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Static critical phenomena of a three-dimensional Ising model confined in a porous medium made by spinodal
decomposition have been studied using large-scale Monte Carlo simulations. We thus examine the influence of
the geometry of Vycor-like materials on phase transitions. No surface interactions~preference of the Vycor-like
material for one phase above the other! are taken into account. We find that the critical temperature depends on
the average pore sizeD asTc(D)5Tc(`)2c/D. The critical exponents are independent of pore size: we find
n50.860.1, g51.460.1, b50.6560.13. No divergence is observed for the specific heat, indicatinga<0.
All data for all pore sizes can be collapsed well with the scaling function for the magnetic susceptibility
xL2g/n5x̃(tL1/n), wheret5T/Tc(D)21. These critical phenomena are consistent with those computed for
the randomly site-diluted Ising model. Experimental realizations of our numerical experiments are discussed.

I. INTRODUCTION

Fluids confined to porous media are of basic experimental
and theoretical interest. Recent reports on the critical point of
the liquid-vapor coexistence lines of4He ~Ref. 1! and N2
~Ref. 2! in aerogel, as well as on the phase separation of
liquid mixtures in Vycor3–5 and of 3He-4He mixtures6 in
aerogel, suggests that the critical behavior of these systems
may be profoundly modified. Some experiments suggest that
while the coexistence regions are narrowed over a range of
temperatures belowTc , the universality class of the transi-
tions remains the same as in the bulk homogeneous systems.
There is also some experimental evidence3–5,7 for different
critical exponents for phase-separation and liquid-vapor tran-
sitions in Vycor, aerogel, and other porous media. Questions
of exponents are thus far from settled.

Various theoretical directions have recently been taken in
order to try to understand phase transitions in porous media.
When the pore surfaces couple differently to the two compo-
nents of a phase-separating mixture, it has been argued that
one might expect random-field Ising critical phenomena.8 In
the case where a3He-4He mixture is confined to the interior
of an aerogel, recent theories and calculations9,10 indicate
that thel point ~the low-temperature terminus of the second-
order superfluid transition line! is moved to zero tempera-
ture, causing phase separation to occur inside the superfluid
phase. Mounting theoretical evidence indicates that
symmetry-breaking phase transitions may be changed from
first to second order by the presence of aerogel-like
media.9,11

In this work, we find that the exclusion of a two-
component liquid from the glassy region of a porous medium
can modify its static critical exponents. We do not include
symmetry-breaking interactions between the porous medium
and the mixture inside it. We have chosen to focus on Vycor-
like media made via spinodal decomposition,12,13 rather than

on aerogels, which are made by poorly understood aggrega-
tion processes. Using a recently developed algorithm14 we
are able to efficiently simulate spinodal decomposition, and
so to construct porous media that should have a geometry
very similar to that of Vycor glass. This first step is described
in Sec. II.

Once we have our model Vycor, we can study phase tran-
sitions in a mixture introduced into its pores. Because the
liquid phase transitions that are the subject of our interest in
this work are in the same universality class as the Ising fer-
romagnet, the natural model for a liquid mixture put into the
Vycor pores is the Ising model. The extraction of equilibrium
properties from the resulting ‘‘Ising model on a porous lat-
tice’’ is an arduous computational task. Therefore a parallel
Monte Carlo~MC! cluster algorithm developed for the simu-
lation of Ising systems on parallel computers,15 together with
the Wolff16 cluster algorithm have been used, on aKSR21
parallel supercomputer. This is described in Sec. V.

In Sec. VI our results are discussed. We find that our Ising
model in model Vycor has a critical phase transition at a
temperature shifted down from that of the pure Ising model
by an amount}1/D, whereD is the pore diameter. Over a
range of pore sizes we find the same critical exponents; in
fact, magnetic susceptibility data for all pore sizes may be
described by one scaling function. The exponents are consis-
tent with those of the randomly diluted Ising model~also
called the random Ising model, or the random-temperature
Ising model!. We argue that this identification is reasonable
since the broken bonds at pore surfaces~essentially the per-
turbation to the pure Ising Hamiltonian! have uncorrelated
statistics at long distances, and do not break spin-reversal
symmetry.

II. MODELING VYCOR WITH PHASE SEPARATION IN
AN ISING MODEL

Vycor is made by mixing two types of glass, letting them
phase separate for a short time, halting the phase separation
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by cooling, and finally etching away one of the two types of
glass.12 The simplest models for this phase-separation pro-
cess are dynamical Ising models with locally conserved
magnetization.13 In this section we describe the simulation of
the production of Vycor, using phase separation in a three-
dimensional Ising model.

