four fields to be considered~two for each replica!. In the
following section we briefly describe the associated Feyn-
man rules. This section may be skipped by the reader unin-
terested in the details, since it turns out that there are no loop
corrections toO~e! to ^S2&. In Sec. VII B we already derived
the appropriate partition function. Here we use the same no-
tation.

In the Feynman graphs for the loop corrections, the fields
of the a replica are symbolized by arrows on full lines,
whereas those for theb replica are symbolized by arrows on
dashed lines. A vertexumnpqhas themmoutgoing arrows on
full lines, n incoming arrows on full lines,p outgoing arrows
on dashed lines, andq incoming arrows on dashed lines. In
this notation, the fact thatu0npq50 if nÞ0, umn0q50 if q
Þ0 andu0n0q50, which we discussed in Sec. VII B, means
that any vertex with incoming arrows of a certain replica
must have at least one outgoing arrow of the same type of
replica, i.e., there are no ‘‘sinks,’’ with only incoming lines
of a certain replica. Furthermore, since the spins from differ-
ent replica do not interact directly, and sinceu0,1,1,0
5u1,0,0,150, there are only two kinds of propagators, one for

FIG. 10. The functionPflip
both defined in Eq.~D10!, plotted as a

function of H1 . In the figure,dH denotes the amplitude which is
calledDH in the text.
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each replica. In any diagram, an outgoing line can be con-
nected only to an incoming line of the same replica.

Using the above rules and causality, one finds that correc-
tions to vertices with lines of only one replica, can only
receive corrections from vertices of thesamereplica. There
are no contributions from diagrams that also involve the
other replicas. That means that our results for the magneti-
zation and other quantities that can be calculated using only
one replica, are unaffected by the introduction of a second
replica.

‘‘Pure’’ ~or one-replica! vertices which depend on more
than one time usually have several different contributions.
For example the vertexu2,2(t1 ,t2 ,t3 ,t4) has two main con-
tributions that are obtained by partial integration of the cor-
responding term in the action as discussed in Appendix B.
One contribution is derived fromu2,2(t1 ,t2 ,t3 ,t4) and has
t15t3

1 and t25t4
1 . The other contribution is derived from

u2,2(t1 ,t2 ,t3 ,t4) and hast15t3
1 and t15t4

1 . In the case of
two replicas there are corresponding ‘‘mixed’’ vertices~with
legs from different replicas!. With ‘‘corresponding’’ we
mean that the times associated with the different legs of the
mixed vertex, are assigned in the same way to the legs of the
corresponding part of the corresponding pure vertex. The
part of the pure vertexu2,2 formally corresponding to
u1,1,1,1, for example, is given by that contribution to
u2,2(t1 ,t2 ,t3 ,t4), which hast15t3

1 and t25t4
1 . Conversely

the part of the pure vertexu2,2 corresponding tou1,2,1,0 is
given by that contribution tou2,2(t1 ,t2 ,t3 ,t4), which hast1
5t3

1 and t15t4
1 . ~Notice that in any mixed vertex all legs

carrying a certain time label~one outgoing and any number
of incoming arrows!, must belong to the same relica.! Notice
that each mixed vertex has the samebare value as its pure
counterpart, since both are obtained in the same way from
mean-field theory.

The loop corrections to mixed vertices formally look the
same as those the corresponding parts to the pure vertices.
For each loop correction to a mixed vertex there is a match-
ing correction to the correspondingpart of the pure vertex
and vice versa. The combinatoric factors are also the same.
This implies in particular that choosing the same spin rescal-
ing for both replicas as we did before in the case of only one
replica, renders marginal not onlyu2,0

a and u2,0
b , but also

u1,0,1,0.

3. Scaling of the second moment
of the avalanche-size distribution

We need to find the scaling behavior of the ‘‘Green’s
function’’

^ ŝa~ ta ,x0!s
a~ t0 ,xa!ŝb~ tb ,x0!s

b~ t1 ,xb!& f ~D16!

from its behavior under coarse graining. The topology of the
diagrams permits noO~e! loop corrections to the correspond-
ing vertex function.

One finds the canonical dimensions of the field101 ~where
‘‘dimension of’’ is denoted by ‘‘@ #’’ and L is the upper
cutoff in momentum!: @h(p,w)#5L2d/2222z, @ĥ(p,w)#
;L2d/2.

