
Hubbard model with smooth boundary conditions
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We apply recently developed smooth boundary conditions to the quantum Monte Carlo simulation of the
two-dimensional Hubbard model. At half-filling, where there is no sign problem, we show that the thermody-
namic limit is reached more rapidly with smooth rather than with periodic or open boundary conditions. Away
from half-filling, where ordinarily the simulation cannot be carried out at low temperatures due to the existence
of the sign problem, we show that smooth boundary conditions allow us to reach significantly lower tempera-
tures. We examine pairing correlation functions away from half-filling in order to determine the possible
existence of a superconducting state. On a 10310 lattice forU54, at a filling of ^n&50.87 and an inverse
temperature ofb510, we find enhancement of thed-wave correlations with respect to the noninteracting case,
a possible sign ofd-wave superconductivity.@S0163-1829~96!03621-1#

I. INTRODUCTION

The two-dimensional~2D! Hubbard model1 is considered
to be one of the possible models to describe the high-Tc
copper-oxide superconductors.2 Despite the fact that this
model describes quite well the insulating state and some of
the normal state properties of the copper oxides, it is not
clear whether it contains all the necessary microscopic fea-
tures to also explain their superconducting properties.3 Al-
though a variety of approximate calculations4–6 predict the
existence of superconductivity in the doped Hubbard model,
there is still need to find confirmation from a calculation
which does not depend on uncontrolled approximations.

Quantum Monte Carlo~QMC! simulations have emerged
as a method of choice in trying to solve this model numeri-
cally, since, in principle, the interaction is treated in an exact
way.7 The path integral formalism is the standard starting
point, where the partition function is decomposed by using
the Suzuki-Trotter formula.8 A widely used algorithm em-
ploys the Hubbard-Stratonovich transformation to decouple
the interaction and integrate out the fermionic fields,9 leading
to a bosonic path integral with an effective action which
depends on the fermion determinant given in terms of the
bosonic fields only. The trace over the Stratonovich fields
can then be replaced by a stochastic sampling in which the
fermion determinant becomes essentially the weight of the
distibution of Hubbard-Stratonovich fields.10

However, these simulations have a number of hardware
limitations that cannot be easily overcome even with modern
state-of-the-art supercomputers. The first problem is that
they can only be implemented on relatively small lattices and
at relatively high temperatures, since the computational time
increases rapidly with the number of sites of the lattice, and
as the temperature is lowered. Thus, ground-state properties
in the thermodynamic limit can only be obtained via finite-
size scaling techniques and zero-temperature extrapolations.
The second difficulty is the appearance of the sign problem
when the system is doped away from half-filling.11 The sign
problem arises from the fact that the fermion determinant,
which is interpreted as a probablity weight of the distribution
of Hubbard-Stratonovich fields, is not always positive defi-

nite, but decays exponentially with decreasing temperature.
Thus, since averages must be computed by taking the differ-
ences of two positive quantities of similar magnitude, the
numerical problem becomes unstable, giving rise to large
errors in the measurements. The sign problem in the Hub-
bard model becomes worse at low temperatures for values of
the doping where a possible pairing phase is predicted to
exist.

The appearance of these problems has stimulated the
search for new techniques for solving Hubbard-like models
beyond quantum Monte Carlo simulations.12–14 In this paper
we will instead show that some of the above limitations can
be partially overcome using new types of boundary condi-
tions ~BC’s!, smooth boundary conditions~SBC’s!, which
have been successfully applied to the study of one-
dimensional~1D! systems within a large number of numeri-
cal techniques.15 These BC’s consist ofsmoothlydecreasing
the energy parameters appearing in the Hamiltonian as we
approach the edges of the lattice. The result of this operation
is that, instead of having a sharp and rigid boundary as is the
case with open boundary conditions~OBC’s!, with SBC’s
the boundary extends itself into the system in such a way that
its exact size is not fully determinable. In general, we will
talk of thebulk of the system as the region where the energy
parameters are constant, and of theboundaryas the region
over which the parameters are smoothly turned off. All mea-
surements are made in the bulk region. In addition to reach-
ing the thermodynamic limit on a relatively smaller system
than with periodic boundary conditions~PBC’s! or OBC’s
we find that with SBC’s we obtain an improvement in the
behavior of the sign problem which allows one to reach sig-
nificantly lower temperatures and to explore the possible ex-
istence of a superconducting phase in the doped system. In
Sec. II we introduce the Hubbard model with SBC’s, in Sec.
III we demonstrate the validity of SBC’s comparing them to
PBC’s in the discussion of the half-filled case, in Sec. IV we
describe the behavior of the average sign of the simulation
with SBC’s and study pairing correlations in the nearly half-
filled case, and, finally, in Sec. V we summarize and con-
clude.
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II. MODEL WITH SMOOTH BOUNDARY CONDITIONS

