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The conductivity~or dielectric behavior! of a binary composite system is conveniently expressed in terms of
a spectral function, which is determined by the geometry of the composite. In this paper we examine the case
of circular inclusions in a conducting sheet and keep terms up to second order in the inclusion concentration
f . The two-inclusion problem can be solved exactly using multiple images, and we use this solution to
construct the spectral function. We show that the spectral function is a truncated Lorentzian that can be
calculated in a simple closed form. Both the weight and the width of the spectral function are linear inf .
@S0163-1829~96!05022-9#

I. INTRODUCTION

Exact results for the properties of composite materials are
rare, and so the few that exist are particularly important as
aids to our understanding. Although spectral functions are
widely used in physics, their use in composite materials has
not been widespread. This is mainly because this attractive
formalism is difficult to apply to particular composite geom-
etries, because of the numerical difficulty of computing the
spectral function. In this paper we examine a nontrivial ex-
ample of a spectral function that can be calculated exactly.
This example involves the calculation of the spectral func-
tion of a sheet containing circular inclusions with a different
conductivity from that of the host. Using the well-known
technique of multiple dipole images, the terms in the effec-
tive conductivity up to second order in the concentration of
inclusionsf can be found. We have been able to express the
spectral function in a rapidly convergent series. We show
that the spectral function is a truncated Lorentzian with
weight f and a width that is proportional tof , and we are
able to give the final result in a very simple form.

It has been shown by Bergman,1 Milton,2,3 and Golden
Papanicolau4 that for any two-phase composite medium,
which on average is uniform and isotropic, the effective con-
ductivity s ~or dielectric constant! can be written as

s

s0
512E

0

1g~u!du

t2u
~1!

where

t5
s0

s02s1
. ~2!

s0 ands1 are the conductivities of the host and the inclu-
sions, respectively, andg(u) is the spectral function. The
spectral function is fully determined by the geometry of the
two-phase medium, and does not depend upon the material
parameterss0 and s1 . It is therefore a purely geometric
quantity. It provides a very compact way of giving the infor-
mation to calculate via a single integral~1! the conductivity
of a series of composites with different material parameters,

but the same geometry. It is particularly useful in a given
composite when the conductivitiess0 ands1 are frequency
dependent~and hence complex!. In this case the effective
conductivitys is also complex, of course.

The spectral functiong(u) can be used in any dimension
d and for any volume fractionf of inclusions. Indeed, the
decision as to what constitutes the matrix and what is the
inclusion is arbitrary, although in the dilute limit we will of
course make the circular objects the inclusions. The spectral
function g(u) can be shown to have the following
properties.1,5

~1! It is a real positive definite function for 0,u,1 and
zero outside this range.

~2! The total weight and the first integral are given by

E
0

1

g~u!du5 f , ~3!

E
0

1

ug~u!du5
f ~12 f !

d
, ~4!

wheref is concentration~volume fraction! of the phases1 in
the host ofs0 , andd is the dimension. This can be obtained
using the weak-scattering limit.6 It is convenient sometimes
to define the normalized moments^un& of the spectral func-
tion by

^un&5

E
0

1

ung~u!du

E
0

1

g~u!du

~5!

so that from~4! we have

^u&5
~12 f !

d
. ~6!

The higher-order moments depend on the details, and are not
knowna priori. In this paper we will apply this formalism to
a two-dimensional sheet containing circular inclusions, and
obtain the spectral function to second order in the area frac-
tion f of inclusions. The layout of the paper is as follows. In
the next section we restrict the form of the conductivitys by
using the reciprocity theorem that is valid in two dimensions
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~2D!. In Sec. III, we use the method of multiple images to
write down the position and strengths of the dipoles in a pair
of circular inclusions. In Sec. IV, we examine the results in
more detail, particularly for the case of perfectly conducting
inclusions. In Sec. V, we obtain the effective conductivity by
averaging over the dipole moments of the pairs that we have
found previously. This solution is then rearranged into a
form from which the spectral function can be derived in
Secs. VI and VII. Finally, in the conclusions, we discuss the
uses of this kind of approach.

