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Standard weak-coupling methods are used to study collective modes in the superconducting state of a
double-layer system with intralayer and interlayer interaction, as well as a Josephson-type coupling and single-
particle hopping between the layers by calculating the electronic polarization function perpendicular to the
layers. Analytical results are derived for the mode frequencies corresponding to fluctuations of the relative
phase and amplitude of the layer order parameters in the case of interlayer pairing and finite hoppingt. An
effect is found for finitek-dependent hopping: then the amplitude and phase fluctuations are coupled. Therefore
two collective modes may appear in the dynamicalc-axis conductivity below the threshold energy for breaking
Cooper pairs. With help of numerical calculations we investigate the temperature dependence of the collective
modes and show how a plasmon corresponding to charge fluctuations between the layers evolves in the normal
state.@S0163-1829~96!04622-X#

I. INTRODUCTION

The problem of collective modes in superconductors is a
very old one. Bogoliubov and Anderson1,2 pointed out that
charge oscillations can couple to oscillations of the phase of
the superconducting order parameter via the pairing interac-
tion. In a neutral system this would lead to a soundlike col-
lective mode. In a charged system the frequency of this mode
is pushed up to the plasma frequency due to the long-range
Coulomb interaction,3,4 and at these high frequencies this
mode is of no importance for the superconducting properties.

The situation is different for modes which do not couple
to long-range density fluctuations. Leggett5 showed that in a
two-band superconductor oscillations in the occupation dif-
ference between the two bands couple to phase fluctuations
of the order parameters for the two bands giving rise to a
collective mode with a frequency below 2D, the threshold
energy for breaking Cooper pairs. Also oscillations of the
amplitude of the order parameter are not perturbed by charge
fluctuations. The frequency of this mode, however, is at the
threshold for particle-hole excitations in normal isotropic su-
perconductors. Only in special cases can overdamping of this
mode be avoided.6 Low-frequency collective modes may
also exist in superconductors with a multicomponent order
parameter.7,8 Such order parameters are frequently discussed
candidates for some heavy fermion superconductors.

Another possibility to avoid the influence of long-range
Coulomb forces on the collective modes is realized in
strongly anisotropic superconductors,9 in particular in a pe-
riodic system of superconducting layers.10,11 In the case of a
finite value of the wave vectorq' perpendicular to the lay-
ers, density fluctuations within the layers do not build up
long-range Coulomb forces. In the limitqW→0 only the Cou-
lomb interaction between the layers remains.

Recently the question of collective modes has been
brought up again in connection with the multilayer structure
of the high-Tc superconductors. In a double-layer system like
Bi-Sr-Ca-Cu-O or Y-Ba-Cu-O one obtains two electronic

bands for the motion of electrons parallel to the layers cor-
responding to states with symmetric or antisymmetric wave
functions.12 In the superconducting state both bands acquire
gaps. In such systems one can discuss different collective
modes13–15 corresponding to fluctuations in the occupation
number of the two bands and to charge oscillation between
the two layers.

In a series of papers16,17we have investigated in detail the
electronic polarization of double-layer systems in the normal
and superconducting state and have studied the influence of
charge fluctuations between the layers on the renormalization
of transversec-axis phonons. Here we have assumed a
k-dependent tight-binding coupling between the layers and
pairing interactions for electrons within the same and in dif-
ferent layers. In our numerical calculations17 we included
both the vertex corrections due to the BCS interaction and
the Coulomb interaction between the layers, thus taking into
account the effect of possible collective modes. We found a
shift of phonon frequencies in the superconducting state
which is in reasonable agreement with far-infrared experi-
ments. As in this case we assumed a fairly large value for the
tight-binding coupling the collective modes are strongly
damped by quasiparticle excitations. In the present paper we
analyze in more detail the conditions for undamped collec-
tive modes in the electronic polarization. The results depend
crucially on the values of the different pairing interactions.

In principle one has to distinguish three different types of
interactions:~1! an interaction between electronic densities
within one layer,~2! an interaction between electronic den-
sities in different layers,~3! an interaction between mixed
densities from the two layers. All three interactions can be
mediated by phonons~or other types of bosons!: the first two
by a change of local potentials induced by lattice displace-
ments, the third one by a change of the hopping energy be-
tween the two layers. The first two interactions conserve the
number of particles in the two layers, while the third inter-
action may interchange particles between the two layers. In
particular, this interaction allows a transfer of two particles
as in a Josephson coupling. This type of coupling, which can
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also be derived from a second-order hopping process, has
gained much interest recently. Anderson and co-workers
have argued that in strongly correlated electron systems co-
herent single-particle hopping between the two layers is sup-
pressed, while a coherent momentum conserving second-
order hopping process is possible.18 In such an interlayer-
tunneling model without single-particle hopping two
collective modes involving fluctuations of the phase and am-
plitude difference of the layer order parameters are found.14

The size of the effective hopping between the layers is
currently under debate.19,20 Therefore we investigate here
collective modes for arbitrary hopping. If the suppression of
single-particle hopping is due to strong correlation effects
also deviations from Fermi-liquid behavior may be expected.
In order to keep the discussion of collective modes as simple
as possible we use here a Fermi-liquid description with a
simple band structure and treat superconductivity within an
extended BCS theory. The theory developed here is aimed at
exploring the different possibilities for collective modes in
double-layer systems. For a realistic description of high-Tc
materials like Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O one certainly
has to include an angular-dependent hoppingtk and possibly
d-wave pairing.

In a two-layer system one has to consider two order pa-
rameters corresponding to pairing of electrons in one layer
and in different layers. This leads in general to different or-
der parameters~and gaps! for the two bands which may even
have different signs fors-wave pairing. Depending on the
relative sign of the band order parameters one can distin-
guish between two different pairing types, which both have
s-wave symmetry: In the case of dominant intralayer inter-
action the order parameters of the two bands have equal sign,
while for dominant interlayer interaction they have opposite
sign.21–24 In Refs. 25 and 26 it is shown that antiferromag-
netic interactions between the two layers favor a supercon-
ducting state with interlayer pairing and anisotropics-wave
symmetry.

In the following discussion we will consider all three
types of pairing interactions mentioned above and will also
take into account single-particle hopping between the layers.
In this paper we consider onlys-wave pairing by neglecting
the k dependence of the pairing interaction. We discuss the
collective modes for both pairing types and calculate the
electronic polarization between the two layers, because this
quantity enters directly the dynamical conductivity for
electric-field vectors in thec direction. Our results extend
earlier work on collective modes in two-layer systems
mainly in the following respects:~1! we calculate collective
modes in the case of interlayer pairing,~2! we find that a
k-dependent tight-binding hopping between the layers
couples amplitude and phase modes, making it possible that
both modes appear below the threshold frequency in the op-
tical conductivity.

Our paper is organized as follows: In the following sec-
tion we specify our model and write down the interactions in
a 434-Nambu matrix notation. Then we calculate the self-
energies and discuss the self-consistency equations. In Sec.
III we solve the vertex equations for the polarization function
in the neutral and charged system. The collective modes for
thek-independent hopping matrix element are studied in Sec.
IV for intralayer pairing and interlayer pairing. In Sec. V

numerical results for the polarization function are presented.
The results are summarized in Sec. VI.

II. NAMBU FORMALISM FOR TWO-BAND SYSTEMS

A. Model

We consider an electronic double-layer system described
by the Hamiltonian

H05(
ks

ek~c1ks
† c1ks1c2ks

† c2ks!1tk~c2ks
† c1ks1c1ks

† c2ks!

~1!

and the interaction

HS5
1

2 (
kk8qss8

(
i

1Vicik1qs
† cik82qs8

† cik8s8ciks

1V'cik1qs
† cjk82qs8

† cjk8s8ciks

1J~cik1qs
† cik82qs8

† cjk8s8cjks

1cik1qs
† cjk82qs8

† cik8s8cjks!. ~2!

