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Collective modes in the electronic polarization of double-layer systems
in the superconducting state

F. Forsthofer, S. Kind, and J. Keller
Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
(Received 5 October 1995

Standard weak-coupling methods are used to study collective modes in the superconducting state of a
double-layer system with intralayer and interlayer interaction, as well as a Josephson-type coupling and single-
particle hopping between the layers by calculating the electronic polarization function perpendicular to the
layers. Analytical results are derived for the mode frequencies corresponding to fluctuations of the relative
phase and amplitude of the layer order parameters in the case of interlayer pairing and finite hogping
effect is found for finitk-dependent hopping: then the amplitude and phase fluctuations are coupled. Therefore
two collective modes may appear in the dynamizalxis conductivity below the threshold energy for breaking
Cooper pairs. With help of numerical calculations we investigate the temperature dependence of the collective
modes and show how a plasmon corresponding to charge fluctuations between the layers evolves in the normal
state.[S0163-18206)04622-X

[. INTRODUCTION bands for the motion of electrons parallel to the layers cor-
responding to states with symmetric or antisymmetric wave
The problem of collective modes in superconductors is dunctions'? In the superconducting state both bands acquire
very old one. Bogoliubov and AndersJo%lpointed out that gaps. In such systems one can discuss different collective
charge oscillations can couple to oscillations of the phase ghodes®™*° corresponding to fluctuations in the occupation
the superconducting order parameter via the pairing interaddumber of the two bands and to charge oscillation between
tion. In a neutral system this would lead to a soundlike col-the two layers. - _ . _ .
lective mode. In a charged system the frequency of this mode [N @ series of pa_pe% we have investigated in detail the
is pushed up to the plasma frequency due to the Iong-rang@ec"ron'c polarization of double-layer systems in the normal

Coulomb interactiof* and at these high frequencies this and superconducting state and have studied the influence of

mode is of no importance for the superconducting properties(.:harge fluctuations between the layers on the renormalization

The situation is different for modes which do not coupleOf transversec-axis phonons. Here we have assumed a
to long-range density fluctuations. Leggethowed that in a k—q§:per_1dent t|ght—b|nd|ng couplmg b_etween the Iaye_rs a_nd
two-band superconductor oscillations in the occupation difpamng interactions for electrons within the same and in dif-

; between the two band e to phase fluctuati ferent layers. In our numerical calculatidhsve included
erence between the two bands couple 1o phase Huctualiog,, 1he vertex corrections due to the BCS interaction and

of the order parameters for the two bands giving rise 0 gne coulomb interaction between the layers, thus taking into
collective mode with a frequency belowA2 the threshold  5ccount the effect of possible collective modes. We found a
energy for breaking Cooper pairs. Also oscillations of thegpift of phonon frequencies in the superconducting state
amplitude of the order parameter are not perturbed by chargghich is in reasonable agreement with far-infrared experi-
fluctuations. The frequency of this mode, however, is at thgnents. As in this case we assumed a fairly large value for the
threshold for particle-hole excitations in normal isotropic SU-tight-binding coupling the collective modes are strongly
perconductors. Only in special cases can overdamping of thigamped by quasiparticle excitations. In the present paper we
mode be avoided.Low-frequency collective modes may analyze in more detail the conditions for undamped collec-
also exist in superconductors with a multicomponent ordefyye modes in the electronic polarization. The results depend
parar_nete?: Such order parameters are frequently discussegyycially on the values of the different pairing interactions.
candidates for some heavy fermion superconductors. In principle one has to distinguish three different types of
Another possibility to avoid the influence of long-range jnteractions:(1) an interaction between electronic densities
Coulomb forces on the collective modes is realized inyjthin one layer,(2) an interaction between electronic den-
strongly anisotropic supercont_juct8r£n p?rtmular Inape- sities in different layers(3) an interaction between mixed
riodic system of superconducting layefs: In the case of a  gensities from the two layers. All three interactions can be
finite value of the wave vectay, perpendicular to the lay- mediated by phonon@r other types of bosoisthe first two
ers, density fluctuations within the layers do not build uppy a change of local potentials induced by lattice displace-
long-range Coulomb forces. In the lingt—0 only the Cou- ments, the third one by a change of the hopping energy be-
lomb interaction between the layers remains. tween the two layers. The first two interactions conserve the
Recently the question of collective modes has beemumber of particles in the two layers, while the third inter-
brought up again in connection with the multilayer structureaction may interchange particles between the two layers. In
of the highT . superconductors. In a double-layer system likeparticular, this interaction allows a transfer of two particles
Bi-Sr-Ca-Cu-O or Y-Ba-Cu-O one obtains two electronic as in a Josephson coupling. This type of coupling, which can
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also be derived from a second-order hopping process, hasimerical results for the polarization function are presented.
gained much interest recently. Anderson and co-worker3he results are summarized in Sec. VI.
have argued that in strongly correlated electron systems co-
herent single-particle hopping between the two layers is sup- 1. NAMBU FORMALISM FOR TWO-BAND SYSTEMS
pressed, while a coherent momentum conserving second-
order hopping process is possibfeln such an interlayer-
tunneling model without single-particle hopping two We consider an electronic double-layer system described
collective modes involving fluctuations of the phase and amby the Hamiltonian
plitude difference of the layer order parameters are fddnd.

The size of the effective hopping between the layers is
currently under debaf€:?° Therefore we investigate here Ho=k2 €(CliaCiko T CooCoko) + tk(ChioCiko+ CliaCako)
collective modes for arbitrary hopping. If the suppression of 7 1)
single-particle hopping is due to strong correlation effects
also deviations from Fermi-liquid behavior may be expectedand the interaction
In order to keep the discussion of collective modes as simple

A. Model

as possible we use here a Fermi-liquid description with a 1 R
simple band structure and treat superconductivity within an Hs=§ E E +V||ci*k+q(,cik,,qo,cik/,,/cik(,
extended BCS theory. The theory developed here is aimed at kk'qoo’ !

exploring the different possibilities for collective modes in
double-layer systems. For a realistic description of High-
materials like Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O one certainly
has to include an angular-dependent hopgingnd possibly A
d-wave pairing. _ +Cles qoCikr qor Cik? o7 Ciko) - 2

In a two-layer system one has to consider two order pa- ) ) o ]
rameters corresponding to pairing of electrons in one layefiere tx describes a tight-binding coupling between the two
and in different layers. This leads in general to different or-layersi =(1,2),j =3—i. The couplings/, V, , J are effec-
have different signs fos-wave pairing. Depending on the e€lectronic densities within one layev, between different
relative sign of the band order parameters one can distiayers, andl is the coupling between mixed densities. The
guish between two different pairing typesy which both have0r|g|n of these interactions is a combination of an attractive
s-wave symmetry: In the case of dominant intralayer inter-interaction due to the exchange of phonémsother bosons
action the order parameters of the two bands have equal sigAd @ screened repulsive Coulomb interaction. This means
while for dominant interlayer interaction they have oppositethatJ is much smaller tha, andV|. Because] includes
sign?1=24In Refs. 25 and 26 it is shown that antiferromag- intrinsic tunneling of Cooper pairs from one layer to the
netic interactions between the two layers favor a supercorther,J is called Josephson coupling. Here we neglect any
ducting state with interlayer pairing and anisotropiwave ~ Momentum dependence of these interacti@eept for a
symmetry. cutoff introduced later

In the following discussion we will consider all three ~ The HamiltonianH, can be diagonalized by introducing
types of pairing interactions mentioned above and will alsgfermionic operators:
take into account single-particle hopping between the layers.
In this paper we consider or_1|ywa_ve pairi_ng by neglecting 1 1
the k d_ependence of the pairing interaction. We discuss the alkg=T(02ko—clkU), aZKU:T(C2kU+ Cike)
collective modes for both pairing types and calculate the 2 2

electronic polarization between the two layers, because thiéorresponding to states with antisymmetric and symmetric

quantity enters directly the dynamical conductivity for,5ve functions on the two layefthis symmetry is not bro-

electric-field vectors in the direction. Our results extend yap by introducing the interactionsWe then obtain two
earlier work on collective modes in two-layer systemspangs with quasiparticle energies

mainly in the following respectq1) we calculate collective
modes in the case of interlayer pairin@) we find that a
k-dependent tight-binding hopping between the layers €1k= €k~ i
couples amplitude and phase modes, making it possible that
both modes appear below the threshold frequency in the ORF,
tical conductivity.

