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A deterministic model of fragmentation of a brittle crystal is presented. In the modeling, dynamics of a
viscoelastic material is taken into account, though inhomogeneity in material and interactions between frag-
ments are totally neglected to reduce computational costs. By numerical simulations for impulsive loadings, we
analyze the processes during fragmentation, and find that a power-law mass distribution of fragments emerges
insensitively to material specific parameters. Assuming a finite-size scaling form of the mass distribution
function, we present an expression for the exponent of mass distribution, which gives agreement with numeri-
cal results and experimental data.@S0163-1829~96!03021-4#

I. INTRODUCTION

Fragmentation of brittle material caused by pulse loading
is often seen in many areas of science and technology rang-
ing from material design to cosmology. The characteristics
and statistics of resultant fragments have been studied so far
to find a general law of this very complicated phenomena.
One of the most intensively investigated properties at frag-
mentation is its size or mass distribution function. Depending
on experimental conditions and kinds of specimen, several
types of distribution functions, including exponential,1 log
normal,2 and power law,3,4 are used to give a representation
of data. In particular, a power-law form of mass distribution
is known to be applicable to many cases of impact fragmen-
tation, such as spallation of rocks,4–6 ices,7 and glasses,3 and
there seems to exist some universality.8,9 On the other hand,
little direct observation has been made because of the very
limited capability of measurement, and consequently the de-
tail mechanisms which give rise to such distribution func-
tions, especially power-law distribution, is also little under-
stood.

In this paper, we first introduce a model of dynamic frac-
ture by using an ideal brittle crystal as a ‘‘specimen’’ subject
to impulsive load. Then we analyze the process of breakage
and the statistics of fragments for several conditions by nu-
merical simulations. Finally, we present a scaling argument
based on the numerical results, and propose an expression of
the exponent for power-law distribution in agreement with
numerical and other experimental results.

II. MODEL

Fragmentation of brittle material is, in general, supposed
to consist of several complicated processes in microscopic
scale. By impulsive loads, localized deformation propagates
in medium with scattering and reflection according to micro-
structure of material, such as microflaws and grain bound-
aries. If the deformation is large, the elastic property of the
material might become nonlinear and modes of vibration will
couple. Formation of a crack takes place accompanied with
plasticity near crack tips and coalescence of crack faces.10

In order to clarify what are the relevant factors to the
emergence of robust statistics like a power-law mass distri-

bution at fragmentation, we make a simplification which may
not be applied to real materials. For instance, in this study,
we do not take into account any inhomogeneity and plasticity
of material. Furthermore the evolution of the system obeys a
Newton equation of motion and a deterministic rule of break-
age rather than stochastic modeling.11 On the other hand,
dynamics of a viscoelastic material is fully considered.

Let us give a detailed description of the present model.
The model material is a simple cubic crystal of lattice con-
stanta1. Atoms in nearest neighbors~NN! and next-nearest
neighbors~NNN! are binded with ideal Hook springs, which
can be rotated freely around the atom@see Fig. 1#. Thus, in
the equilibrium configuration, natural length of NNN bond is
a25&a1 . Here we denotek1 as the spring constant for NN
bonds andk2 for NNN bonds. The NNN interaction is essen-
tial for representation of elastic objects, since shear stress
only appears whenk2.0. Yielded stress is a linear function
of strain if the deformation is small. But, if not, one should
note that nonlinear elasticity comes out even with ideal
Hookean springs.

The force applied to the atom with indexi is represented
by

Fi5 (
jPNN

k1
r i2r j

ur i2r j u
~a12ur i2r j u!

FIG. 1. Schematic diagram of the present model: Model crystal
with NN and NNN interactions.
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UsingFi , the equation of motion fori th atom is given by

r̈ i52g (
jPNNN

NN
~ ṙ12 ṙ j !1Fi1Fi

ext, ~2!

whereg is the parameter of dissipation rate andFext is an
external force. For simplicity, every atom has the same mass
~m51!. In our simulations, the dissipation rateg is taken to
be small enough so that characteristic relaxation timem/g is
at least larger than whole simulation time.

Next we introduce a simple criterion of failure, as used in
the precedent study of quasistatic crack propagation.12 At
every time step, deformation of each spring is calculated. If a
spring has a expansion ratedr /a larger than threshold value
umax5drmax/a, the spring constant of the corresponding bond
changes to zero. This process is irreversible, and neither re-
connection nor rearrangement of atoms is allowed. In the
following computer simulations, we tooka151 and
umax50.1, if not specified.