Here tk describes a tight-binding coupling between the two
layersi5(1,2),j532 i . The couplingsVi , V' , J are effec-
tive pairing interactions.Vi describes the interaction between
electronic densities within one layer,V' between different
layers, andJ is the coupling between mixed densities. The
origin of these interactions is a combination of an attractive
interaction due to the exchange of phonons~or other bosons!
and a screened repulsive Coulomb interaction. This means
that J is much smaller thanV' andVi . BecauseJ includes
intrinsic tunneling of Cooper pairs from one layer to the
other,J is called Josephson coupling. Here we neglect any
momentum dependence of these interactions~except for a
cutoff introduced later!.

The HamiltonianH0 can be diagonalized by introducing
fermionic operatorsaaks

a1ks5
1

A2
~c2ks2c1ks!, a2ks5

1

A2
~c2ks1c1ks!

corresponding to states with antisymmetric and symmetric
wave functions on the two layers~this symmetry is not bro-
ken by introducing the interactions!. We then obtain two
bands with quasiparticle energies

e1k5ek2tk , e2k5ek1tk .

In order to treat superconductivity it is useful to combine
the Fermi operators to a Nambu spinor2,3

Ck5~a1k↑ ,a12k↓
† ,a2k↑ ,a22k↓

† ! t.

With help of these spinors we can express the Hamiltonian
of the two-layer system as follows~apart from constants!:

H05(
k

ekCk
†D03Ck2tkCk

†D33Ck , ~3!
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HS5
1

2 (
k,k8,q

V~Ck1q
† D03Ck!~Ck82q

† D03Ck8!

1V̄~Ck1q
† D13Ck!~Ck82q

† D13Ck8!

1J~Ck1q
† D33Ck!~Ck82q

† D33Ck8!. ~4!

HereV5(Vi1V')/2, V̄5(Vi2V')/2. D
jl are 434 ma-

trices in Nambu space which are constructed from two sets
of Pauli matricesDjl5t js l . Example:

D135t1s35S 0 s3

s3 0 D .
The terms containing the matricesD03,D33 describe the sum
and difference of density operators of the two bands, while
the term withD13 contains fermionic operators from differ-
ent bands. AccordinglyV̄ leads to interband transitions,
while V andJ cause intraband transitions only. In principle,
one can derive a further interaction mediated by phonons
which couples operators characterized by the matricesD33

andD03. Such an interaction is omitted here, because it has
no influence on the interlayer polarization function.

For the interactionsV,V̄, J a cutoff has to be introduced
either in momentum space or frequency space. We introduce
the cutoff in momentum space:

V,V̄,JH Þ0 if uek2mu,uek82mu,vc

50, otherwise,
~5!

vc is the cutoff energy,m the chemical potential. Note that
the cutoff has been introduced for the energyek and not for
the band energieseak . Otherwise we obtain inconsistencies
in solving the vertex equations.

In the following we are primarily interested in the calcu-
lation of the interlayer polarization function which is the
correlation function of the electronic polarization perpen-
dicular to the layers. The latter is described~up to a factor
ed/2, whered is the layer separation ande is the electronic
charge! by the operator

P5(
ks

c2ks
† c2ks2c1ks

† c1ks . ~6!

There are three other operators which couple to the interlayer
polarization in the vertex equations. These are

F52 i(
k
c2k↑
† c22k↓

† 2c1k↑
† c12k↓

† 2c22k↓c2k↑1c12k↓c1k↑ ,

A5(
k
c2k↑
† c22k↓

† 2c1k↑
† c12k↓

† 1c22k↓c2k↑2c12k↓c1k↑ ,

~7!

j52 i(
ks

c2ks
† c1ks2c1ks

† c2ks .

In Nambu space a 434 matrix corresponds to each operator:

Pjl5(
k

Ck
†DjlCk , ~8!

whereP5P13, F5P12, A5P11, j5P20.
F andA are called phase and amplitude operator in the

literature,14 because in the case that the phases of the layer
order parameters are zero,F andA measure the difference
of the phases and amplitudes of the layer order parameters.
j is related to the interlayer current density. This is strictly so
only in the case of constant interlayer hoppingtk5t and
vanishing Josephson couplingJ; then the equation of motion
2t j5 Ṗ is fulfilled. In the caseJÞ0 the current-density op-
erator becomes more complicated; it contains also two-
particle operators. Neverthelessj will be called the current
operator in the following.

B. Self-consistency equations

The Green’s functions can be combined to a
434-Nambu matrix. We assume the Green’s-function ma-
trix to be diagonal in the band indices:

G~k,z!5S G1~k,z! 0

0 G2~k,z!D , ~9!

whereGa(k,z) are 232 matrices for each band. This as-
sumption which neglects pairing in different bands is reason-
able since the two bands~in the presence of a finite tight-
binding coupling! have different symmetries,24 and this
symmetry is preserved by the interactionHS . One conse-
quence of this assumption is that the phases of the order
parameterŝcik↑ci2k↓& for pairing in one layer are equal for
the two layers~equal amplitude and phase!. Intraband pairing
seems to be the ground state for all negative values ofJ,
while it may become unstable for large positiveJ@utku. This
is supported by the calculation of the ground state of a model
with two electrons on two sites with all the interactions con-
tained in the HamiltonianH01HS . Defining operators
aas5(1/A2)(c2s6c1s) for the single-particle eigenstates of
H0 one finds that the ground state contains only diagonal
termsaa↑

† aa↓
† u0& as long as the Josephson coupling is attrac-

tive J<0 but contains nondiagonal terms for large positive
valuesJ@utku. In our numerical calculations of the polariza-
tion function we will show that an instability occurs for large
positive Josephson couplingJ.

The bare Green’s function is given by

G0a
21~k,z!5zs02~ea,k2m!s3 . ~10!

In the presence of the pairing interaction we have self-energy
corrections:

G21~k,z!5G0
21~k,z!2S~z!, ~11!

where the self-energyS(z) contains contributions from in-
traband and interband interactions:

S52
1

b(
kvm

VD03G~k,ivm!D031V̄D13G~k,ivm!D13

1JD33G~k,ivm!D33. ~12!

The self-energy is diagonal in the band indices

S5S S1 0

0 S2D ~13!
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and the 232 componentsSa are given by

S152
1

b(
kvm

Ws3G1~k,ivm!s31V̄s3G2~k,ivm!s3 ,

S252
1

b(
kvm

Ws3G2~k,ivm!s31V̄s3G1~k,ivm!s3

~14!

with the intraband interactionW5V1J. While the interac-
tionsV, J enter in the same way into the self-energy, this is
not so in the vertex equations. ThereforeJ cannot simply be
incorporated into the interactionV by a proper redefinition.

Writing Sa52Das12xas3 we have

Ga
21~k,z!5zs02jaks31Das1 ~15!

with jak5eak1xa2m.
Da is the energy gap of banda. xa is an energy shift due

to the pairing interaction which is also present in the normal
state. In a one-layer systemxa can be incorporated into the
chemical potentialm, but this is not possible in the two-layer
system with interlayer hopping.

Performing the frequency summation we get the follow-
ing self-consistency equations for the gaps and energy shifts:

D152WD1I 12V̄D2I 2 ,

D252WD2I 22V̄D1I 1 , ~16!

x152WK12V̄K2 ,

x252WK22V̄K1 ~17!

with the integrals

I a5(
k

1

2Eak
tanh

bEak

2
, Ki5(

k

jak

2Eak
tanh

bEak

2

andEak5Ajak
2 1Da

2.
Without a cutoff the integralsI i would diverge. Approxi-

mately the integrals have the values

I a.Naln„2vc /Max~Da ,T!…, ~18!

whereNa is the density of states of banda per spin at the
Fermi surface, andvc is the cutoff.