Our paper is organized as follows: In the following sec- " P
tion we specify our model and write down the interactions in W= (ka1 -k 8z ,82-k|) -

a 4x4-Nambu matrix notation. Then we calculate the Self'With help of these spinors we can express the Hamiltonian

energies and discuss the sglf-consistency e_qugtions. In_ S&% the two-layer system as follow@part from constants
[l we solve the vertex equations for the polarization function

in the neutral and charged system. The collective modes for
thek—ln_dependent hppplng ma_trlx element are studied in Sec. Ho= E EK\PEDOS\I’k_tk\I’EDss\Pka 3)
IV for intralayer pairing and interlayer pairing. In Sec. V K

T T
V. Cik+qoCik’ — o' Cik’ o* ik

T T
+‘](Cik+qacik’—qg’Cjk’o"CjktT

€= Ek+tk .

In order to treat superconductivity it is useful to combine
e Fermi operators to a Nambu spihor
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1 f o f whereP=P% &=pP¥ A=P!, j=p%
Hs=5 Z V(W DOW ) (W, D®Wy) ® andA are called phase and amplitude operator in the
kk'.q literature’* because in the case that the phases of the layer
JFV_(‘I’Jr Dlg‘l’k)(‘lﬁ_ DBW,) order parameters are zed, and A measure the difference
k+q k'—q f
of the phases and amplitudes of the layer order parameters.
+J(\Ifl+qD33\Ifk)(llfT,7qD33qfk,)_ (4) j isrelated to the interlayer current density. This is strictly so

o only in the case of constant interlayer hoppifg=t and
HereV=(V|+V,)/2, V=(V|—V,)/2. DI' are 4<4 ma-  vanishing Josephson couplidgthen the equation of motion
trices in Nambu space which are constructed from two set@tj=P is fulfilled. In the casel# 0 the current-density op-

of Pauli matricesD”zrjo,. Example: erator becomes more complicated; it contains also two-
particle operators. Neverthelegswill be called the current
13 0 o3 operator in the following.
D*=7103= 0

- 03 33 . B. Self-consistency equations
The terms containing the matricB8? D32 describe the sum

and difference of density operators of the two bands, while The Green's functions can be combined to a
the term withD 3 contains fermionic operators from differ- 4>4-Nambu matrix. We assume the Green's-function ma-
ent bands. Accordingly leads to interband transitions, X 10 be diagonal in the band indices:
while V andJ cause intraband transitions only. In principle, G,(k,2) 0
. . . . 1 ’

one can derive a further interaction mediated by phonons
which couples operators characterized by the matriz&s 0 Gz(k,Z))’
andD%. Such an interaction is omitted here, because it has
no influence on the interlayer polarization function. where G, (k,z) are 2<x2 matrices for each band. This as-

For the interaction®,V, J a cutoff has to be introduced sumption which neglects pairing in different bands is reason-
either in momentum space or frequency space. We introducgble since the two bandén the presence of a finite tight-

G(k,2)= ©)

the cutoff in momentum space: binding coupling have different symmetried, and this
symmetry is preserved by the interactibly. One conse-
— [#0 if |e—pul|ew—pul<w quence of this assumption is that the phases of the order
V.V,J =0, otherwise, ®) parametergci,Ci_,) for pairing in one layer are equal for

the two layergequal amplitude and phaséntraband pairing

o, is the cutoff energyu the chemical potential. Note that seems to be the ground state for all negative value$, of
the cutoff has been introduced for the eneegyand not for  while it may become unstable for large positi¥e|t,|. This
the band energies,, . Otherwise we obtain inconsistencies is supported by the calculation of the ground state of a model
in solving the vertex equations. with two electrons on two sites with all the interactions con-

In the following we are primarily interested in the calcu- tained in the HamiltonianH,+Hg. Defining operators
lation of the interlayer polarization function which is the a__=(1/\/2)(c,,*c;,) for the single-particle eigenstates of
correlation function of the electronic polarization perpen-H, one finds that the ground state contains only diagonal
dicular to the .layers. The latter |S descri-b@[p to a factqr termsaLTa‘LJO) as |ong as the Josephson Coup"ng is attrac-
ed’2, whered is the layer separation arglis the electronic  tiye J<0 but contains nondiagonal terms for large positive

charge by the operator valuesJ> t,|. In our numerical calculations of the polariza-
tion function we will show that an instability occurs for large
P=2 hCoror ClkoCiko- ()  Ppositive Josephson coupling
ke The bare Green'’s function is given by
Ther(_a are th_ree other operators_whlch couple to the interlayer GSal(k,Z) =200~ (€qx— 1) T3. (10)
polarization in the vertex equations. These are
In the presence of the pairing interaction we have self-energy
i - b corrections:
o= _'Ek Cok1C2-k| ~C1k1C1-k| ~C2—k|C2ki T C1-k| C1ks »
G Yk,2)=Gy'(k,2)—3(2), (12)
_2 tot ot where the self-energ},(z) contains contributions from in-
A= . C2k1C2-k| ~ C1kC1—k) T+ C2-k| Cak ~ C1—k|C1kf » traband and interband interactions:
) 1 _
S=— = VD%G(K,iwy) D%+ VDEG(K,iwy,) D3
. . T T kwm
J=—1 kZ C2keCiko ™ C1koC2ko -
ag

+JID®G(K,i w,,) D%, (12)
In Nambu space a4 matrix corresponds to each operator: The self-energy is diagonal in the band indices
PI=3 wiplw,, ®) . (21 0)
k =

0 3, (13
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and the 2<2 components, , are given by Xo— X1
———— —2Njt. (20)
1 o wW-V
=——2, Wo3G,(k,i +Vo3Gy(k,i , . .
ot Bgm 3G1(klom) g+ VasGalkilwm)og The solution of the gap equations for a two-band system

is discussed already by Leggetthe qualitative results can
1 _ — . be summarized as follows: There exists no solution, if
3= EkE Wo3Gy(K,iwm) o3+ VosGy(Kiwm)os W=>0 andW?>V?>0; then the intralayeW,=V,+J and
om (14) the interlayer couplingV, =V, +J are repulsive. There are
two nontrivial solutions, ifW<0 and W?>V?>0; in this
with the intraband interactiov=V+J. While the interac-  caseW| andW, are attractive. The solution corresponding to
tionsV, J enter in the same way into the self-energy, this isthe ground state depends on the sign of the interband inter-
not so in the vertex equations. Therefdreannot simply be  actionV. If V<0, the state where the gaps have the same
incorpqrated into the interactiovi by a proper redefinition. sign (A,A,>0) is stable; ifV/ > 0, then the gaps have oppo-
Writing % ,=—A,01—X,03 we have site signs A;A,<0). The reason is a term in the free-energy