II. GENERAL FORM FOR THE TWO-DIMENSIONAL
CONDUCTIVITY

The problem of circular and polygonal holes in a two-
dimensional conducting sheet was recently investigated by
Thorpe7 up to the first order in the area fraction of inclusions,
using the conformal mapping technique. From the other side,
the general problem for circular inclusions had been solved
earlier up to the second order by Peterson and Hermans8

using bipolar coordinates.
In this paper we use the method of electrical images to

solve the problem of the effective conductivity in the con-
ducting sheet containing circular inclusions of an arbitrary
conductivity. This method is not limited to holes and per-
fectly conducting inclusions, as is the conformal mapping
technique.

We first consider one isolated pair of identical circles with
radius a separated by a distanceR. Considering the two
independent cases of parallel and perpendicular external
electric field, we construct the infinite set of dipole, or dou-
blet images.9 Each dipole image is found in a simple
continued-fraction form. We find and solve the appropriate
difference equation for successive dipole images to get all
dipole moment images, now in closed form, in terms of hy-
perbolic functions. All further calculations are based on these
dipole images. Naturally, the total dipole moment of the two
circles is given by the sum of all image-dipole moments in
the case of parallel external field, and by the same sum, but
with alternating signs in the case of perpendicular external
field.

The reciprocity theorem10,11 for the two-phase medium in
2D states that the following relation must hold:12

s~s0 ,s1!s8~s1 ,s0!5s0s1 , ~7!

wheres0 ands1 are the conductivities of the two phases,
ands(s0 ,s1) ands8(s1 ,s0) are the effective conductivi-
ties of the original system and the one with the same geom-
etry buts0 ands1 interchanged.

We find the generalization of the effective conductivity12

to the second order in the concentrationf of the inclusion
phase 1 in the host phase 0. The effective conductivity then
must be of the form

s

s0
511 fgG~g!1 f 2H~g!1O~ f 3!, ~8!

where

g5
s12s0

s11s0
~9!

and the functionG(g) is anevenfunction ofg ~Ref. 12! as
follows from the reciprocity theorem~7!. Similarly, for in-
terchanged phases 0 and 1 (g⇒2g), the effective conduc-
tivity s8 is given as

s8

s1
512 fgG~g!1 f 2H~2g!1O~ f 3!. ~10!

Multiplying ~8! by ~10! and using the reciprocity theorem
~7!, we get the second order in concentrationf

H~g!1H~2g!2g2G2~g!50, ~11!

from which it is clear that the functionH(g) must generally
be of the form

H~g!5 1
2g2G2~g!1gL~g! ~12!

where the functionL(g) is anevenfunction ofg.
The weak-scattering limit12 gives L(g)5gF(g), where

F(g) is an odd function of g ~proportional tog for small
g), andF(0) is zero. So, finally,~8! becomes

s

s0
511 fgG~g!1 1

2 f
2g2G2~g!1 f 2g2F~g!1O~ f 3!,

~13!

whereG(g) andF(g) are an even and an odd function of
g, respectively. The area fractionf can be written as

f5npa2, ~14!

wheren is the number of inclusions per unit area, each with
areapa2. Two usual limits are obtained when the inclusion
is a hole (g521) and when the inclusion is perfectly con-
ducting (g51). Equation~13! is valid generally but for cir-
cular inclusionsG(g)52.7 So for circles as inclusions~13!
simplifies to

s

s0
5112g f12g2f 21g2f 2F~g!1O~ f 3! ~15!

and our goal is to calculate the functionF(g) which contains
the pair terms in the effective conductivity.

We relate the functionF(g) to the pair contribution to the
polarizabilityDb. This is defined as the mean change in the
polarizability of a single inclusion due to the presence of the
other inclusions. To leading order,Db can be obtained from
the dipole moment of pairs. Indeed, we have stressed in pre-
vious papers7,12 that the conductivity of a sample is directly
related to the dipole moment ofall the inclusions. Once we
have all dipole moment images in the aligned and perpen-
dicular external field, it is straightforward to find the polar-
izability changeDb be averaging the parallel and perpen-
dicular two-circle total dipole moments and integrating over
the whole sheet. Then we use the relation

g2f 2F~g!5nDb. ~16!