In the fragmentation processes, the time scale of crack
formation is comparable to that of sound propagation. On the
other hand, the velocity of pieces of fragments is, in general,
quite smaller than that of sound. Thus we can expect that
fragmentation processes can be virtually divided into two
stages with different time scales, that is, creation of cracks
and collision of fragments. In this study, we separate these
and mostly focus on the former process. That is, we neglect
every secondary interaction between atoms, such as collision
of fragments, indentation, and coalescence at crack faces. By
this simplification computational time can be significantly
reduced.

Here we summarize some material specific parameters.13

Taking the continuum limit of the equation of motion, one
can find that the velocity of a planer wave in the~100! di-
rection is v l5Ac1 /r for the longitudinal mode, andv t
5Ac2 /r for the transversal mode, wherec15(k112k2)/a1
andc25k2/a1 . Young’s modulusE is

E5
~c12c2!~c112c2!

c11c2
, ~3!

and Poisson ratios is

s5
c2

c11c2
, ~4!

for the ~100! direction, respectively. In the following analy-
sis, k15k255 are used. Since the elasticity of the model
crystal is inherently anisotropic, these parameters can vary as
a function of the direction of loading within the order of
unity.

III. NUMERICAL SIMULATIONS

As an initial condition, the configuration of atoms is set to
be at slightly different positions from equilibrium by using
Gaussian-distributed random numbers. The velocity of each
atom also has small initial Gaussian deviations from zero at
t50. The model crystal subject to loading has typical dimen-

sions from 20320320 up to 33333333, and several differ-
ent aspect ratios of the specimen are examined, too.

Although fragmentation takes place in various situations
in nature, in this study, we focus on the following types of
impulsive loadings:

Case I: Impact at a side of a cubic crystal. To gain the
amount of momentum transfer into the crystal, a few layers
of atoms from the surface are also subjected to the impact. In
this case, the atoms near the surface sites have a load pushing
the crystal in a primary axis, say thez axis, during a short
period. Starting the process att50, the applied force is a
linear function of time with a cutofftc as

Fext~surface!5 H f 0t, t,tc
0, t.tc ,

wheref 054 andtc55 in typical runs of simulations. By this
method, the energy injected to the crystal cannot be specified
explicitly.

Case II: Repetitive bouncing on a plane. This is a very
simplified modeling such that a material falls by gravita-
tional force onto an elastic wall. The specimen is accelerated
by a constant forceFext52g in the z direction. . Atoms
crossing down to threshold height, e.g., ground levelzc , the
atoms feel harmonic repulsive force represented by

Fext~surface!5 H kwall~zc2z!2g, z,zc ,
2g, z.zc ,

and they are pushed back. Typical values of parameters are
kwall510, g50.04. Fragments bounce on the ground repeat-
edly, and for finiteg, the motion will eventually stop. The
equation of motion is solved with a second-order Runge-
Kutta scheme. The typical time differenceDt is 0.001.

IV. FRAGMENTATION PROCESS

For strong enough impulsive loading, a model brittle crys-
tal entirely breaks into fragments as shown in Fig. 2. In order
to examine the distribution and propagation of spallation ac-
tivity, we make a plot of the position of the crack nucleation
site as a function of time as shown in Fig. 3. As seen in the
figure, a localized nucleation zone propagates with a constant
velocity nearly equal to the sound velocityv l in longitudinal
mode. In our model, despite no initial flaw being introduced,
the ‘‘microcrack’’ is produced spontaneously by local strong
deformation of the crystal. It is known that the velocity of
Rayleigh wavevR , which is fairly smaller thanv l , gives the
limit of the propagation speed of a single crack.14 Therefore,
we can expect that, behind the active zone, some of the
nucleated cracks grow and percolate each other in a slower
time scale than the wave propagation. When the density
wave reaches the end of a specimen, a large volume of the
sample exfoliates probably because the amplitude of the
wave is enhanced by reflection on the boundary.

To characterize the stages of the breakage process and its
activity, we make a plot of the number of broken bonds per
unit time as a function of time~Fig. 4!. There are three ap-
parent regimes in the breakage:~i! first peak which corre-
sponds to the initial impulse load,~ii ! the intermediate stage
when the density wave propagates through the material with
high breaking rate, and~iii ! the final stage with a low break-
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age rate after the wave reaches the other end of the specimen.
Between~ii ! and ~iii !, a large peak is seen corresponding to
the first arrival of the wave at the other side of the specimen.