The self-consistency equations~17! describing the energy
shifts x1,2 of the two bands can be solved approximately by
observing that the integrands are nearly step functions. As-
suming constant density of statesN1 , N2 ~this is given by a
quadratic two-dimensional dispersion! andk-independent in-
terlayer hoppingt one finds

x15WN1~ t1x1!2V̄N2~ t2x2!,

x252WN2~ t2x2!1V̄N1~ t1x1!. ~19!

In the limit of W,V̄→0 and cutoffvc→` these shifts van-
ish, but the ratio (x22x1)/(W2V̄) stays finite
@N05(N11N2)/2#:

x22x1
W2V̄

→22N0t. ~20!

The solution of the gap equations for a two-band system
is discussed already by Leggett;5 the qualitative results can
be summarized as follows: There exists no solution, if
W.0 andW2.V̄2.0; then the intralayerWi5Vi1J and
the interlayer couplingW'5V'1J are repulsive. There are
two nontrivial solutions, ifW,0 andW2.V̄2.0; in this
caseWi andW' are attractive. The solution corresponding to
the ground state depends on the sign of the interband inter-
action V̄. If V̄,0, the state where the gaps have the same
sign (D1D2.0) is stable; ifV̄.0, then the gaps have oppo-
site signs (D1D2,0). The reason is a term in the free-energy
proportional toV̄cos(f12f2), wheref1 ,f2 are the phases
of the order parametersD1 ,D2 .

If the density of states for the two bands are equal~this
happens for a constant density of states and for
k-independent interlayer hoppingt) the two integralsI i are
equal for equal values of the gaps (I 15I 2 for D1

25D2
2) then

for all solutions of the gap equations one always finds
uD1u5uD2u and x152x2 irrespective of the values of the
coupling constants, i.e., one either has pure intralayer pairing
for Wi,0 with (D11D2)/25D iÞ0, (D22D1)/25D'50
or pure interlayer pairing forW',0 with D'Þ0 and
D i50. In the more general case the density of states of the
two bands is different at the Fermi surface, and the two in-
tegrals have different values also in the case of equal or
vanishing gaps, and the two order parameters are coupled.

For the numerical solutions of the self-consistency equa-
tions and vertex equations withk-dependent hopping we use
the following simple model by choosing two bands with qua-
dratic dispersion but different effective masses~and different
density of states!:

e1k5ek2tk5k2/~2m1!2t0 ,

e2k5ek1tk5k2/~2m2!1t0 . ~21!

In the numerical calculations we use the following disper-
sion parameters to getk-dependent hopping:

2m1 /\
251 eV21 Å22, 2m2 /\

251.2 eV21 Å22,

t050, m50.3 eV, vc50.25 eV. ~22!

For the intraband and interband coupling constants
W5V1J andV̄, entering the self-consistency equations we
choose

N0W520.139, N0V̄560.185. ~23!

We have chosen these values for the coupling constants in
order to getTc values which are appropriate for high-Tc
superconductors and ensure also the appearance of the col-
lective modes we want to study.

Figure 1 shows the dispersion for the two bands in the
normal state and the quasiparticle dispersions in the super-
conducting state at zero temperature in thek region
uek2mu,vc . Figures 2~a!, 2~b! show the temperature de-
pendence of the gaps for negativeV̄ ~a! and positiveV̄ ~b!.
Because the effective massesm1 andm2 are nearly the same
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~22! the values of the two gapsD1 andD2 are nearly the
same. For repulsive interband couplingV̄ the stable gaps
have different signs. In both cases intralayer and interlayer
pairing are mixed. But for negativeV̄ intralayer pairing
dominates, for positiveV̄ interlayer pairing dominates.Tc is
155 K. We have also calculated the level shiftsxi . They are
practically temperature independent.

III. VERTEX EQUATIONS

Now we will set up the integral equations for the vertex
functions corresponding to the interlayer polarization and re-
lated operators defined in~8! for the neutral and charged
system. We are interested in optical response functions for
electric-field vectors perpendicular to the layers. Here we can
assume that the external wave vector is zero.

A. Neutral system

We consider response functions where the bare vertex is
one of the matricesDjl , corresponding to the operators~8!.
In the standard ladder approximation the vertex equation for
the renormalization of a vertex with matrixDjl reads

G j l ~ ivs!5Djl2
1

b(
kvn

VD03G~k,ivn

1 ivs!G
j l ~ ivs!G~k,ivn!D

03

1V̄D13G~k,ivn1 ivs!G
j l ~ ivs!G~k,ivn!D

13

1JD33G~k,ivn1 ivs!G
j l ~ ivs!G~k,ivn!D

33.

~24!

The vertex function depends only on the external frequency
vs , not on the momentumk ~apart from the cutoff! and the
internal frequency of the Green’s function, because the inter-
actions are assumed to be constant. The labelj l indicates to
which bare vertex the vertex function belongs. In the case of
the polarization we have to consider the matrixD13. Of
course, due to the interactions the renormalized vertexG j l

contains also contributions from other matrices.
The interactionsV,J induce only intraband transitions, the

interactionV̄ only interband transitions. These interactions
do not change the off-diagonal character of the bare vertices,
therefore we can make the following ansatz for the renormal-
ized vertex of the neutral system:

G j l5S 0 g

ĝ 0D ~25!

with 232 matricesg( ivs),ĝ( ivs). Then the system of ver-
tex equations can be written as two coupled equations for
232 matrices:

g1W8B1V̄B̂5I ,

ĝ1W8B̂1V̄B5 Î , ~26!

whereW85V2J5(Vi1V')/22J. The 232 matricesI and
Î are the upper right and lower left part of the matrixDjl . In
the case of the polarizationD13 we haveI5s3 , Î52s3 .
The quantitiesB are defined as

B~ ivs!5
1

b(
vn

(
k

s3G1~k,ivn1 ivs!g~ ivs!G2~k,ivn!s3 ,

B̂~ ivs!5
1

b(
vn

(
k

s3G2~k,ivn1 ivs!ĝ~ ivs!G1~k,ivn!s3 ,

~27!

depending linearly ong( ivs). Note, that in contrast to the
self-consistency equations~16, 17! (W5V1J), the interac-
tion J enters here with another sign (W85V2J).

For the solution of this system of equations it is conve-
nient to decomposeg,ĝ and alsoB,B̂ into Pauli matrices:

g5g0s01g1s11g2is21g3s3 ,

B5B0s01B1s11B2is21B3s3 . ~28!

FIG. 1. Dispersions in the normal statee1k , e2k and quasiparti-
cle dispersions in the superconducting state (T50) in thek region
ueku,vc . The parameters~22,23! are used.

FIG. 2. Gaps as function of temperature for negative~a! and
positive interband couplingV̄ ~b!. The parameters~22,23! are used.
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If we write the coefficient functionsg i as vector
g5(g0 ,g1 ,g2 ,g3) we can express the linear dependence of
B on these coefficients in matrix form:

B5Kg, B̂5K̂ĝ. ~29!

The 434 matricesK,K̂ are integrals over products of
Green’s functions. For notational convenience it is useful to
introduce an extra factori for thes2 component in~28!. The
structure ofK is given in~A3! and the functions are listed in
~A5!. With help of these matricesK, K̂ the vertex equations
can be written as

~11W8K !g1V̄K̂ĝ5I ,

~11W8K̂ !ĝ1V̄Kg5 Î . ~30!