For calculating Green’s functions one introduces
source terms in the action. From the~functional! derivative
with respect to the source fields, one obtains the

corresponding average correlation functions. In the end
the source fields are taken to zero again, since usually they
have no physical significance. In our case the following three
source terms are needed:*ddq*dv L(q,v)h(q,v),
*ddq*dv L(q,v)ĥ(q,v), and the term needed for the cal-
culation of the~spatially! composite operator in̂S2& f , given
by

E ddqE dv1E dv2L2~q,v1 ,v2!

3E ddqĥ~q,v1!ĥ~p2q,v2!. ~D17!

L, L̂, andL2 are the respective source fields: the correspond-
ing canonical dimensions are@L(q,v)#;L2d/212, and
@d/dL(q,v)#;L (d/222)L (2d2z);L2d/2222z. Similarly
@ L̂(q,v)#;L2d/22z, and @d/dL̂(q,v)#;L2d/2. And also
@L2(p,v1,v2)#;L (d22z), and @d/dL2(p,v1,v2)#;L0.
From Eq. ~D1! and the fact that Green’s functions in the
fieldsh and ĥ scale in the same way as those in terms ofs
andŝ ~see Sec. IV B!, we then find~without loop corrections!
that^S2& f;L2(41z). Below the upper critical dimension, the
canonical dimensions of the fieldsh(q,v) and ĥ(q,v) are
corrected byL (h/2) andL (h2 h̄ /2), respectively. Withh5h̄
from the maping to the pure Ising model,67 one obtains
@O~e!# ^S2& f;L2(z1(22h)2). Similarly, one finds for the
higher momentŝSn& f;L2@(n21)z1(22h)n# to O~e!. In Sec.
VII D this result is compared to the scaling behavior of
^S2) as obtained from the scaling form of the avalanche-size
distribution

^S2&;r ~t23!/sS6
~2!~h/r bd! ~D18!

~with the appropriate scaling functionS6! to extract the re-
sults for 1/s andt. One obtains

1/s521e/31O~e2! ~D19!

and

t53/21O~e2!. ~D20!

APPENDIX E: RELATED PROBLEMS

There exist several studies of related hysteresis models
and depinning transitions~Refs. 64, 99, 102, 103, 104–109!,
which we discuss in more detail in Refs. 37 and 38.

1. Conjectures about other models
in the same universality class

Recently Viveset al. found103 that the numerical expo-
nentsn, b, t, andz in the nonequilibrium zero-temperature
RFIM and the random-bond Ising model with positive mean
bond strength~RBIM! have very similar values in two and
three dimensions. In two dimensions, the exponents for the
random-field Blume-Emery-Griffiths model110 seem to be
similar also. In this interesting paper the authors suggest that
these models might actually be in the same universality
class. Admiring their work, we have some concerns how-
ever, as to whether their critical exponents will remain un-
changed for larger system size: they used systems of linear
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size up toL5100; we used much larger systems, up to 70002

and 8003 for the RFIM, and found that finite-size effects are
actually quite prominent and lead to shifted results for the
exponents.1 Nevertheless, symmetry arguments and prelimi-
nary RG calculations which we discuss below, suggest that
their conjecture about a shared universality class still applies.
There is a precedent: it is known,50,51 for example, that the
nonequilibriumsingle interface depinningtransitions of the
RFIM and the RBIM do have the same critical exponents,
although theequilibriumversions of the same models are not
in the same universality class.

In the following section we will discuss some symmetry
arguments, that do indeed speak in favor of the conjecture of
Vives et al. and would even suggest that the universality
class of our model extends far beyond just the RFIM and
RBIM. A large universality class would also explain the sur-
prisingly good agreement with experiments discussed in Sec.
VIII and Ref. 1. Generally one may ask how robust the uni-
versality class of our model is against the introduction of
other kinds of disorder, other symmetries for the order pa-
rameter, long-range interactions, different dimensions, and
altered dynamics.~The variation with dimension has already
been discussed at the appropriate places in this paper~see,
for example, Sec. VIII!.! If a new kind of disorder in an
otherwise unaltered system changes neither the symmetries,
nor the interaction range, nor the dynamics, nor the relevant
dimensions, we may be hopeful that it does not lead to a
different universality class.

Random fields and random bonds:Uncorrelated fluctua-
tions in the nearest-neighbor coupling strengths~random
bonds! in the presence of random field disorder do not break
any new symmetries. Our random-field Ising model fulfills
two Harris criterian/bd>2/d and n>2/d. Adding random-
bond disorder cannot destroy the fixed point in the Harris-
criterion sense through added statistical fluctuations, because
the random-field disorder has already broken the relevant
~translational! symmetry. It then seems plausible that sys-
tems with random bonds and random fields are in the same
universality class as systems with random fields only. The
ultimate justification for this conjecture may be drawn from
the renormalization-group picture. If the change in the gen-
erating functional due to the added new disorder turns out to
be irrelevant under coarse graining, it will not affect the criti-
cal behavior on long length scales. Some preliminary studies
seem to indicate that this would indeed be the case for ran-
dom bonds in the presence of random fields.

