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Hubbard model with smooth boundary conditions
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We apply recently developed smooth boundary conditions to the quantum Monte Carlo simulation of the
two-dimensional Hubbard model. At half-filling, where there is no sign problem, we show that the thermody-
namic limit is reached more rapidly with smooth rather than with periodic or open boundary conditions. Away
from half-filling, where ordinarily the simulation cannot be carried out at low temperatures due to the existence
of the sign problem, we show that smooth boundary conditions allow us to reach significantly lower tempera-
tures. We examine pairing correlation functions away from half-filling in order to determine the possible
existence of a superconducting state. On & 10 lattice forU=4, at a filling of (n)=0.87 and an inverse
temperature o= 10, we find enhancement of tidewave correlations with respect to the noninteracting case,

a possible sign ofl-wave superconductivity.S0163-18206)03621-1

[. INTRODUCTION nite, but decays exponentially with decreasing temperature.
Thus, since averages must be computed by taking the differ-
The two-dimensional2D) Hubbard modélis considered ences of two positive quantities of similar magnitude, the
to be one of the possible models to describe the RAigh- numerical problem becomes unstable, giving rise to large
copper-oxide superconductdrsDespite the fact that this errors in the measurements. The sign problem in the Hub-
model describes quite well the insulating state and some dfard model becomes worse at low temperatures for values of
the normal state properties of the copper oxides, it is nothe doping where a possible pairing phase is predicted to
clear whether it contains all the necessary microscopic feaexist.
tures to also explain their superconducting propeftias. The appearance of these problems has stimulated the
though a variety of approximate calculatiéripredict the  search for new techniques for solving Hubbard-like models
existence of superconductivity in the doped Hubbard mOde'beyond guantum Monte Carlo simulatiofs2*In this paper
there is still need to find confirmation from a calculation e will instead show that some of the above limitations can

which does not depend on uncontrolleq approximations.  pa partially overcome using new types of boundary condi-
Quantum Monte Carl¢QMC) simulations have emerged_ tions (BC’s), smooth boundary conditionéSBC’s), which

as a method of choice in trying to solve this model numeri- e peen successfully applied to the study of one-

cally, since, in principle, the interaction is treated in an exact: . g .
wa y7 The atrf) intepral formalism is the standard startin tdlmensmnal(lD) systems within a large number of numeri-
Y. P g Yeal techniques® These BC'’s consist amoothlydecreasing

point, where the partition function is decomposed by usinqhe energy parameters appearing in the Hamiltonian as we

the Suzuki-Trotter formul8.A widely used algorithm em- . . _
ploys the Hubbard-Stratonovich transformation to decouplé@lpproach the edges of the lattice. The result of this operation
is that, instead of having a sharp and rigid boundary as is the

the interaction and integrate out the fermionic fieldisading ; L X ) .
to a bosonic path integral with an effective action which€@S€ with open boundary conditiot®BC's), with SBC’s

depends on the fermion determinant given in terms of thdh€ boundary extends itself into the system in such a way that
bosonic fields only. The trace over the Stratonovich fielddts exact size is not fully determinable. In general, we will
can then be replaced by a stochastic sampling in which thalk of thebulk of the system as the region where the energy
fermion determinant becomes essentially the weight of th@arameters are constant, and of tmindaryas the region
distibution of Hubbard-Stratonovich fieldS. over which the parameters are smoothly turned off. All mea-