A. Method

In earlier work14 we studied properties of domain growth
via spinodal decomposition in the three-dimensional~3D!
Ising model. The Hamiltonian of the Ising model that is used
to generate the porous medium configuration is

HPM/kBT52JPM(
^ i , j &

s is j , ~1!

where^ i , j & denotes a pair of neighboring sites, andJPM is
the dimensionless coupling. The spinss i are located at po-
sitions r i on a simple-cubic lattice with periodic boundary
conditions and edge lengthL. Each spin can take the values
61, representing the two types of glass. For this work, all
coarsening took place atJ51.67Jc , whereJc'0.22 is the
critical coupling of the pure Ising model on a cubic lattice.

In a simulation of the production process of Vycor, one
starts with a three-dimensional lattice on which a spin is
located at each site, randomly pointing upwards or down-
wards, modeling the mixture of the two types of glass. Next,
this Ising model configuration is simulated over a finite time
at a temperatureJPM51.67Jc , using spin-exchange MC ki-
netics, which causes the1 and 2 spins to separate into
domains. We have used an algorithm that was developed
specifically for this purpose and is described elsewhere.14

After some time, this phase-separation process is halted,
and the upwards-pointing spins are removed, to model the
quenching of the domain structure followed by the etching
away of one type of glass. The downward-pointing spins
constitute our model of the remaining Vycor glass. Finally,
small cavities that are inaccessible from the outside are filled
since the binary mixture to be studied in the Vycor will be
introduced from the outside and will be unable to get to such
isolated holes. For the configurations we studied, the volume
fraction of these removed cavities is tiny: in the runs de-
scribed below, such cavities comprise less than 0.2% of the
total volume.

B. Properties of model Vycor

The ‘‘void’’ and ‘‘glass’’ regions resulting from the pro-
cess described above are statistically identical because of up-
down symmetry during the growth process. The porous me-
dium consists of one large ‘‘glass’’ region permeated by one
large pore. In Fig. 1 we show three typical examples of
model structures of porous media that we obtained in this
way for systems of 643 lattice sites.

Of importance in our characterization of the porous me-
dia, insofar as the properties and critical behavior of a liquid
confined to such a medium are concerned, is what we refer to
as the medium’s pore size. This may be extracted from the
structure factorS(k) of our porous media:

S~k!5U(
j
eik•r js jU2. ~2!

During spinodal decomposition, the structure factorS(k)
of the spins converges towards a shape independent of the
length of the annealing time and temperature. The main fea-
ture ofS(k) is a peak at somek* . At low k, S(k) increases
as a power law which is theoretically predicted to bek4 ~Ref.
17! ~although recent work suggests that this exponent might
be smaller14!; at largek, S(k) decreases ask24, a behavior
known as Porod’s law.13 The sharpness of the peak tells us
that the pores in a porous medium have a well-defined typi-
cal sizeD;1/k* . This D grows in time during the phase-
separation process asD;t1/3, in agreement with theoretical
arguments of Lifshitz, Slyozov, and Wagner.18

To be more definite, we take the pore size

D5p/^k&, ~3!

where^k& is the first moment ofS(k):

^k&5
*0

`kS~k!dk

*0
`S~k!dk

. ~4!

This definition of the pore size is often used to measure the
domain size during spinodal decomposition simulations.19 A
visual inspection of our Vycor configurations shows thatD is
a good measure of the typical pore size of these systems. The
three structures in Fig. 1 have average pore sizes of
D51.6, 2.2, and 7.9.

Figure 2 shows a plot of the pore sizeD as a function of
growth time, together with thet1/3 asymptote. We label the
points that correspond to configurations used in this work.
The pore sizes of those configurations are given in the sec-
ond column of Table I, and we present the scaled structure
factors of the spin density of those porous medium configu-
rations in Fig. 3. The configurations with small pore sizes are
still far from the regime where the structure function col-
lapses, but for this work that is not essential.

The fact thatS(k) approaches zero according to a power
law for smallk indicates that the mass density is correlated
over long ranges. It is not the spin density, however, that is
most relevant to our study of mixtures confined in a porous
medium, but rather the density of the surface area of the
pores and the range of pore correlations. This is simply be-
cause the ‘‘broken bonds’’ in the Ising model to be put into
the voids of our model Vycor are on the pore surfaces.

We have computed the pore surface areal density and its
structure factor, averaged over seven realizations at each
pore size. The results are shown in Fig. 4, which shows that
in each case, in contrast with the structure factor of the po-
rous medium density, the areal structure factor approaches a
constant for small wave vectors. This is to be expected since
the spin-exchange dynamics certainly do not conserve total
interface area during phase separation. So, even though the
pore volume distribution is correlated at long ranges, the
pore surface distribution is not. The consequences of this for
the critical phenomena will be discussed in the next section.