1 o proportional toVcos(p,— ¢,), where ¢1, ¢, are the phases
G, (k2)=200~ £aos T A0 19 6f the order parameters; ,A,.
With &, = €yt Xo— K. If the density of states for the two bands are eqlais

A is the energy gap of band. x,, is an energy shift due ha}ppens for a constant c_iensity of _states and for
to the pairing interaction which is also present in the normak-independent interlayer hoppirty the two 'ntzegra;ﬁi are
state. In a one-layer systexy, can be incorporated into the €dual for equal values of the gaps €1, for A7=A%) then
chemical potentiak, but this is not possible in the two-layer for all solutions of the gap equations one always finds
System with inter|aye|’ hoppmg |A1|=|A2| and X1=—Xo irrespective of the values of the

Performing the frequency summation we get the follow-coupling constants, i.e., one either has pure intralayer pairing
ing self-consistency equations for the gaps and energy shiftéor W <0 with (A;+A;)/2=A#0, (A,—A;)/2=A, =0

or pure interlayer pairing forW, <0 with A, #0 and

A= _WA1|1_V_A2|2, A =0. In the more general case the density of states of the
two bands is different at the Fermi surface, and the two in-
Az=—WAz|z—V_A1|1, (16) tegrals have different values also in the case of equal or

vanishing gaps, and the two order parameters are coupled.
For the numerical solutions of the self-consistency equa-

tions and vertex equations witkdependent hopping we use

the following simple model by choosing two bands with qua-

Xlz _WKl_W(z,

Xp= — WKy = VK, (17 dratic dispersion but different effective massesd different
with the integrals density of states
€= €x—t,=K?/(2my) —t,,
= ! tanh@ Ki=> Sak tanh@ A C
@ 2E 2 0 U & 2E 2 €= €+t =K/ (2my,) + ;. (21)
and E = &2, + A2 In the numerical calculations we use the following disper-

Without a cutoff the integrals; would diverge. Approxi- sion parameters to g&tdependent hopping:
mately the integrals have the values
y d 2my/h?=1eV *A"2 2m,/h?=1.2 eV 1A~2
l,=N,nQRw./Max(A,,T)), (18

to=0, w©=0.3 eV, w,=0.25 eV. (22
For the intraband and interband coupling constants
W=V+J andV, entering the self-consistency equations we
choose

whereN,, is the density of states of band per spin at the
Fermi surface, and. is the cutoff.

The self-consistency equatiofis7) describing the energy
shifts X, , of the two bands can be solved approximately by
observing that the integrands are nearly step functions. As- __ Ve +
suming constant density of stathls, N, (this is given by a NoW=—0.139,  NoV==0.185. (23
guadratic two-dimensional dispersjaandk-independent in- We have chosen these values for the coupling constants in

terlayer hopping one finds order to getT. values which are appropriate for high-
o superconductors and ensure also the appearance of the col-
X1=WNy(t+X;) —VNo(t—X5), lective modes we want to study.
Figure 1 shows the dispersion for the two bands in the
X,= _WNZ(t_X2)+W\ll(t+X1)- (19  hormal state and the quasiparticle dispersions in the super-

o conducting state at zero temperature in tkeregion
In the limit of W,V—0 and cutoffw,— these shifts van- |e,—u|<w.. Figures 2a), 2(b) show the temperature de-
ish, but the ratio X,—x;)/(W—V) stays finite pendence of the gaps for negatiVe(a) and positiveV (b).
[No=(N;+N,)/2]: Because the effective masses andm, are nearly the same
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A. Neutral system

We consider response functions where the bare vertex is
one of the matrice®!', corresponding to the operata(®).
In the standard ladder approximation the vertex equation for
the renormalization of a vertex with matr' reads

(eV)

_ 1
IN'(iwg)=DI'— EKE VDG (k,iw,

+iw)M(iwg)G(K,iw,) D%

+VDBG(K,iwn+iw)T (i wg) G(K,iw,) DX

0.3 0.4 0.5 0.6 0.7

K (1/A) +IDBG(K,i 0, +iw) M (iwg) G(K,i w,) D,
o o (24)
FIG. 1. Dispersions in the normal statg,, €, and quasiparti- )
cle dispersions in the superconducting state-0) in thek region ~ The vertex function depends only on the external frequency
|e]<w.. The parameter&22,23 are used. wg, Not on the momenturk (apart from the cutojfand the

internal frequency of the Green’s function, because the inter-
(22) the values of the two gapa; and A, are nearly the actions are assumed to be constant. The |gbeldicates to

same. For repulsive interband couplivythe stable gaps which bare vertex the vertex function belongs. In the case of

. . . 3
have different signs. In both cases intralayer and interlayef® Polarization we have to consider the matbx®, Oé
pairing are mixed. But for negativ® intralayer pairing course, due to the interactions the renormalized vektex

. L o g . contains also contributions from other matrices.
dominates, for positiv&/ interlayer pairing dominated.. is

155 K. We have also calculated the level shits They are . tThetlinte\r/_actlolnS;'/,iJ |rl;duc(:jetonly '|tr'1 traba%c: trant5|tt|ons,t.the
practically temperature independent. interactionV only interband transitions. These interactions

do not change the off-diagonal character of the bare vertices,
therefore we can make the following ansatz for the renormal-

. VERTEX EQUATIONS ized vertex of the neutral system:

Now we will set up the integral equations for the vertex 0 y
functions corresponding to the interlayer polarization and re- rit=| » (25)

lated operators defined i8) for the neutral and charged vy O

system. We are interested in optical response functions for

electric-field vectors perpendicular to the layers. Here we caiith 2X 2 matricesy(i ws), ¥(iws). Then the system of ver-
assume that the external wave vector is zero. tex equations can be written as two coupled equations for

2X 2 matrices:

y+W'B+VB=I,

(@) L

Y+W'B+VB=1, (26)
whereW’ =V —J=(V|+V,)/2—J. The 2X2 matriced and
| are the upper right and lower left part of the rrlaﬂfj%. In

the case of the polarizatioB®® we havel =03, | =—03.
The quantitiedB are defined as

Bliwg= 53 3 0:Galkivnt 10970 Galkian)os,

20 A1 . 1
B(iwg)=—=2, > 03Gs(K,iwn+iwgiwg)Gy(k,iwy)os,

B w, k
(27)

] depending linearly ony(iws). Note, that in contrast to the

self-consistency equatior{46, 17 (W=V+J), the interac-

tion J enters here with another sigh\( =V —J).

S For the solution of this system of equations it is conve-

0 4 8 12 16 nient to decomposg,y and alsoB,B into Pauli matrices:
Temperature (meV)

A1z (meV)

20t A T

Y= Y000+ Y101+ Yol 02+ y303,
FIG. 2. Gaps as function of temperature for negafigeand
positive interband coupling (b). The parameter€2,23 are used. B=Byogt+Bio;+Bjyiog,+Bsos. (28
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If we write the coefficient functionsy; as vector

. i il 13 ¥ 13 [
vY=(70,71,72,Y3) We can express the linear dependence of V J — .J + Z S J
B on these coefficients in matrix form: /

B=Ky, B=Ky. (29) FIG. 3. Diagrammatic representation of the verté¥ of the

charged system with help of the vertBX (full circle) of the neutral
system. The interband Coulomb interactiorcouples to the corre-
Qation function((P3,PI'})) of the neutral system.