The matrixK̂ differs from the matrixK only by the sign
of some elements in the first row and column. More pre-
cisely: K̂5gKg with g being the diagonal matrix
g5diag(21,1,1,1). I is a vector given by (0,0,0,1),
(0,0,2 i ,0), (0,1,0,0), (2 i ,0,0,0) for P13, P12, P11, P20,
respectively.Î fulfills: Î5gI . The second equation in~30!
can be reduced to the first equation by setting

ĝ5gg, ~31!

and it is sufficient to solve the first equation

(
j

~d i j1~W81V̄gii !Ki j !g j5I i , ~32!

which is a set of four linear equations.
A closer inspection of the integral contained in the matrix

K shows that two of the integralsK11 and K22 are badly
convergent. They depend logarithmically on the cutoff in
momentum space in a similar way as the integrals in the
self-consistency equations~18!. These badly convergent in-
tegrals can be eliminated by using relations~B19,B20! which
can be derived from Ward identities. Then the cutoff is only
needed in the calculation of the gapsD i .

In general the correlation functions of the neutral system
are given by

^^Pi j ;Plm&& ivs
5
1

b(
vn

(
k
Tr$Di jG~k,ivn

1 ivs!G
lm~ ivs!G~k,ivn!%. ~33!

Especially the polarization function is determined by

^^P;P&& ivs
5
1

b(
vn

(
k
Tr$D13G~k,ivn

1 ivs!G
13~ ivs!G~k,ivn!%. ~34!

The polarization function can be expressed by the matrixB
~27! or by the matrixK using the commutation relations for
the Pauli matrices and the development into Pauli matrices
~28!:

^^P,P&&5^^P13,P13&&54K3 jg j
13. ~35!

Later we want to discuss the influence of the polarization
^P& on the order parameter. Therefore we need the correla-
tion functions

^^A,P&&5^^P11,P13&&524K1 jg j
13, ~36!

^^F,P&&5^^P12,P13&&524iK 2 jg j
13. ~37!

B. Charged system

Up to now we have only considered neutral superconduct-
ors. The long-range Coulomb interaction is known to have
important consequences for the collective modes.1–4Here we
are interested in the optical properties for field vectors per-
pendicular to the layers in the long-wavelength limitq→0.
Then we have to consider only the Coulomb interaction aris-
ing from charge fluctuations between the layers. These Cou-
lomb forces stay finite in the long-wavelength limit but nev-
ertheless are sizable. They can be incorporated in the vertex
equations in a random-phase-approximation-type manner.

Let Y i l ( ivs) be the vertex for the charged system. The
vertex equation forY i l is obtained from the vertex of the
neutral system~24!, if G j l is replaced byY i l ( ivs), and on
the right-hand side~rhs! of the vertex equation~24! the fol-
lowing term is included:

D13v̄
1

b(
vnk

Tr$D13G~k,ivn1 ivs!Y
j l ~ ivs!G~k,ivn!%

~38!

with v̄5 limuqu→0e
2p(12e2duqu)/(uque0)5e2pd/e0 the

Coulomb interaction between the layers. For a periodic
double-layer system v̄ has to be replaced by
pe2d(c2d)/ce0 , whered is the distance between the two
layers in one unit cell andc is the distance between the unit
cells. The vertex equation forY j l can also be expressed by
correlation functions and the vertex of the neutral system
G j l , as shown in Fig. 3. This equation reads

Y j l5G j l1Y13v̄^^P13,Pjl &&, ~39!

where the correlation function̂̂P13,Pjl && of the neutral sys-
tem to which the interband Coulomb-interaction couples is
given by

^^P13,Pjl &&5
1

b(
vn

(
k

Tr$D13G~k,ivn1 ivs!G
j l ~ ivs!G~k,ivn!%. ~40!

From this the vertex functionY13 for the electronic polar-
ization is easily calculated

Y135G13/~12 v̄^^P13,P13&&!, ~41!

FIG. 3. Diagrammatic representation of the vertexY j l of the
charged system with help of the vertexG j l ~full circle! of the neutral
system. The interband Coulomb interactionv̄ couples to the corre-
lation function^^P13,Pjl && of the neutral system.
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and we get for the polarization function for the charged sys-
tem

^^P,P&& ivs

C 5^^P,P&& ivs
/~12 v̄^^P,P&& ivs

!, ~42!

and the correlation functions~36!, ~37!

^^A,P&& ivs

C 5^^A,P&& ivs
/~12 v̄^^P,P&& ivs

!,

^^F,P&& ivs

C 5^^F,P&& ivs
/~12 v̄^^P,P&& ivs

!. ~43!

IV. ANALYTICAL DISCUSSION OF THE COLLECTIVE
MODES

In general the four vertex equations~32!

(
j

@d i j1~W81V̄gii !Ki j #g j5I i ~44!

have to be solved numerically. But in some limits the equa-
tions can be simplified so that analytical results for the col-
lective modes can be derived:~1! in the normal state and~2!
in the limit of momentum-independent tight-binding cou-
pling tk between the layers.

In the following we need the special form of the matrix
K given in Appendix A:

K5S H11 2Ỹ 2Z̃ X̃

Ỹ 2H21 X Z

Z̃ X 2H22 Y

X̃ 2Z 2Y H12
D . ~45!

Furthermore we need the following combinations of cou-
pling constants, which are listed here for completeness:

W5V1J, Wi5Vi1J, W'5V'1J,

W85V2J, Wi85Vi2J, W'8 5V'2J ~46!

with V5(Vi1V')/2, V̄5(Vi1V')/2. Of special impor-
tance is the limit, where all pairing interactions are small

VN0 , V̄N0 , JN0!1. ~47!

This will be called the weak-coupling limit in the following.

A. Normal state

In the normal state the functionsZ,Z̃,Y,Ỹ vanish, because
they are proportional to the gaps~A5!. Therefore the set of
equations~44! decouples. WithI5(0,0,0,1) we obtain for
the polarization vertexg5g135gP:

g052W'8 X̃/N, g15g250,

g35~11W'8H
11!/N ~48!

with N5(11W'8H
11)(11Wi8H

12)2Wi8W'8 X̃
2. The po-

larization function~35! is then given by

^^P,P&& ivs
54@~11W'8H

11!H122W'8 ~X̃!2#/N.
~49!

In the case of momentum-independent hopping (tk5t)
this expression can be simplified considerably by using the
relations between the different matrix elements derived from
the Ward identities ~B18! and the approximation
(x22x1)/W'522tN0 . We obtain

^^P;P&& ivs
516N0t

2~112N0J!/M ~50!

with

M5~ ivs!
224t2@122~V̄22J!N024J~V̄2J!N0

2#.

The polarization function has a simple pole which is shifted
with respect to the simple particle-hole excitation energy 2t
due to the pairing interactions. In the weak-coupling limit
~47! we recover as result the bare polarization function,
which is given byH12. In the charged system there exists
then a plasmon describing interlayer charge fluctuations at
v25(2t)2(11 v̄4N0).

B. k-independent hopping matrix elementt

In the case of momentum-independent tight-binding cou-
pling (tk5t) the solution for the self-consistency equations
~17, 16! has the form

D156D2 and x152x2 , ~51!

independent of the details of the band dispersionek . Then
there exists a symmetry relation between the band disper-
sionsj1k5jk2t2x1 and j2k5jk1t2x2 (jk5«k2m) and
the quasiparticle dispersions:

j2~jk!52j1~2jk!,

E1~2jk!5E2~jk!. ~52!

Due to this symmetry some matrix functionsKi j vanish and
therefore~44! is reduced to a system of three coupled equa-
tions. We have to distinguish the two casesD156D2 .

1. Intralayer pairing D15D2

In the case of dominant intralayer interactionWi the band
gaps are equal (D15D25D i) and interlayer pairing vanishes
@D'5(D22D1)/250#. Three functions are zero because of
the relation~52!

Z~ ivs!5X~ ivs!5Ỹ~ ivs!50. ~53!

Therefore the second equation of the vertex equations~44!
can be solved easily

g1
j ,g1

F ,g1
P50, g1

A~ ivs!51/@12WiH
21~ ivs!#,

g l
A50, l50,2,3. ~54!