III. MODELING THE BINARY MIXTURE INSIDE VYCOR

We want to examine the static critical phenomena of a
binary liquid inside the pores defined by the phase-separation
process described in the previous section. The Ising model
describes both liquid-vapor criticality, and critical demixing
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of binary liquids. So, the Ising model inside our model pores
is a reasonable starting point for describing the critical be-
havior of either of those systems confined inside Vycor.

In the porous medium configurations generated previ-
ously, we defined a ‘‘glass’’ region from which the liquid is
supposed to be excluded. The remaining empty ‘‘pore’’ re-
gion provides the lattice upon which the spin variables of a
second Ising system are defined. The equilibrium properties
of this Ising system are defined by the Hamiltonian

H/kBT52J(
^ i , j &

s is j , ~5!

where the summation runs over all pairs of neighboring sites
in the ‘‘pore’’ region. We will use the dimensionless coupling
J and the dimensionless temperatureT[1/J to describe our
results.

In this paper we have not studied interactions between the
mixture and the pore surfaces; understanding~5! is already a
challenging problem. In most experiments we expect the
pore surfaces to have different contact energies with each
component, which in our model would break the spin-
reversal symmetry of~5!. The simplest such interactions
would be surface ‘‘fields’’ that would favor one spin over the
other at the pore surfaces. The absence of such interactions
in ~5! prevents us from making a direct comparison with
existing experiments. However, as discussed near the end of
this work, experimental realization of~5! may be possible.

IV. NATURE OF DEMIXING PHASE TRANSITION
IN A POROUS MEDIUM

Do we expect that an Ising system confined to a porous
medium generated as described in the previous section still
experiences a phase transition? A related Ising system whose

FIG. 1. Three typical examples of the model porous medium structures to which we confined the Ising model. The samples are quenched
at t50 from a high temperature toT50.6Tc , and coarse grained fort510 ~a!, t5100 ~b!, andt510 000 time steps~c!. The pore sizes for
these samples areD51.41,D52.24, andD57.92, resp.
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critical behavior may be pertinent to our model is the ran-
domly site-diluted Ising model. In the dilute Ising model
only some randomly chosen fractionp of the lattice sites are
occupied by spins: the remaining sites are empty. Below a
critical occupancy fraction this model does not experience a
phase transition;pc'0.27 to 0.31.20 If no spinodal decom-
position is carried out, our model corresponds to the dilute
Ising model with an occupancy fraction of 50%, well above
pc , and it will have a phase transition. For larger pore sizes
~increasing periods of spinodal decomposition! the connec-
tivity of the spin-spin interactions is increased and thus we
expect the phase transition to persist.

Given a sharp critical phase transition, the question of its
universality class arises. The Harris criterion21 tells us that
the introduction of nonmagnetic weak quenched randomness
~including constrained randomness22! into a system is ex-
pected to change the universality class when the specific-heat
exponenta satisfiesa.0. Sincea.0 for the homogeneous
Ising model in three dimensions, this indicates that the uni-
versality classes of the dilute Ising model and our model may
each be different from that of the homogeneous Ising model.

We are interested in whether our porous Ising model has
the same critical phenomena as the dilute Ising model. Our
porous medium is identical to a regular lattice in which those
bonds are omitted that connect sites in the glass region to
sites in the pores, in which case the influence of the glass

FIG. 2. Pore sizeD on a logarithmic scale as a function of
log10(t) wheret is the growth time. The configurations that we used
as the confining geometry in our simulation of the equilibrium prop-
erties of the confined Ising system are labeled~a!–~f!. The dashed
line is a curve with slope 1/3, and is added to show the asymptotic
growth law of D5(t/t0)

1/3, according to the Lifshitz-Slyozov-
Wagner theory.

TABLE I. Properties of porous media samples, obtained by halt-
ing the phase separation process at times~a!–~f!. Second column:
pore sizeD of these samples. Third column: critical temperature of
the porous Ising model of the samples.

Porous medium
configuration D Tc(D)

a 1.41 2.058~12!
b 1.60 2.358~12!
c 2.24 2.845~12!
d 2.93 3.175~12!
e 4.03 3.552~12!
f 7.92 4.065~12!

FIG. 3. Scaled density structure factor^k&3S(k) as a function of
the scaled wave numberk/^k& of samples with 1283 sites, obtained
by halting the phase-separation process after times~a!–~f!.