The 4x4 matricesK,K are integrals over products of
Green’s functions. For notational convenience it is useful t
introduce an extra factarfor the o, component in(28). The
structure ofK is given in(A3) and the functions are listed in
(A5). With help of these matrices, K the vertex equations
can be written as

Later we want to discuss the influence of the polarization
(P) on the order parameter. Therefore we need the correla-
tion functions

(1+W'K)y+VKy=1, (AP)=((PLPR)=—akyy,  (30)
(1+W'K)y+VKy=1. (30) ((®,P))=((P2,P13))= — 4Ky y1*. (37)

The matrixK differs from the matrixK only by the sign
of some elements in the first row and column. More pre-
cisely: K=gKg with g being the diagonal matrix
g=diag(—1,1,1,1). I is a vector given by (0,0,0,1),
(0,0,-i,0), (0,1,0,0), ¢i,0,0,0) for P13, P2 Pt p20
respectively.l fulfills: 1=gl. The second equation i80)
can be reduced to the first equation by setting

B. Charged system

Up to now we have only considered neutral superconduct-
ors. The long-range Coulomb interaction is known to have
important consequences for the collective motié¢iere we
are interested in the optical properties for field vectors per-
pendicular to the layers in the long-wavelength limit 0.
Then we have to consider only the Coulomb interaction aris-
~_ ing from charge fluctuations between the layers. These Cou-
Y=97 (31 N >
= = lomb forces stay finite in the long-wavelength limit but nev-
and it is sufficient to solve the first equation ertheless are sizable. They can be incorporated in the vertex
equations in a random-phase-approximation-type manner.

Let Y'(iwg) be the vertex for the charged system. The

; (85 + (W' +Vgi)K;) v =i, (32 yvertex equation fory" is obtained from the vertex of the
neutral system(24), if T'!' is replaced byY''(iwg), and on
which is a set of four linear equations. the right-hand sidérhs) of the vertex equatiori24) the fol-

A closer inspection of the integral contained in the matrixlowing term is included:
K shows that two of the integralk;; and K,, are badly 1
convergent. They depend logarithmically on the cutoff in 13— 13 . . i .
momentum space in a similar way as the integrals in the D™ a,znk DTG (KiwnFiwg) Y (i0g)Gk,iwn)}
self-consistency equatiori88). These badly convergent in- (38)
tegrals can be eliminated by using relati¢B49,B20 which . — 2, (1 _ a—dl| pY
can be derived from Ward identities. Then the cutoff is onIyWIth v=lim|q _oe°m(1—e")/(|g|ec)=e*mdie; the
needed in the calculation of the gas. Coulomb interaction between the layers. For a periodic
In general the correlation functions of the neutral system(jC)ljzble'l‘a)/(:“r system v . has .to be replaced by
are given by e d(c_—d)/CEO . whered is the d|§tance between the twp
layers in one unit cell and is the distance between the unit
B 1 B cells. The vertex equation for!' can also be expressed by
((P”;P'm))iws= => > T{DIG(k,iw, correlation functions and the vertex of the neutral system
on K I'l', as shown in Fig. 3. This equation reads

+Hwgd M0 G(K,iwy)}. (33 Y =T+ y13,((P13 pilyy, (39
Especially the polarization function is determined by where the correlation functiof{ P*3 P!')) of the neutral sys-
1 tem to which the interband Coulomb-interaction couples is
(PiPDiv,= 52 2 THDG(Kiiw, given by
S w, k
) 1
tiodT¥iw)G(kio)). (34 (PP = E; Ek

The polarization function can be expressed by the m&rix
(27) or by the matrixK using the commutation relations for
the Pauli matrices and the development into Pauli matrices
(29):

THDBG(k,iwy+iw) I (iws) G(k,iwp)}. (40)

From this the vertex functiol '3 for the electronic polar-
ization is easily calculated

((P.P))=((P*P*%))=4Kgj7;". (35 YB=TY(1-v{(P¥’PY))), (41)
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and we get for the polarization function for the charged sys- In the case of momentum-independent hoppibg=t)
tem this expression can be simplified considerably by using the
c _ relations between the different matrix elements derived from
(P.P) =UP.PYiu /(1=v((P.P)}i,), (42  the Ward identities (B18) and the approximation

and the correlation function®6), (37) (Xz=Xy)/W, = —=2tN,. We obtain
(APYHE, =(APY i/ (L=0{(P,P))is),

(®,PYE, =((®,PY)1, [(L-V((P,PY)i,). (43

((P;P))iw = 16Not?(1+2Nod)/M (50
with

M= (i wg)2— 4t 1— 2(V—2J)Ng—4J(V—J)N2].

IV. ANALYTICAL DISCUSSION OF THE COLLECTIVE The polarization function has a simple pole which is shifted
MODES with respect to the simple particle-hole excitation energy 2

due to the pairing interactions. In the weak-coupling limit

In general the four vertex equatiof@?) (47) we recover as result the bare polarization function,

which is given byH™ ™. In the charged system there exists
then a plasmon describing interlayer charge fluctuations at

; [+ (W' +Vgi)Ki 1y =1, (44 »2=(2t)2(1+0v4N,).
have to be solyed _n'umerically. But in_ some limits the equa- B. k-independent hopping matrix elementt
tions can be simplified so that analytical results for the col- _ . -
lective modes can be derived) in the normal state an(®) . In the case of morr_lentum-mdependent' tight-binding cou-
in the limit of momentum-independent tight-binding cou- pling (t,=t) the solution for the self-consistency equations
pling t, between the layers. 17, 16 has the form
In the following we need the special form of the matrix Ar=%A, andx;=—X,, (51)

K given in Appendix A:
independent of the details of the band dispersipn Then

HtY -V -Z X there exists a symmetry relation between the band disper-
v _H—+ X Z SionS§1k=§k—t—Xl and §2k:§k+t_x2 (kaSk_,LL) al’ld
the quasiparticle dispersions:
K=l Z X —H Y (45) AP P
X 7 Yy H- &2 =—E1(— &0,

. o E1(— &) =Ea(&0). (52
Furthermore we need the following combinations of cou-

pling constants, which are listed here for completeness: ~DUe to this symmetry some matrix functioks; vanish and
therefore(44) is reduced to a system of three coupled equa-

W=V+J, W;=V+J, W =V, +], tions. We have to distinguish the two cases=*A,.
W'=V-J, W;=V-J, W=V -J (46) 1. Intralayer pairing A;=A,
with V=(V+V,)/2 V= (Vj+V,)/2. Of special impor- In the case of dominant intralayer interactidf) the band

tance is the limit, where all pairing interactions are small 92Ps are equal{;=A,=A) and interlayer pairing vanishes
[A, =(A,—A;)/2=0]. Three functions are zero because of

VNg, VNg, JNp<l1. (47)  the relation(52)
This will be called the weak-coupling limit in the following. Z(iwg) = X(i ws)=7(i wg)=0. (53)

Therefore the second equation of the vertex equatidds
L can be solved easily
In the normal state the functio@sZ,Y,Y vanish, because