III. DIPOLE MOMENTS

We shall first consider the case of an aligned~parallel!
external electric field with respect to the line connecting the
centers of the two circles, as shown in Fig. 1. The circles are
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not charged and have an arbitrary conductivitys1 . In the
external field they become polarized, i.e., there is an induced
dipole moment on each circle. So it is intuitively clear that
we have to deal with dipoles in constructing the infinite set
of images which solves this electrostatic problem.

The images of a dipole can be derived from the combina-
tion of the separate images of the pair of charges forming the
dipole.9 By definition, a two-dimensional dipole is a combi-
nation of a positive line charge and a negative line charge, an
infinitesimal distance apart, so arranged that the product of
charge and distance remains finite.

One circle in a uniform external field is completely de-
scribed by one dipole at the center of the circle. We start
from that dipole at the center of one circle which we denote
by p1 , given by

p152pgE0a
2. ~17!

Assuming that we started from the circle to the right, and
taking in account the presence of the other circle to the left,
we find the dipole imagep2 of p1 in the circle to the left.
Now we find the next dipole imagep3 of p2 in the circle to
the right. Continuing in that way we construct an infinite set
of dipole images. Odd-numbered images are all inside the
right circle, and all even-numbered images are inside the left
circle. But, due to the symmetry between the two circles,
there must be another infinite set of images generated by
placing the first dipolep1 at the center of the left circle. The
complete solution of the problem consists of two infinite sets
of images, redistributed in such a way that each circle now
has the same infinite set of imagesp1 ,p2 ,p3 , . . . , which are
given in the simple, continued-fraction form

p25gS aRD 2p1 ,

p35gS a

R2
a2

R
D 2

p2 , ~18!

p45gS a

R2
a2

R2
a2

R

D 2

p3 ,

•

•

•

whereg is given by~9!, a is the radius of each circle,R is
the separation between their centers, andp1 is given by~17!.
All images of dipole moments have the same direction, along
the applied field, as shown in Fig. 1.

The case of the perpendicular external field is shown in
Fig. 2. Due to the direction of the applied field, all dipole
moments are now perpendicular to the horizontal connecting
the centers of the two circles. The first dipole imagep2 now
has the opposite direction with respect to the initial dipole
p1 . The alternating directions of successive images are the
only new thing here, so we can repeat essentially the same
procedure we used for the parallel field case, to get exactly
the same infinite set of dipole images whose magnitudes are
given by ~17! and ~18!, as before. The alternating orienta-
tions of these dipoles are represented symbolically in Fig. 2.

The positions of the first few images in both circles, mea-
sured from their respective centers, as shown in Figs. 1 and
2, are found in a similar continued-fraction form:

FIG. 1. Orientation of the dipole images for two circles in a
parallel applied fieldE0 , showing the notation in the text.

FIG. 2. Orientation of the dipole images for two circles in a
perpendicular applied fieldE0 , showing the notation in the text.
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x150,

x25
a2

R
,

x35
a2

R2
a2

R

, ~19!

x45
a2

R2
a2

R2
a2

R

,

•

•

•

These positions hold for both the parallel and perpendicular
cases.

Combining ~17!–~19!, it is easy to see that the dipole
moments satisfy the difference equation

1

Aps11

1
1

gAps11

5
R

a

1

Agps
. ~20!

Solution of ~20! gives all dipole images in terms of hyper-
bolic functions,

ps52pE0a
2gsS sinhasinhsa D 2 ~21!

wherea is given by the relation

cosha5
R

2a
. ~22!

~21! is our main result for dipole moment images, and all
further calculations are based on it.

It is conceptually obvious that in the parallel field the total
dipole moment is given by the sum of all dipole images
multiplied by a factor of 2~two circles!:

Pi52(
s51

`

ps . ~23!

Using ~21! we get

Pi54pE0a
2(
s51

`

gsS sinhasinhsa D 2, ~24!

which is the total dipole moment of two circles in the parallel
external field.

In a perpendicular external field, the only difference is the
alternating orientation of the consecutive dipole moments,
while they still have the same magnitudes as in the parallel
field case. So the total dipole moment of two circles becomes

P'54pE0a
2(
s51

`

~21!s11gsS sinhasinhsa D 2. ~25!