We consider the positive-U Hubbard model1 on a two-
dimensional lattice defined by the Hamiltonian
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which consists of a system of itinerant electrons with an
on-site interaction of coupling strengthUi . Here t i j is the
nearest-neighbor hopping parameter between sitesi and j .
All the above energy parameters appearing in the Hamil-
tonian are scaled according to the smoothing functionf i ,
shown in Fig. 1, in such a way thatUi /U5m i /m5 f i and
t i j /t51/2(f i1 f j ), whereU, m, andt are the bulk values. In
the following, without loss of generality, we will taket51,
and express all the other parameters appearing in the Hamil-
tonian of Eq.~1! in dimensionless form. Thecis

† are fermion
creation operators in a Wannier orbital centered at sitei with
spin s, m is the chemical potential, andnis5cis

† cis is the
density operator.

The above rescaling of the energy parameters in the
Hamiltonian is motivated by a similar procedure that was
successfully applied to several 1D systems.15 The choice of
the smoothing functionf i emerges from a generalization of
the 1D analog, but is not unique. Here we use
f i5y(12di /@Nf11#), wheredi measures the distance of
site i from the nearest edge of the system, starting at 1 for
i on the outermost ‘‘frame,’’ or square, of sites.Nf is the
number of frames in the boundary region. The smoothing
function is given by15

y~x!5H 1, x,50,
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The most important property of the functiony(x) is that it
and all its derivatives are continuous everywhere. Thus in the
limit of a large number of frames there are no precise inter-

faces or boundaries which would cause scattering. However,
for most of the results shown here, we useNf52, and f i
takes on the values 0.817 574 476 and 0.182 425 524. A sur-
prising result of our work is that one can obtain excellent
smoothing using only two frames.

III. HALF-FILLED CASE

It is well known that the half-filled Hubbard model on an
infinite lattice has an antiferromagnetic ground state with
periodicity commensurate with the lattice.16 At finite tem-
perature, from symmetry considerations of the antiferromag-
netic order parameter, we know that the correlation length
remains finite, and, thus, no phase transition occurs. On a
finite lattice, however, the behavior is different, since the
correlation length can only grow as large as the linear size of
the system. Thus, we can still speak of an approximate tran-
sition temperature for a finite lattice corresponding to where
the correlation length reaches the size of the lattice. This
different behavior between a finite and infinite system is very
crucial and could lead to the erroneous conclusion that even
the infinite system has a finite transition temperature.18 In
general, finite-size effects will be sensitive to the type of
BC’s used. Thus, it is important to choose BC’s which elimi-
nate finite-size effects already on relatively small lattices so
that extrapolation to the infinite system can be taken without
the need to consider extremely large lattices.

Despite the fact that the behavior of the half-filled case is
well known, we are interested in studying it in the context of
SBC’s since we want to show that we can obtain thermody-
namic limit results on a relatively smaller lattice than when
using PBC’s. Also, since at half-filling there is no sign prob-
lem, we want to show that this effect is independent of the
behavior of the average sign with SBC’s relative to PBC’s.
We find that applying SBC’s to a finite lattice indeed reduces
finite-size effects and allows faster convergence to the ther-
modynamic limit. We consider two types of measurements,
local quantities and correlation functions. We first consider
the average kinetic energy per site, given by

^Ki&52
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† cjs1cjs
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where the sum runs over allj nearest neighbors ofi . In Fig.
2 we shoŵ Ki& as a function of the linear size of the system
using PBC’s and SBC’s. The results for SBC’s are obtained
with the number of smoothing framesNf fixed at 2. This
means that the bulk will have a linear size that is four sites
smaller than the corresponding system with PBC’s. It is very
striking that already on a 636 system with a 232 bulk
region SBC’s give a relatively good estimate to the value
that we obtain on a 16316 lattice with PBC’s. A similar
conclusion can be drawn from Fig. 3, where we show the
double occupancŷni↑ni↓&. The finite-size effects in this
case are much stronger with PBC’s than SBC’s. Notice that
both in Figs. 2 and 3 the measured quantities saturate to the
same value for either type of BC as the system size becomes
larger, as expected, since the type of BC should not have
much effect on the behavior of a very large system.