A. Normal state

they are proportional to the gapa5). Therefore the set of yjl,y‘lp,yf=0, yi\(iws)zll[l—W”H‘+(iws)],
equations(44) decouples. Withl =(0,0,0,1) we obtain for
the polarization vertexy = y*3= y*: =0, 1=0,2,3. (54)
yo=—W/XIN, y1=7v,=0, This means that oscillations of the amplitulelo not couple
to oscillations of the current, polarizationP, and phase
y3=(1+W/H**)/N (480  ®. But the density, phase, and current oscillations couple to
_ each other. The Coulomb interaction does not affect the am-
with N=(1+W1H++)(1+W‘[H+’)—WﬁWiXZ. The po- plitude fluctuations. This is in agreement with the results
larization function(35) is then given by found in Refs. 14,15, where a double-layer system with
~ t=0 is investigated. In the case kfdependent hopping all
((P.P))iw,=4[(L+W[H")H "= W[ (X)?]/N. these quantities couple, which will be demonstrated below

(49 by our numerical results.
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The frequencies of the collective modes are determined w3(1— wdW/ C) — 0?w3C(1— W/ No)
: i Shad 0 I"%0
by the zeros of the denominator of the vertex functiofls {(P,P)),=4Ng (07— o) (1= a®W C) (1=WiNg) "
For the current, phase, and polarization oscillations the fre- w T o' ™o (59
guency of the collective mode is given by the determinant of
the corresponding 8 3 matrix of the vertex-equation system  |nserting(59) into the polarization function with Coulomb
(44); the collective mode of the amplitude oscillations is de-jnteraction (42) we get the phase-mode frequency in the

termined by(54) Charged system:
The functionsK(w+i6) obtain imaginary parts at tem-

peratureT=0, when the frequency of the external field is , 5 ~ , ) 1+ No(4u_—WH’)
large enough to break Cooper pairs @wc={wg+(2t) [1_WL(NO_(‘)OC)]}1+w2c(4v__W/)'
[0>min(Eyc+Ex) = (2DZ+ (282 with  i=t+(x; 0 '&60)
—X,)/2]. We are interested in undamped collective modes

below the particle-hole threshold. In order to derive a simpldn the weak-coupling limit47) and for smallw5C| we have
approximation for the collective mode frequencies, we shall

assume small frequencies</(2t)2+(2A))?, a small hop- 0g=(wg+(20)%)(1+4Ng). (62)
ping matrix element(A;)?<1, and zero temperature. The interband Coulomb interactian shifts the mode up to
The functionsk (A5) can be evaluated with help of an higher frequenciesy is proportional to the distance be-
expansion irt/A; and w/2A: tween the layers. In order to get a phase mode below the
i ) iy " particle-hole threshold, it is necessary that the distance of the
H" (0)=—No+wC, H""~(20)°C, layers and the Josephson coupling consiamé small. If the
. Josephson coupling is zero, the resonance appears Bh2
Y(w)=~o{No+[(2t)*—w?]C}H(24)), in the normal state but still below the particle-hole threshold.
In order to understand how the superconducting order pa-
’Z(w)m —2fNO/(2A”), X~ — 02tC, (55) rameter couples to the polarization, we calculate the correla-

R tion functions(43) in the weak-coupling limit. Applying the
whereC=—No/(8AF). Here —(x,—x;)/(W, 2t) has been same  approximations as  before [(t/A))%<1,
approximated by the density of states at the Fermi lékgl  »2~0(t?), w3~0(t?)] we find

[see(19)].
With these expressions we expand the determinant up to ((A,P))C=0, (62
second order in/A| or w/(24))
(®,P)) o — diNg 222 (63
N W, ’ ~—4l ON W, 7__2-
Det= 5355 )“2 (1~ 3W[C) (02~ wd). (56 e
I

The imaginary factoii indicates that®)(t) is oscillating
Herewp is the frequency of the collective phase mode in theWith & phase shift ofr/2 in comparison tqP)(t). A finite
neutral system value of(®)(t) = —ilm((cz;Cz ) —(c1;¢1))) means that the
phases of the intralayer order parameters are oscillating. The

1—-W!N mode corresponds to the collective tunneling of Cooper pairs
2 2 N2 / 2 | Yo . - .
wp={wj+(2t)[1-W](Ny— wOC)]}W between the layers without pair breaking.

Chae 57) The denominator ofy.* (54) determines the amplitude

mode. With the relation§B21) and using Ward identities

with (B18) we get
’ 2 2
w2:(2AH)2 —2J ! = _M_<M+1)WM
" No Vi-J* vilw) T WL (24 b

(64)
This reduces to a simple result in the weak-coupling limit L . _ .
(47): For vanishing Josephson couplmyv‘(/wn—l) the ampli-

tude mode lies just at the particle-hole threshold:
2 _ 2 2
Because we have assumed small frequencies the formula
only valid for small wg, i.e.,|J/V|| has to be small. The
expression for the frequenay, has been derived already by
Leggett_.5 Here we see.how the .mO(_JI-e frequency is modified wi:(zf)2+ 2[w§+(2A||)2]. (65)
by the interlayer hopping. It is justified to call this mode
phase mode, because it appears as a resonance in the poRecause we assumed small frequencies, this result is only
ization function due to its coupling to the phase fluctuation.valid if w? is negative, which is obtained for positide For
Evaluating the polarization functiofB85) of the neutral the general solution we refer to the numerical calculation.

system for small frequencies and small hopping matrix ele- The formula for the phasg&8) and amplitude mode®5)
ment we obtain shows how the mode frequencies are shifted by the hopping

Iii%r finite Josephson coupling an approximate analytical re-
sult can be obtained wittb5):
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t and the results of Refs. 5 and 14 are modified. Note, how- 1 2tA |
ever, that the particle-hole threshold is shifted too. ((APH=4No ™ W, 02—l
P

2. Interlayer pairing A;=—A,

. . . . {(P,P))=0. (72
In the case of dominant interlayer interaction, when o . ] . ) )
A, =(A;—Ap)/2#0, Aj=(A,+A;)/2=0, the following The polarization functior(71) is zero, if the single-particle
three functions are zero because(52): hoppingt vanishes. This is in contrast to the case of intra-
layer pairing, where the pair tunneling due doproduces
density fluctuations between the layers and therefore spectral
(66) : : o . .
weight in the polarization function even in the absence of
The third column and line of the vertex equation mafd¥#)  single-particle hopping.
are zero with the exception of the diagonal element. Now the The correlation functiori72) shows that a finite polariza-
oscillations of® are decoupled from the the oscillations of tion (P)(t) is connected with a finite amplitude
the other quantities, whilg, A, andP couple to each other. (A)(t)= Re((c;cgp—(chL)). This means that the polar-
Again we study the limit gf small frequencies ization is associated with the building of intralayer pairs
(21)2+A% and small hoppindt/A, [?<1. The func- (c];c])), (c}.cl).