IV. PERFECTLY CONDUCTING INCLUSIONS

As an interesting sideline, we look at some properties of a
single pair of inclusions. The formulas for this case have a
particularly simple form. We calculate the total dipole mo-
ment of the two perfectly conducting (g51) circular inclu-
sions in an external field, separated by distanceR.

Using ~24! with g51 we have for perfectly conducting
circles

Pi54pE0a
2(
s51

` S sinhasinhsa D 2, ~26!

which is the total dipole moment of two perfectly conducting
circles in the parallel external field.

In a perpendicular external field, using~25! with g51, we
get

P'54pE0a
2(
s51

`

~21!s11S sinhasinhsa D 2. ~27!

Using ~26! and ~27!, we numerically calculate the total
dipole moment dependence on the separationR/a of the two
circular inclusions, in both cases. These graphs are shown in
Fig. 3. When the circles touch,~26!, and ~27! give exact
values for the two dipole moments~with a→0):

Pi54pE0a
2(
s51

`
1

s2
54pE0a

2z~2!5
2

3
E0a

2p3, ~28!

P'54pE0a
2(
s51

`

~21!s11
1

s2
52pE0a

2z~2!5
1

3
E0a

2p3,

~29!

where the sums are expressed in terms of the Riemannz
function.13

In this particular case of perfectly conducting circular in-
clusions, and in parallel external field, each consecutive di-
pole image introduces some change of the potential on each
circle. The first few contributions in the decreasing potential
of the circleO1 , which correspond to the first few dipole
imagesp1 ,p2 ,p3 , . . . , are

FIG. 3. Total dipole momentPi andP' of two perfectly con-
ducting circles in parallel and perpendicular external fields. The two
diamond symbols when the circles touch atR/a52 are from Eqs.
~28! and ~29!.
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V150,

V252
1

2p

p1
R
,

V352
1

2p

p2

R2
a2

R

, ~30!

V45
1

2p

p3

R2
a2

R2
a2

R

,

•

•

•

wherep1 ,p2 ,p3 , . . . are given by~17! and~18!. In general,

Vs5
xsps21

2pa2
. ~31!

In the absence of inclusions, the external electric fieldE0
creates a potential difference between the two centers given
by

DVE5E0R. ~32!

The total potential difference, i.e., the voltageDV, between
the two perfectly conducting circles in the external field is
given by

DV5DVE52(
s52

`

uVsu. ~33!

Combining ~18!, ~19!, and ~30! the total voltage can be
expressed in terms of a sum over hyperbolic functions,

DV5E0aSRa 22(
s52

`
~sinha!2

sinhsa sinh~s21!a D . ~34!

The series in~34! is summable to a simple form. To show
this, rewrite this sum with the help of~22! and in terms of
the new variabley5ea. ~34! then becomes

DV5E0aF y1
1

y
22S y2

1

yD 2
3(

s52

`
1

~ys2y2s!~ys212y2~s21!!G . ~35!

Rewriting in terms of partial fractions~35! becomes

DV5E0aF y1
1

y
12S y2

1

yD (s52

` S 1

y2s21
2

1

y2s2221D G .
~36!

Writing explicitly the first few terms in the sum, it is easy
to see that only one term in the second partial fraction sur-
vives for s52, while all others cancel each other to give

DV5E0aS y2
1

yD ~37!

and hence

DV5E0AR224a2. ~38!

This remarkably simple result for the voltage between two
perfectly conducting circular inclusions is shown graphically
in Fig. 4. Presumably~38! can be derived by a more elemen-
tary method, but we have been unsuccessful in doing so.

V. EFFECTIVE CONDUCTIVITY

As we mentioned in the Introduction, the problem is to
find the functionF(g) in ~15!. The functionF(g) contains
the information about the long-range Coulomb interaction
between all pairs of circles. Obviously, we have to connect
the functionF(g) with our solution for dipole moment im-
ages,~21!. But the dipole momentp is related to the polar-
izability by the relationp5bE0 , whereb is the polarizabil-
ity. So we first relateF(g) to the pair correction in the
polarizability.

