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Equilibrium phase transitions in a porous medium
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Static critical phenomena of a three-dimensional Ising model confined in a porous medium made by spinodal
decomposition have been studied using large-scale Monte Carlo simulations. We thus examine the influence of
the geometry of VWcor-like materials on phase transitions. No surface interagbi@isrence of the \Wcor-like
material for one phase above the ojhane taken into account. We find that the critical temperature depends on
the average pore si4e asT.(D)=T(«)—c/D. The critical exponents are independent of pore size: we find
r=0.8+0.1, y=1.4+0.1, B=0.65+0.13. No divergence is observed for the specific heat, indicatisg@.

All data for all pore sizes can be collapsed well with the scaling function for the magnetic susceptibility
xL™""=X(tL¥™), wheret=T/T,(D)—1. These critical phenomena are consistent with those computed for
the randomly site-diluted Ising model. Experimental realizations of our numerical experiments are discussed.

[. INTRODUCTION on aerogels, which are made by poorly understood aggrega-
tion processes. Using a recently developed algofithwe

Fluids confined to porous media are of basic experimenta®re able to efficiently simulate spinodal decomposition, and

and theoretical interest. Recent reports on the critical point o$0 t0 construct porous media that should have a geometry
the liquid-vapor coexistence lines dHe (Ref. 1 and N, VeTY similar to that of Wcor glass. This first step is described

: ; in Sec. Il.
(Ref. 2 in aerogel, as well as on the phase separation of’
liquid mixtures ?n Wcor 8 and of 3He-4rl)-|e mixtu‘:eé in Once we have our model Wcor, we can study phase tran-

sitions in a mixture introduced into its pores. Because the

aerogel, suggests that the critical behavior of these Syswnﬁﬁuid phase transitions that are the subject of our interest in

may be profour_1d|y modnﬁe;d. Some experiments suggest thqhis work are in the same universality class as the Ising fer-
while the coexistence regions are narrowed OVer a rangeé Qhmagnet, the natural model for a liquid mixture put into the
temperatures below, the universality class of the transi- \ycor pores is the Ising model. The extraction of equilibrium
tions remains the same as in the bulk homogeneous systemioperties from the resulting “Ising model on a porous lat-
There is also some experimental evidencé for different  tice” is an arduous computational task. Therefore a parallel
critical exponents for phase-separation and liquid-vapor tranyonte Carlo(MC) cluster algorithm developed for the simu-
sitions in Vycor, aerogel, and other porous media. Questiongtion of Ising systems on parallel computetspgether with
of exponents are thus far from settled. the Wolff'® cluster algorithm have been used, oK&R-1
Various theoretical directions have recently been taken iparallel supercomputer. This is described in Sec. V.
order to try to understand phase transitions in porous media. In Sec. VI our results are discussed. We find that our Ising
When the pore surfaces couple differently to the two compomodel in model Wecor has a critical phase transition at a
nents of a phase-separating mixture, it has been argued th@mperature shifted down from that of the pure Ising model
one might expect random-field Ising critical phenom@ha. by an amount<1/D, whereD is the pore diameter. Over a
the case where @He-*He mixture is confined to the interior range of pore sizes we find the same critical exponents; in
of an aerogel, recent theories and calculafidfisndicate  fact, magnetic susceptibility data for all pore sizes may be
that theX point (the low-temperature terminus of the second-described by one scaling function. The exponents are consis-
order superfluid transition lineis moved to zero tempera- (€Nt with those of the randomly diluted Ising mod@lso

ture, causing phase separation to occur inside the superflu ."F"d the random lIsing modgl, or th.e. random—temperature
phase. Mounting theoretical evidence indicates that>"9 mode]. We argue that this identification is reasonable

symmetry-breaking phase transitions may be changed from ¢ _the broken bonds_at pore ;urfa}(mentially the per-
fi?/st to )éecond grger by the presenc)(/a of aerggel-lik urbation to the pure Ising Hamiltoniamave uncorrelated

media® ! statistics at long distances, and do not break spin-reversal

In this work, we find that the exclusion of a two- symmetry.
component liquid from the glassy region of a porous medium \, ‘y1ope| ING VYCOR WITH PHASE SEPARATION IN
can modify its static critical exponents. We do not include AN ISING MODEL
symmetry-breaking interactions between the porous medium
and the mixture inside it. We have chosen to focus on Wcor- \Wcor is made by mixing two types of glass, letting them
like media made via spinodal decompositiéri?rather than  phase separate for a short time, halting the phase separation
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by cooling, and finally etching away one of the two types of During spinodal decomposition, the structure facsk)
glass'? The simplest models for this phase-separation proef the spins converges towards a shape independent of the
cess are dynamical Ising models with locally conservedength of the annealing time and temperature. The main fea-
magnetizatiort? In this section we describe the simulation of ture of S(k) is a peak at somk*. At low k, S(k) increases

the production of Wcor, using phase separation in a threeas a power law which is theoretically predicted tok&Ref.