This means that oscillations of the amplitudeA do not couple
to oscillations of the currentj , polarizationP, and phase
F. But the density, phase, and current oscillations couple to
each other. The Coulomb interaction does not affect the am-
plitude fluctuations. This is in agreement with the results
found in Refs. 14,15, where a double-layer system with
t50 is investigated. In the case ofk-dependent hopping all
these quantities couple, which will be demonstrated below
by our numerical results.
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The frequencies of the collective modes are determined
by the zeros of the denominator of the vertex functionsg j l .
For the current, phase, and polarization oscillations the fre-
quency of the collective mode is given by the determinant of
the corresponding 333 matrix of the vertex-equation system
~44!; the collective mode of the amplitude oscillations is de-
termined by~54!.

The functionsK(v1 id) obtain imaginary parts at tem-
peratureT50, when the frequency of the external field is
large enough to break Cooper pairs
@v.min(E1k1E2k)5A(2t̂)21(2D i)

2 with t̂5t1(x1
2x2)/2#. We are interested in undamped collective modes
below the particle-hole threshold. In order to derive a simple
approximation for the collective mode frequencies, we shall
assume small frequenciesv!A(2t̂)21(2D i)

2, a small hop-
ping matrix element (t̂/D i)

2!1, and zero temperature.
The functionsK ~A5! can be evaluated with help of an

expansion int̂/D i andv/2D i :

H12~v!'2N01v2C, H11'~2t̂ !2C,

Y~v!'v$N01@~2t̂ !22v2#C%/~2D i!,

Z̃~v!'22t̂N0 /~2D i!, X̃'2v2t̂C, ~55!

whereC52N0 /(8D i
2). Here2(x22x1)/(W'2t̂) has been

approximated by the density of states at the Fermi levelN0
@see~19!#.

With these expressions we expand the determinant up to
second order int̂/D i or v/(2D i)

Det5
N0Wi8

~2D i!
2 ~12v0

2Wi8C!~v22vP
2 !. ~56!

HerevP is the frequency of the collective phase mode in the
neutral system

vP
25$v0

21~2t̂ !2@12W'8 ~N02v0
2C!#%

12Wi8N0

12v0
2Wi8C

~57!

with

v0
25

~2D i!
2

N0

22J

Vi
22J2

.

This reduces to a simple result in the weak-coupling limit
~47!:

vP
25~2t !21v0

2 . ~58!

Because we have assumed small frequencies the formula is
only valid for smallv0 , i.e., uJ/Viu has to be small. The
expression for the frequencyv0 has been derived already by
Leggett.5 Here we see how the mode frequency is modified
by the interlayer hoppingt. It is justified to call this mode
phase mode, because it appears as a resonance in the polar-
ization function due to its coupling to the phase fluctuation.

Evaluating the polarization function~35! of the neutral
system for small frequencies and small hopping matrix ele-
ment we obtain

^^P,P&&v54N0

vP
2 ~12v0

2Wi8C!2v2v0
2C~12Wi8N0!

~v22vP
2 !~12v0

2Wi8C!~12Wi8N0!
.

~59!

Inserting~59! into the polarization function with Coulomb
interaction ~42! we get the phase-mode frequency in the
charged system:

vC
25$v0

21~2t̂ !2@12W'8 ~N02v0
2C!#%

11N0~4v̄2Wi8!

11v0
2C~4v̄2Wi8!

.

~60!

In the weak-coupling limit~47! and for smalluv0
2Cu we have

vC
25~v0

21~2t !2!~114N0v̄ !. ~61!

The interband Coulomb interactionv̄ shifts the mode up to
higher frequencies.v̄ is proportional to the distanced be-
tween the layers. In order to get a phase mode below the
particle-hole threshold, it is necessary that the distance of the
layers and the Josephson coupling constantJ be small. If the
Josephson couplingJ is zero, the resonance appears at 2t as
in the normal state but still below the particle-hole threshold.

In order to understand how the superconducting order pa-
rameter couples to the polarization, we calculate the correla-
tion functions~43! in the weak-coupling limit. Applying the
same approximations as before @(t/D i)

2!1,
v2;O(t2), v0

2;O(t2)] we find

^^A,P&&C50, ~62!

^^F,P&&C'24iN0

1

N0Wi

v2D i

v22vC
2 . ~63!

The imaginary factori indicates that̂ F&(t) is oscillating
with a phase shift ofp/2 in comparison tôP&(t). A finite
value of^F&(t)52 i Im(^c2↑

† c2↓
† &2^c1↑

† c1↓
† &) means that the

phases of the intralayer order parameters are oscillating. The
mode corresponds to the collective tunneling of Cooper pairs
between the layers without pair breaking.

The denominator ofg1
A ~54! determines the amplitude

mode. With the relations~B21! and using Ward identities
~B18! we get

1

g1
A~v!

512
Wi8

Wi
2S ~2t̂ !22v2

~2D i!
2 11DWi8

2D iY~v!

v
.

~64!

For vanishing Josephson coupling (Wi8/Wi51) the ampli-
tude mode lies just at the particle-hole threshold:

vA
25~2t̂ !21~2D i!

2.

For finite Josephson coupling an approximate analytical re-
sult can be obtained with~55!:

vA
25~2t̂ !212@v0

21~2D i!
2#. ~65!

Because we assumed small frequencies, this result is only
valid if v0

2 is negative, which is obtained for positiveJ. For
the general solution we refer to the numerical calculation.

The formula for the phase~58! and amplitude modes~65!
shows how the mode frequencies are shifted by the hopping
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t and the results of Refs. 5 and 14 are modified. Note, how-
ever, that the particle-hole threshold is shifted too.

2. Interlayer pairingD152D2

In the case of dominant interlayer interaction, when
D'5(D22D1)/2Þ0, D i5(D21D1)/250, the following
three functions are zero because of~52!:

Z̃~ ivs!5X~ ivs!5Y~ ivs!50. ~66!

The third column and line of the vertex equation matrix~44!
are zero with the exception of the diagonal element. Now the
oscillations ofF are decoupled from the the oscillations of
the other quantities, whilej , A, andP couple to each other.

Again we study the limit of small frequencies
v!A(2t̂)21D'

2 and small hoppingu t̂/D'u2!1. The func-
tions can be approximated as

H11'2N01v2C, H12'~2t̂ !2C,

Ỹ'v$N01@~2t̂ !22v2#C%/~2D'!,

Z'22t̂N0 /~2D'!, X̃'2v2t̂C,

H21'1/W'2@v22~2t̂ !2#N0 /~2D'!2, ~67!

whereC52N0/8D'
2 and t̂5t1(x12x2)/2 as before. From

the vanishing of the determinant of the three coupled equa-
tions we now obtain for the frequency of the collective mode
determining polarization and amplitude oscillations:

vP
25$v0

21~2t̂ !2@12Wi8~N02v0
2C!#%

12W'8N0

12v0
2W'8C

~68!

with

v0
25

~2D'!2

N0

2~V̄2J!

V22~V̄2J!2
.

In the weak-coupling limit~47! the mode in the neutral sys-
tem becomes

vP
25~2t !21v0

2 . ~69!

Expanding the nominator and denominator of the polariza-
tion function~35! up to second order int̂/D' andv/2D' we
obtain

^^P,P&&v54~N02v0
2C!

~2t̂ !2~12W'8N0!

~v22vP
2 !~12v0

2W'8C!
,

~70!

which in the weak-coupling limit and forv0
2;O(t2) be-

comes

^^P,P&&'4N0

~2t !2

v22vP
2 . ~71!

For the correlation functions~36, 37! we find

^^A,P&&'4N0

1

N0W'

2tD'

v22vP
2 ,

^^F,P&&50. ~72!