However, these simulations have a number of hardwarsurements are made in the bulk region. In addition to reach-
limitations that cannot be easily overcome even with moderring the thermodynamic limit on a relatively smaller system
state-of-the-art supercomputers. The first problem is thathan with periodic boundary conditio®BC's) or OBC's
they can only be implemented on relatively small lattices andve find that with SBC’s we obtain an improvement in the
at relatively high temperatures, since the computational timéehavior of the sign problem which allows one to reach sig-
increases rapidly with the number of sites of the lattice, andificantly lower temperatures and to explore the possible ex-
as the temperature is lowered. Thus, ground-state propertiéstence of a superconducting phase in the doped system. In
in the thermodynamic limit can only be obtained via finite- Sec. Il we introduce the Hubbard model with SBC'’s, in Sec.
size scaling techniques and zero-temperature extrapolation$l we demonstrate the validity of SBC’s comparing them to
The second difficulty is the appearance of the sign problen’BC'’s in the discussion of the half-filled case, in Sec. IV we
when the system is doped away from half-filliigThe sign  describe the behavior of the average sign of the simulation
problem arises from the fact that the fermion determinantwith SBC’s and study pairing correlations in the nearly half-
which is interpreted as a probablity weight of the distributionfilled case, and, finally, in Sec. V we summarize and con-
of Hubbard-Stratonovich fields, is not always positive defi-clude.
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faces or boundaries which would cause scattering. However,
for most of the results shown here, we ude=2, andf;
takes on the values 0.817 574 476 and 0.182 425 524. A sur-
prising result of our work is that one can obtain excellent
smoothing using only two frames.

Ill. HALF-FILLED CASE

It is well known that the half-filled Hubbard model on an
infinite lattice has an antiferromagnetic ground state with
periodicity commensurate with the lattit® At finite tem-
perature, from symmetry considerations of the antiferromag-
netic order parameter, we know that the correlation length
remains finite, and, thus, no phase transition occurs. On a
FIG. 1. The smoothing functioh,=f, , for a 12x12 lattice  finite lattice, however, the behavior is different, since the

X correlation length can only grow as large as the linear size of

with four smoothing frames. The bulk region is x4 lattice. The

four concentric square frames are clearly visible. the system. Thus, we can still speak of an approximate tran-
sition temperature for a finite lattice corresponding to where
Il. MODEL WITH SMOOTH BOUNDARY CONDITIONS the correlation length reaches the size of the lattice. This

. . different behavior between a finite and infinite system is very
We consider the positive- Hubbard modélon a two-  crycial and could lead to the erroneous conclusion that even

dimensional lattice defined by the Hamiltonian the infinite system has a finite transition temperatfirtn
general, finite-size effects will be sensitive to the type of
H=— to(ct e +cle )= n BC’s used. Thus, it is important to choose BC’s which elimi-
<%a 1(CioCio ™t CjoCio) % Hillio nate finite-size effects already on relatively small lattices so

that extrapolation to the infinite system can be taken without
+E Ui(ny; — %)(nil_ 1, (1) the need to consider extremely large lattices.
i Despite the fact that the behavior of the half-filled case is
well known, we are interested in studying it in the context of
NSBC’s since we want to show that we can obtain thermody-
namic limit results on a relatively smaller lattice than when
using PBC'’s. Also, since at half-filling there is no sign prob-
Tem, we want to show that this effect is independent of the
S . behavior of the average sign with SBC'’s relative to PBC's.
shown in Fig. 1, in such a way that;/U=p;/u=f; and  \ye fing that applying SBC's to a finite lattice indeed reduces
tij /t=1/2(f;+f;), whereU, x, andt are the bulk values. In  fhite_gjze effects and allows faster convergence to the ther-

the following, without loss of generality, we will take=1,  q4ynamic limit. We consider two types of measurements,
and express all the other parameters appearing in the Ham\.|" quantities and correlation functions. We first consider

tonian of Eq.(1) in dimensionless form. The! are fermion the average kinetic energy per site, given by

creation operators in a Wannier orbital centered atisitéh

spin o, w is the chemical potential, and(,zcit,ci(, is the 1

density operator. (Kiy=- 2 > tij(CiT(er(r"_ CJ-TUCm) : 3
The above rescaling of the energy parameters in the he

Hamiltonian is motivated by a similar procedure that was

: : where the sum runs over glinearest neighbors of In Fig.
fﬁgienfzglr!}i/napg:\ictii;?i45(‘:%6(;?'el's[)l‘rsoﬁtiﬁz?\(irgl}g;?or?fof 2 we show(K;) as a function of the linear size of the system
9 h 9 ; 9 using PBC’s and SBC's. The results for SBC’s are obtained
the 1D analog, but is not unique. Here we use

o i with the number of smoothing frame¥; fixed at 2. This
fi=y(1—di /[Ny +1]), whered; measures the distance of ).\ "that the bulk will have a linear size that is four sites
sitei from the nearest edge of the system, starting at 1 fo

