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Spectral function for a conducting sheet containing circular inclusions
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The conductivity(or dielectric behavigrof a binary composite system is conveniently expressed in terms of
a spectral functionwhich is determined by the geometry of the composite. In this paper we examine the case
of circular inclusions in a conducting sheet and keep terms up to second order in the inclusion concentration
f. The two-inclusion problem can be solved exactly using multiple images, and we use this solution to
construct the spectral function. We show that the spectral function is a truncated Lorentzian that can be
calculated in a simple closed form. Both the weight and the width of the spectral function are linear in
[S0163-182696)05022-9

[. INTRODUCTION but the same geometry. It is particularly useful in a given
composite when the conductivitiegy and o, are frequency
Exact results for the properties of composite materials ardependeniand hence complexin this case the effective
rare, and so the few that exist are particularly important agonductivity o is also complex, of course.
aids to our understanding. Although spectral functions are The spectral functiog(u) can be used in any dimension
widely used in physics, their use in composite materials hag” and for any volume fractiorf of inclusions. Indeed, the
not been widespread. This is mainly because this attractivel€cision as to what constitutes the matrix and what is the

formalism is difficult to apply to particular composite geom- inclusion is arbitrary, although in the rjilute_limit we will of
etries, because of the numerical difficulty of computing theCOUrse make the circular objects the inclusions. The spectral

spectral function. In this paper we examine a nontrivial ex-fuggt(';tri‘eggu) can be shown to have the following

. r
ample of a spectral function that can be calculated exactlyp X . - .
This example involves the calculation of the spectral func'zer(g)olfrtlssi daertehaills ?gﬁg';’e definite function for-Qu<1 and
tion of a sheet containing circular inclusions with a different . ' —_ .
conductivity from that of the host. Using the well-known (2) The total weight and the first integral are given by
technique of multiple dipole images, the terms in the effec- 1
tive conductivity up to second order in the concentration of o g(u)du=f, ©)
inclusionsf can be found. We have been able to express the

spectral function in a rapidly convergent series. We show 1 f(1—1)

that the spectral function is a truncated Lorentzian with f ug(u)du= —~ (4)
weight f and a width that is proportional tb, and we are 0

able to give the final result in a very simple form. wheref is concentratiorfvolume fraction of the phaser; in

It has been shown by Bergmarlilton,?® and Golden the host ofoy, and. is the dimension. This can be obtained
Papanicolati that for any two-phase composite medium, using the weak-scattering linfitlt is convenient sometimes
which on average is uniform and isotropic, the effective con10 define the normalized momen(s") of the spectral func-

ductivity o (or dielectric constantcan be written as tion by
1

o 1g(u)du f u"g(u)du

o  Jo tTu (u"=— (5)
where fo g(u)du

o0 so that from(4) we have
t= . (2
00— 01 (1—-1)
(U= : (6)

oo and o are the conductivities of the host and the inclu-
sions, respectively, and(u) is the spectral function The  The higher-order moments depend on the details, and are not
spectral function is fully determined by the geometry of theknowna priori. In this paper we will apply this formalism to
two-phase medium, and does not depend upon the material two-dimensional sheet containing circular inclusions, and
parametersoy and oq. It is therefore a purely geometric obtain the spectral function to second order in the area frac-
guantity. It provides a very compact way of giving the infor- tion f of inclusions. The layout of the paper is as follows. In
mation to calculate via a single integrd) the conductivity the next section we restrict the form of the conductivitypy

of a series of composites with different material parametersysing the reciprocity theorem that is valid in two dimensions
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(2D). In Sec. lll, we use the method of multiple images toand the functionG(y) is anevenfunction of y (Ref. 12 as
write down the position and strengths of the dipoles in a paifollows from the reciprocity theoreri7). Similarly, for in-
of circular inclusions. In Sec. IV, we examine the results interchanged phases 0 and #=¢ — y), the effective conduc-
more detail, particularly for the case of perfectly conductingtivity ¢’ is given as

inclusions. In Sec. V, we obtain the effective conductivity by
averaging over the dipole moments of the pairs that we have
found previously. This solution is then rearranged into a

form from which the spectral function can be derived in o , ) ,
Secs. VI and VII. Finally, in the conclusions, we discuss theMUltiplying (8) by (10) and using the reciprocity theorem
uses of this kind of approach. (7), we get the second order in concentratfon