Breakage mostly takes place in stage~i! and ~ii !, and the
rate decays slowly with time in~iii !. From the visualization
of computer simulations, it is seen that formation of the
crack is almost completed during stage~ii ! and in stage~iii !
larger fragments scatter into space. In Fig. 4~b!, the rate is
shown in logarithmic scale as a function of time. In the plot,
the origin of time is taken to be at the second large peak of
the breakage rate@t1 in Fig. 4~a!#. The decay is approxi-
mately characterized by a power-law decaynb;t2a with
a51.5;2. The slow dynamics is considered as a relaxation
process in which segments produced in stage~i! and ~ii !
come apart by cutting bridging bonds over the segments. The
relation between fragment structure and the dynamics in
stage~iii ! is our future problem.

V. FRAGMENT MASS DISTRIBUTION

Cumulative mass distribution has been often used for
characterization of fragmentation experiments. Letn(m) be
the distribution function of fragments of massm, the cumu-
lative distribution function is defined as

N~m!5E
m

`

n~m8!dm8. ~5!

In data processing, we first sort resultant fragments by mass
~i.e., number of atoms! in descending order and make a his-
togram as usually done in experiments.

When the initial deformation is symmetric, the resulting
cumulated mass distribution has some steps in it due to sev-
eral same-size fragments. In order to obtain better statistics
within a limited system size, we have tested several kinds of
conditions. From the observation of numerical results, asym-
metry of specimen and initial randomness lead to some im-
provement of statistics. However, the tendency of the mass
distribution function seems to be robust against such effects.

FIG. 2. Three-dimensional view of a fragmentation process. The
crystal consists of 32332332 atoms. The left side of the cube is
subject to initial impact.~a! t510, ~b! t520, ~c! t540.

FIG. 3. Position of crack nucleation along with the direction of
shock propagation (z) as a function of time.

14 830 53YOSHINORI HAYAKAWA



In Fig. 5, a typical cumulative mass distribution is shown
for several different time steps. As fragmentation proceeds,
the form of distribution changes. After a long enough time,
typically ten times longer than the time required for wave
propagation through specimens, the breakage almost finishes
and the distribution becomes frozen. In the final stage, there
are two typical regions in the distribution function: one is the
power-law region which is described as

N~m!;m2b, ~6!

for large fragment mass, and the other is a small mass region
showing apparently a larger decay rate. The crossover be-
tween those two regions is seen atm.10. For large size
fragments the least-squares fitting of the data givesb50.64
60.02, which is in agreement with three-dimensional experi-
mental results.8 From several independent simulations for
different initial conditions and material specific parameters,
we found that the value ofb is very robust and distributed
around 2/3.

In order to examine what the crossover in mass distribu-
tion implies, we measure the mass-size relation at a late stage
of fragmentation~Fig. 6!. Here we estimate the typical size
of fragments with the radius of gyrationr g . For large scale,
fragments can be regarded as three-dimensional solid objects
rather than complex substances like fractals,15 because points
in the plot approximately lie on a curve represented by
r g;m1/3. On the other hand, for smaller size,10, geometry
of fragments change from a three-dimensional to a stringy
form as a chain molecule. That is, the crossover is seen cor-
responding to the change of dimensionality of fragments, and
it will disappear as the system size becomes larger.

Contrary to the fragmentation with single pulse loading,
repeated impact~Case II! causes another mass distribution.
When the number of bouncing is small, the distribution func-

FIG. 4. Number of broken bonds per unit time as a function of
time. ~a! A linear scale plot,~b! a log-log plot in relaxation regime.

FIG. 5. Typical cumulative mass distribution of fragments pro-
duced by one-time impulsive load. The crystal is 23333341 in
dimension.

FIG. 6. Mass-size relation of resultant fragments obtained by the
same simulation as Fig. 5.
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tion seems to approach a power-law form. However, as
bouncing proceeds, the tail of the distribution falls gradually,
and finally no power-law region is seen for large size frag-
ments as shown in Fig. 7. The solid line in Fig. 7 represents
an integrated log normal distribution function

Nln~m!5AE
m

` exp~2@ ln~m8/m̄!#2/2s2!

~2ps2!1/2m8
dm8 ~7!

with the parameters~A,m̄,s! to fit the data. The numerical
results at the late stage can be well fit with a log normal
distribution. This indicates that the fragmentation by repeti-
tive loadings can be regarded as a stochastic multiplicative
process.2,16 Furthermore, it is expected that secondary colli-
sion between fragments or collision with external boundaries
may change the mass distribution from a power law to
rounded form in log-log plots.