dimensional Ising model. 17) (although recent work suggests that this exponent might
be smallet’); at largek, S(k) decreases ds *, a behavior
A. Method known as Porod’s la#? The sharpness of the peak tells us

. 4 . . . that the pores in a porous medium have a well-defined typi-
In earlier work* we studied properties of domain growth cal sizeD~1/k*. This D grows in time during the phase-

via spinodal decomposition in the three-dimensio(@D) separation process &-~t3, in agreement with theoretical

Ising model. The Hamﬂtoman of the Ising rrjodel that is usedarguments of Lifshitz, Slyozov, and Wagrér.
to generate the porous medium configuration is

To be more definite, we take the pore size

"'PM/kBT:_JF'M<Z> ooy, ) D=mn/(k), 3
i

where(i,j) denotes a pair of neighboring sites, a4, is where(k) is the first moment of(k):

the dimensionless coupling. The spimsare located at po- JekS(k)dk
sitionsr; on a simple-cubic lattice with periodic boundary (k)= TS 0dK (4)
conditions and edge length Each spin can take the values JoS(k)

+1, representing the two types of glass. For this work, allrhis definition of the pore size is often used to measure the
coarsening took place dt=1.67;, whereJ.~0.22 is the  gomain size during spinodal decomposition simulatiths.
critical cquplmg of the pure Ismg_model on a cubic lattice. jigyal inspection of our Vcor configurations shows tbais
In a simulation of the production process of Wcor, oneg good measure of the typical pore size of these systems. The
starts with a three-dimensional lattice on which a spin isiqree structures in Fig. 1 have average pore sizes of
located at each site, randomly pointing upwards or downD:1_6, 2.2, and 7.9.
wards, modeling the mixture of the two types of glass. Next, Figure 2 shows a plot of the pore siBeas a function of
this Ising model configuration is simulated over a finite timegrowth time, together with the"> asymptote. We label the
at a temperaturépy=1.67;, using spin-exchange MC ki- nsints that correspond to configurations used in this work.
netics, which causes theé and — spins to separate into The pore sizes of those configurations are given in the sec-
domains. We have used an algorithm that was developeghg column of Table I, and we present the scaled structure
specifically for this purpose and is described elsewl’ﬁere. factors of the spin density of those porous medium configu-
After some time, this phase-separation process is haltedgtions in Fig. 3. The configurations with small pore sizes are
and the upwards-pointing spins are removed, to model thgij|| far from the regime where the structure function col-
guenching of the domain structure followed by the etchmg|apses, but for this work that is not essential.
away of one type of glass. The downward-pointing spins ' The fact thatS(k) approaches zero according to a power
constitute our model of the remaining Vcor glass. Finally,jay for smallk indicates that the mass density is correlated
small cavities that are inaccessible from the outside are filleg,gr long ranges. It is not the spin density, however, that is
since the binary mixture to be studied in the Vycor will be st relevant to our study of mixtures confined in a porous
introduced from the outside and will be unable to get to Suchnedium, but rather the density of the surface area of the
isolated holes. For the configurations we studied, the V0|Um$ores and the range of pore correlations. This is simply be-
fraction of these removed cavities is tiny: in the runs de--guse the “broken bonds” in the Ising model to be put into
scribed below, such cavities comprise less than 0.2% of thgye voids of our model WWcor are on the pore surfaces.
total volume. We have computed the pore surface areal density and its
structure factor, averaged over seven realizations at each
B. Properties of model Vycor pore size. The results are shown in Fig. 4, which shows that
The “void” and “glass” regions resulting from the pro- in each case, in contrast with the structure factor of the po-

cess described above are statistically identical because of ufRUS medium density, the areal structure factor approaches a

down symmetry during the growth process. The porous meconstant for small wave vectors. This is to be expected since
dium consists of one large “glass” region permeated by onethe spm-exchangg dynamics certaln_ly do not conserve total
large pore. In Fig. 1 we show three typical examples ofinterface area during phase separation. So, even though the

model structures of porous media that we obtained in thi®0ré volume distribution is correlated at long ranges, the
way for systems of 64lattice sites. pore surface distribution is not. The consequences of this for

Of importance in our characterization of the porous me-he critical phenomena will be discussed in the next section.