H(y)+H(—7y)—y*G?(y)=0, 11
. GENERAL FORM FOR THE TWO-DIMENSIONAL ) ==y ) (3
CONDUCTIVITY from which it is clear that the functioll(y) must generally

) _ be of the form
The problem of circular and polygonal holes in a two-

dimensional cond.ucting sh_eet was recent!y invgstigat.ed by H(y)= 142G%(y)+ yL(y) (12)
Thorp€ up to the first order in the area fraction of inclusions,

using the conformal mapping technique. From the other sideyvhere the functiori.(y) is anevenfunction of y.

the general problem for circular inclusions had been solved The weak-scattering limit gives L(y)=yF(y), where
earlier up to the second order by Peterson and Herfnan& (y) is anodd function of y (proportional toy for small
using bipolar coordinates. v), andF(0) is zero. So, finally(8) becomes

In this paper we use the method of electrical images to
solve the problem of the effective conductivity in the con- 7 _ 162 22 2 5 3
ducting sheet containing circular inclusions of an arbitrary a_o_1+f76(7)+ 2 G () F Iy F(9) +O(1),
conductivity. This method is not limited to holes and per- (13
fectly conducting inclusions, as is the conformal mappin
technique.

We first consider one isolated pair of identical circles with v
radius a separated by a distand®. Considering the two f=nma?, (14)
independent cases of parallel and perpendicular external
electric field, we construct the infinite set of dipole, or dou-wheren is the number of inclusions per unit area, each with
blet images. Each dipole image is found in a simple areama?®. Two usual limits are obtained when the inclusion
continued-fraction form. We find and solve the appropriateis a hole ¢y/=—1) and when the inclusion is perfectly con-
difference equation for successive dipole images to get alilucting (y=1). Equation(13) is valid generally but for cir-
dipole moment images, now in closed form, in terms of hy-cular inclusionsG(y)=2.” So for circles as inclusion€lL3)
perbolic functions. All further calculations are based on thessimplifies to
dipole images. Naturally, the total dipole moment of the two
circles is given by the sum of all image-dipole moments in

!

g
U—lzl—fyG(y)-i-sz(—y)+O(f3). (10

gWhereG(y) andF(y) are an even and an odd function of
respectively. The area fractidncan be written as

T 14240429224 2EF()+O(F%)  (15)

the case of parallel external field, and by the same sum, but oo
with alternating signs in the case of perpendicular external ) ) ) )
field. and our goal is to calculate the functibiiy) which contains
The reciprocity theorefi*for the two-phase medium in the pair terms in the effective conductivity.
2D states that the following relation must hdfd: We relate the functiofr () to the pair contribution to the
polarizability AB. This is defined as the mean change in the
0(0g,01)0' (01,00) =007, (7)  polarizability of a single inclusion due to the presence of the

o other inclusions. To leading ordeX,8 can be obtained from
where o and o, are the conductivities of the two phases, the dipole moment of pairs. Indeed, we have stressed in pre-
ando(ao,01) ando’(oy,09) are the effective conductivi- yioys papers!? that the conductivity of a sample is directly
ties of the original system and the one with the same geonYe|ated to the dipole moment all the inclusions. Once we
etry butog and o interchanged. _ _ have all dipole moment images in the aligned and perpen-

We find the generalization of the effective conductittty gicular external field, it is straightforward to find the polar-
to the se_cond order in the concentranb.mf the mclqs.lon izability changeA 8 be averaging the parallel and perpen-
phase 1 in the host phase 0. The effective conductivity thegjcylar two-circle total dipole moments and integrating over

must be of the form the whole sheet. Then we use the relation
o 262 _
—=1+1G(y)+ 2H(9) +O(F3), ®) VIR =nAS (10
0
where I1l. DIPOLE MOMENTS

B We shall first consider the case of an aligngdralle)
y=21 70 (9 external electric field with respect to the line connecting the
o1t 09 centers of the two circles, as shown in Fig. 1. The circles are
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FIG. 2. Orientation of the dipole images for two circles in a
perpendicular applied fiel®,, showing the notation in the text.