Introducing an effective conductivitys in the observed
region containingn circles per unit area, and the mean po-
larizability of a single inclusionb̄, we find the Clausius-
Mossotti-type result

s2s0

s1s0
5
nb̄

2
, ~39!

which definesb̄. The man polarizabilityb̄ contains higher-
order effects, so we solve~39! for s/s0 , and expand it to
second order inn,

s

s0
511nb̄1

n2b̄2

2
1•••. ~40!

Separating the single site and the correction due to pairs
in b̄, we put

b̄52pa2g1Db, ~41!

FIG. 4. Voltage between the two perfectly conducting circles in
the external field is shown as a solid line. The dashed line would be
the voltage in the absence of the conducting circles~i.e., just host
material!.
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whereDb is the change in the polarizability due to the pres-
ence of other inclusions nearby. Therefore we find~15! in the
form

s

s0
5112g f12g2f 21nDb ~42!

which is consistent with~16!.
The change to the average dipole moment can be written

as

P̄85nE
0

2pE
2a

`

~Pi8cos
2u1P'8 sin

2u!du R dR, ~43!

where Pi8 and P'8 ~and henceP̄8) do not containp1 ~as
designated by the primed quantities!, but are summed over
all the other induced dipoles as in~24! and~25!. Terms con-
tainingp1 are already taken in account, in the single-site part
of the polarizability@terms proportional tof in ~42!#.

The series~41! is only conditionally convergent as the
leading term involvingp2 is divergent unless the angular
integration is done first. Integration overu gives factorp,
and even dipole images cancel out in the integrand, leaving
only odd terms doubled. The elimination of the even terms is
necessary in order forF(g) to be an odd function ofg, as
required by the reciprocity theorem and discussed in Sec. II.
It may also be possible to show that the even terms vanish in
~41! using methods similar to those of Felderhof, Ford, and
Cohen,14 but this is a lengthy procedure that we have not
attempted as we know that the even terms in~41! must inte-
grate to zero using the reciprocity theorem. In three dimen-
sions, the reciprocity theorem cannot be invoked and hence it
is necessary to do the analysis surrounding the analogous Eq.
~3.35! in Ref. 14.

Recalling the relation between the polarizability and the
dipole moment, and Eqs.~24! and ~25!, we can write

Db5
P̄8

E0
5

2 f

E0a
2E

2a

`

~p31p51p71••• !R dR. ~44!

The behavior at largeR in the integrand in~43! is dominated
by then53 term in the summations in~24! and ~25!. Thus
the asymptotic form of the integrand in~43! varies asR24 ,
which leads to an absolutely convergent integral in~43! and
~44!. With the help of~16! the functionF(g) is written as

F~g!5
2

pE0a
4E

2a

` ~p31p51p71••• !

g2 R dR. ~45!

Using the hyperbolic function form of the dipole images
~21!, we have the expression

F~g!516E
0

`

(
s51

`

g2s21
sinh3a cosha

sinh2~2s11!a
da. ~46!

Finally, ~46! can be written in the form

F~g!516~K1g1K2g
31K3g

51K4g
71••• !, ~47!

whereKs is given by

Ks5E
0

` sinh3a cosha

sinh2~2s11!a
da. ~48!

Substituting~47! into ~15! we have found the expression
for the effective conductivity to the second order in the area
fraction of the inclusions,f , for any value ofg between 0
and 1:

s

s0
5112g f1@2g21~16K1g

3

116K2g
5116K3g

71••• !# f 2, ~49!

whereKs are given by~48!. It is useful to simplify the co-
efficientsKs . First, we transform the integral~48! using the
identity

1

sinh2@~2s11!a#
5(

j51

`
4 j

exp@2 ja~2s11!#
~50!

which can be easily checked.13 Substituting~50! into ~48! we
have the following expression for the coefficientsKs :

Ks54(
j51

`

j E sinh3a cosha exp@22 ja~2s11!#da, ~51!

which was previously found by Peterson and Hermans,8 us-
ing bipolar coordinates.