dia, insofar as the properties and critical behavior of a liquid

confined to such a medium are concerned, is what we refer tdll. MODELING THE BINARY MIXTURE INSIDE VYCOR
as the medium’s pore size. This may be extracted from the
structure factoiS(k) of our porous media:

; eik~rj0_]_

We want to examine the static critical phenomena of a

binary liquid inside the pores defined by the phase-separation

2 process described in the previous section. The Ising model
2 describes both liquid-vapor criticality, and critical demixing

S(k)=
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(b)

FIG. 1. Three typical examples of the model porous medium structures to which we confined the Ising model. The samples are quenched
att=0 from a high temperature ©=0.6T., and coarse grained for= 10 (a), t=100 (b), andt=10 000 time step&c). The pore sizes for
these samples al@=1.41,D=2.24, andD=7.92, resp.

of binary liquids. So, the Ising model inside our model pores In this paper we have not studied interactions between the
is a reasonable starting point for describing the critical bemmixture and the pore surfaces; understandbjgs already a
havior of either of those systems confined inside Wcor.  challenging problem. In most experiments we expect the
In the porous medium configurations generated previpore surfaces to have different contact energies with each
ously, we defined a “glass” region from which the liquid is component, which in our model would break the spin-
supposed to be excluded. The remaining empty “pore” rereversal symmetry of5). The simplest such interactions
gion provides the lattice upon which the spin variables of awvould be surface “fields” that would favor one spin over the
second Ising system are defined. The equilibrium propertiesther at the pore surfaces. The absence of such interactions
of this Ising system are defined by the Hamiltonian in (5) prevents us from making a direct comparison with
existing experiments. However, as discussed near the end of
this work, experimental realization ¢5) may be possible.
HikeT=—32, i}, (5)
(.0 IV. NATURE OF DEMIXING PHASE TRANSITION

. . . . . IN A POROUS MEDIUM
where the summation runs over all pairs of neighboring sites

in the “pore” region. We will use the dimensionless coupling Do we expect that an Ising system confined to a porous
J and the dimensionless temperatdre 1/] to describe our medium generated as described in the previous section still
results. experiences a phase transition? A related Ising system whose
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FIG. 2. Pore sizeD on a logarithmic scale as a function of 0.01 L] " S
log;o(t) wheret is the growth time. The configurations that we used 0.01 0.1 1 10
as the confining geometry in our simulation of the equilibrium prop- k/<k>

erties of the confined Ising system are labeled-(f). The dashed

line is a curve with slope 1/3, and is added to show the asymptotic FIG. 3. Scaled density structure factdn*S(k) as a function of

growth law of D=(t/ty)Y® according to the Lifshitz-Slyozov-
Wagner theory.

critical behavior may be pertinent to our model is the ran-

the scaled wave numb&f(k) of samples with 12Bsites, obtained
by halting the phase-separation process after tiaedf).

We are interested in whether our porous Ising model has

domly site-diluted Ising model. In the dilute Ising model the same critical phenomena as the dilute Ising model. Our
only some randomly chosen fractipnof the lattice sites are porous medium is identical to a regular lattice in which those
occupied by spins: the remaining sites are empty. Below §onds are omitted that connect sites in the glass region to
critical occupancy fraction this model does not experience aites in the pores, in which case the influence of the glass

phase transitionp,~0.27 to 0.31%° If no spinodal decom-
position is carried out, our model corresponds to the dilute
Ising model with an occupancy fraction of 50%, well above
p.. and it will have a phase transition. For larger pore sizes
(increasing periods of spinodal decomposititime connec-
tivity of the spin-spin interactions is increased and thus we
expect the phase transition to persist.

Given a sharp critical phase transition, the question of its
universality class arises. The Harris critefibrells us that
the introduction of nonmagnetic weak quenched randomness
(including constrained randomné3sinto a system is ex-
pected to change the universality class when the specific-heat
exponentx satisfiesa>0. Sincea>0 for the homogeneous
Ising model in three dimensions, this indicates that the uni-
versality classes of the dilute Ising model and our model may
each be different from that of the homogeneous Ising model.

TABLE |. Properties of porous media samples, obtained by halt-
ing the phase separation process at tirf@s(f). Second column:
pore sizeD of these samples. Third column: critical temperature of
the porous Ising model of the samples.