We also consider several other types of local measure-
ments, leading to the same conclusion:the thermodynamic

FIG. 1. The smoothing functionf i5 f i x ,i y for a 12312 lattice
with four smoothing frames. The bulk region is a 434 lattice. The
four concentric square frames are clearly visible.
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limit is reached on a smaller lattice with SBC’s rather than
with PBC’s or OBC’s. In Fig. 4 we show the average total
energy as a function of the inverse temperature. Also, in this
case, we see that for each temperature considered, with
SBC’s we reach the thermodynamic limit more rapidly than
with PBC’s. This behavior is very similar to what we found
in the numerical density-matrix renormalization group
~DMRG! study of the spin-12 Heisenberg chain with SBC’s.
Also in that case, with SBC’s the ground-state energy is
reached on smaller lattices than with OBC’s.17

We also examine various correlation functions in order to
show that the behavior is similar to that of the local quanti-
ties. When using SBC’s the correlation functions can only be
evaluated for two sites separated by a distance only as large
as the size of the bulk. Similarly, with PBC’s we can only
calculate correlations between points as far out as half the
linear size of the system, since the lattice wraps around onto
itself. An additional difference is that, since SBC’s break the
translational invariance of the Hamiltonian, the measurement
of local quantities and correlation functions cannot be aver-
aged over the entire lattice, as can be done with PBC’s. In
this case, the averaging can only be done over sites, or pairs
of sites, which are equivalent under the reduced symmetry of
the lattice ~reflection and inversion! with SBC’s. This im-

plies that, in order to obtain better statistics, we need to run
the simulation longer than with PBC’s. This is probably the
only significant disadvantage of SBC’s over PBC’s. In Fig. 5
we show the spin-spin correlation function, defined by

c~ l !5c~ l x ,l y!5^~ni1 l ,↑2ni1 l ,↓!~ni ,↑2ni ,↓!&, ~4!

for several systems sizes with PBC’s and compare it to the
case with SBC’s on a 10310 lattice with two smoothing
frames. Again, it appears that with SBC’s we can obtain on a
smaller system the same results as with PBC’s on a consid-
erably larger system. Having shown that the use of SBC’s
allows one to reduce finite-size effects on relatively small
lattices, we now study the effect of SBC’s on the average
sign by considering the Hubbard model away from half-
filling.

IV. DOPED SYSTEM

As one dopes the system, the long-range antiferromag-
netic order which is present in the ground state of the half-

FIG. 2. The kinetic energŷKi&, measured at the center of the
lattice, as a function of linear system sizeNx with U54 at half-
filling at b56. The solid squares are with PBC’s and the solid
circles with SBC’s with two smoothing frames.

FIG. 3. The double occupancy^ni↑ni↓&, measured at the center
of the lattice, as a function of linear system sizeNx with U54 at
half-filling at b56. The solid squares are with PBC’s and the solid
circles with SBC’s with two smoothing frames.

FIG. 4. The total energŷEi&, measured at a sitei in the center
of the lattice, as a function of inverse temperatureb for several
system sizes and with PBC’s and SBC’s. The filling is^n&51 and
U54. The open symbols are with PBC’s and the solid symbols
with SBC’s. With SBC’s we use two smoothing frames on the
boundary. The solid lines are just guides to the eye.

FIG. 5. The spin-spin correlation functionc( l x ,l y) at half-filling
with U54 and atb56. The path taken in calculatingc( l x ,l y) is
shown in the inset. The solid squares are for a 10310 system with
SBC’s and two smoothing frames. The open symbols are with
PBC’s and on sizes as shown. The solid line is a guide to the eye for
the case with SBC’s.
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filled band is abruptly destroyed and short-range incommen-
surate magnetic correlations set in.19 Here we are mainly
interested in studying the possible existence of a supercon-
ducting phase away from half-filling. Recently, there has
been an enormous effort in trying to obtain the phase dia-
gram of the doped Hubbard model. Most of the studies have
not been able to determine conclusively whether there is or
there is not a superconducting phase. Approximate tech-
niques have been used, such as self-consistent calculations,
mean-field theories, and conserving approximations,12 often
suggesting the possibility of a parameter regime having
d-wave superconductivity. QMC results, which show evi-
dence of an attractive pairing interaction, but no direct evi-
dence of pairing, have not been completely satisfactory be-
cause of the appearance of the sign problem already at
relatively high temperatures. The possibility exists that the
temperature at which the pairing occurs is significantly lower
than the accessible temperatures even on as small lattices as
838.