FIG. 4. Structure factorS(k) for the surface density inside the
porous medium, as a function of wave numberk, for configurations
~b!, ~c!, and ~e!, obtained from configurations with 1283 sites. To
obtain these functions accurately, we averaged the structure factor
over seven distinct configurations for each pore size. In contrast to
the structure factor of the mass density, the structure factor of the
areal density is flat at small wave vectors, indicating that in contrast
to the spin density, the surface density is uncorrelated at long
ranges.
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region on our Ising model is felt through its surface. As the
areal density~Fig. 4! of that surface does not show long-
ranged correlations, and as it represents the density of absent
bonds~and therefore the bond energy fluctuations!, it would
not be surprising if our porous Ising model has the same
critical exponents as the dilute Ising model, although the
topological structure of the pore region surely plays a role as
well.

On the other hand, in contrast to the dilute Ising model in
which the structure of the disorder is random ‘‘white noise,’’
the disorder in our system is correlated over long ranges: the
structure factor of the lattice site density approaches zero
with a power law for smallk. Also, it has been suggested to
us23 that topological differences between our correlated pores
and the random disorder in the dilute Ising model may make
their critical behavior different. A direct way to decide this
question is a large-scale computer simulation.

In addition to the critical exponents, we are also interested
in the dependence of the critical temperature on the pore
size. The ratio of the density of bonds in our porous Ising
model to that of the pure Ising model is given by 12c/D,
wherec is some constant determined by the exact definition
of D. Thus, the effective coupling in the confined Ising
model may be viewed crudely as 12c/D times that of the
homogeneous system. Consequently, we might expect that
the critical temperature is lower by the same factor:

Tc~D !/Tc~`!512c/D. ~6!

Another way of seeing this is to consider that the average
coordination number in our system is diminished by a factor
proportional to 12c/D compared with the homogeneous
system. The above dependence ofTc on the average pore
size then follows from the linear mean-field dependence of
the critical temperature on the coordination number.24

V. SIMULATING CRITICAL DEMIXING
IN A POROUS MEDIUM

The appearance in our model of an extra length scale, the
pore sizeD, that must be larger than the lattice spacing and
small compared to the system sizeL, necessitates system
sizes substantially larger than those that would be required
for the simulation of a homogeneous Ising model. We con-
sidered porous medium configurations in which the pore size
ranged from around 1.4 to 8.0 lattice spacings. A range of
system sizes was required to do a finite-size scaling analysis.
As the pore size should be substantially smaller than the
system size, our system sizes ranged fromL520 to
L5128.

Rather than single-spin Metropolis-type algorithms that
are notoriously slow in random systems, we used a combi-
nation of two algorithms based on MC moves that flip many
connected spins, calledclusters. The first and primary algo-
rithm is the parallel local cluster~PLC! algorithm,15 which is
based on the local-cluster algorithm.25 In the PLC algorithm,
the system is partitioned into some numberNproc of sublat-
tices, the responsibility for each of which is assigned to one
processor. The sequence of steps followed by each processor
is as follows:

~1! Randomly pick a sites in the interior of the sublattice
which is not in the ‘‘glass’’ region of the porous medium.

This site is the first member of the clusterC under construc-
tion.

~2! Consider all neighboring sites ofs, whose spins are
aligned with the spin located at sites. With probability
12exp(22J/kBT) add each such neighbor to the cluster. It-
eratively, apply the same procedure to all neighbor sites of
sites newly added toC. If at any moment a site is added toC
that is located on the border of the sublattice, cease the con-
struction ofC and restore the original spins to all sites inC.

~3! If the iteration in step 2 ends and no site located on the
border of the sublattice is added toC, flip the spins located
on all sites inC.

Steps 1–3 are repeated until on average each site has been
included once in a cluster.

~4! Shift the lattice partition by some random vector, con-
sidering the periodic boundary conditions, and then reparti-
tion the system.

This procedure constitutes one PLC step. Subsequent
steps are made by repeating the procedure from step 1. This
procedure asymptotically samples the probability density
(1/Z)exp(2H/kbT), where the partition functionZ normal-
izes the distribution. The complex system geometry imposed
by the medium thus enters the algorithm only in that there
are no Ising lattice sites in the glass region of the porous
medium.

Although the PLC algorithm can be implemented very
efficiently on a parallel computer,15 because of its local na-
ture it can take many steps to bring about a system-wide, true
equilibration. The nonlocal Wolff algorithm does not experi-
ence this problem, and overcomes this weakness of the PLC
algorithm, a slow equilibration over large distances, in only a
few steps. Its drawback is however that it cannot be imple-
mented efficiently on a parallel computer. We used a combi-
nation of both the PLC and the Wolff algorithms, and ob-
tained a much more rapid equilibration than we would have
experienced using either alone. The ratio of PLC steps to
Wolff steps that we chose ranged from 1 to 10, depending on
the system size. We based our choice on the equilibration and
correlation times of the energy and magnetization.