Random bonds only:Similarly one might expect systems
with random bonds only to be in the same universality class
also. Because the critical magneticationMc[M „Hc(Rc)… is
nonzero, the time-reversal invariance will be broken at the
critical point, just as it is broken in the case of random fields.
The symmetries of the random-field model and the random-
bond model would then be the same. Also, in a soft-spin
model the same relaxational dynamics could be used. One
would then expect to see the same critical behavior on long
length scales. In fact, in the random-bond model one may
consider the spins that flip outside the critical region to act as
random fields for the spins that participate in the large ava-
lanches near the critical point. We have already suggested
that random bonds in the presence of random fields do not
change the critical behavior. It then seems plausible that the

random-bond problem would be in the same universality
class also, as numerical simulations seem to confirm.103 In
fact, initial analytic calculations for nonzero, positive mean
of the distribution of random bonds andHcÞ0 lead to the
same effective action as for the random-field case. One finds
the same RG description with the same fixed point and uni-
versality class. For zero mean of the distribution of random
bonds however, the term corresponding tou2,0 appears to be
zero, leading to a different RG description. In this case one
expects a different behavior on long length scales. This may
have been anticipated since in this case there is no relative
energy scale present in the system, which qualitatively
changes the problem.

Random anisotropies:Realistic models of Barkhausen
noise in polycrystalline magnets usually involve random
anisotropies rather than random fields. On symmetry grounds
it appears plausible that a nonequilibriumO(n) model with
random anisotropies9,111,112may be in the same universality
class as the nonequilibrium RFIM also. The external mag-
netic driving field breaks the rotational symmetry and time-
reversal invariance. Again, spins that do not flip in the criti-
cal region may act as random fields for the spins
participating in avalanches near the critical point, so that the
essential features are the same as in our model, and one may
expect to see the same critical exponents.~It may be that in
some strong-coupling limit the system will lose the ability to
avalanche and all spins will smoothly rotate from down to up
as the external magnetic field is increased. Our discussion
here refers to the case where the coupling is weaker and
avalanches do occur, as of course they do experimentally.!
TheO(n) model with random anisotropies is very similar to
a continuous scalar spin model with random couplings to the
external magnetic field~random ‘‘g factors’’!. The mean-
field theory for the randomg-factor model turns out to have
the same critical exponents as our random-field Ising model.
There are no new terms generated in the RG description of
this model either, it is therefore expected to be in the same
universality class as our model.

By symmetry we would expect neither any change in the
exponents if there was randomness added through a distribu-
tion in the soft-spin potential well curvaturesk @see our defi-
nition of the soft-spin potentialV(si) in Eq. ~32!#, nor a
change if random bonds are added to the system, as may be
the case in real experimental systems.

The RG formalism developed in this paper can be used as
a convenient tool to verify these conjectures. One can write
down the most general generating functional and see for each
of these models whether on long length scales the same
terms become important or irrelevant as in our model.

Long-range interactions:The question about the effect of
long-range interactions is of equal importance. Depending on
the sample shape, dipole-dipole interactions can lead to long-
range, antiferromagnetic interaction forces which are the rea-
son for the breakup of the magnetization into Weiss domains
in conventional magnets.9,111 In the case of martensites there
are long-range antiferroelastic strain fields present.10,62 In
Refs. 37 and 38 we note that a critical exponent in a system
with long-range elastic forces~from avalanche duration mea-
surements in martensites23! appears to be quite different from
the corresponding exponents in our model, perhaps due to
the long-range elastic forces. On the other hand, measure-
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ments of Barkhausen-noise distributions in magnets in the
presence of long range demagnetizing fields21 seem to yield
a critical exponent quite close to the corresponding exponent
in our model.

In a recent paper21 Urbach, Madison, and Markert study a
model for asinglemoving domain wall without overhangs in
the presence of infinite range antiferromagnetic interactions
and quenched~random-field! disorder. In an infinite system
their model self-organizes113 without necessary parameter
tuning to the same critical state seen in the absence of the
infinite range interactions right at the interface depinning
threshold.99 An analysis114 of our ferromagnetic RFIM in the
presence of infinite range antiferromagnetic interactions
leads to an unchanged critical behavior except for a tilt of the
entire magnetization curve in the (M ,H) plane: here too it
does not change the critical properties. It would be interest-
ing to see how these results would change for more physical
long-range interactions. Dipole-dipole interactions decaying
with distance as 1/x3, for example, might be more appropri-
ate.