Although initially we did not expect changing boundary
conditions would have a large effect on the average sign, in
fact they can. In general, the average sign decays exponen-
tially with the inverse temperatureb and system sizeN,
^S&;e2AbN,11 whereA depends on the QMC method~de-
terminantal, world line, projector, etc.!. If ^S& falls below
about 0.1, it becomes impossible to obtain reasonable results.
Previously, we showed that for large values ofU the sign
decays slower in the world-line method than in the determi-
nantal approach.20 Here we find that the decay of the average
sign can be substantially slower with SBC’s than with either
open BC’s or with PBC’s.

In Fig. 6 we show the average sign as a function of in-
verse temperature for various lattice sizes at a filling of
^n&50.87 withU54 for several types of BC’s. If we con-
sider the case with OBC’s and PBC’s only, we see that on an
838 lattice the average sign is already too small at a
b'6–7 for calculating measurements accurately. On the
other hand, when we consider SBC’s we see that the sign
allows one to go to lower temperatures even on a lattice as
large as 12312 with two smoothing frames. In general we
find that the average sign as a function of temperature de-
cays slower with SBC’s than with PBC’s and OBC’s for all
values of U. Particularly suprising is that the smooth system

with a bulk region of size 434 ~the solid triangles! has a
sign that decays substantially more slowly than either a pe-
riodic or open system whosefull size is 434.

There are several ways in which one can understand why
the average sign is better behaved with SBC’s rather than
with other types of BC’s. When we decrease the energy pa-
rameters in the Hamiltonian on the edges of the system, we
effectively make the local temperature there higher. Thus,
smoothing the energy parameters of the system is equivalent
to introducing a temperature gradient on the lattice without
any heat flow into or out of the bulk of the system.~This
strange temperature gradient cannot be realized in a real sys-
tem, as far as we know.! Thus, if one thought of the average
sign as a measurement that is obtained from averaging over
the entire lattice, it might be reasonable to expect its behav-
ior to be better with SBC’s rather than PBC’s. However, the
average sign does not really involve some averaging process
over the entire lattice—something slightly more subtle is go-
ing on.

However, this point of view can give us some insight into
understanding why finite-size effects are much smaller with
SBC’s rather than with PBC’s. Since the boundary is at a
relatively higher temperature, a larger number of local states
in the Hilbert space are accessible there. Thus, on the bound-
ary, the system has the freedom to choose a larger portion of
the Hilbert space, and thus, it can adjust itself in order to
satisfy the constraints of the bulk. In the partition function,
the lower temperature of the bulk region dominates the high-
temperature edge region, and so the edges adjust to satisfy
the bulk.

As mentioned above, the most surprising effect that
emerges from Fig. 6 is that the sign on an 838 system with
SBC’s and a 434 bulk region is better behaved than on a
434 system with OBC’s or PBC’s. At this point we only
have a qualitative argument for this effect. Based on the
projector QMC simulation of the same system, we can at
least show that this behavior is not completely unexpected.
We have verified that the average sign in the projector QMC
simulation has a very similar behavior, namely, that it is
improved with SBC’s. In the projector QMC simulation the
sign problem originates from the phase of matrix elements
~entering in the partition function! of the form

^f~0!uf~t!&[^f~0!ue2tHuf~0!&, ~5!

where uf(0)& is an initial trial state~which can be, for ex-
ample, a filled Fermi sea!, and uf(t)& is the initial state
propagated to imaginary timet5LDt. The fluctuating
Hubbard-Stratonovich fields cause the stateuf(t)& to evolve
through Hilbert space, and its precise evolution will depend
on the type of BC used. In particular, with SBC’s, in the
boundary region, where the temperature is high, the system
evolves slowly, so that the propagated state is still very close
to the initial state there. The state could evolve rapidly in the
bulk region, except for the fact that it is continuously con-
nected to the boundary region. Thus the edges act as a drag
force on the bulk, slowing the rapid variations in imaginary
time that cause the sign problem.

In order to verify this picture, we studied, using the pro-
jector method, a simplified ‘‘toy’’ model: a 2D noninteract-
ing tight-binding system with the addition of an Ising-like

FIG. 6. The average sign̂S& as a function ofb with U54 and
at ^n&50.87 for different system sizes and BC’s. The open symbols
are for OBC’s and PBC’s and the solid symbols are for SBC’s for
the sizes indicated. The solid lines are just guides to the eye.
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field D i561 coupled to the density operatorni , designed to
mimic the Hubbard-Stratonovich field:

H52(
^ i , j &

t i j ~ci
†cj1cj

†ci !1(
i

D ini . ~6!