Figure 5 shows a typical plot of the autocorrelation time
for 643 and 1283 realizations of our systems with the small-
est pore size, as a function of reduced couplingK. The times
are given in ‘‘passes,’’ each of which consists of one PLC
step; sometimes~for the 643 system, once every five passes,
for the 1283 system, once every ten passes! a pass consists of
a PLC step followed by a Wolff step. Typical runs consisted
of 1000 total steps. Our runs started from configurations with
random spin values assigned to the spin variables, and the
results were found to agree with test runs which began with
all spins up or all spins down. Typical ‘‘wall clock’’ times for
each temperature run ranged from several minutes for a 1000
PLC/500 Wolff step 323 systems running on eight proces-
sors, to between 1 and 2 h per temperature for 1000 PLC/100
Wolff 1283 systems running on 64 processors.

Both algorithms are less efficient in the ordered phase: the
PLC algorithm generates clusters that are more likely to
touch the sublattice boundaries and thus be rejected; the
Wolff algorithm generates clusters that tend to become sys-
tem spanning, resulting in much greater computer time re-
quirements.
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VI. CRITICAL TEMPERATURE AND EXPONENTS

A. Simulations and statistical methods

We generated porous medium configurations of sizes
203, 323, 643, 963, and 1283. For each system size we gen-
erated six different realizations of the porous medium, with
average pore size ranging from approximatelyD51.4 to
D58 lattice constants, shown as the labeled points~a!–~f! in
Fig. 2. As each realization is obtained by halting the growth
process after some specified amount of time has elapsed and
not when the configuration has a specifiedD, there is a small
~1–3 %! variation inD between the different system sizes.
For the smaller systems, the determination ofD introduces
statistical fluctuations that do not show any trend with sys-
tem size. Therefore, rather than determiningD directly from
each configuration, we determineD from a 1283 configura-
tion that has run over exactly the same time interval.

For an Ising model confined to the pores of these configu-
rations, we computed the average energy and the average
magnitude of the magnetization~which corresponds to one
half the binodal of the liquid system! as functions of tem-
perature, as well as the specific heat and magnetic suscepti-
bility obtained from the fluctuations in the former. The en-
ergy is

E52JK (̂
i j &

s is j L ~7!

and the magnetization is

M5K U(
i

s iU L , ~8!

where^& indicates a thermal average. The magnetic suscep-
tibility x and specific heatC are

Tx5^M2&2^uM u&2 ~9!

and

T2C5^E2&2^E&2. ~10!

In all these expressions we use dimensionless temperature
T[1/J. Statistical errors in the magnetic susceptibility and
specific heat were estimated using the ‘‘bootstrap’’
technique.26

In random lattice systems such as the random-field Ising
model a considerable variation exists between the properties
we study for different realizations of randomness. For this
reason, we investigated the variation inE, M , x, andC for
different realizations of the porous medium with the same
pore size. Figure 6~a! showsM for three different 323 porous
medium configurations, for the smallest pore size class that
we studied,~a!. A small variation in the apparentTc is evi-
dent. Figure 6~b!, showingM for two distinct 643 realiza-
tions of the same pore size class, reveals that the differences
from one realization to another are greatly diminished with
increasing system size. Figures 6~c! and 6~d! show the same
for a larger pore size class~c!, indicating that the variations
in M from one realization to the next are very small even for
the 323 system. The variation for larger pore sizes than these
is imperceptible from sample to sample.

The critical temperature and the exponentsg andn may
be extracted from the magnetic susceptibility using finite-
size scaling. Near the critical temperature the Widom scaling
hypothesis27 tells us that the magnetic susceptibility of our
system scales with system size as

x;L2g/nx̃~ tL1/n!, ~11!

wheret5T/Tc21 andx̃ is a universal scaling function. Al-
though neither the exponents norTc is known initially, the
scaling relation can be used to determine these parameters by

FIG. 5. Autocorrelation timetcorr as a function of the reduced
coupling for 643 ~squares! and 1283 ~plusses! realizations of the
porous medium system with the smallest pore size.

FIG. 6. Magnetization as a function ofJ for three different
323 realizations~upper plots! and three different 643 realizations
~lower plots! of porous media with pore sizesD51.41 ~left plots!
andD52.24~right plots!. Some variation inTc is evident for small
pore sizes and small system sizes.
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plotting xLg/n as a function oftL1/n, and varying the param-
etersg/n, t, and 1/n until the multiple curves ‘‘collapse’’
onto one another.