2. Thermal fluctuations

a. The equilibrium random-field Ising model

The equilibrium properties of the random-field Ising
model, in particular, the phase transition from paramagnetic
to ferromagnetic~long-range-ordered! behavior, have been
the subject of much controversy since the 1970’s.71 The rea-
son is intriguing: experimental and theoretical studies of the
approach to equilibrium show that near the critical tempera-
ture there seems to appear a ‘‘glassy’’ regime where relax-
ation to equilibrium becomes very slow. Activated by ther-
mal fluctuations the system tumbles over free-energy barriers
to lower and lower valleys in the free-energy landscape, until
it has reached the lowest possible state, the equilibrium or
ground state. The higher those barriers are compared to the
typical energy of thermal fluctuations, the longer the relax-
ation process takes. At low temperatures, due to the effect of
disorder, some of these barriers are so large~diverging in an
infinite system!, that the system gets stuck in some meta-
stable state and never reaches true equilibrium on measure-
ment time scales. On long length scales~and experimental
time scales! thermal fluctuations become irrelevant and col-
lective behavior emerges. When driven by an external field,
the system moves through a local valley in the free-energy
landscape, and collective behavior in the form of avalanches
is found when the system reaches a descending slope in the
free-energy surface. The present state of the system depends
on its history—a phenomenon commonly observed as hys-
teresis.

b. The nonequilibrium random-field Ising model

We have studied this hysteresis in the zero-temperature
random-field Ising model, far from equilibrium and in the
absence of any thermal fluctuations. We found a critical
point, at which the shape of the hysteresis loops~magnetiza-
tion versus magnetic field! changes continuously from dis-
playing a jump in the magnetization to a smooth curve. The
nonequilibrium critical exponents associated with the univer-
sal behavior near this point ind53 dimensions seems to
match those obtained from three-dimensional simulations of
the equilibrium phase-transition point approximately within
the error bars96 ~see Table I!. This is surprising, since the
physical starting points of the two systems are very different.
Furthermore, our perturbations expansion ine562d for non-
equilibrium critical exponents can be mapped onto the ex-
pansion for the equilibrium problem to all orders ine. Our
expansion stems from a dynamical systems description of a
deterministic process, which takes into account the history of
the system and is designed to single out the correct meta-
stable state, while the calculation for the equilibrium prob-
lem involves temperature fluctuations and no history depen-
dence at all.

c. The crossover

It would be interesting to see if there is actually a deeper
connection between the nonequilibrium and equilibrium
critical points, and whether the calculation for the nonequi-
librium model could be used to resolve long-standing diffi-
culties with the perturbation expansion for the equilibrium
model. The idea is to introduce temperature fluctuations in
the nonequilibrium calculation, and at the same time a finite
sweeping frequency for the external driving force. The lower
the sweeping frequencyV at fixed temperature, the more
equilibrated the system and the longer the length scale above
which nonequilibrium behavior emerges. TuningV would
allow one to explore the whole crossover region between the
two extreme cases that are found in the literature~far from
and close to equilibrium!. Contrary to previous treatments of
relaxation, the history dependence that is so essential in ex-
perimental realizations, emerges naturally from this ap-
proach. At fixed temperature, but for progressively lower
sweeping frequencies, one expects to see smaller hysteresis
loops, asymptotically attaining a universal shape at low
enough frequencies. The tails of these hysteresis loops will
match the equilibrium magnetization curve. In the limit of
zero frequency, the hysteresis loop shrinks to a point, and
equilibrium is expected at all values of the external magnetic
field. On the other hand, taking temperature to zero first,
should yield nonequilibrium behavior as seen in our recent
work. The prospect of relating equilibrium and nonequilib-
rium crossover regime is an exciting challenge.
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*dt0^ŝ(to ,x0)s(t,x)& f gives the random-field-averaged static re-
sponse of the system at timet and positionx to a positive
u-function pulse applied at positionx0 an infinitely long time
beforet ~so that all transients have died away!. The integral over
all space will then give thetotal static random-field averaged
response of the system to au-function pulse applied at sitex0 .
This should scale in the same way as the first moment of the
avalanche size distribution, i.e., as the average avalanche size.