FIG. 1. Orientation of the dipole images for two circles in a a\?
parallel applied fieldey, showing the notation in the text. P2=vy R P1,
not charged and have an arbitrary conductivity. In the 2
external field they become polarized, i.e., there is an induced P3=y a 5| Pa. (18)
dipole moment on each circle. So it is intuitively clear that R—a—
we have to deal with dipoles in constructing the infinite set R
of images which solves this electrostatic problem.

The images of a dipole can be derived from the combina- a 5
tlpn ofgthe sepgrgte images of the pair of qharge; forming 'the Pa=y[ ————\ pa,
dipole” By definition, a two-dimensional dipole is a combi- R_ a
nation of a positive line charge and a negative line charge, an a’
infinitesimal distance apart, so arranged that the product of R- R

charge and distance remains finite.

One circle in a uniform external field is completely de-
scribed by one dipole at the center of the circle. We start
from that dipole at the center of one circle which we denote

by p1, given by

5 where vy is given by(9), a is the radius of each circl® is
p1=27yEqa”, (17)  the separation between their centers, ppis given by(17).
All images of dipole moments have the same direction, along
the applied field, as shown in Fig. 1.

Assuming that we started from the circle to the right, and  The case of the perpendicular external field is shown in
taking in account the presence of the other circle to the leftFig. 2. Due to the direction of the applied field, all dipole
we find the dipole image, of p; in the circle to the left. moments are now perpendicular to the horizontal connecting
Now we find the next dipole image; of p, in the circle to  the centers of the two circles. The first dipole imagenow
the right. Continuing in that way we construct an infinite sethas the opposite direction with respect to the initial dipole
of dipole images. Odd-numbered images are all inside th@,. The alternating directions of successive images are the
right circle, and all even-numbered images are inside the lefonly new thing here, so we can repeat essentially the same
circle. But, due to the symmetry between the two circlesprocedure we used for the parallel field case, to get exactly
there must be another infinite set of images generated bthe same infinite set of dipole images whose magnitudes are
placing the first dipolg; at the center of the left circle. The given by (17) and (18), as before. The alternating orienta-
complete solution of the problem consists of two infinite setgions of these dipoles are represented symbolically in Fig. 2.
of images, redistributed in such a way that each circle now The positions of the first few images in both circles, mea-
has the same infinite set of images,p,,ps, . . . , which are  sured from their respective centers, as shown in Figs. 1 and
given in the simple, continued-fraction form 2, are found in a similar continued-fraction form:
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FIG. 3. Total dipole momenP; and P, of two perfectly con-
ducting circles in parallel and perpendicular external fields. The two
diamond symbols when the circles touchRia=2 are from Egs.
(28) and(29).

These positions hold for both the parallel and perpendicular IV. PERFECTLY CONDUCTING INCLUSIONS
cases.

Combining (17)—(19), it is easy to see that the dipole As an interesting sideline, we look at some properties of a

moments satisfy the difference equation sing_le pair of_ inclusions. The formulas for this case have a
particularly simple form. We calculate the total dipole mo-
1 1 R 1 ment of the two perfectly conductingy& 1) circular inclu-
+ =— . (200  sions in an external field, separated by distaRce
VPs+1  YVPs+1 & \¥Ps

Using (24) with y=1 we have for perfectly conducting

Solution of (20) gives all dipole images in terms of hyper- Circles
bolic functions,

P =4mE Zi sinha | 26
sinha |2 I= 57508 < | Sinrsa) (26)
ps=27Eqa’y’| — (22)
sinhsa which is the total dipole moment of two perfectly conducting
wherea is given by the relation circles in the parallel external field.
In a perpendicular external field, usif@p) with y=1, we
R get
coshw= 23 (22 . _ ,
- . . - P, =47Ey a2, (—1)s*? sinha (27
(21) is our main result for dipole moment images, and all L 0% &~ sintsa

further calculations are based on it.