From our value forn we can determine the specific-heat
exponenta indirectly, assuming the hyperscaling relation

dn522a. ~12!

The scaling relation

a12 b1g52 ~13!

allows for an indirect determination of the order-parameter
exponentb.

Because of large statistical fluctuations in our specific-
heat results, it was not possible to directly extract a numeri-
cal value fora. To obtain an independent determination of
the order-parameter exponentb using our data for the mag-
netization, we followed the procedure of Binder28 described
by Hennecke.29 Exactly at the critical temperature we expect
the magnetizationM (Tc) of our systems to scale with system
size according to

ML~Tc!;L2b/n, ~14!

where the prefactor is independent ofL, though it might
depend on the pore size. For systems of two sizesL1 and
L2 , we define

jL1 ,L2~T!5 logL1 /L2SML1
~T!

ML2
~T!D . ~15!

The utility of this definition follows from jL1 ,L2(Tc)

52b/n. When sets of curvesjL1 ,L2(T) are plotted, for dif-

ferent choices ofL1 and L2 for all the curves, the curves
should all intersect in one point whereT5Tc and
jL1 ,L2(T)52b/n.

B. Numerical results for the critical temperature
and exponents

First we used finite-size scaling of the magnetic suscepti-
bility according to Eq.~11!. While plausible collapses can be
achieved for fairly wide range of values for the exponents,
the procedure is very sensitive to changes in the critical tem-
perature and thusTc(D) may be accurately determined. Our
results forTc(D) are tabulated in Table I, and plotted in Fig.
7, along with Eq.~6! for c53.6 @Tc(`)'4.512 is the known
critical temperature of the pure Ising model#. This line fits all
the measurements to within better than 3%. Because the av-
erage site coordination number in our system is proportional
to 12const/D, the linear dependence ofTc on this quantity
is consistent with the simple mean-field theory
result mentioned in Sec. IV. The curveTc(D)5Tc(`)
2cD(21/n) fits the data more poorly forn,1, but cannot be
ruled out completely.

Figure 8 shows our collapse data for all six pore sizes
studied forg/n51.7 and 1/n51.2. We explored the ranges
of g/n and 1/n that give a collapse of similar quality, result-
ing in g51.460.1 andn50.860.1. There are correlations
between the uncertainties in the two exponents, and a good
collapse is not necessarily obtained for any choice of the pair
g andn lying within the range. With this value forn and the

hyperscaling relation~12! we finda520.460.3. Although
it was not possible to extract a numerical value fora from
finite-size scaling of the specific heat, we could conclude that
a is negative, in agreement with the indirectly determined
value fora. This is what is expected in light of the Harris
criterion. An indirect determination ofb with scaling relation
~13! givesb50.560.1.

Figure 8 shows that the same exponents bring about a
collapse of the susceptibility data for all pore sizesD; this

FIG. 7. Critical temperature as a function of typical pore radius,
obtained by finite-size scaling. The line is given byTc(D)
5Tc(`)2c/D, in which Tc(`)54.512 andc53.6.

FIG. 8. Collapse of all our data points for the magnetic suscep-
tibility, by plotting xL2g/n as a function of@Tc(D)/T21#L1/n, with
g/n51.7 and 1/n51.2, and the critical temperatureTc(D) as
given in Table I. Note that @Tc(D)/T21#5(12T/Tc)
1O@(12T/Tc)

2#. System sizes are 323 ~crosses!, 643 ~squares!,
963 ~plusses!, and 1283 sites~bursts!. The labels in the figures de-
note the pore sizes~see Table I!.
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indicates that systems with all pore sizes are in the same
universality class. Could the universal scaling function itself
be the same for all pore sizes? If so, a more general form of
the scaling relation~11! might hold nearTc(D):

Tx~T!;Lg/nx̃~ tL1/n!, ~16!

where nowt5T/Tc(D)21 takes into consideration the pore
size dependence of the critical temperature, and the scaling
form is otherwise independent ofD. Figure 9 shows such a
collapse. The data of Fig. 8 have been combined into a single
plot, showing that nearTc(D), the curves all appear to col-
lapse onto one common curve, so that with the exception of
the dependence ofTc on pore size, the critical behavior of all
these systems is the same. This again indicates that there is
one universality class, independent of pore size. The absence
of additional prefactors of the scaling function that depend
on the pore size is unexpected.