Z(iwg)=X(iws)=Y(iwg)=0.

tions can be approximated as In the frequencyw? the couplmgV now appears in the
. nominator apart from the Josephson coupling/ is propor-
H**~-Ny+w’C, H* =~(20)%C, tional to the difference of the intralayas| and interlayer
couplingV, and is related to the energy difference between
Y=~ o{Nog+[(21)2— w?]CH(2A ), intralayer and interlayer pairing. The mode can only exist if
the energyV for formation of intralayer pairs is small or the
Z~—2Ng/(24,), X~ — w2iC, Josephson coupling compensates this energy=€V). The

second possibility is a quite unrealistic one, becalisis
—_ 2 om2 2 normally much smaller thaw.
H™ ~1W, —["=(2)"INo/(24 )", (67) The collective mode in the charged system is given by
whereC=—Ny/8A2 andt=t+ (x,—x,)/2 as before. From CWN
the vanishing of the determinant of the three coupled equa- 2_ n rq+ L+'70
tions we now obtain for the frequency of the collective mode {wg+ (2D 1+ (v = Wi (No~ wOC)]} weW! C’

determining polarization and amplitude oscillations: (73
“W'N Only the term containing the single-particle hopping is influ-
+(2D2[1=W/(N 2c 170 enced by the Coulomb interaction. This is consistent with the
wp {wo @01 ”( 0™ “o )]} §WLC picture of interlayer pairing. The hopping of interlayer pairs

(68 produces no charge fluctuation between the layers. When an
interlayer pair is tunneling, one electron jumps to the upper

with layer, the other to the lower layer and the charge density on
5 — the layers does not change.
o (247 2(V—-J) In a similar way as above we obtain for the frequency of
@0 No V2—(V—3)2 the phase mode, which is now decoupled from the polariza-
tion:
In the weak-coupling limi{47) the mode in the neutral sys- .
tem becomes w3=(21)2+2[ w3+ (2A,)%]. (74)
wB=(2t)%+ w?. (69) Because V\ée assumed small frequencies, this result is only

valid, if wg is negative, which is obtained for negative

Expanding the nominator and denominator of the polarizay —J. For the general solution we refer to the numerical
tion function(35) up to second order ifA, andw/2A, we  calculation.
obtain In comparison to the case of intralayer pairing the modes
R have changed their role. The amplitude mode is now the
(2)%(1— W] No) low-lying excitation and is coupled to the electronic polar-
(0?— w3)(1—w2W/C)’ ization. As in the ground state of interlayer pairing the layer
(70)  order parameter&y,C ;) and(c,;Cy) are zero and it is no
longer justified to call oscillations ob phase oscillations.

which in the weak-coupling limit and fowg~O(t?) be-  we kept this name for convenience only.
comes

((P,P)),=4(Ny— 03C)

(21)2 V. NUMERICAL RESULTS
((Pap>>*4Nom- (71) In the general case df-dependent hopping when intra-
P layer and interlayer pairing are mixed it is not possible to
For the correlation function&36, 37 we find derive simple expressions for the dispersions of the collec-
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8 N parts of the polarization function in the neutrgbfand the
(@) charged system(#) are calculated for different Josephson

NoJ = couplingsJ and constant intraband/=V+J and interband
- |-0-06 P couplingV. For comparison results of the approximation for-

° 0.04 t\\ mulas are plotted, too. The rhombs and crosséa)irefer to
IZ S 0T the formulas for the phasé7) and amplitude modé65),

N o4 -0.02 | M respectively, calculated with a constant averaged hopping
o 0 ! t=—230.5 meV. The dashed line represents the phase mode
% frequency(58) in the weak-coupling limit.

é o [0.02 ﬂ For negative Josephson couplinha collective mode, the
= phase mode, lies just below the particle-hole threshold. With
ML;’—Q—-JF" increasing positive) the phase-mode peak moves to lower
o L0068 /7 ; — frequencies.
20 40 60 80 100 For positiveJ another mode, the amplitude mode, be-
® (meV) comes visible near the particle-hole threshold. For increasing
-8 —_— J the peak moves to smaller frequencies. Thus, two super-
(b) conducting collective modes can occur in the polarization
" NoJ = | function perpendicular to the layers. This effect is caused by
-6 |0:06 3 the coupling of the phase and amplitude fluctuations.

s |-0.04 . The two approximation formulas for the phase mode, rep-
& A resented by the rhombs and the dashed line, give qualita-
N 4 [0.02 ped tively the right position of the collective-mode frequencies,
&h 0 as long as the peaks are below the particle-hole threshold.
v J \; The same holds for the approximated values for the ampli-
£ 2 0.02 o— tude mode(crosses
= 0.04 For NgJ=0.06 the peak of the phase mode has passed

zero, and its frequency has become imaginary. This behavior
o LO06 | is also obtained by using the approximation form(f®).

20 0 100 140 180 We believe that this instability indicates a phase transition
o (meV) from intraband to interband pairing. This is supported by a
study of a two-site model with two electrorisee the self-
consistency equationwhere a strong positive coupling
leads to a ground state consisting of interband Cooper pairs

FIG. 4. Imaginary parts of the polarization function in the neu-
tral (@) and chargedb) system atT=0 in the case of dominant
intralayer pairing for different Josephson couplinjsThe param- (aT o )
eter sets (22,23 are used. The results are normalized by \“11<2|/- . . .
No=13N,. The different lines are shifted by equal units. The In Fig. 4(b) the influence of the Coulomb interaction be-

thombs, crosses, and dashed lines in the figures correspond to vaieen the layers is shown. A plasmon exists within the
ous approximation formulas for the collective mode frequenciesl3art]C|e'h0|e continuum. This mode is Caysed by _charge ﬂl_JC'
discussed in the text. tuations between the layers. The damping of this mode in-

creases with increasind|. The particle-hole threshold peak
tive modes. We made numerical calculations for the polaris strongly suppressed if there exists a collective mode with

ization functions with the dispersion parameté®®) and large spectral weight above the threshold. Again the approxi-
coupling constants mation formula for the phase mode in the weak-coupling

limit, represented by the dashed line in Figby gives the
NoW= —0.139, NOV_= +£0.185, Ngv=1.3 (75  right position of the plasmon peak for small. The plas-

mon mode and phase mode coincide for srhHl
for constantW=V+J and variable Josephson couplididor But for positiveJ a peak below the particle-hole threshold
dominating intralayer ¥<0) and interlayer pairing appears KoJ=0.02,0.04). This peak can be attributed to
(V>0), in order to study the influence of the Josephsorphase fluctuations by comparing the peak positions with the
couplingd and the temperature dependence of the collectiv@nalytical results obtained for constantrhombs. The am-
modes. We present results both for the neutral system ar@litude peak lies just at the particle-hole threshold at
taking into account the Coulomb interactionbetween the NoJ=0.04 and can be seen &,J=0.06. Those peaks
layers. To resolve theS peaks of the collective modes at Which we have attributed to the phase and amplitude modes
T=0 below the particle-hole threshold we have introduced &1ave large spectral weight in the correlations functions

small imaginary part (10* meV) to the frequency. ((@,@)) and((A,A)), respectively.
Now we discuss the temperature dependence of the polar-

ization functions for large positivg0.05 and negative
(—0.06 Josephson coupling. Figure 5 shows the imaginary
First we discuss the results for the case of dominant inpart of the bare polarization functiof@), the polarization
tralayer pairing ¥<0,A;A,>0). In Fig. 4 the spectrum of function in the neutral systertb), and the real part of the
the collective modegqsharp spikesand the form of the optical conductivity in the charged systeir). The latter is
particle-hole spectrum af=0 are shown. The imaginary related to the polarization function byo(w+i9)

A. Dominant intralayer pairing
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FIG. 5. Imaginary parts of the bare polarization functiap the
polarization function in the neutral systefn), and the real part of
the optical conductivity in the charged systdn) in the case of
dominant intralayer pairing for different temperatufesind posi-
tive Josephson couplinlyJ=0.05. The parameter2,23 are
used. The different lines are shifted by equal unitdcjrwe choose
as distance between the layers 3 A .

=iw(ed2)?((P,P))C. 5. In Fig. 5a) only particle-hole ex-
citations with energy|E,+E,,| are visible atT=0. For
finite temperatures also excitations wjty, — E,,| from ex-
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FIG. 6. Real part of the optical conductivig( ) in the case of
dominant intralayer pairing for different temperatufesind nega-
tive Josephson couplingyJ=—0.06. The parameter®2,23 are
used,d=3 A . The different lines are shifted by equal units.