It is conceptually obvious that in the parallel field the total  Using (26) and (27), we numerically calculate the total
dipole moment is given by the sum of all dipole imagesdipole moment dependence on the separdfitmof the two

multiplied by a factor of 2two circles: circular inclusions, in both cases. These graphs are shown in
. Fig. 3. When the circles touch26), and (27) give exact
values for the two dipole momentwith «—0):
Pi=22 ps. (23)
s=1 o
2 1 2 2 2_3
Using (21) we get Pj=4mEqa 521 2 =4mEal(2)=zEa"m", (28)
” sinha | 2 o
= 2 s 1 1
P” 47TEOa 521 Y (Sil’ll’Ba) ’ (24) PJ_:47TEOa221 (_1)s+1?:27TE0a2§(2): §E0a27T3,
o

which is the total dipole moment of two circles in the parallel (29)

external field. , , _ where the sums are expressed in terms of the Riengann
In a perpendicular external field, the only difference is theg nction 13

alternating orientation of the consecutive dipole moments, |, this particular case of perfectly conducting circular in-

while they still have the same magnitudes as in the parallel| sions, and in parallel external field, each consecutive di-
field case. So the total dipole moment of two circles becomeﬁme image introduces some change of the potential on each

w sinhu |2 circle. The first few contributions in the decreasing potential
PL=47TanZE (_1)s+l,ys( _ (25) pf the circleO,, which correspond to the first few dipole
=] sinhsa imagesp;,p»,pPs, - .., are
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FIG. 4. Voltage between the two perfectly conducting circles in
the external field is shown as a solid line. The dashed line would be
the voltage in the absence of the conducting ciréles, just host

materia).
wherep,,p2,pP3, . .. are given by17) and(18). In general, 1
AV=E - = 3
XPs_1 od|y y) (37)
ST oAl (31
and hence
In the absence of inclusions, the external electric figjd
creates a potential difference between the two centers given AV=EyJR*—4a". (38)

by This remarkably simple result for the voltage between two

AVe=EoR. (32)  perfectly conducting circular inclusions is shown graphically
in Fig. 4. Presumably38) can be derived by a more elemen-

The total potential difference, i.e., the voltag®/, between  tary method, but we have been unsuccessful in doing so.
the two perfectly conducting circles in the external field is

given by V. EFFECTIVE CONDUCTIVITY

©

As we mentioned in the Introduction, the problem is to
AV=AVg=22, |V{. (33
s=2

find the functionF(y) in (15). The functionF(y) contains
the information about the long-range Coulomb interaction
Combining (18), (19), and (30) the total voltage can be between all pairs of circles. Obviously, we have to connect
expressed in terms of a sum over hyperbolic functions,  the functionF(y) with our solution for dipole moment im-
ages,(21). But the dipole momenp is related to the polar-
R ” (sinha)? izability by the relationp= BE,, whereg is the polarizabil-
5—2;::2 sinfsasinis—1)a)" (34 ity. So we first relateF(y) to the pair correction in the
polarizability.
The series in34) is summable to a simple form. To show Introducing an effective conductivity in the observed
this, rewrite this sum with the help ¢22) and in terms of region containingn circles per unit area, and the mean po-

AV: an

the new variabley=e“. (34) then becomes larizability of a single inclusiong, we find the Clausius-
) Mossotti-type result
1 1
AV=Eja y+——2(y——) o—on NB
y STy 018, @9
otog 2

. (35  which definesE The man polarizabilit;ﬁ_contains higher-
order effects, so we solvEd9) for o/oy, and expand it to
Rewriting in terms of partial fraction&35) becomes second order im,

oo

1 1 1
y— y) 522 (yzs—l - y232_1> .
(36)

nZBZ

1 o —
AV=Epa|y+—+2 —=1+ng+ +eeen 40
AYty 7 B (40)