The exponentb can be obtained directly from a collapse
of the magnetization curves, as outlined in the previous sec-
tion. We discovered that the prefactor in Eq.~14!, like that
for the susceptibility, is apparently independent of the pore
sizeD, so that when the sets of curvesjL1 ,L2@T2Tc(D)# are
plotted together for differentD, the resulting curves have a
common intersection point. The results are shown plotted in
Fig. 10 for (L1 ,L2)5(32,64) and (64,128). For both system
sizesL1 and L2 the simulation must be carried out at the
same temperatures in order forj to be computed; therefore it
was not possible for us to use all of our simulation data for
these curves. From the common intersection point of these
curves, we obtain a valueb/n50.7960.06. Using our de-
termination ofn, we obtainb50.6560.13. Considering the
uncertainties in this value forb and in our previous derived
value, the two are in agreement.

All the exponents discussed in this section are summa-
rized in the first column of Table II. In the second column of
this table, we give the exponents for the pure Ising model, as

reported by Ferrenberg and Landau.30 It is clear that the po-
rous and pure Ising models have different exponents, and
therefore are in different universality classes.

Our exponents are similar to those found in simulations of
the dilute Ising model. Overall, there is a disparity in the
exponents reported for that model between results obtained
using field-theoretic techniques31,32 and between those of
simulation and experiment.33–35,29Field-theoretic values32,31

for the exponentg are larger than that for the pure Ising
model (gBulk51.23960.001), ranging from 1.321 to 1.335.
Simulation results and experimental values suggest an expo-
nent that is even larger, with reported values varying from
1.3 to 1.5.33 Some authors have reported a dependence of
g on the dilution fraction that saturates for strong dilution to
1.5.36 In this work, in our system we findg51.460.1.

The field-theoretic values for the exponentb are again
slightly larger than those reported for the pure system
(bBulk50.32660.004), typically around 0.348.32,31 Simula-
tion results are again substantially higher, with Hennecke29

reporting a value obtained by Monte Carlo simulation of
0.4260.04 for a dilution fraction of 40%. The indirect and
direct determinations ofb for our system areb50.560.1
and b50.6560.13, respectively. The exponentsn from
field-theoretic treatments of the dilute Ising model are close
to 0.68, again larger than the pure Ising value of

FIG. 9. Data of Fig. 8, combined in a single plot to show the
common scaling function for all pore sizes.

FIG. 10. The functionj32,64(T) and j64,128(T), defined in the
text, as a function of 1/T21/Tc(D) for all of our pore size data. The
curves have a common intersection point corresponding to
b/n50.7960.06.

TABLE II. Exponents extracted from our simulations, together
with those reported for the pure 3D Ising system.

Exponent This work Bulk Ising

n 0.8160.1 0.62760.002
g 1.460.1 1.23960.003
b 0.6560.13 0.32660.004
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0.62760.002, though substantially below the value of
0.7860.01 ~Ref. 29! reported from simulation. In our model
we find n50.8160.1.

We are not aware of any determinations of the exponent
a for the dilute Ising model by simulation, though field-
theoretic calculations of20.013~Ref. 32! and20.034~Ref.
31! have been reported, which is consistent with the obser-
vation in our system thata is negative. On the basis of
comparison the sets of critical exponents for the porous Ising
model and the dilute Ising model, we propose that they are in
the same universality classes.

VII. EFFECT OF VARIATIONS IN PORE STRUCTURES

We also calculated the magnetization and magnetic sus-
ceptibility of configurations with fundamentally different
pore structures. We first wanted to understand what would
happen if there were some large voids inside a porous me-
dium in addition to the more regular pore pattern, a situation
that might arise experimentally. This was investigated by
taking a 643 Vycor-like sample for which the coarsening pro-
cess was halted at time~c! so that it had a typical pore radius
D152.24. Then a 323 hole was cut, leaving one large pore
with sizeD2'32, surrounded by smaller pores.

The resulting magnetic susceptibility, plotted in Fig.
11~a!, shows two distinct peaks, one located close to the
critical temperature of the pure Ising model, and the other
located close to the critical temperature of the Vycor-like
sample before the hole was cut into it. The corresponding
binodal is included in an inset in Fig. 11~a! and shows a
small protrusion on top of the original binodal for the porous
sample. The appearance of a second peak in the magnetic
susceptibility located around the critical temperature of the
pure Ising model is not surprising, since as long as the cor-
relation length is smaller than 0.5D2 , the radius of the big
pore, the spins located in the interior of the big pore will
behave identically to ones in the homogeneous Ising model.
It is thus not surprising, that if in experiments critical expo-
nents would be obtained from measurements in this region of
the protrusion, they would be in the universality class of the
pure Ising model.