Substitutingv5exp@22ja(2s11)# in ~51!, carrying out
the integration overa,13 we express the result in terms of the
digamma (C) function,

Ks5
1

4~2s11!2 FCS 1

2s11D1CS 21

2s11D2CS 2

2s11D
2CS 22

2s11D G , ~52!

which was also found by Peterson and Hermans.8 The tabu-
lated values of the digamma function were used to construct
Table I.

In Fig. 5, we show a plot ofF(g), using the Taylor ex-
pansion shown in Table I, with enough terms so that conver-
gence was obtained even atg51. This required about 100

TABLE I. Taylor series for circular inclusions of conductivity ratio parameterg.

Taylor series

Circle F(g)50.666 67g10.055 67g310.013 17g510.004 64g710.002 04g9

10.001 04g1110.000 58g1310.000 35g1510.000 22g1710.000 15g19

10.000 10g2110.000 07g2310.000 05g2510.000 04g2710.000 03g29

10.000 02g3110.000 02g3310.000 02g3510.000 01g371•••
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terms to get four-figure accuracy. We have used an approxi-
mate interpolation form to fit the result forF(g):

F~g!5
2

3

g

~12bg2!c
. ~53!

The coefficientsb andc were chosen to reproduce the result
at g51, and the known behavior ofF(g) for smallg:

F~g!5 2
3 g for smallg

and ~54!

F~1!50.744 989 676 . . . .

Here the ellipsis following a number denotes that it is known
exactly to that number of digits.

Reference 8 contains a numerical error. The last two
given coefficients in their formula~67! are 0.0194 and
0.005 05. These should be corrected to 0.0198 . . . and
0.006 97 . . . , respectively.

VI. ANALYTIC CONTINUATION OF THE PAIR TERM

We shall need both the real and imaginary parts of
F(g) for the calculation of the spectral function in the next
section. The imaginary part can be obtained by analytic con-
tinuation. Starting from~46! we rewrite it in slightly differ-
ent form:

F~g!516E
0

`

sinh3~a!cosh~a!(
s51

`
g2s21

sinh2@~2s11!a#
da .

~55!

The sum in the integrand

A~g![(
s51

`
g2s21

@ea~2s11!2e2a~2s11!#
~56!

can be rearranged and expanded in the series

A~g!5(
s51

`

g2s21@e22a~2s11!12e24a~2s11!

13e26a~2s11!1•••#. ~57!

Introducing the new indexn[s21 we can transform~57!
into

A~g!5g (
n50

` F S g

e2aD 2n

e26a12S g

e4aD 2n

e212a

13S g

e6aD 2n

e218a1••• G . ~58!

The summation overn is possible for each term in the square
brackets, to give

A~g!5gF e26a

12~g/e2a!2
1

2e212a

12~g/e4a!2

1
3e218a

12~g/e6a!2
1••• G , ~59!

which can be expressed in terms of the variablex521/2g as

A~x!52
x

2(
m51

`
me26ma

~x!22@~e22ma!/2#2
. ~60!

We write the functionF(g) in ~55! in terms of the new
variablex:

F~x!5232xE
0

`

sinh3~a!cosh~a!

3F (
m51

`
me26ma

x22@~e22ma!/2#2Gda ~61!

or

F~x!522x(
m51

` E
0

1/2~2x8!2@~2x8!21/2m2~2x8!1/2m#3@~2x8!21/2m1~2x8!1/2m#

x22x82
dx8, ~62!

where we have introduced another new variable,x8
5 1

2exp(22ma). Finally, transforming this expression into
partial fraction form, we get after some manipulations

F~x!5E
21/2

1/2
(
m51

`

jm~ ux8u!

x2x8
dx8 ~63!

where~writing the dummy variablex8 asx)

jm~ uxu!54x2@~2uxu!21/2m2~2uxu!1/2m#3

3@~2uxu!21/2m1~2uxu!1/2m#, ~64!

and hence, reading from~63!, we obtain the imaginary part
of F(x) as

FIG. 5. Interpolation formula~smooth curve! for the function
F(g) ~crosses!. The diamond symbol wheng51 is from Eq.~47!.
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ImF~x!5 (
m51

`

jm~ uxu! ~65!

for 21/2,x,1/2. Nearx50 there is a cusp,

ImF~x!5122uxu1O~ uxu4/3!, ~66!

which is caused by the large number of widely separated
pairs of circles. We use ImF(x) to construct the spectral
function in the next section.