Separating the single site and the correction due to pairs
Writing explicitly the first few terms in the sum, it is easy in 8, we put
to see that only one term in the second partial fraction sur- _
vives fors=2, while all others cancel each other to give B=2ma’y+ApB, (41



53 SPECTRAL FUNCTION FOR A CONDUCTING SHEE. .. 14 867

TABLE I. Taylor series for circular inclusions of conductivity ratio parameger

Taylor series

Circle F(y)=0.666 6%+ 0.055 6%°+0.013 13°+0.004 64/ +0.002 04/°
+0.001 04+ 0.000 58/*3+ 0.000 355+ 0.000 22"+ 0.000 15/*°
+0.000 10/%*+ 0.000 03?3+ 0.000 0525+ 0.000 04y°"+ 0.000 03/%°
+0.000 02/*1+0.000 023+ 0.000 02°°+ 0.000 03"+ - - -

whereA B is the change in the polarizability due to the pres- w % sinfPa coshy
ence of other inclusions nearby. Therefore we fibg) in the F(y)= 16f E yzs*l.hz—da. (46)
form 05=1 sintf(2s+1)a
Finally, (46) can be written in the form
g _ 262
oo TT2ytH2yTAnAS 42 F(7)=16K1y+Kyp*+Kay*+ Ky + ), (47)
which is consistent witt{16). whereKs is given by
The change to the average dipole moment can be written .
» sinffa coshy
as = J —————da. (48
o sintf(2s+1)a
I 27 (o
P’ =nj0 Jz (Pjcosf+P|siPhdoRdR (43 Substituting(47) into (15) we have found the expression
a

for the effective conductivity to the second order in the area

Where PH’ and P’ (and henceﬁ) do not containp; (as fraction of the inclusionsf, for any value ofy between 0

designated by the primed quantifiebut are summed over and 1.
all the other induced dipoles as (B4) and(25). Terms con- o
tainingp, are already taken in account, in the single-site part —=1+2yf+[29?+ (16K 9°
of the polarizability[terms proportional td in (42)]. Jo0
The series(41) is only conditionally convergent as the +16K,9°+ 16K 3y + - - -)]F2, (49)

leading term involvingp, is divergent unless the angular
integration is done first. Integration ovérgives factorm,  WhereKs are given by(48). It is useful to simplify the co-
and even dipole images cancel out in the integrand, leavingfficientsKs. First, we transform the integréd8) using the
only odd terms doubled. The elimination of the even terms iddentity
necessary in order fdf(y) to be an odd function of, as
required by the reciprocity theorem and discussed in Sec. Il. 1 _
It may also be possible to show that the even terms vanish in sinf[(2s+1)a]
(41) using methods similar to those of Felderhof, Ford, and
Cohen'* but this is a lengthy procedure that we have notwhich can be easily checkédSubstituting(50) into (48) we
attempted as we know that the even term&4it) must inte- have the following expression for the coefficieits:
grate to zero using the reciprocity theorem. In three dimen-
sions, the reciprocity theorem cannot be invoked and hence |
is necessary to do the analysis surrounding the analogous E‘é
(3.35 in Ref. 14.

Recalling the relation between the polarizability and theWhich was previously found by Peterson and Hernfans;
dipole moment, and Eq$24) and (25), we can write ing bipolar coordinates.