Porous medium

S(k)

15

T T T T T T T T T

S(k) for Areal Density

.......

e,

configuration D T.(D)
a 141 2.05912)
b 1.60 2.35812)
c 2.24 2.84512)
d 2.93 3.17512)
e 4.03 3.55212)
f 7.92 4.065(12)

FIG. 4. Structure factoB(k) for the surface density inside the

porous medium, as a function of wave numkefor configurations

(b), (c), and (e), obtained from configurations with 12&ites. To
obtain these functions accurately, we averaged the structure factor
over seven distinct configurations for each pore size. In contrast to
the structure factor of the mass density, the structure factor of the
areal density is flat at small wave vectors, indicating that in contrast
to the spin density, the surface density is uncorrelated at long
ranges.
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region on our Ising model is felt through its surface. As theThis site is the first member of the clust@runder construc-
areal density(Fig. 4) of that surface does not show long- tion.

ranged correlations, and as it represents the density of absent (2) Consider all neighboring sites a&f whose spins are
bonds(and therefore the bond energy fluctuatipriswould  aligned with the spin located at si® With probability

not be surprising if our porous Ising model has the same —exp(—2J/k;T) add each such neighbor to the cluster. It-
critical exponents as the dilute Ising model, although thegratively, apply the same procedure to all neighbor sites of
topological structure of the pore region surely plays a role agjieg newly added t6. If at any moment a site is added @

well. . . . . that is located on the border of the sublattice, cease the con-
On the other hand, in contrast to the dilute Ising model in

hich th  the disorder | dom “whi ’ struction ofC and restore the original spins to all sitesGn
n/] '%. t zstr.ucture 0 i e disor erllst r;m oml white nmssa,th (3) If the iteration in step 2 ends and no site located on the
€ disorder In our system IS correlated over long ranges. N, yar of the sublattice is added @ flip the spins located
structure factor of the lattice site density approaches zer

with a power law for smalk. Also, it has been suggested to On all sites inC.

us that topological differences between our correlated pores Steps 1-3 are repeated until on average each site has been

and the random disorder in the dilute Ising model may makéndUde‘j oncein a C'“S‘ef-.
(4) Shift the lattice partition by some random vector, con-

their critical behavior different. A direct way to decide this ‘™ - L .
question is a large-scale computer simulation. sidering the periodic boundary conditions, and then reparti-

In addition to the critical exponents, we are also interestedion the system. _

in the dependence of the critical temperature on the pore This procedure constitutes one PLC step. Subsequent
size. The ratio of the density of bonds in our porous IsingSteps are made by repeating the procedure from step 1. This
model to that of the pure Ising model is given by-&/D,  Procedure asymptotically samples the probability density

wherec is some constant determined by the exact definitior(1/Z)exp(—H/kyT), where the partition functio normal-

of D. Thus, the effective coupling in the confined Ising izes the distribution. The complex system geometry imposed

model may be viewed crudely as-k/D times that of the by the medium thus enters the algorithm only in that there

homogeneous system. Consequently, we might expect thate no Ising lattice sites in the glass region of the porous

the critical temperature is lower by the same factor: medium.
Although the PLC algorithm can be implemented very
Te(D)/Te(0)=1—c/D. (6) efficiently on a parallel computér,because of its local na-

Another way of seeing this is to consider that the averagdure it can take many steps to bring about a system-wide, true
coordination number in our system is diminished by a factoquilibration. The nonlocal Wolff algorithm does not experi-
proportional to +-c/D compared with the homogeneous ence this problem, and overcomes this weakness of the PLC
system. The above dependenceTqfon the average pore algorithm, a slow equilibration over large distances, in only a
size then follows from the linear mean-field dependence ofew steps. Its drawback is however that it cannot be imple-

the critical temperature on the coordination nuner. mented efficiently on a parallel computer. We used a combi-
nation of both the PLC and the Wolff algorithms, and ob-