The polarization function~71! is zero, if the single-particle
hopping t vanishes. This is in contrast to the case of intra-
layer pairing, where the pair tunneling due toJ produces
density fluctuations between the layers and therefore spectral
weight in the polarization function even in the absence of
single-particle hopping.

The correlation function~72! shows that a finite polariza-
tion ^P&(t) is connected with a finite amplitude
^A&(t)5Re(̂ c2↑

† c2↓
† &2^c1↑

† c1↓
† &). This means that the polar-

ization is associated with the building of intralayer pairs
^c1↑

† c1↓
† &, ^c2↑

† c2↓
† &.

In the frequencyv0
2 the couplingV̄ now appears in the

nominator apart from the Josephson couplingJ. V̄ is propor-
tional to the difference of the intralayerVi and interlayer
couplingV' and is related to the energy difference between
intralayer and interlayer pairing. The mode can only exist if
the energyV̄ for formation of intralayer pairs is small or the
Josephson couplingJ compensates this energy (J'V̄). The
second possibility is a quite unrealistic one, becauseJ is
normally much smaller thanV̄.

The collective mode in the charged system is given by

vC
25$v0

21~2t̂ !2@11~4v̄2Wi8!~N02v0
2C!#%

12W'8N0

12v0
2W'8C

.

~73!

Only the term containing the single-particle hopping is influ-
enced by the Coulomb interaction. This is consistent with the
picture of interlayer pairing. The hopping of interlayer pairs
produces no charge fluctuation between the layers. When an
interlayer pair is tunneling, one electron jumps to the upper
layer, the other to the lower layer and the charge density on
the layers does not change.

In a similar way as above we obtain for the frequency of
the phase mode, which is now decoupled from the polariza-
tion:

vF
2 5~2t̂ !212@v0

21~2D'!2#. ~74!

Because we assumed small frequencies, this result is only
valid, if v0

2 is negative, which is obtained for negative

V̄2J. For the general solution we refer to the numerical
calculation.

In comparison to the case of intralayer pairing the modes
have changed their role. The amplitude mode is now the
low-lying excitation and is coupled to the electronic polar-
ization. As in the ground state of interlayer pairing the layer
order parameterŝc1↑c1↓& and^c2↑c2↓& are zero and it is no
longer justified to call oscillations ofF phase oscillations.
We kept this name for convenience only.

V. NUMERICAL RESULTS

In the general case ofk-dependent hopping when intra-
layer and interlayer pairing are mixed it is not possible to
derive simple expressions for the dispersions of the collec-
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tive modes. We made numerical calculations for the polar-
ization functions with the dispersion parameters~22! and
coupling constants

N0W520.139, N0V̄560.185, N0v̄51.3 ~75!

for constantW5V1J and variable Josephson couplingJ for
dominating intralayer (V̄,0) and interlayer pairing
(V̄.0), in order to study the influence of the Josephson
couplingJ and the temperature dependence of the collective
modes. We present results both for the neutral system and
taking into account the Coulomb interactionv̄ between the
layers. To resolve thed peaks of the collective modes at
T50 below the particle-hole threshold we have introduced a
small imaginary part (1023 meV! to the frequency.

A. Dominant intralayer pairing

First we discuss the results for the case of dominant in-
tralayer pairing (V̄,0,D1D2.0). In Fig. 4 the spectrum of
the collective modes~sharp spikes! and the form of the
particle-hole spectrum atT50 are shown. The imaginary

parts of the polarization function in the neutral 4~a! and the
charged system 4~b! are calculated for different Josephson
couplingsJ and constant intrabandW5V1J and interband
couplingV̄. For comparison results of the approximation for-
mulas are plotted, too. The rhombs and crosses in~a! refer to
the formulas for the phase~57! and amplitude mode~65!,
respectively, calculated with a constant averaged hopping
t5230.5 meV. The dashed line represents the phase mode
frequency~58! in the weak-coupling limit.

For negative Josephson couplingsJ a collective mode, the
phase mode, lies just below the particle-hole threshold. With
increasing positiveJ the phase-mode peak moves to lower
frequencies.

For positive J another mode, the amplitude mode, be-
comes visible near the particle-hole threshold. For increasing
J the peak moves to smaller frequencies. Thus, two super-
conducting collective modes can occur in the polarization
function perpendicular to the layers. This effect is caused by
the coupling of the phase and amplitude fluctuations.

The two approximation formulas for the phase mode, rep-
resented by the rhombs and the dashed line, give qualita-
tively the right position of the collective-mode frequencies,
as long as the peaks are below the particle-hole threshold.
The same holds for the approximated values for the ampli-
tude mode~crosses!.

For N0J>0.06 the peak of the phase mode has passed
zero, and its frequency has become imaginary. This behavior
is also obtained by using the approximation formula~58!.
We believe that this instability indicates a phase transition
from intraband to interband pairing. This is supported by a
study of a two-site model with two electrons~see the self-
consistency equation!, where a strong positive couplingJ
leads to a ground state consisting of interband Cooper pairs
(a1↑

† a2↓
† ).

In Fig. 4~b! the influence of the Coulomb interaction be-
tween the layers is shown. A plasmon exists within the
particle-hole continuum. This mode is caused by charge fluc-
tuations between the layers. The damping of this mode in-
creases with increasinguJu. The particle-hole threshold peak
is strongly suppressed if there exists a collective mode with
large spectral weight above the threshold. Again the approxi-
mation formula for the phase mode in the weak-coupling
limit, represented by the dashed line in Fig. 4~b!, gives the
right position of the plasmon peak for smalluJu. The plas-
mon mode and phase mode coincide for smalluJu.

But for positiveJ a peak below the particle-hole threshold
appears (N0J50.02,0.04). This peak can be attributed to
phase fluctuations by comparing the peak positions with the
analytical results obtained for constantt ~rhombs!. The am-
plitude peak lies just at the particle-hole threshold at
N0J50.04 and can be seen atN0J50.06. Those peaks
which we have attributed to the phase and amplitude modes
have large spectral weight in the correlations functions
^^F,F&& and ^^A,A&&, respectively.

Now we discuss the temperature dependence of the polar-
ization functions for large positive~0.05! and negative
~20.06! Josephson coupling. Figure 5 shows the imaginary
part of the bare polarization function~a!, the polarization
function in the neutral system~b!, and the real part of the
optical conductivity in the charged system~c!. The latter is
related to the polarization function bys(v1 id)

FIG. 4. Imaginary parts of the polarization function in the neu-
tral ~a! and charged~b! system atT50 in the case of dominant
intralayer pairing for different Josephson couplingsJ. The param-
eter sets ~22,23! are used. The results are normalized by
N̄0513N0 . The different lines are shifted by equal units. The
rhombs, crosses, and dashed lines in the figures correspond to vari-
ous approximation formulas for the collective mode frequencies
discussed in the text.
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5 iv(ed/2)2^^P,P&&v1 id
C . In Fig. 5~a! only particle-hole ex-

citations with energyuE1k1E2ku are visible atT50. For
finite temperatures also excitations withuE1k2E2ku from ex-
cited levels are possible at lower frequencies. The broad peak
at Tc is due to interband transitions with differenttk values.
Figure 5~b! shows the complicated transition from two dis-
tinct collective modes atT50 ~phase and amplitude mode!
to a collective density fluctuation in the normal state. The

Coulomb interaction between the layers shifts the collective
modes associated with density fluctuations to higher frequen-
cies @Fig. 5~c!#, whereas the amplitude mode near the
particle-hole threshold is only slightly shifted.

In the case of negativeJ, which is the more realistic one,
if this coupling is produced by the exchange of a boson, the
Coulomb interaction shifts the collective modes into the re-
gion of particle-hole excitations. Figure 6 shows the tem-
perature dependence of the remaining density-fluctuation
spectrum.