Substitutingw=exg —2ja(2s+1)] in (51), carrying out
the integration over,™® we express the result in terms of the

4j
1 exXg2ja(2s+1)]

v

(50

J

o

S=4El jJ sinfPa coshwexf —2j w(2s+1)]da, (51
=

P 2f (=
AB=—= —zf (pstpst+ps;+---)RAR (44  digamma @) function,
. : : . . . 1 -1 2
The behavior at largR in the integrand ir(43) is dominated K= 5| ¥ +¥ -
by then=3 term in the summations i24) and (25). Thus 4(2s+1) 2s+1 2s+1 2s+1
the asymptotic form of the integrand {#3) varies asR ™ *, —2
which leads to an absolutely convergent integral48) and - 5er 1) | (52

(44). With the help of(16) the functionF () is written as

which was also found by Peterson and Hernfalke tabu-
2 fw(Per Ps+p7t---) RAR (45 lated values of the digamma function were used to construct
mEqa* )24 ¥? (45) Table 1.
In Fig. 5, we show a plot of(y), using the Taylor ex-
Using the hyperbolic function form of the dipole images pansion shown in Table I, with enough terms so that conver-

(21), we have the expression gence was obtained even @t 1. This required about 100

F(y)=
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» * 2s—1
08 [T T T ) :f. Y
: _ F(y)=16 . smrﬁ(a)cosr(a)sgl —sinhz[(25+1)a]da'
[ | (55
o y The sum in the integrand
[ i * ,y2371
C 0,4:_ — A( 7)5521 [eeZTD g @z D] (56)
[ ] can be rearranged and expanded in the series
02— —
I ] A(y)=2 725—l[e—2a(25+l)+2e—4a(23+1)
I 7 I I N =t
0.0 02 0.4 , 0.6 0.8 1.0 4 3e-6a(2s+1) 4 1. (57)

Introducing the new indew=s—1 we can transforn{57)

FIG. 5. Interpolation formulasmooth curvg for the function into

F(7y) (crosses The diamond symbol whep=1 is from Eq.(47).
2v

671211

Y
~da

2v
FANERE
€ e

terms to get four-figure accuracy. We have used an approxi- A(y)=y>
mate interpolation form to fit the result fér(y): v=0

+3 . (58)

2v
Y 18«

F()’)—§m- (53

t The summation over is possible for each term in the square

The coefficientd andc were chosen to reproduce the resul .
brackets, to give

at y=1, and the known behavior ¢f(y) for small y:

—6a 2g~ 12«
_2 _
Ty foremal A 7[1_(y/e2a)2+ 1—-(yle**)?
and (54) N
F(1)=0.74498968.. .. +W+... , (59)

Here the ellipsis following a number denotes that it is knownwhich can be expressed in terms of the variatse— 1/2y as
exactly to that number of digits. 6ma
Reference 8 contains a numerical error. The last two A(x)=—iz me (60)
. .. . . 2_ —2Ma 2
given coefficients in their formulg67) are 0.0194 and 2n=1 (x)°—[(e”“")/2]
0.005 05. These should be corrected to 0819. and
0.006 O ..., respectively.

We write the functionF(y) in (55) in terms of the new
variablex:

VI. ANALYTIC CONTINUATION OF THE PAIR TERM F(x)= _32Xf°°sinr§(a)cosr(a)
0

We shall need both the real and imaginary parts of
F(vy) for the calculation of the spectral function in the next
section. The imaginary part can be obtained by analytic con- X
tinuation. Starting from(46) we rewrite it in slightly differ-
ent form: or

[

me*ﬁma
D S (CRauTF:

}da (61)

"2 ry—1/2m__ 1\ 1/2mq 3, 1\ —1/2m r\1/2m
12(2x")[(2x") (ZXXl XL[(ZX ) +(2x") ]dx’, 62
o _

o

F(X)=—2X E_l

where we have introduced another new variabl€, where(writing the dummy variable’ asx)
=lexp(—2ma). Finally, transforming this expression into

partial fraction form, we get after some manipulations gm(|x|)=4x2[(2|x|)‘1’2m—(2|x|)1’2m]3
” X[(2]x]) M2+ (2]x])M2m, (64)
b 2 EnlX'])
— m=1 / and hence, reading froti63), we obtain the imaginary part
F(x) —dx (63
-12 X=X of F(x) as



lmF(x>=mZ:1 Em(IX)) (65)

for —1/2<x<1/2. Nearx=0 there is a cusp,

ImF(x)=1-2|x|+O(|x|*?), (66)

which is caused by the large number of widely separated

pairs of circles. We use IF(x) to construct the spectral
function in the next section.