Coulomb interaction between the layers shifts the collective
modes associated with density fluctuations to higher frequen-
cies [Fig. 5(c)], whereas the amplitude mode near the
particle-hole threshold is only slightly shifted.

In the case of negativé, which is the more realistic one,
if this coupling is produced by the exchange of a boson, the
Coulomb interaction shifts the collective modes into the re-
gion of particle-hole excitations. Figure 6 shows the tem-
perature dependence of the remaining density-fluctuation
spectrum.

B. Dominant interlayer pairing

_In the case of dominant interlayer pairing
(V>0,A;A,<0) it is possible to produce the same peak
structures in the polarization function as in the case of domi-
nant intralayer pairing. Figure 7 shows the imaginary parts of
the polarization function in the neutréh) and chargedb)
system for selected values. The structures are nearly the
same as in Fig. 4. Fad greater equaV collective modes
below the particle-hole threshold can occur in the polariza-
tion function of the neutral system and for relatively large
positive J also in the polarization function for the charged
system. The damping behavior of the plasmon is quite simi-
lar as in the case of dominant intralayer pairing. For negative
and small positivel the plasmon peak is strongly damped.

An example for the temperature dependence of the imagi-
nary part of the polarization function in the neutr@ull
lines) and chargeddashed lingssystem is shown in Fig. 8.
The plasmor(dashed ling has the same behavior as in Fig.
6.

VI. CONCLUSIONS

In this paper we have studied collective modes in super-
conducting double-layer systems which are connected with
charge fluctuations between the layers. In our model we as-
sumed a single-particle tight-binding hoppitigbetween the
layers and considered three different types of pairing inter-

cited levels are possible at lower frequencies. The broad peadctions: an intralayer interactidsy , an interlayer interaction

at T, is due to interband transitions with differefptvalues.

V, , and a Josephson-type couplihgvhich allows a transfer

Figure 8b) shows the complicated transition from two dis- of two particles between the layers. With these interactions
tinct collective modes at =0 (phase and amplitude mode we set up a system of vertex equations within a conserving
to a collective density fluctuation in the normal state. Theapproximation. The collective modes then appear as reso-
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20 e is of the formw= \/(Zt)2+ woz in the neutral system. In the
(a) case of intralayer pairingug is proportional to the ratio
NoJ = —J/|VH|, while for interlayer pairing it is proportional to
-15¢ -0.15 1 (V|=V,—23)/[V+V,] (in the limit that theses ratios are
o . -0.05 small. The former result is in agreement with the result for
I% 0.1 the collective mode obtained by Wu and Griffirfor t=0.
q -10 T The differenceV|—V, is related to the energy difference for
- 0.15 . . iy ) .
o intralayer and interlayer pairing. If the ground state is built
v . 0.17 by interlayer pairs the polarization is connected with the for-
E 5] y ﬁ 0.185] mation of intralayer pairs.
l . 0.2 In order to find an undamped collective mode it is impor-
ol 0.22 tant that its frequency is below the particle-hole threshold
20 30 40 50 60 70 80 90 100 V(2t)2+(2A)2%. As for realistic systeman3>0 the best
o (meV) chances to observe a collective mode is for the case of intra-
10— - . - layer pairing and small Josephson couplihgHowever, one
(b) has to keep in mind that the Coulomb interaction between
gl MNod= ] the layers leads to a further shift to higher frequencies. This
| 015 | Coulomb interaction is proportional to the distance between
lgc' -0.05 ] the layers but can be reduced by a large phononic polariz-
Oﬁ 6 0.1 | ability of the intermediate layers. We would like to add that
o 015 a similar set of collective modes exists for spin ﬂuctuat@ons
e -4 between the layer€ Here the influence of the Coulomb in-
v 0.17 L teraction on the mode frequency is absent.
£ ol 0185 In principle one has to distinguish two different modes
0.2 \ which in the literature sometimes are called the phase and
0.0 jk amplitude mode. Fom3<0 the two collective modes can
0 60 80 100 120 140 160 both have frequencies below the particle-hole threshold for
® (meV) the same coupling parameters in the neutral system. How-

ever, in the case of constahtand equal values of the two
FIG. 7. Imaginary part of the polarization function in the neutral gaps(pure intralayer or interlayer pairingonly one of these
(a) and chargedb) system in the case of dominant interlayer pair- modes couples to the electronic polarization and will show
ing for different Josephson couplings and temperafi#e0. The  yp in the optical spectra. This is different for mixed intra-
parameter$22,23 are used. layer and interlayer pairing and finite hoppiftbis occurs in
our model fork-dependent hoppinty). Then both phase and
nances in the vertex functions. So we were able to study themplitude oscillations couple to the charge oscillation be-
interplay of the three types of interlayer interactions  tween the layers. Therefore in theaxis optical conductivity
V, , andJ, which has not been investigated so far togethertwo collective mode peaks can appear below the particle-
Due to the interactiol/, Cooper pairs with electrons in hole threshold for low enough Coulomb interaction.
different layers are formed. Depending on the relative size of For a more realistic parameter regignegativeJ and
the different interactions one finds dominating interlayer orstrong Coulomb interactiononly one collective mode, the
intralayer pairing. In the case of constant hoppinge cal-  plasmon corresponding to charge fluctuations between the
culated analytically the frequency of the collective modes. Itlayers, exists. In this case most of the weight of the polariza-
tion spectrum is concentrated in the plasmon peak; the
particle-hole excitations and, in particular, the peak at the

® ‘ ' ‘ threshold of particle-hole excitations are strongly suppressed.
I ko Te | Therefore it is difficult to determine the threshold energy for
“ breaking up Cooper pairs or the superconducting gap with
Zz s [\ ~~~~ .05 T¢| optical c-axis experiments. It is remarkable that the plasmon
@k x peak is much narrower in the normal state than in the super-
e, /J e 07 T conducting state. That is due to the stronger quasiparticle
Dg L | dispersion in the superconducting state, allowing a much
£ 4 AN 09Te wider range of interband transition energies.
/ ] Up to now thec-axis plasmon is not detected in the lay-
0 . . __Tc ered highT. superconductors Y-Ba-Cu-O or Bi-Sr-Ca-
0 50 100 150 200

Cu-0O. One explanation could be that in these compounds the
single-particle hopping is suppressed by correlation effects,
FIG. 8. Imaginary part of the polarization function in the neutral @S suggested by Anderson. In that case one has to assume
(full lines) and chargeddashed linessystem in the case of domi- also a strong quasiparticle damping. On the other hand, the
nant interlayer pairing for different temperatures and Josephsointerlayer polarizatior(the real part of the susceptibiljtys
couplingJ=0. The parameter€2,23 are used. certainly present and has a big influence on the renormaliza-

o (meV)
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tion of c-axis phonons! Therefore the most natural expla- Htt Y -7 X

nation for the absence of the-axis plasmon and related ~ .y

collective modes is probably that the interlayer hoppipg Y -H X Z

extends over a large energy range with a strong angular K=l 7Z X “H— Y (A3)
dependenc? like tk=tL[cos(<xa)—cos(<ya)]2, and in addi- % 7 v -

tion that the superconducting order parameter vanishes on

some parts of the Fermi surface like dawave pairing. In

that case the collective mode lies in the frequency range of he different signs come from the commutation relations for

particle-hole excitations and is strongly damped. the Pauli matrices. Integrals of this type are common in ver-
tex equations for superconducttrsand for antiferromag-
netic system$’
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where the function$(z,,z,) are given by

APPENDIX A: MATRIX ELEMENTS o
H™"1F(21,2,) = 232, = §k k= A1,
For the matrixK;; we have to calculate the following

integrals: (XIX):F(21,2) = 21 €T Zobax,

(Y/v):F(Zl,Zz):ZlAZ: ZzAl,
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After performing the frequency summations with help of
whereo; are Pauli matrices and the matrioa;are defined Poisson’s summation formula we obtain

by
o1 BE1k BE 2k
J(k’le)_8E1kE2k tanh > +tanh 5
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=0 for j=0,1,3, oy=i0o,, o0,=—l05.