) . . maller than the correspondin stem with PBC's. It is ver
i on the outermost “frame,” or square, of siteN; is the sma orresponding syste ¢ ey

number of frames in the boundary redion. The smoothin striking that already on a %6 system with a X2 bulk
umboer ot 1 ! u y region. ! gregion SBC's give a relatively good estimate to the value
function is given by’

that we obtain on a 1616 lattice with PBC’s. A similar

which consists of a system of itinerant electrons with a
on-site interaction of coupling strengtly . Heret;; is the
nearest-neighbor hopping parameter between sitasd j.
All the above energy parameters appearing in the Hamil
tonian are scaled according to the smoothing functipn

1 X< =0 conclusion can be drawn from Fig. 3, where we show the
L ' 1o ’ double occupancyn;;n;;). The finite-size effects in this
X— case are much stronger with PBC'’s than SBC's. Notice that
=4 — h— 0<x<1], o .
yx) 2 1+tan x(l—x)}' @ both in Figs. 2 and 3 the measured quantities saturate to the

same value for either type of BC as the system size becomes
larger, as expected, since the type of BC should not have
The most important property of the functigrix) is that it  much effect on the behavior of a very large system.

and all its derivatives are continuous everywhere. Thus in the We also consider several other types of local measure-
limit of a large number of frames there are no precise interments, leading to the same conclusitine thermodynamic

0, x>=1.
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FIG. 2. The kinetic energyK;), measured at the center of the  FIG. 4. The total energyE;), measured at a sifein the center
lattice, as a function of linear system sikg with U=4 at half-  of the lattice, as a function of inverse temperatydor several
filling at B=6. The solid squares are with PBC’s and the solid system sizes and with PBC'’s and SBC's. The fillingrig=1 and
circles with SBC’s with two smoothing frames. U=4. The open symbols are with PBC’s and the solid symbols

with SBC’s. With SBC’s we use two smoothing frames on the

limit is reached on a smaller lattice with SBC's rather than Poundary. The solid lines are just guides to the eye.

with PBC’s or OBC’s In Fig. 4 we show the average total

energy as a function of the inverse temperature. AlSO, in th|§|les that, in order to obtain better statistics, we need to run
case, we see that for each temperature considered, with€ simulation longer than with PBC's. This is probably the
SBC's we reach the thermodynamic limit more rapidly thanonly significant disadvantage of SBC’s over PBC's. In Fig. 5
with PBC’s. This behavior is very similar to what we found We show the spin-spin correlation function, defined by

in the numerical density-matrix renormalization group

(DMRG) study of the spiny Heisenberg chain with SBC's. c(h=c(l,ly) =iy =N, D=0 ), (4
gzghlgd tgﬁts(r?z;?érﬁigcssla Ezntcveithgggrgstate energy ISfor several systems sizes with PBC’s and compare it to the

We also examine various correlation functions in order to]?ase W't: S_BC_ts on a ]}?hlot Ia’ctt;]chv(\g:ch wo smobotthlng
show that the behavior is similar to that of the local quanti- rames. Again, it appears that wi S W€ can obtain on a

ties. When using SBC's the correlation functions can only besmr;lllerl system ”}Ee sarne r'esultrs1 as Wt'rt]h tPtIEC’s on "’} (:Sogé!d'
evaluated for two sites separated by a distance only as lar ably larger system. raving shown that theé use o S

as the size of the bulk. Similarly, with PBC's we can only lows one to reduce finite-size effects on relatively small

calculate correlations between points as far out as half th@ttmebs, we n%w .StUd% theH e;ft;act dOf SSCis on thfe aver:aﬁe
linear size of the system, since the lattice wraps around ont Ign Dby considering the Rubbard model away irom haff-

itself. An additional difference is that, since SBC'’s break the iling.