VI. DISCUSSION

Let us derive phenomenologically the expression ofb by
the scaling argument based on the numerical observation. In
numerical evidence, the nucleation of a crack occurs mostly
on the planer front moving at a constant velocity, and the
partitioning of the material is almost completed in the region
where the wave passed, except some bridges between seg-
ments. Since the system obeys a wave-type equation, the
distanceL between wave front and impact point~or plane! is
the only macroscopic characteristic length if the size of the
specimen is large enough. In fact, other microscopic details
of the material, such as the lattice structure of length scale
a1, is thought to be irrelevant for large scale fragmentation
processes in our model. Furthermore, impulsive external
loads do not yield a characteristic wavelength inside the
specimen except a microscopic cutoff wavelength.

Taking these into account, we assume the following two-
exponent scaling form15 of the mass distribution function:

n~m,L !;m2b f ~L/mg!, ~8!

where f (x) is a function which givesf (x)50 for largex.
From the definition of the cumulative distribution function,
b5b21. If resulting fragments have a simple shape with
size-mass relationl;m1/d, which is suggested by the mass-
size relation shown in Fig. 6, we expectg51/d in the scaling
function, whered is the dimension of space.

Usingn(m,L), total massM (L) within ‘‘thickness’’ of L
can be represented by

M ~L !5E
0

`

mn~m,L !dm. ~9!

This can be simply reduced toM (L)5CLd(22b) whereC is
a constant independent ofL.

FIG. 7. Typical cumulative mass distribution for repetitive loads
by bouncing on an elastic wall. The size of the crystal is 32332
332.

FIG. 8. Cumulative mass distribution for some different condi-
tions: ~a! Two-dimensional fragmentation by impulsive load from
one side of the square crystal~2003200!, ~b! three-dimensional
fragmentation initiated by sudden expansion of the cylindrical re-
gion at the center of the cubic crystal~33333333!.
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On the other hand,M (L);L has to be held for planer
wave propagation so as to conserve total mass, one can
therefore obtain

b522g5221/d. ~10!

This simple expression forb gives good agreement with ex-
perimental results of three-dimensional impact fragmentation
as well as our numerical results. As long as the finite-size
scaling of Eq.~8! is held, the value ofb should be indepen-
dent of other details of the material.

By a similar discussion, in three-dimensional geometry,
we expect that a cylindrical wave front leads to mass distri-
bution withb54/3, becauseM (L);L2. For spherical wave
cases, that is, for pointlike initial deformation,b51 for any
dimension of space. In experiments using many kinds of ma-
terials, e.g., rocks, it is known thatb may take different
values depending on experimental conditions such as ob-
stacle size. We expect that dimensionality of the specimen
and the shape of the wave front will cause the scatter or
crossover17 of b in real systems.

In order to test Eq.~10! for other geometry and dimension
of space, we carried out further numerical simulations in the
following cases:~i! a two-dimensional square lattice subject
to homogeneous impact from one side~i.e., a planer wave
front in two dimensions!, and~ii ! a three-dimensional cubic
lattice to which sudden radial dilation along a central axis is
applied~i.e., a cylindrical wave front in three dimensions!. In
Fig. 8, the resulting data of mass distribution are shown. For
two-dimensional cases,b is evidently smaller than that for
three-dimensional cases, andb5b21.1/2 for large frag-
ments@Fig. 8~a!#. For a cylindrical wave front in three di-
mensions,b.1/3 gives better representation to the numerical
result in a certain range of fragment size@Fig. 8~b!#. We
therefore conclude that both data agree with our derivation,
while quantitative and systematic analysis has to be made in
a future study. These results suggest that one might obtain
the information about the dynamical process inside the ma-
terial from the value of the exponent obtained by experi-
ments.

VII. CONCLUSION

We present a simple deterministic model of fragmentation
of brittle material, in which healing of cracks and secondary
collisions of produced fragments are not taken into account.
By the three-dimensional computer simulations, direct obser-
vation of fragmentation processes is made. In the initial stage
of the process, failure takes places mostly near the wave
front of deformation and a complex structure of crack forms.
After the wave reaches the other end of the specimen, larger
fragments start scattering into space with breaking bridge
bonds between pieces, accordingly the total rate of microfail-
ure decays in a power-law form. The cumulative mass dis-
tribution function has a crossover between small and large
fragment sizes due to the changes of shapes. For the large
scale, a power-law distribution with exponent nearly 2/3,
which agrees well with experiments, is obtained, even
though the size of the sample specimen is very limited.
Those numerical results imply that the power-law mass dis-
tribution found in impact fragmentation is originated not
from inhomogeneity of materials but from a dynamical pro-
cess of crack formation during density wave propagation.

From a scaling argument based on numerical observa-
tions, we obtained the expression of the exponentb~5b11!
of the mass distribution function asb5221/d. When the
initial deformation propagates on a cylindrical surface, we
expectb53/4. Our computer simulations give consistent re-
sults with these expressions.
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