We further increased the system size by duplicating the
system in each direction to obtain a 1283 system with eight
large 323 holes. The binodal for this larger system is shown
in Fig. 11~b!. As the first peak~located at the critical tem-
perature of the pure Ising model! does not become sharper
with increasing system size~in contrast to the second larger
peak at largerJ!, we conclude that this peak does not corre-
spond to a phase transition. This indicates that until the true
phase transition atJ'0.38 the large pores cannot communi-
cate and fluctuate independently.

If two distinct peaks in the magnetic susceptibility arise
when two distinct pore radii are present in the system, might
it be that what we assumed to be one peak in the magnetic
susceptibility in our porous media actually is the sum of a
spectrum of peaks, corresponding to a spectrum of pore ra-
dii? We generated a second type of structure with two dis-
tinct pore sizes by combining two model media with pore
sizesD1 andD2 . We did this by performing a logical OR
operation on the pore regions to obtain a porous medium

with a porosity around 75%. This system has only one peak
in its magnetic susceptibility; this peak occurs at a tempera-
ture different from theTc for the two media that were com-
bined. This is a strong indication that a spread in pore sizes,
inevitably present in our configurations, does not cause a
‘‘blurred’’ combination of phase transitions, but that the Ising
model confined to a porous medium has one clear phase
transition.

FIG. 11. ~Top! Magnetic susceptibility of the Ising model con-
fined to a porous medium in which a big hole is excavated. The
porous medium is generated by coarsening a 643 system over
t51000 time steps, corresponding to configurations~c!, with typi-
cal pore sizeD52.24, in which one big pore is excavated of size
323. The inset shows the binodal.~Bottom! The magnetic suscepti-
bility is plotted for the same system, but duplicated in each direc-
tion, resulting in a 1283 system with eight pores of 323 sites. Again,
the inset shows the binodal.
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VIII. LINK WITH EXPERIMENTS

In experiments to date studying demixing in Vycor, the
glass had a preference for one phase over the other. Our
model has no such preference, although this could be ac-
counted for simply by adding pore surface fields, and our
algorithm could be modified to study this situation~a slight
shift in overall chemical potential, i.e., a weak magnetic field
throughout the system, should also be included in the result-
ing asymmetric model!. The statistics of such surface fields
~like the ‘‘broken bonds’’ of this paper! will be determined
by the surface area density fluctuations. Thus, we expect the
structure factor of such surface magnetic fields to be uncor-
related at long distances. This feature is essential to the ar-
guments of Brochard and de Gennes8 which suggest that
liquid-vapor critical phenomena inside a Vycor-like medium
will be that of the random-field Ising model. Surface fields
are thereforce expected to further change the static critical
phenomena. However, we also expect drastic slowing down
of numerical simulations which is the reason why we did not
include surface fields in this study.

It might be possible to chemically treat Vycor such that it
has an equal surface interaction with each component of a
binary mixture, and thereby find an experimental realization
of the porous Ising model studied in this paper. Methods to
do this have been developed by Durian and Franck37 in stud-
ies of wetting phenomena on borosilicate glass substrates.
They performed capillary rise experiments of carbon
disulfate-nitromethane mixtures, dosing the borosilicate
glass with hexamethyldisilizane in order to reduce the attrac-
tion of nitromethane. Another material that might be used
instead of Vycor is porous gold. Samples of porous gold have
been produced with a pore size ranging over about two
decades.38Wetting properties of gold surfaces have been suc-
cessfully manipulated by Abbottet al.39

IX. CONCLUSIONS

The experimental evidence for whether phase separa-
tion1,2 and two-phase coexistence40 of liquids confined to
porous media have the same critical exponents as unconfined
liquid systems has been so far inconclusive. In this work, we

have considered a simple model that incorporates only the
geometric effects of a porous medium such as Vycor, and we
find that the effect of confinement alone gives rise to a dif-
ferent universality class for these transitions. Our results in-
dicate that one should expect different critical exponents in
these systems, in comparison with their unconfined counter-
parts.

The exponents of the porous Ising model coincide with
those estimated for the dilute Ising model, and so we con-
clude that they are in the same universality classes. The large
uncertainties in our exponents and the disparity between
theoretical and computational results for that system make
this conclusion provisional. The uncorrelated long-distance
fluctuations of pore surface area density~which we observe!
provides a rationale to link these two models.

An addition to our model, which we believe would make
it describe experimental situations that have already been
studied, is a uniform field acting at the pore surface. This
would account for symmetry-breaking surface interactions of
the glass with the two components of a binary mixture, or
with the two phases of a liquid-vapor system, which will
generally occur for real porous media. We anticipate that this
addition will yield random-field Ising behavior.
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