VIl. SPECTRAL REPRESENTATION

It is convenient to change the variables used for the spec-
tral function whose properties were summarized in Sec. I.

Using they variable defined in9), instead of the variable
defined in(2), and withx’ =u— 3 andh(x’)=g(x' +3), we
may rewrite(1) as

o 140 f1/2 h(x’")dx’ 5
ap V) it 2y ()
where
1/2
f h(x")dx'=f (68
1/2
and
12 2
f x'h(x")dx' =— -, (69)
—12 2

wheref is the concentratioiivolume fraction of the phase
o4 in the hosto [compare with(3) and (4)]. The first mo-
ment(x') is now given by

f
()= 3. (70

For simplicity for the rest of this section, we drop the prime
on x. The higher moments of the spectral functiofx) de-

pend on the detailed geometry and are not general like th

first moment given by70). For example, the second moment
for the present case is given by

(x'2)=2K,f, (72)

where 1€, is the leading term i46) and from(52) has the
numerical valueK,=1/24. Hence we have

(2=~ @2
12°

The spectral functioh(x) is formed by taking the imagi-
nary part ofo/oy given by (15 and rearranging so that a

self-energy is in the denominator. Such rearrangement can be
accomplished formally, as has been done, for example, by

Felderhof and Jonesind Cichocki and Felderhd?.We have
been content to write the conductivity in the for(dl),
which when expanded is equivalent (#2) to second order
in the concentratiori:

o 1
oo 1-2yf{1+yf[1-(UDF (Y]}’

(73
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FIG. 6. ImF(x) and Ré&(x) for circles, withx=—1/2y. The
real part is obtained from the known imaginary pé) and (65),
using the Kramers-Kronig relation. Note that Fifx)=0 for
x?>1/4.

Taking the imaginary part af73) (substitutingy= —1/2x as
before we have

f [(f/4)ImF(x)]

)= T fr2+ (FlA)ReF () 2+ [ (T ImF () T2
(74)

where RE&(X) is the real part of the functioR. We obtained
it from the known imaginary part if64) and (65) using the
Kramers-Kronig relation. Both IfR(x) and Ré&(x) are
shown in Fig. 6. We plot the spectral function given ()
for several concentrations in Fig. 7, using the complete
expression(74). Of course, the form(73) is not unique to
second order in concentratidn Many other forms can be
written down which when expanded will give the conductiv-
ity o correct to orderf? [see(8)].
We note that Felderhof and Johgslso use a continued

action in their Eq.(3.11) identical to our(74). We prefer
the form(73) as it leads to a single smooth spectral function
as shown in Fig. 7. The singlé function in the single-
inclusion limit is broadened by the interactions between the
inclusions at higher concentrations, so that the width is pro-

N SR EAAR AL B

Spectral function h(x)

0.2

FIG. 7. Spectral function for several values of inclusion area
fraction, using(74). f=0.01, 0.05, 0.10, 0.20.
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FIG. 8. Lorentzian shape of spectral functibfix) from (75) FIG. 9. The function InvI(x) in the dilute limit. The solid curve

compared with the exact resiiit4). The Lorentzian is shown as the is the exact result froni79), and the dashed curve is the Lorentzian
dashed line, and the exact result as the solid line, for two concerapproximation (80). Results are shown for two concentrations
trationsf=0.05 and 0.10. f=0.05 and 0.10.