Two particles were put in the system, since a single particle
never has a sign problem. The state of the higher-energy
particle had a nodal line which moved as the system evolved
through imaginary time. If the nodal line rotated through
180°, the system had a minus sign. A specific field configu-
ration was chosen with a spiral configuration through imagi-
nary time to try to drag the particles in a circle in order to get
a minus sign as quickly as possible. The field was able to
cause rapid rotation of the nodal line in both PBC’s and
OBC’s. In SBC’s, however, the nodal line was unable to
evolve rapidly on the edges~it was stuck, as if in a viscous
fluid!, and part of the nodal line in the bulk was held back.
Consequently, it was much more difficult to generate con-
figurations corresponding to minus signs. We believe the re-
sults support our picture for the improved behavior of the
sign in the interacting system.

We now present local measurements and correlation func-
tions at high enough temperatures to be accessible to both
PBC’s and SBC’s. When comparing the results with the two
types of BC’s we find similar behavior to the half-filled case.
Then we will present results at lower temperatures, unacces-
sible with PBC’s, and continue the analysis with SBC’s.

In Fig. 7 we show the kinetic energy as a function of
inverse temperature at a filling of̂n&50.87, with U54.
With PBC’s we can reach only a temperature ofb56 on an
838 lattice, while with SBC’s we can reachb512.

We considered three types of pairing correlation func-
tions, corresponding to different symmetries of the order pa-
rameter. In general, a given pairing correlation function is
given by

D~ l !5u^D i1 lD i
†&u, ~7!

where the pairing field operatorsD l are given by

D l
s5cl↑cl↓ , ~8!

for s-wave symmetry, and by

D l
s*5

1

2
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1

2
~cl↑cl1y↓1cl↑cl2y↓! ~9!

and

D l
d5

1

2
~cl↑cl1x↓1cl↑cl2x↓!2

1

2
~cl↑cl1y↓1cl↑cl2y↓!, ~10!

for extendeds-wave andd-wave symmetries, respectively.
In Fig. 8 we show the pairing correlation functions for the

above three different symmetry channels. For all tempera-
tures considered, we find that pairing in ad-wave channel is
always an order of magnitude stronger than for ans-wave or
extendeds-wave channel. Thus, we continue our analysis
with the d-wave pairing correlation function only, examine
its temperature dependence, and compare it to the noninter-
acting case to see whether there is an enhancement with re-
spect to theU50 case. In Fig. 9 we show thed-wave pairing
correlation function for several temperatures withU58,
showing that, as the temperature is decreased, there is an
enhancement in the pairing. For reference, we also show the
correspondingU50 results to show that there is enhance-
ment relative to the noninteracting case. In Fig. 10 we show

FIG. 7. The kinetic energŷKi&, measured at the center of the
lattice, as a function ofb for several systems sizes and with PBC’s
and SBC’s. The filling iŝ n&50.87 andU54. The open symbols
are with PBC’s and the solid symbols with SBC’s. The triangles are
for an 838 and the upside-down triangles for a 10310 lattices.
With SBC’s we use two smoothing frames on the boundary.

FIG. 8. The pairing correlation functionsD( l ) with U54 at
^n&50.87 and atb54. The solid circles are fors-wave, the solid
triangles are for extendeds-wave, and the solid squares are for
d-wave channels. The corresponding open symbols are forU50.
The solid lines are just guides to the eye.

FIG. 9. Thed-wave pairing correlation functionDd( l ) on a
10310 lattice withU58 at ^n&50.87 for several values ofb. The
corresponding open symbols are forU50.
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the d-wave pairing correlation function for lower tempera-
tures withU54. Here, atb510, we find evidence for en-
hancement over the noninteracting case, near theM point.
This may be a sign ofd-wave superconductivity.

V. CONCLUSIONS

We have implemented a numerical simulation of the 2D
Hubbard model using SBC’s. We have shown that at half-
filling, where there is no sign problem, one obtains thermo-
dynamic limit results on a smaller lattice than when using
PBC’s. Away from half-filling, we have found that the aver-
age sign decays more slowly with inverse temperature and
lattice size with SBC’s than with OBC’s and PBC’s, allow-
ing us to reach significantly lower temperatures and larger
lattices. We looked at the pairing correlation functions and
showed that thed-wave channel is favored over other types
of pairing channels, and that the pairing increases as we
lower the temperature. On a 10310 lattice forU54, at an
inverse temperature ofb510, we find enhancement of the
d-wave correlations with respect to the noninteracting case, a
possible sign ofd-wave superconductivity.
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18M. Vekić and S.R. White, Phys. Rev. B48, 7643~1993!.
19H.J. Schulz, Phys. Rev. Lett.64, 2445~1990!.
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