tained a much more rapid equilibration than we would have
experienced using either alone. The ratio of PLC steps to
Wolff steps that we chose ranged from 1 to 10, depending on
The appearance in our model of an extra length scale, thie system size. We based our choice on the equilibration and
pore sizeD, that must be larger than the lattice spacing andcorrelation times of the energy and magnetization.
small compared to the system sike necessitates system Figure 5 shows a typical plot of the autocorrelation time
sizes substantially larger than those that would be requiretbr 64° and 128 realizations of our systems with the small-
for the simulation of a homogeneous Ising model. We con-est pore size, as a function of reduced coupkndrhe times
sidered porous medium configurations in which the pore sizare given in “passes,” each of which consists of one PLC
ranged from around 1.4 to 8.0 lattice spacings. A range o$tep; sometime&or the 64 system, once every five passes,
system sizes was required to do a finite-size scaling analysifor the 128 system, once every ten passa®ass consists of
As the pore size should be substantially smaller than tha PLC step followed by a Wolff step. Typical runs consisted
system size, our system sizes ranged frare20 to  of 1000 total steps. Our runs started from configurations with
L=128. random spin values assigned to the spin variables, and the
Rather than single-spin Metropolis-type algorithms thatresults were found to agree with test runs which began with
are notoriously slow in random systems, we used a combiall spins up or all spins down. Typical “wall clock” times for
nation of two algorithms based on MC moves that flip manyeach temperature run ranged from several minutes for a 1000
connected spins, calledusters The first and primary algo- PLC/500 Wolff step 32 systems running on eight proces-
rithm is the parallel local clustgPLC) algorithm® whichis  sors, to between 1 dr2 h per temperature for 1000 PLC/100
based on the local-cluster algoritifin the PLC algorithm,  Wolff 128 systems running on 64 processors.
the system is partitioned into some numidés,. of sublat- Both algorithms are less efficient in the ordered phase: the
tices, the responsibility for each of which is assigned to ond’LC algorithm generates clusters that are more likely to
processor. The sequence of steps followed by each procesdouch the sublattice boundaries and thus be rejected; the
is as follows: Wolff algorithm generates clusters that tend to become sys-
(1) Randomly pick a site in the interior of the sublattice tem spanning, resulting in much greater computer time re-
which is not in the “glass” region of the porous medium. quirements.

V. SIMULATING CRITICAL DEMIXING
IN A POROUS MEDIUM
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J FIG. 6. Magnetization as a function dof for three different

o . 32° realizations(upper ploty and three different 64realizations
FI(_S. 5. Autocorrelation timer,,, as a functlon_ of _the reduced (lower ploty of porous media with pore sizé3=1.41 (left plots)
coupling for 64 (squares and 128 (plusses realizations of the  andD =2.24(right plots. Some variation i is evident for small

porous medium system with the smallest pore size. pore sizes and small system sizes.
VI. CRITICAL TEMPERATURE AND EXPONENTS and
A. Simulations and statistical methods
. . . . 26— /E2 2
We generated porous medium configurations of sizes TC=(E9)—(E)~. (10

20°, 32, 64°, 96°, and 128. For each system size we gen-

erated six different realizations of the porous medium, within all these expressions we use dimensionless temperature
average pore size ranging from approximat@ly=1.4 to  T=1/J. Statistical errors in the magnetic susceptibility and
D=8 lattice constants, shown as the labeled pdiaits(f) in ~ specific heat were estimated using the “bootstrap”
Fig. 2. As each realization is obtained by halting the growth’fE!ChniCIUG‘Z-6

process after some specified amount of time has elapsed and In random lattice systems such as the random-field Ising
not when the configuration has a specifizdthere is a small model a considerable variation exists between the properties
(1-3 99 variation inD between the different system sizes. we study for different realizations of randomness. For this
For the smaller systems, the determinatiorDointroduces reason, we investigated the variationgn M, y, andC for
statistical fluctuations that do not show any trend with sysdifferent realizations of the porous medium with the same
tem size. Therefore, rather than determiniglirectly from ~ pore size. Figure @) showsM for three different 32 porous
each configuration, we determiie from a 128 configura- medium configurations, for the smallest pore size class that
tion that has run over exactly the same time interval. we studied,(a). A small variation in the apparef; is evi-

For an Ising model confined to the pores of these configudent. Figure ), showingM for two distinct 64 realiza-
rations, we computed the average energy and the averagjons of the same pore size class, reveals that the differences
magnitude of the magnetizatigmhich corresponds to one from one realization to another are greatly diminished with
half the binodal of the liquid systemas functions of tem- increasing system size. Figuregpand &d) show the same
perature, as well as the specific heat and magnetic susceptpr a larger pore size clags), indicating that the variations
bility obtained from the fluctuations in the former. The en-in M from one realization to the next are very small even for
ergy is the 32 system. The variation for larger pore sizes than these

is imperceptible from sample to sample.

E——J 2 7 The critical temperature and the exponegptand v may
- & 71 () be extracted from the magnetic susceptibility using finite-
size scaling. Near the critical temperature the Widom scaling
and the magnetization is hypothesié’ tells us that the magnetic susceptibility of our
system scales with system size as
M= < > o > ) )
i x~L7 7y (tLY), 1Y
where() indicates a thermal average. The magnetic suscep- . _ _ _
tibility x and specific heat are wheret=T/T.—1 andy is a universal scaling function. Al-

though neither the exponents n®g is known initially, the
Tx=(M?)—(|M|)? (9)  scaling relation can be used to determine these parameters by
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plotting yL”'” as a function ofL”, and varying the param- S T
etersy/v, t, and 1¢ until the multiple curves “collapse” T (D)= 4.512 — 3 6/D
onto one another. ¢ ’
From our value forv we can determine the specific-heat
exponenta indirectly, assuming the hyperscaling relation

=

dv=2—oa. (12

The scaling relation

T.(D)

a+2B+y=2 (13

allows for an indirect determination of the order-parameter 2
exponentg.