translational invariance of the Hamiltonian, the measurement

of local quantities and correlation functions cannot be aver- IV. DOPED SYSTEM
aged over the entire lattice, as can be done with PBC’s. In A d th ¢ the lona- tif i
this case, the averaging can only be done over sites, or pairs S one dopes the system, the long-range antiierromag
of sites, which are equivalent under the reduced symmetry o'?et'c order which is present in the ground state of the half-
the lattice (reflection and inversionwith SBC’s. This im-

0.3 —
0.130 — H\i\i——i : 0.2 | (n)=1, U=4, B=6 ]
0.1 | .
0.125 | . -~ L
%00 L 1
- T i
“0.120 | . 0.1 | _
£ (n)=1, U=4, B=6 I a ox8
-0.2 smooth 2 12§12 b
0.115 | o periodic | S v 1010y q6x16
s smooth 0,0 1 (4,0) 1y (44) 1, (1,1)
1,=0 ;=4 y=1x
0.110 L . . . . . .

40 6.0 80 100 12.0 140 16.0 . . . ) .
Ny FIG. 5. The spin-spin correlation functiafl,,l,) at half-filling

with U=4 and atB=6. The path taken in calculating(l,,l,) is
FIG. 3. The double occupangy;;n; ), measured at the center shown in the inset. The solid squares are for & 10 system with
of the lattice, as a function of linear system sMgwith U=4 at SBC’'s and two smoothing frames. The open symbols are with
half-filling at 3= 6. The solid squares are with PBC’s and the solid PBC’s and on sizes as shown. The solid line is a guide to the eye for
circles with SBC’s with two smoothing frames. the case with SBC's.
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. . . . - - with a bulk region of size 4«4 (the solid triangleshas a
U=4, (n)=0.87 sign that decays substantially more slowly than either a pe-
riodic or open system whodell size is 4x 4.

There are several ways in which one can understand why
the average sign is better behaved with SBC’s rather than
@ 0.6  x 12%12 | with other types of BC's. When we decrease the energy pa-

04 | gei')i&dic | rameters in the Hamiltonian on the edges of theT system, we
& 8x8 effectively make the local temperature there higher. Thus,
0.2 | open ) smoothing the energy parameters of the system is equivalent
2 ‘é’,‘;ﬁ to introducing a temperature gradient on the lattice without
0.0 L ' : : any heat flow into or out of the bulk of the systefiThis
2.0 4.0 6.0 8.0 0.0 12.0 strange temperature gradient cannot be realized in a real sys-

8 tem, as far as we knowThus, if one thought of the average
. . o sign as a measurement that is obtained from averaging over
FIG. 6. The average sigff) as a function off with U=4 and the entire lattice, it might be reasonable to expect its behav-

at({n)=0.87 for different system sizes and BC’s. The open symbols . ) ,
are for OBC'’s and PBC's and the solid symbols are for SBC's forIor to be better with SBC's rather than PBC’s. However, the

the sizes indicated. The solid lines are just guides to the eye. average Sigf‘ doe; not really in.volve' some averaging process
over the entire lattice—something slightly more subtle is go-

filled band is abruptly destroyed and short-range incommen9 0On. S _ _ S
surate magnetic correlations set'fhHere we are mainly However, this point of view can give us some insight into
interested in studying the possible existence of a supercorynderstanding why finite-size effects are much smaller with
ducting phase away from half-filing. Recently, there haSSBC_’s rath.er than with PBC’s. Since the boundary is at a
been an enormous effort in trying to obtain the phase dia;elatwely higher temperature, a larger number of local states
gram of the doped Hubbard model. Most of the studies havé the Hilbert space are accessible there. Thus, on the b_ound-
not been able to determine conclusively whether there is oY the system has the freedom to choose a larger portion of
there is not a superconducting phase. Approximate tecl€ Hilbert space, and thus, it can adjust itself in order to
niques have been used, such as self-consistent calculatio§&tisfy the constraints of the bulk. In the partition function,
mean-field theories, and conserving approximatiGrsiten the lower temperature _of the bulk region dommat_es the hlgh-
suggesting the possibility of a parameter regime havinQ{emperature edge region, and so the edges adjust to satisfy
d-wave superconductivity. QMC results, which show evi- e bulk. o
dence of an attractive pairing interaction, but no direct evi- AS mentioned above, the most surprising effect that
dence of pairing, have not been completely satisfactory beemerges from Fig. 6 is that the sign on ar 8 system with
cause of the appearance of the sign problem already &BC’'S and a &4 bulk region is better behaved than on a
relatively high temperatures. The possibility exists that the? <4 system with OBC's or PBC'’s. At this point we only
temperature at which the pairing occurs is significantly lowefh@ve a qualitative argument for this effect. Based on the
than the accessible temperatures even on as small lattices Rf@jector QMC simulation of the same system, we can at
8x8. least show that this behavior is not completely unexpected.