B. Dominant interlayer pairing

In the case of dominant interlayer pairing
(V̄.0,D1D2,0) it is possible to produce the same peak
structures in the polarization function as in the case of domi-
nant intralayer pairing. Figure 7 shows the imaginary parts of
the polarization function in the neutral~a! and charged~b!
system for selectedJ values. The structures are nearly the
same as in Fig. 4. ForJ greater equalV̄ collective modes
below the particle-hole threshold can occur in the polariza-
tion function of the neutral system and for relatively large
positive J also in the polarization function for the charged
system. The damping behavior of the plasmon is quite simi-
lar as in the case of dominant intralayer pairing. For negative
and small positiveJ the plasmon peak is strongly damped.

An example for the temperature dependence of the imagi-
nary part of the polarization function in the neutral~full
lines! and charged~dashed lines! system is shown in Fig. 8.
The plasmon~dashed line! has the same behavior as in Fig.
6.

VI. CONCLUSIONS

In this paper we have studied collective modes in super-
conducting double-layer systems which are connected with
charge fluctuations between the layers. In our model we as-
sumed a single-particle tight-binding hoppingtk between the
layers and considered three different types of pairing inter-
actions: an intralayer interactionVi , an interlayer interaction
V' , and a Josephson-type couplingJ which allows a transfer
of two particles between the layers. With these interactions
we set up a system of vertex equations within a conserving
approximation. The collective modes then appear as reso-

FIG. 5. Imaginary parts of the bare polarization function~a!, the
polarization function in the neutral system~b!, and the real part of
the optical conductivity in the charged system~c! in the case of
dominant intralayer pairing for different temperaturesT and posi-
tive Josephson couplingN0J50.05. The parameters~22,23! are
used. The different lines are shifted by equal units. In~c! we choose
as distance between the layersd53 Å .

FIG. 6. Real part of the optical conductivitys(v) in the case of
dominant intralayer pairing for different temperaturesT and nega-
tive Josephson couplingN0J520.06. The parameters~22,23! are
used,d53 Å . The different lines are shifted by equal units.
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nances in the vertex functions. So we were able to study the
interplay of the three types of interlayer interactionstk ,
V' , andJ, which has not been investigated so far together.

Due to the interactionV' Cooper pairs with electrons in
different layers are formed. Depending on the relative size of
the different interactions one finds dominating interlayer or
intralayer pairing. In the case of constant hoppingt we cal-
culated analytically the frequency of the collective modes. It

is of the formv5A(2t)21v0
2 in the neutral system. In the

case of intralayer pairingv0
2 is proportional to the ratio

2J/uViu, while for interlayer pairing it is proportional to
(Vi2V'22J)/uVi1V'u ~in the limit that theses ratios are
small!. The former result is in agreement with the result for
the collective mode obtained by Wu and Griffin14 for t50.
The differenceVi2V' is related to the energy difference for
intralayer and interlayer pairing. If the ground state is built
by interlayer pairs the polarization is connected with the for-
mation of intralayer pairs.

In order to find an undamped collective mode it is impor-
tant that its frequency is below the particle-hole threshold
A(2t)21(2D)2. As for realistic systemsv0

2.0 the best
chances to observe a collective mode is for the case of intra-
layer pairing and small Josephson couplingJ. However, one
has to keep in mind that the Coulomb interaction between
the layers leads to a further shift to higher frequencies. This
Coulomb interaction is proportional to the distance between
the layers but can be reduced by a large phononic polariz-
ability of the intermediate layers. We would like to add that
a similar set of collective modes exists for spin fluctuations
between the layers.28 Here the influence of the Coulomb in-
teraction on the mode frequency is absent.

In principle one has to distinguish two different modes
which in the literature sometimes are called the phase and
amplitude mode. Forv0

2,0 the two collective modes can
both have frequencies below the particle-hole threshold for
the same coupling parameters in the neutral system. How-
ever, in the case of constantt and equal values of the two
gaps~pure intralayer or interlayer pairing!, only one of these
modes couples to the electronic polarization and will show
up in the optical spectra. This is different for mixed intra-
layer and interlayer pairing and finite hopping~this occurs in
our model fork-dependent hoppingtk). Then both phase and
amplitude oscillations couple to the charge oscillation be-
tween the layers. Therefore in thec-axis optical conductivity
two collective mode peaks can appear below the particle-
hole threshold for low enough Coulomb interaction.

For a more realistic parameter region~negativeJ and
strong Coulomb interaction! only one collective mode, the
plasmon corresponding to charge fluctuations between the
layers, exists. In this case most of the weight of the polariza-
tion spectrum is concentrated in the plasmon peak; the
particle-hole excitations and, in particular, the peak at the
threshold of particle-hole excitations are strongly suppressed.
Therefore it is difficult to determine the threshold energy for
breaking up Cooper pairs or the superconducting gap with
opticalc-axis experiments. It is remarkable that the plasmon
peak is much narrower in the normal state than in the super-
conducting state. That is due to the stronger quasiparticle
dispersion in the superconducting state, allowing a much
wider range of interband transition energies.

Up to now thec-axis plasmon is not detected in the lay-
ered high-Tc superconductors Y-Ba-Cu-O or Bi-Sr-Ca-
Cu-O. One explanation could be that in these compounds the
single-particle hoppingt is suppressed by correlation effects,
as suggested by Anderson. In that case one has to assume
also a strong quasiparticle damping. On the other hand, the
interlayer polarization~the real part of the susceptibility! is
certainly present and has a big influence on the renormaliza-

FIG. 7. Imaginary part of the polarization function in the neutral
~a! and charged~b! system in the case of dominant interlayer pair-
ing for different Josephson couplings and temperatureT50. The
parameters~22,23! are used.

FIG. 8. Imaginary part of the polarization function in the neutral
~full lines! and charged~dashed lines! system in the case of domi-
nant interlayer pairing for different temperatures and Josephson
couplingJ50. The parameters~22,23! are used.

14 492 53F. FORSTHOFER, S. KIND, AND J. KELLER



tion of c-axis phonons.17 Therefore the most natural expla-
nation for the absence of thec-axis plasmon and related
collective modes is probably that the interlayer hoppingtk
extends over a large energy range with a strong angular
dependence12 like tk5t'@cos(kxa)2cos(kya)#

2, and in addi-
tion that the superconducting order parameter vanishes on
some parts of the Fermi surface like ind-wave pairing. In
that case the collective mode lies in the frequency range of
particle-hole excitations and is strongly damped.
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APPENDIX A: MATRIX ELEMENTS

For the matrixKi j we have to calculate the following
integrals:

Ki j5
1

b (
vnk

1

2
Tr$s̄ i

Ts3G1~k,ivn1 ivs!s̄ jG2~k,ivn!s3%,

~A1!

wheres i are Pauli matrices and the matricess̄ j are defined
by

s̄ j5s j for j50,1,3, s̄25 is2 , s̄2
T52 is2 .

Defining the integrals

H66~ ivs!5
1

b (
vn

(
k

@~ ivn1 ivs!ivn6j1kj2k

6D1D2#/N,

~X/X̃!~ ivs!5
1

b (
vn

(
k

@~ ivn1 ivs!j2k7 ivnj1k#/N,

~Y/Ỹ!~ ivs!5
1

b (
vn

(
k

@~ ivn1 ivs!D27 ivnD1#/N,

~Z/Z̃!~ ivs!5
1

b (
vn

(
k

@j1kD26j2kD1#/N ~A2!

with

N5@~ ivn1 ivs!
22E1k

2 #@~ ivn!
22E2k

2 #,

the matrixK can be written as

K5S H11 2Ỹ 2Z̃ X̃

Ỹ 2H21 X Z

Z̃ X 2H22 Y

X̃ 2Z 2Y H12
D . ~A3!