Because of large statistical fluctuations in our specific-
heat results, it was not possible to directly extract a numeri- =
cal value fore. To obtain an independent determination of o

3

the order-parameter exponefitusing our data for the mag-
netization, we followed the procedure of Binéfedescribed

by Hennecké?® Exactly at the critical temperature we expect 0
the magnetizatiol (T,.) of our systems to scale with system 0 2 ¢4 6 8 10
size according to Pore Size D

i 4 1 | | | | | | Y I I | | L1 1) | | |

1 —Blv FIG. 7. Critical temperature as a function of typical pore radius,
M(Te)~L 7, (14 : g . LonOTOR
obtained by finite-size scaling. The line is given By (D)

where the prefactor is independent lof though it might =T ()—¢/D, in which T () =4.512 andc=3.6.
depend on the pore size. For systems of two slzegnd
Lo, we define hyperscaling relatiori12) we find a= —0.4+0.3. Although

it was not possible to extract a numerical value fofrom
M Ll(T) finite-size scaling of the specific heat, we could conclude that
MLZ(T) a is negative, in agreement with the indirectly determined

value fora. This is what is expected in light of the Harris
The utility of this definition follows from & (Tc)  criterion. An indirect determination ¢8 with scaling relation
= —B/v. When sets of curvesLlyLz(T) are plotted, for dif- (13) gives 3=0.5+0.1.
ferent choices oL, and L, for all the curves, the curves  Figure 8 shows that the same exponents bring about a
should all intersect in one point wher@=T, and collapse of the susceptibility data for all pore siz@sthis

§L,,(M==pBlv.

(19

&L,,(T=log /1,

I||I|IIII|IIII|I||| llllIlIlIl.I|I||IIII Illllllllllllllll

B. Numerical results for the critical temperature
and exponents
0.1

0
a®n
.

First we used finite-size scaling of the magnetic suscepti-
bility according to Eq(11). While plausible collapses can be
achieved for fairly wide range of values for the exponents, 0.01
the procedure is very sensitive to changes in the critical tem-
perature and thu§.(D) may be accurately determined. Our
results forT (D) are tabulated in Table |, and plotted in Fig.
7, along with Eq(6) for c=3.6[T.()~4.512 is the known
critical temperature of the pure Ising moflélhis line fits all
the measurements to within better than 3%. Because the av- 01L-.* %
erage site coordination number in our system is proportional ' F v
to 1—constD, the linear dependence &f on this quantity -
is consistent with the simple mean-field theory 0.01 = Ll
result mentioned in Sec. IV. The curvé.(D)=T.(x)
—cD ) fits the data more poorly for<1, but cannot be 0-50 5 (,}O (D)/T-1) 1%
ruled out completely. ¢

Fl_gure 8 shows our collapse data for all six pore sizes FIG. 8. Collapse of all our data points for the magnetic suscep-
studied fory/v=1.7 and 14=1.2. We explored the ranges ity by plotting yL ~*'" as a function of T(D)/T— 1]LY", with
of y/v and 14 that give a collapse of similar quality, result- ,/,—17 and 1/=1.2, and the critical temperaturé.(D) as
ing in y=1.4+0.1 andv=0.8=0.1. There are correlations given in Table I. Note that [T.(D)/T—1]=(1-T/T.)
between the uncertainties in the two exponents, and a goodo[(1-T/T,)?]. System sizes are 3Zcrossey 64° (squarej
collapse is not necessarily obtained for any choice of the paige® (plussey and 128 sites(burst3. The labels in the figures de-
v andv lying within the range. With this value far and the  note the pore sizesee Table)l
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FIG. 9. Data of Fig. 8, combined in a single plot to show the FIG. 10. The functionés; ¢{T) and &s412T), defined in the
common scaling function for all pore sizes. text, as a function of /- 1/T (D) for all of our pore size data. The
curves have a common intersection point corresponding to
indicates that systems with all pore sizes are in the samg/»=0.79=0.06.
universality class. Could the universal scaling function itself
be the same for all pore sizes? If so, a more general form afeported by Ferrenberg and Land®ut is clear that the po-

the scaling relatior{11) might hold nearT.(D): rous and pure Ising models have different exponents, and
therefore are in different universality classes.
Tx(T)~LY%(tLY?), (16 Our exponents are similar to those found in simulations of