portional tof as shown in Fig. 7. Similar behavior occurs in Then, assuming complex it is straightforward to show that
the spectral function associated with the vibrations of lightthe complex effective conductivity has the form

point defects in solids’ We note that there are no isolated

poles in the expressiofr3) and hence n@ functions in the i—l— f 77
spectral function, as can be seen from Figs. 7 and 8. This can oo x+fl2+ifl4’

easily be checked as our spectral functions obey the sum ) ) o

rules (68) and (69). We interpret the spectral function in the Wherex is now an arbitrary point in the complex plane.
low-concentration limit as being analogous to the broadeningermula(77) reproduces the correct imaginary and real parts
of single-impurity lines, due to interactions between pairs of2S given by(75) and(76), respectively. Of course, the form
light-mass defects in solid€.We note that Felderhof and (77) is not correct as the single pole is off the real axis,
Jone® found two isolateds functions in the spectral func- which is not. allowed. Also the Lorentzian extends .out to
tion in three dimensions, in addition to a continuous part.* > Which V|0Iate§ the fact that the spectral function is only
These & functions, we believe, are unphysical and resulthOnzero betweer: 3. Neverthelgss, t.he Lorentzian form, and
from the neglect of higher-order multipoles, even at the paif€nce(77), form a good approximation for smilandx, as
level. Because of the simplifications possible in two dimen-Shown in Fig. 8. _

sions we have been able to sum up all the contributions at the We also define the function

pair level, via the infinite set of dipole images. As a result

there are not unphysicd functions in the spectral function. M(y)= _
If we had truncated the expansigAb) after the first few o+oyg
terms, we would have obtained a spectral function with
many 6 functions, which only form a single continuous func-

O— 0

(78)

It can be shown that the imaginary partMf(x) is given by

tion as the serie#45) is summed to infinity. f (f14)ImF (x)
In the dilute limit the spectral function becomes Lorentz- ImM(x)= = > 5
ian. For small concentratiorfs and for smallx, using(54) 2[x+(H/4)ReF(X)]"+ [ (T/4)ImF(x)] ’(79)
and (66), we can make the approximatioR(x)=i, i.e.,
ReF(x)~0 and InF(x)~1, and the spectral function be- which in the dilute limit becomes
comes
f fl4
f /4 IMM() =5 S (T2 (80

h(x)

=— 2 2 (79
™ (x+112)%+ (1/4) This is both Lorentzian and an even functionxof
In Fig. 9 we contrast plots of the full expressitf) and

th Irf1 ﬁlg. 8 we Sh?XV thg tshpeftral fturjctlcf)n c;lilscu][atid fromthe Lorentzian form(80) of the function InM(x), for two
el expressm_nj ) and the Lorentzian forrfi ) OrtWO — concentrations. Comparing Fig. 9 with Fig. 8 we see that the
small concentrations. It can be seen that the differences bt

. unction ImM(x) given by (79) keeps its approximate
tween these two form; only become app_arent at h|gh§r VY orentzian form up to relatively higher concentrations than
ues of the area fractioi, where the pair approximation

breaks down. does the spectral functidm(x).

It is easy to find the real part af/ o in the dilute limit:
VIIl. CONCLUSIONS

R i 2f(2x+1) (76) We have shown that the spectral function for a sheet con-
oo (f12)%+ (2x+f)?" taining holes can be calculated correct to second order in the
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area fraction of inclusionsf. The result is a truncated widely used in physics to study electronic and vibrational
Lorentzian that for all practical purposes is a Lorentzian inexcitations. They have proved especially useful in systems
the range of interest. A knowledge of the spectral functioncontaining impurities, where local modes can octufhe
permits the(complexy conductivity o for any (comple® val-  weight in the absorption spectrum varies as the defect con-
ues ofoy ando; to be found, by doing a single integral. This centrationc and the width is determined by the interaction
is particularly useful if there is a parameter in the compositqhetween defects and varies also @asThe reason for this

that can be varied at fixed geometry. Examples would be thg|ose analogy between these two somewhat disparate situa-
frequency and the temperature. tions is not entirely clear.

The calculation in 2D was possible because an exact so-
lution to this problem is available in terms of multiple im-

ages. We have managed to do an analytic continuation that ACKNOWLEDGMENTS
has allowed the spectral function to be found, which is finite
only over a narrow region at low concentration. We should like to thank P. Leath, G. Milton, and J. Stra-

Similar spectral functions can also be used in discretdey for useful discussions, and the Research Excellence Fund
systems made up of resistdfs® Spectral functions are of the State of Michigan for financial support.
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