Although initially we did not expect changing boundary We have verified that the average sign in the projector QMC
conditions would have a large effect on the average sign, i§imulation has a very similar behavior, namely, that it is
fact they can. In general, the average sign decays exponelpProved with SBC’s. In the projector QMC simulation the
tially with the inverse temperatur@ and system size\, sign p_robl_em Orlglnz_zlt_es from _the phase of matrix elements
(S)~e AN 1 where A depends on the QMC methdde- (entering in the partition functiorof the form
terminantal, world line, projector, ejc.If (S) falls below
about 0.1, it becomes impossible to obtain reasonable results. (6(0)|p(7))=(p(0)|e” ™) #(0)), (5)
Previously, we showed that for large valueslfthe sign
decays slower in the world-line method than in the determiwhere|$(0)) is an initial trial state(which can be, for ex-
nantal approact’ Here we find that the decay of the averageample, a filled Fermi séaand|4(7)) is the initial state
sign can be substantially slower with SBC’s than with eitherpropagated to imaginary time=LA7. The fluctuating
open BC’s or with PBC's. Hubbard-Stratonovich fields cause the statér)) to evolve

In Fig. 6 we show the average sign as a function of in-through Hilbert space, and its precise evolution will depend
verse temperature for various lattice sizes at a filling ofon the type of BC used. In particular, with SBC’s, in the
(n)=0.87 withU=4 for several types of BC's. If we con- boundary region, where the temperature is high, the system
sider the case with OBC’s and PBC'’s only, we see that on aevolves slowly, so that the propagated state is still very close
8X8 lattice the average sign is already too small at ao the initial state there. The state could evolve rapidly in the
B~6-7 for calculating measurements accurately. On théulk region, except for the fact that it is continuously con-
other hand, when we consider SBC’s we see that the signected to the boundary region. Thus the edges act as a drag
allows one to go to lower temperatures even on a lattice aforce on the bulk, slowing the rapid variations in imaginary
large as 1X 12 with two smoothing frames. In general we time that cause the sign problem.
find thatthe average sign as a function of temperature de- In order to verify this picture, we studied, using the pro-
cays slower with SBC’s than with PBC’s and OBC's for all jector method, a simplified “toy” model: a 2D noninteract-
values of U Particularly suprising is that the smooth systeming tight-binding system with the addition of an Ising-like
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-1.35 . - . . . 10—
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FIG. 8. The pairing correlation function®(l) with U=4 at
lattice, as a function oB for several systems sizes and with PBC's (r_1>:0.87 and aj3=4. The solid circles are fo&_;-wave, the solid
triangles are for extendeg-wave, and the solid squares are for

and SBC's. The filling ign)=0.87 andU =4. The open symbols i
are with PBC’s and the solid symbols with SBC’s. The triangles ared-wave channels. The corresponding open symbols aréJtso.

for an 8x8 and the upside-down triangles for a>.00 lattices. The solid lines are just guides to the eye.
With SBC’s we use two smoothing frames on the boundary.