] ] ) the dilute Ising model. Overall, there is a disparity in the
where nowt=T/T(D) —1 takes into consideration the pore exponents reported for that model between results obtained

size dependence of the critical temperature, and the scalingsing field-theoretic techniqu¥s? and between those of
form is otherwise independent of. Figure 9 shows such a simylation and experimerit->>2°Field-theoretic value=3!

collapse. The data of Fig. 8 have been combined into a singlgy, the exponenty are larger than that for the pure Ising
plot, showing that neaf (D), the curves all appear to col- pge| (ysui= 1.239+0.001), ranging from 1.321 to 1.335.
lapse onto one common curve, so that with the exception o§jmylation results and experimental values suggest an expo-
the dependence df. on pore size, the critical behavior of all nent that is even larger, with reported values varying from
these systems is the same. This again indicates that there 43 g 1.533 Some authors have reported a dependence of
one universality class, independent of pore size. The absenceop, the dilution fraction that saturates for strong dilution to
of additional prefactors of the scaling function that dependj 536 | this work, in our system we fing=1.4=0.1.

on the pore size is unexpected. _ The field-theoretic values for the exponefitare again
The exponenB can be obtained directly from a collapse gjightly larger than those reported for the pure system

of the magnetization curves, as outllne(_i in the previous seq-g_ . —0.326+0.004), typically around 0.34%3! Simula-

tion. We discovered that the prefactor in H@4), like that o results are again substantially higher, with Hennétke

for the susceptibility, is apparently independent of the porgeporting a value obtained by Monte Carlo simulation of

sizeD, so that when the sets of curvgss | [T—Tc(D)]are  .42+0.04 for a dilution fraction of 40%. The indirect and

plotted together for differenD, the resulting curves have a direct determinations of for our system arg8=0.5+0.1

common intersection point. The results are shown plotted imnd g=0.65+0.13, respectively. The exponenis from

Fig. 10 for (L,,L,) =(32,64) and (64,128). For both system field-theoretic treatments of the dilute Ising model are close

sizesL; and L, the simulation must be carried out at the to 0.68, again larger than the pure Ising value of

same temperatures in order tbto be computed; therefore it

was not possible for us to use all of our simulation data for ) _

these curves. From the common intersection point of these 'ABLE Il. Exponents extracted from our simulations, together

curves, we obtain a valug/v=0.79+0.06. Using our de- with those reported for the pure 3D Ising system.

termination ofy, we obtain8=0.65+0.13. Considering the

uncertainties in this value fg8 and in our previous derived Exponent This work Bulk Ising
value, the two are in agreement. v 0.81+0.1 0.627-0.002

All the exponents discussed in this section are summay 1.4+0.1 1.239-0.003
rized in the first column of Table II. In the second column of g 0.65+0.13 0.326-0.004

this table, we give the exponents for the pure Ising model, as
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0.627+0.002, though substantially below the value of 300
0.78+0.01 (Ref. 29 reported from simulation. In our model
we find v=0.81*+0.1. 5 Al L
We are not aware of any determinations of the exponent :
a for the dilute Ising model by simulation, though field- 4
theoretic calculations of- 0.013(Ref. 32 and — 0.034(Ref. N
31) have been reported, which is consistent with the obser- 200 —
vation in our system thatr is negative. On the basis of L
comparison the sets of critical exponents for the porous Ising
model and the dilute Ising model, we propose that they are in ¢, 2
the same universality classes. -
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VIl. EFFECT OF VARIATIONS IN PORE STRUCTURES 100 — ]

We also calculated the magnetization and magnetic sus- | %E |
ceptibility of configurations with fundamentally different _ﬁ

pore structures. We first wanted to understand what would S i

happen if there were some large voids inside a porous me- i 4 +

dium in addition to the more regular pore pattern, a situation 0 IR & L | T

that might arise experimentally. This was investigated by 0.1 0.2 0.3 0.4

taking a 64 \Wcor-like sample for which the coarsening pro- J

cess was halted at tine) so that it had a typical pore radius 30000

D,=2.24. Then a 32hole was cut, leaving one large pore

with size D,~32, surrounded by smaller pores. 5 prer [T
The resulting magnetic susceptibility, plotted in Fig. .