VII. SPECTRAL REPRESENTATION

It is convenient to change the variables used for the spec-
tral function whose properties were summarized in Sec. I.
Using theg variable defined in~9!, instead of thet variable
defined in~2!, and withx85u2 1

2 andh(x8)5g(x81 1
2), we

may rewrite~1! as

s

s0
5112gE

21/2

1/2 h~x8!dx8

112gx8
~67!

where

E
1/2

1/2

h~x8!dx85 f ~68!

and

E
21/2

1/2

x8h~x8!dx852
f 2

2
, ~69!

where f is the concentration~volume fraction! of the phase
s1 in the hosts0 @compare with~3! and ~4!#. The first mo-
ment ^x8& is now given by

^x8&52
f

2
. ~70!

For simplicity for the rest of this section, we drop the prime
on x. The higher moments of the spectral functionh(x) de-
pend on the detailed geometry and are not general like the
first moment given by~70!. For example, the second moment
for the present case is given by

^x82&52K1f , ~71!

where 16K1 is the leading term in~46! and from~52! has the
numerical valueK151/24. Hence we have

^x82&5
f

12
. ~72!

The spectral functionh(x) is formed by taking the imagi-
nary part ofs/s0 given by ~15! and rearranging so that a
self-energy is in the denominator. Such rearrangement can be
accomplished formally, as has been done, for example, by
Felderhof and Jones5 and Cichocki and Felderhof.15We have
been content to write the conductivity in the form~71!,
which when expanded is equivalent to~42! to second order
in the concentrationf :

s

s0
5

1

122g f /$11g f @12~1/2!F~g!#%
. ~73!

Taking the imaginary part of~73! ~substitutingg521/2x as
before! we have

h~x!5
f

p

@~ f /4!ImF~x!#

@x1 f /21~ f /4!ReF~x!#21@~ f /4!ImF~x!#2
,

~74!

where ReF(x) is the real part of the functionF. We obtained
it from the known imaginary part in~64! and ~65! using the
Kramers-Kronig relation. Both ImF(x) and ReF(x) are
shown in Fig. 6. We plot the spectral function given by~74!
for several concentrationsf in Fig. 7, using the complete
expression~74!. Of course, the form~73! is not unique to
second order in concentrationf . Many other forms can be
written down which when expanded will give the conductiv-
ity s correct to orderf 2 @see~8!#.

We note that Felderhof and Jones16 also use a continued
fraction in their Eq.~3.11! identical to our~74!. We prefer
the form~73! as it leads to a single smooth spectral function
as shown in Fig. 7. The singled function in the single-
inclusion limit is broadened by the interactions between the
inclusions at higher concentrations, so that the width is pro-

FIG. 6. ImF(x) and ReF(x) for circles, withx521/2g. The
real part is obtained from the known imaginary part~64! and ~65!,
using the Kramers-Kronig relation. Note that ImF(x)50 for
x2.1/4.

FIG. 7. Spectral function for several values of inclusion area
fraction, using~74!. f50.01, 0.05, 0.10, 0.20.
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portional tof as shown in Fig. 7. Similar behavior occurs in
the spectral function associated with the vibrations of light
point defects in solids.17 We note that there are no isolated
poles in the expression~73! and hence nod functions in the
spectral function, as can be seen from Figs. 7 and 8. This can
easily be checked as our spectral functions obey the sum
rules~68! and~69!. We interpret the spectral function in the
low-concentration limit as being analogous to the broadening
of single-impurity lines, due to interactions between pairs of
light-mass defects in solids.17 We note that Felderhof and
Jones16 found two isolatedd functions in the spectral func-
tion in three dimensions, in addition to a continuous part.
Thesed functions, we believe, are unphysical and result
from the neglect of higher-order multipoles, even at the pair
level. Because of the simplifications possible in two dimen-
sions we have been able to sum up all the contributions at the
pair level, via the infinite set of dipole images. As a result
there are not unphysicald functions in the spectral function.
If we had truncated the expansion~45! after the first few
terms, we would have obtained a spectral function with
manyd functions, which only form a single continuous func-
tion as the series~45! is summed to infinity.