FIG. 7. The kinetic energyK;), measured at the center of the

for s-wave symmetry, and by
field A;= =1 coupled to the density operatay, designed to 1 1
mimic the Hubbard-Stratonovich field: AY = E(CITCI+XL+CITCI7><1)+ E(CITCHyﬁClTCl—yi) (9)

H:_;:> tij(CiTCj‘f‘C}.Ci)'i‘Ei Aini. (6) and
1)

Two particles were put in the system, since a single particIeAd_
never has a sign problem. The state of the higher-energy'
particle had a nodal line which moved as the system evolved
through imaginary time. If the nodal line rotated throughfor extendeds-wave andd-wave symmetries, respectively.
180°, the system had a minus sign. A specific field configu- In Fig. 8 we show the pairing correlation functions for the
ration was chosen with a spiral configuration through imagi-above three different symmetry channels. For all tempera-
nary time to try to drag the particles in a circle in order to gettures considered, we find that pairing imavave channel is

a minus sign as quickly as possible. The field was able t@lways an order of magnitude stronger than fosamave or
cause rapid rotation of the nodal line in both PBC’s andextendeds-wave channel. Thus, we continue our analysis
OBC'’s. In SBC's, however, the nodal line was unable towith the d-wave pairing correlation function only, examine
evolve rapidly on the edgd# was stuck, as if in a viscous its temperature dependence, and compare it to the noninter-
fluid), and part of the nodal line in the bulk was held back.acting case to see whether there is an enhancement with re-
Consequently, it was much more difficult to generate conspect to theJ =0 case. In Fig. 9 we show tliewave pairing
figurations corresponding to minus signs. We believe the reeorrelation function for several temperatures with=S8,

sults support our picture for the improved behavior of theshowing that, as the temperature is decreased, there is an
sign in the interacting system. enhancement in the pairing. For reference, we also show the

We now present local measurements and correlation fun@orrespondingJ =0 results to show that there is enhance-
tions at high enough temperatures to be accessible to bothent relative to the noninteracting case. In Fig. 10 we show
PBC's and SBC’s. When comparing the results with the two
types of BC's we find similar behavior to the half-filled case.
Then we will present results at lower temperatures, unacces-
sible with PBC’s, and continue the analysis with SBC's.

In Fig. 7 we show the kinetic energy as a function of
inverse temperature at a filling dih)=0.87, with U=4.
With PBC’s we can reach only a temperaturedof 6 on an
8X 8 lattice, while with SBC’s we can reagh=12.

We considered three types of pairing correlation func-
tions, corresponding to different symmetries of the order pa-
rameter. In general, a given pairing correlation function is
given by

1 1
E(C|¢C|+x¢+C|TC|—x¢)— E(CITCIerJ,_'—CITCIfyL)y (10

10° — T T T T T T T

0,00 1L (3,0) 1y
=0 1

x= y=l1x

D(H=[(Ai AN, (7)

where the pairing field operatots, are given by FIG. 9. Thed-wave pairing correlation functiom¢(l) on a
s 10% 10 lattice withU =8 at(n)=0.87 for several values @. The
Ap=cyicy, ) corresponding open symbols are fde=0.
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L S—
U=4, 10x10, (n)=0.87
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10°3

DY(1)

107
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10e B = : -
©0) L (30 1, (33) 1 (L1) (2.1)
1,=0 L=3 =lx

FIG. 10. Thed-wave pairing correlation functioDd(l) on a
10% 10 lattice withU =4 at{n)=0.87 for several values @. The

path taken through the lattice corresponds to a triangle as indicat

V. CONCLUSIONS

We have implemented a numerical simulation of the 2D
Hubbard model using SBC's. We have shown that at half-
filling, where there is no sign problem, one obtains thermo-
dynamic limit results on a smaller lattice than when using
PBC's. Away from half-filling, we have found that the aver-
age sign decays more slowly with inverse temperature and
lattice size with SBC’s than with OBC’s and PBC's, allow-
ing us to reach significantly lower temperatures and larger
lattices. We looked at the pairing correlation functions and
showed that thel-wave channel is favored over other types
of pairing channels, and that the pairing increases as we
lower the temperature. On a X@0 lattice forU=4, at an
inverse temperature g8=10, we find enhancement of the
d-wave correlations with respect to the noninteracting case, a
e%ossible sign ofi-wave superconductivity.

in the inset. The solid lines are just guides to the eye. The solid

squares are foB=4, the solid circles are foB=6, the solid tri-
angles are fo3=8, and the open squares are &+ 10. The cor-
responding open symbols are fdr=0.
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