11(a), shows two distinct peaks, one located close to the 4 ] { ]

critical temperature of the pure Ising model, and the other B
located close to the critical temperature of the WWecor-like 20000 |—
sample before the hole was cut into it. The corresponding L Oy,
binodal is included in an inset in Fig. @& and shows a Fo °
small protrusion on top of the original binodal for the porous t\f 2 wolindilig
sample. The appearance of a second peak in the magnetic i -1 M 1
susceptibility located around the critical temperature of the

pure Ising model is not surprising, since as long as the cor- 10000 [— —]
relation length is smaller than @5, the radius of the big - I .
pore, the spins located in the interior of the big pore will L ]
behave identically to ones in the homogeneous Ising model.
It is thus not surprising, that if in experiments critical expo-

nents would be obtained from measurements in this region of i . | |t f—t:,.fa i
the protrusion, they would be in the universality class of the 0 T —
pure Ising model. 0.0 0.1 0.2 0.3 0.4

We further increased the system size by duplicating the J
system in each direction to obtain a $28/stem with eight

!arg(_a 32 holes. The b_modal for this larger system IS Shownfined to a porous medium in which a big hole is excavated. The
in Fig. 11(b). As the flrs_t peak(located at the critical tem- porous medium is generated by coarsening & §ystem over
p(.arat.ure of .the pure Ismg _modejloes not become sharper t=1000 time steps, corresponding to configuratié)s with typi-
with increasing system sizgn contrast to the second larger .5y hore sizeD =2.24, in which one big pore is excavated of size
peak at larged), we conclude that this peak does not corre-323 " The inset shows the binoddBottom) The magnetic suscepti-
spond to a phase transition. This indicates that until the trugjjity is plotted for the same system, but duplicated in each direc-
phase transition at~0.38 the large pores cannot communi- tion, resulting in a 128system with eight pores of 3zites. Again,
cate and fluctuate independently. the inset shows the binodal.

If two distinct peaks in the magnetic susceptibility arise
when two distinct pore radii are present in the system, mightvith a porosity around 75%. This system has only one peak
it be that what we assumed to be one peak in the magnetia its magnetic susceptibility; this peak occurs at a tempera-
susceptibility in our porous media actually is the sum of ature different from therT,, for the two media that were com-
spectrum of peaks, corresponding to a spectrum of pore rained. This is a strong indication that a spread in pore sizes,
dii? We generated a second type of structure with two disinevitably present in our configurations, does not cause a
tinct pore sizes by combining two model media with pore“blurred” combination of phase transitions, but that the Ising
sizesD,; andD,. We did this by performing a logical OR model confined to a porous medium has one clear phase
operation on the pore regions to obtain a porous mediuntransition.

)
355808

FIG. 11. (Top) Magnetic susceptibility of the Ising model con-
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VIII. LINK WITH EXPERIMENTS have considered a simple model that incorporates only the
. . L geometric effects of a porous medium such as Wcor, and we
In experiments to date studying demixing in Vycor, the i, that the effect of confinement alone gives rise to a dif-
glass had a preference for one phase over the other. Olent yniversality class for these transitions. Our results in-
model has no such preference, although this could be agjcate that one should expect different critical exponents in
counted for simply by adding pore surface fields, and oufnese systems, in comparison with their unconfined counter-
algorithm could be modified to study this situatia slight parts.
shift in overall chemical potential, i.e., a weak magnetic field e exponents of the porous Ising model coincide with
throughout the system, should also be included in the resuliyoge estimated for the dilute Ising model, and so we con-
Ing asymmetric mode! T”he statistics of such surface fields ¢)ge that they are in the same universality classes. The large
(like the “broken bonds” of this papgmwill be determined  ncertainties in our exponents and the disparity between
by the surface area density fluctuations. Thus, we expect th@egretical and computational results for that system make
structure factor of such surface magnetic fields to be uncoris conclusion provisional. The uncorrelated long-distance

related at long distances. This feature is essential to the ajj,ctuations of pore surface area denditshich we observe
guments of Brochard and de Genheghich suggest that provides a rationale to link these two models.

liquid-vapor critical phenomena inside a Vcor-like medium™  an addition to our model, which we believe would make

will be that of the random-field Ising model. Surface fieldsj; gescribe experimental situations that have already been
are thereforce expected to further change the static criticaly,gied, is a uniform field acting at the pore surface. This

phenomena. However, we also expect drastic slowing dowfyqyid account for symmetry-breaking surface interactions of
of numerical simulations which is the reason why we did noty,o glass with the two components of a binary mixture, or
include surface fields in this study. with the two phases of a liquid-vapor system, which will

It might be possible to chemically treat Vycor such that it generally occur for real porous media. We anticipate that this
has an equal surface interaction with each component of gqjtion will yield random-field Ising behavior.

binary mixture, and thereby find an experimental realization

of the porous Ising model studied in this paper. Methods to ACKNOWLEDGMENTS
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