In the dilute limit the spectral function becomes Lorentz-
ian. For small concentrationsf , and for smallx, using~54!
and ~66!, we can make the approximationF(x)5 i , i.e.,
ReF(x)'0 and ImF(x)'1, and the spectral function be-
comes

h~x!5
f

p

f /4

~x1 f /2!21~ f /4!2
. ~75!

In Fig. 8 we show the spectral function calculated from
the full expression~74! and the Lorentzian form~75!, for two
small concentrations. It can be seen that the differences be-
tween these two forms only become apparent at higher val-
ues of the area fractionf , where the pair approximation
breaks down.

It is easy to find the real part ofs/s0 in the dilute limit:

ReS s

s0
D512

2 f ~2x1 f !

~ f /2!21~2x1 f !2
. ~76!

Then, assuming complexx, it is straightforward to show that
the complex effective conductivity has the form

s

s0
512

f

x1 f /21 i f /4
, ~77!

where x is now an arbitrary point in the complex plane.
Formula~77! reproduces the correct imaginary and real parts
as given by~75! and ~76!, respectively. Of course, the form
~77! is not correct as the single pole is off the real axis,
which is not allowed. Also the Lorentzian extends out to
6`, which violates the fact that the spectral function is only
nonzero between6 1

2. Nevertheless, the Lorentzian form, and
hence~77!, form a good approximation for smallf andx, as
shown in Fig. 8.

We also define the function

M ~g![
s2s0

s1s0
. ~78!

It can be shown that the imaginary part ofM (x) is given by

ImM ~x!5
f

2

~ f /4!ImF~x!

@x1~ f /4!ReF~x!#21@~ f /4!ImF~x!#2,
~79!

which in the dilute limit becomes

ImM ~x!5
f

2

f /4

x21~ f /4!2
. ~80!

This is both Lorentzian and an even function ofx.
In Fig. 9 we contrast plots of the full expression~79! and

the Lorentzian form~80! of the function ImM (x), for two
concentrations. Comparing Fig. 9 with Fig. 8 we see that the
function ImM (x) given by ~79! keeps its approximate
Lorentzian form up to relatively higher concentrations than
does the spectral functionh(x).

VIII. CONCLUSIONS

We have shown that the spectral function for a sheet con-
taining holes can be calculated correct to second order in the

FIG. 8. Lorentzian shape of spectral functionh(x) from ~75!
compared with the exact result~74!. The Lorentzian is shown as the
dashed line, and the exact result as the solid line, for two concen-
trations f50.05 and 0.10.

FIG. 9. The function ImM (x) in the dilute limit. The solid curve
is the exact result from~79!, and the dashed curve is the Lorentzian
approximation ~80!. Results are shown for two concentrations
f50.05 and 0.10.

14 870 53DJORDJEVIĆ, HETHERINGTON, AND THORPE



area fraction of inclusions,f . The result is a truncated
Lorentzian that for all practical purposes is a Lorentzian in
the range of interest. A knowledge of the spectral function
permits the~complex! conductivitys for any ~complex! val-
ues ofs0 ands1 to be found, by doing a single integral. This
is particularly useful if there is a parameter in the composite
that can be varied at fixed geometry. Examples would be the
frequency and the temperature.

The calculation in 2D was possible because an exact so-
lution to this problem is available in terms of multiple im-
ages. We have managed to do an analytic continuation that
has allowed the spectral function to be found, which is finite
only over a narrow region at low concentration.

Similar spectral functions can also be used in discrete
systems made up of resistors.18,19 Spectral functions are

widely used in physics to study electronic and vibrational
excitations. They have proved especially useful in systems
containing impurities, where local modes can occur.17 The
weight in the absorption spectrum varies as the defect con-
centrationc and the width is determined by the interaction
between defects and varies also asc. The reason for this
close analogy between these two somewhat disparate situa-
tions is not entirely clear.
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