98The same result can be obtained from the Harris criterion: If the
Harris-criterion is not violated through the presence of large rare
nonperturbative fluctuations in an infinite system, such as a pre-
existing interface~for a discussion, see Appendix E!, i.e., if nh

>2/d is a valid exponent inequality, then the mean-field critical
exponents withnh51/4 are correct only ford>8, which is con-
sistent with our result from perturbation theory.

99M. Cieplak and M. O. Robbins, Phys. Rev. Lett.60, 2042~1988!;
Phys. Rev. B41, 11 508~1990!; N. Martys, M. Cieplak, and M.
O. Robbins, Phys. Rev. Lett.66, 1058~1991!; N. Martys, M. O.
Robbins, and M. Cieplak, Phys. Rev. B44, 12 294~1991!; B.
Koiller, H. Ji, and M. O. Robbins,ibid. 45, 7762 ~1992!; H. Ji
and M. O. Robbins,ibid. 46, 14 519~1992!; B. Koiller, H. Ji,
and M. O. Robbins, Phys. Rev. B46, 5258~1992!.

100Sa is not exactly equal to the number of spins flipping in the
avalanche. It contains also the harmonic response that each spin
flip causes through the coupling to the neighboring spins. This
harmonic response couples back to the original spin and propa-
gates to the next-nearest neighbors with an amplitude damped
by the factorJi j /k and so on. Occasionally it may cause an
avalanche to continue which would otherwise~in the hard spin
model! have come to a halt. However since this is a short-ranged
effect, we do not expect it to be of any relevance to the scaling
behavior on long length scales. In mean-field theory the har-
monic response only amounts to a constant factor relatingSa to

the number of spins participating in the avalanche.
101L. H. Ryder, Quantum Field Theory~Cambridge University

Press, Cambridge, 1985!.
102V. M. Rudyak, Bull. Acad. Sci. USSR Phys. Ser.57, 955~1993!,

and references therein;45, 1 ~1981!.
103E. Vives and A. Planes, Phys. Rev. B50, 3839~1994!; E. Vives,

J. Goicoechea, J. Ortı´n, and A. Planes, Phys. Rev. E52, R5
~1995!.

104C. M. Coram, A. Jacobs, N. Heinig, and K. B. Winterbon, Phys.
Rev. B40, 6992~1989!.

105G. Bertotti and M. Pasquale, J. Appl. Phys.60, 5066~1991!.
106G. Bertotti and M. Pasquale, J. Appl. Phys.67, 5255~1990!.
107D. Dhar and P. B. Thomas, J. Phys. A25, 4967 ~1992!; P. B.

Thomas and D. Dhar, J. Phys.26, 3973 ~1993!; S. Gupta~un-
published!; J. Zemmouri, B. Se´gard, W. Sergent, and B. Macke,
Phys. Rev. Lett.70, 1135~1993!.

108M. Rao, H. R. Krishnamurthy, and R. Pandit, Phys. Rev. B42,
856 ~1990!, and references therein.

109K. K. Babcock and R. M. Westervelt, Phys. Rev. A40, 2022
~1989!; K. L. Babcock, R. Seshadri, and R. M. Westervelt,ibid.
41, 1952 ~1990!; K. L. Babcock and R. M. Westervelt, Phys.
Rev. Lett.64, 2168~1990!; P. Bak and H. Flyvbjerg, Phys. Rev.
A 45, 2192~1992!.

110M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A4,
1071 ~1971!.

111S. Chikazumi,Physics of Magnetism~Wiley, New York, 1964!.
112N. W. Ashcroft and N. D. Mermin,Solid State Physics~Saun-

ders, Philadelphia, 1976!.
113This self-organization to the critical point is similar to the trivial

self-organization expected in an experiment in the presence of a
gradient field, which is discussed in Refs. 38 and 37.

114B. W. Roberts and J. P. Sethna~unpublished!.
115A. A. Middleton, Phys. Rev. B45, 9465~1992!.
116A. A. Vladimirov, D. I. Kazakov, and O. V. Tarasov, Sov. Phys.

JETP50, 521 ~1979!, and references therein.
117D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, Teor. Mat. Fiz.

38, 15 ~1979!.
118J. C. Le Guillou and J. Zinn-Justin,Large-Order Behavior of

Perturbation Theory~North-Holland, Amsterdam, 1990!.
119M. E. J. Newman and G. T. Barkema, Phys. Rev. E53, 393

~1996!.
120A. P. Young and M. Nauenberg, Phys. Rev. Lett.54, 2429

~1985!; A. T. Ogielski and D. A. Huse,ibid. 56, 1298~1986!.

53 14 905HYSTERESIS, AVALANCHES, AND DISORDER-INDUCED . . .