The different signs come from the commutation relations for
the Pauli matrices. Integrals of this type are common in ver-
tex equations for superconductors11 and for antiferromag-
netic systems.27

The frequency summations are all of the general form

J~k,ivs!5
1

b (
vn

F~ ivn1 ivs ,ivn!

@~ ivn1 ivs!
22E1k

2 #@~ ivn!
22E2k

2 #
,

~A4!

where the functionsF(z1 ,z2) are given by

H66:F~z1 ,z2!5z1z26j1kj2k6D1D2 ,

~X/X̃!:F~z1 ,z2!5z1j2k7z2j1k ,

~Y/Ỹ!:F~z1 ,z2!5z1D27z2D1 ,

~Z/Z̃!:F~z1 ,z2!5j1kD26j2kD1 . ~A5!

After performing the frequency summations with help of
Poisson’s summation formula we obtain

J~k,ivs!5
1

8E1kE2k
S tanhbE1k

2
1tanh

bE2k

2 D
3S F~2E1k ,E2k!

ivs1E1k1E2k
2

F~E1k ,2E2k!

ivs2E1k2E2k
D

1
1

8E1kE2k
S tanhbE1k

2
2tanh

bE2k

2 D
3S F~E1k ,E2k!

ivs2E1k1E2k
2
F~2E1k ,2E2k!

ivs1E1k2E2k
D .
~A6!

One notices that the first term containing contributions from
the creation or destruction of two quasiparticles in different
bands remains finite also forT→0. The second term with
transfer of quasiparticles from one band to the other vanishes
in that limit. Using the expressions for the function
F(z8,z) the different matrix elements are easily calculated.
One observes that the integralsH66,Z,Z̃ are even functions
of vs , while the integralsX,X̃,Y,Ỹ are odd functions.

APPENDIX B: VERTEX FUNCTIONS
AND WARD IDENTITIES

We derive some useful relations between different inte-
grals of the matrixK, which are based on the conserving
approximation used for the calculation of self-energies and
vertex functions. Similar relations for a one-band system are
calculated, e.g., in Ref. 6.

The vertex equation in the neutral system in the ladder
approximation has the general form~24!:
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G j l ~ ivs!5Djl2L$G i j % ~B1!

with

L$G%5
1

b (
vnk

VD03G~k,ivn1 ivs!G~ ivs!G~k,ivn!D
03

1V̄D13G~k,ivn1 ivs!G~ ivs!G~k,ivn!D
13

1JD33G~k,ivn1 ivs!G~ ivs!G~k,ivn!D
33. ~B2!

We consider only vertex functionsG, which are off-diagonal
in the band indices:

G5S 0 g

ĝ 0D . ~B3!

ThenL is also off-diagonal in the band indices and can be
written as

L5S 0 l

l̂ 0D . ~B4!

Now let us define ak-dependent vertex function:

Gk
a~ ivs!5G21~k,ivn1 ivs!D

132D13G21~k,ivn!,
~B5!

then the right upper corner is

gk
a5 ivss312t̂ ks02 i ~D11D2!s2 , ~B6!

where t̂ k5(j2k2j1k)/2.
Inserting Ga into the rhs of~B2! some of the Green’s

function cancel, and the integrals are reduced to those which
also occur in the self-energies~14!. In particular we obtain
for the 232 matrix in the right upper corner

la5(
k

(
vn

W8@G2~k,ivn!s32s3G1~k,ivn1 ivs!#1V̄@G1~k,ivn!s32s3G2~k,ivn1 ivs!#

5
1

W22V̄2
$W8@s3~2WS21V̄S1!1~WS12V̄S2!s3#1V̄@s3~2WS11V̄S2!1~WS22V̄S1!s3#%

5
W81V̄

W1V̄
~D21D1!is21

W82V̄

W2V̄
~x22x1!s0 . ~B7!

On the other hand we can calculateL$G% in another way.
With the quantitiesB and B̂ defined in~27!, l is given by

la5W8B1V̄B̂. ~B8!

Because of thek dependence of the vertex functiongk
a we

introduce thek dependent 434 matrix functionsKk and
K̂k , which are related toK and K̂ by

K5(
k
Kk , K̂5(

k
K̂k .

The same relations we needed for deriving the vertex equa-
tion ~44! hold for thek-dependent quantitiesKk , K̂k , gk

a ,
and ĝk

a . Therefore we find

la5~W81gV̄!(
k
Kkgk

a , ~B9!

whereg is the diagonal matrixg5diag(21,1,1,1). Thus we
arrive at the first identity

~W1gV̄!(
k
Kkgk

a5~x22x1,0,D21D1,0! t. ~B10!

Note on the lhs standsW not W8, because the factor
W81gV̄ cancels.

In a similar way we find a second relation starting from

Gk
b~ ivs!5G21~k,ivn1 ivs!D

102D10G21~k,ivn!.
~B11!

Inserting this into the integralL we obtain

lb5(
k

(
vn

W8s3G2~k,ivn!s32V̄s3G1~k,ivn!s3

2W8s3G1~k,ivn1 ivs!s31V̄s3G2~k,ivn1 ivs!s3

5
W81V̄

W2V̄
~S12S2! ~B12!

or

(
k
Kkgk

b5
1

W2V̄
@0,~D22D1!,0,2~x22x1!#

t.

~B13!

In the case of vanishing Josephson coupling and
k-independent hoppingt the first relation is identical with the
Ward identity

ivsG
P12i tG j5Ga, ~B14!

which follows from the continuity equation 2t j5 Ṗ @com-
pare the discussion to~8!#. GP is here the polarization vertex
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andG j the current vertex. The second relation follows from
the conservation of the spin density. Between the relative
spin polarization

P105(
k
c2k↑
† c2k↑2c2k↓

† c2k↓2c1k↑
† c1k↑1c1k↓

† c1k↓

~B15!

and the spin current in thez direction

P2352 i(
k
c2k↑
† c1k↑2c1k↑

† c2k↑2c2k↓
† c1k↓1c1k↓

† c2k↓ ,

~B16!

the continuity equationṖ1052tP23 holds in the caseJ→0
andt5const. From this equation one finds the Ward identity

ivsG
1012i tG235Gb. ~B17!

More relations are obtained by replacing the matrixD13

by D11 or D12. These relations, however, are not of practical
use.

From the above relations we obtain the following identi-
ties between the different integrals:

2Ht111Z̃2D i1X̃ivs5~x22x1!/W' , ~B18!

2Ỹt2X2D i1Zivs50,

2Z̃t1H222D i1Yivs52D i /Wi ,

2X̃t1Y2D i1H12ivs50,

H11ivs1Ỹ2D'12X̃t50,

Ỹivs1H212D'12Zt52D' /W' ,

Z̃ivs2X2D'12Yt50,

X̃ivs1Z2D'12Ht125~x22x1!/W' ,

where Wi5Vi1J5W1V̄, W'5V'1J5W2V̄ and
D i5(D21D1)/2,D'5(D22D1)/2. Here the quantitiesKi j

t

are integrals similar toKi j with the integrand multiplied by
t̃ k5tk1(x12x2)/2 before the momentum integration. In the
case of momentum-independent hopping matrix elementtk
we haveKi j

t 5 t̂Ki j .
The identities can be used to eliminate the badly converg-

ing integralsH21 andH22:

H215
1

W'

2
1

D22D1
~ ivsỸ12Zt!, ~B19!

H225
1

Wi
2

1

D11D2
~ ivsY12Z̃t!. ~B20!

Here the integrals on the rhs do not need a cutoff.
In the two special cases of pure intralayer and interlayer

pairing one can derive from the definitions of the functions
~A5! two further relations:

H215H221~D11D2!Y/ ivs if D15D2 , ~B21!

H225H211~D22D1!Ỹ/ ivs if D152D2 .
~B22!
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