Defining the integrals

+ anh tanh
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H**(iwg)=— ; § [(lwn+iogiw,* Enéax

+A;AL]/N,
(A6)

1 One notices that the first term containing contributions from
(X/i)(iws)= - 2 E [(i 0y +iwg) ExFiwnér]IN, the creation or destruction of two quasiparticles in different
on K bands remains finite also fafF—0. The second term with
transfer of quasiparticles from one band to the other vanishes
in that limit. Using the expressions for the function
~ . 1 ) . . F(z',z) the different matrix elements are easily calculated.
(YY) (iwg)= 5 wzn EK [(ontiogdAzFiondl/N, One observes that the integrals =,Z,Z are even functions
of wg, while the integralsX,X,Y,Y are odd functions.

- 1 APPENDIX B: VERTEX FUNCTIONS
(Z/Z)(lws)=g ; ; [E1Ar =&AL ]IN - (A2) AND WARD IDENTITIES

We derive some useful relations between different inte-
grals of the matrixK, which are based on the conserving
approximation used for the calculation of self-energies and
vertex functions. Similar relations for a one-band system are

N=[(iwn+iwg)?~E3][(iw))*~E5], calculated, e.g., in Ref. 6.

The vertex equation in the neutral system in the ladder

the matrixK can be written as approximation has the general for(24):

with
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MN(iwg)=DI"'-L{T (B1) 0 A
with L={ X o]- (B4)
1 : : . . , :
L{}== > VD%G(K,iw,+iwg)l(iws)G(K,iw,)D% Now let us define &-dependent vertex function:
wpk
+VDBG(K,i wp+iwg) (i wg) G(K,iwy) D Fﬁ(iws)=G*1(k,iwn+iws)Dl‘°’—DlsG*l(k,iwn),(st)
+ID3G(k,iwy+iwg(iw)G(K,iw,)D®. (B2) _ _
) ] ) ] then the right upper corner is
We consider only vertex functiords, which are off-diagonal
in the band indices: Ye=iwgrs+ 20— i(Ar+AL) 0y, (B6)
0 .
r=| - Y (B3) wheret,= (&— 1) /2.
y O/ InsertingI'? into the rhs of(B2) some of the Green's

function cancel, and the integrals are reduced to those which
ThenL is also off-diagonal in the band indices and can bealso occur in the self-energié$4). In particular we obtain
written as for the 2x 2 matrix in the right upper corner

N2=2 D W [Gy(kiwg) o3~ 035Gy (K,i 0 +iwg) ]+ V[Gy(K,iwy) 05— 03G,(K,iwp+iwg)]
k wp

1 _ _ _ _ _
= ———{W'[o3(—W2,+V2 ) +(WZ;—VZ,)03]+V[oz(— W2, +V2,) +(WZ,— V) o3]}

W2— V2
W’+X—(A +Aq)i +W—_V—( ) (B7)
=— io Xo—X1) 0g.
Wy LT autoe Ty moAXeTX) 00
|
On the other hand we can calculatfl'} in another way. TR wg) =G Y(k,iw,+iwg) D— DG Y(k,iw,).
With the quantitiedB andB defined in(27), \ is given by (B11
A2=W'B+VB. (B8)  Inserting this into the integral we obtain

Because of thé& dependence of the vertex functiaff we _
introduce thek dependent %4 matrix functionsKy and )\b:; 2 W o3G,(K,iwn) 03— Vo3Gy(K,iwy) o
Ky, which are related t& andK by “n o
—W'o3G (Kiwgtiwg) o3+ VoiGa(K,iw,+iwg)os

Kzg Ky, Kzg Ky. WY
= —(2;—2)) (B12)
The same relations we needed for deriving the vertex equa- W=V
tion (44) hold for the k-dependent quantitiek,, K, g, or
and y;. Therefore we find
1
A=W VS Kk, (B9) 2 K== 1004280, 0- 0 —x) T

(B13)
whereg is the diagonal matrixy=diag(—1,1,1,1). Thus we
arrive at the first identity In the case of vanishing Josephson coupling and
k-independent hoppingthe first relation is identical with the
— Ward identit
(WHgV)D Kiyt=(Xp—x1,0A,+4,,00 (B0 y
kK = ‘
i P+ 2itlN=T42 (B14)
Note on the lhs stand® not W', because the factor )
W’ +gV cancels. which follows from the continuity equationtP=P [com-
In a similar way we find a second relation starting from pare the discussion ®)]. I'" is here the polarization vertex



53 COLLECTIVE MODES IN THE ELECTRONIC POLARIZATION . . . 14 495

andI'! the current vertex. T_he secqnd relation follows from H**iws+Y2A, +2X!=0,
the conservation of the spin density. Between the relative
spin polarization YiogtH T2A, +27'=2A /W, ,

10_% o t t t Ziwg—X2A, +2Y'=0,
P —Ek: Cok1Cakt — Cok  Cak| — C1k1C1kt + €1k  C1k| s L

(B15) Xiwg+Z2A, +2HY "= (x,—x1)/W, ,

and the spin current in the direction where WH:V||+J=W+V_, WL=VL+J=W—V_ and
A=(A,+A)/2,A, =(A;—A4)/2. Here the quantitieK}j
PB=—i> b cii—chConi— Gl Cre + G Con are integrals similar t&;; with the integrand multiplied by
; ZKTEIKT k2K B2k Fk] T Lk 2k T =t + (X, —X,)/2 before the momentum integration. In the
(B16) case of momentum-independent hopping matrix elenhent

. t _ %
the continuity equatioP°=2tP2? holds in the casd—0 V€ haveK;; =tK;; .

andt=const. From this equation one finds the Ward identity. The identitigs+can be_u_sed to eliminate the badly converg-
ing integralsH™ " andH ™ ~:

i w10+ 2it'23=T"P, (B17) 1
. . . . H Y=~ (iwgY +22Y), B19
More relations are obtained by replacing the mabi} W, AZ—Al('wS ) (B19
by D! or D*2. These relations, however, are not of practical 1 L
use. — : St
From the above relations we obtain the following identi- H W A+ Az(l 0S¥ +22). (B20)

ties between the different integrals: Here the integrals on the rhs do not need a cutoff.

2Ht+++’ZZAH+’>"(i 0= (Xo—X1)IW, , (B18) .Ir.1 the two specia} cases of pure 'in_tr_alayer and inter[ayer
pairing one can derive from the definitions of the functions
(A5) two further relations:

H " =H "+ (A, +A)Yliog if Aj=A,, (B2))

2Y'=X2A)+ Ziwg=0,

2“Z't+H__2A”+Yia)S=2A” W, _
H77:H7++(A2_A1)Y/i(1)5 if Al:_AZ'

2X‘—I—Y2A||+H+_iws=0, (B22)
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