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Surface vibrations of a“*He droplet and the universality of the dispersion relation
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By applying the liquid-drop model to #He droplet, we derive the universal dispersion relation for the
droplet vibrations. Considering the eigenvalue equation for the coupled modes of surface vibrations and inner
vibrations, the universality is clarified by using an effective wave number. It is shown that our universal
dispersion curve for the surface modes traces well the eigenfrequencies obtained by several workers and
provides benchmarks for the various methods of computer simulafi0463-18206)08621-3

[. INTRODUCTION tions. If the droplet is small, these vibrations couple to each
other.

The criterion for the size in which superfluidity occurs has  First, to discuss the surface vibrations of an incompress-
been studieti for the finite systems ofHe. As regard§He  ible droplet, we seR(6,¢) to be the distance between the
thin films many researchers have discussed the appearan@égin and a point on the deformed surface in titgp) di-
condition of roton spectrum with the increase in the filmrection. Because the angular momenturbecomes a good
thickness. For the surface modes which are called “rip-State variable to describe vibrations of a spherical droplet, we
plons,” Lauteret al® have observed the dispersion relation €xPand the deviation oR(6,¢) from an equilibrium radius

against momentum transfer parallel to the surface. GasparirfRo PY Spherical harmonic¥),(6,4):

Chen, and Bhattachary§/aave measured the surface specific

heat of confined helium. As another finite systefitla drop- R(6,$)=Ro+ RoE 2 at Yim(6,0), )
let has been the object for studying the dynamical rom

-8 . . .
structure’™® Sindzingre, Klein, and Ceperféhave found \ynere coefficientsyf, represent normal coordinates. From

4 A .
that a™He cluster with only 64 atoms shows superfluidity. 6 fiou velocity of the liquid drop we find the kinetic energy
Aiming to derive the appearance condition of superflwd—as

ity, many researchers have studied the vibrational properties

of a “He droplet. Casas and Strindatiave calculated the 1 )

vibrational frequencies by using random-phase approxima- T=5 > 2 Bilaml?, 2

tion (RPA) with the density-functional formulation. Re- bom

cently, Chin and Krotscheékhave carried out computer whereB,=pR3/l and p, is the mass density. Considering
simulations on vibrational modes on Feynman’s ansatz. Fathe excess surface area associated with the surface deforma-
“He droplets whose number of atoms ranges from 20 taions, we obtain the potential energy to second ordetip
1000, they have derived the frequencies of surface vibrags follows:

tions. Their calculation has been based on the variational

Monte Carlo algorithm. They have plotted the dispersion re- Ve o 2 2 D 5
lation as a function of the effective wave numbér I il
=I(I+1)/Rq in which Ry is the radius of an equilibrium i
sphere and is the angular momentum. Moreover, they haveWhere o represents the surface tension and
proposed a universal dispersion curve by choosingkhe Di=Ro(l—1)(I+2). Thus we obtain the eigenfrequencies
shown above. Barranco and Hénge# have obtained vibra- Of surface vibrations as follows:

)

tional frequencies on the basis of the density-functional 3 12
scheme. However, their calculated results are different from s =Nl (poRo) [1(1=1)(1+2) ] S
that by Chin and Krotscheck. In the limit of an infinite radius, we recover the dispersion

The purpose of a present paper is to clarify the propetejation for a planar liquid surface by the correspondence of
universality rule. We discuss the coupled modes of surfacg wave numbeg=1/Ry:

vibrations and compressional vibrations. With this end in
view, we use the liquid-drop mod€L.DM) which has been 0= ,/,T/p0 q°?, (5)

developed to discuss dynamical structures of nuci@i. _ _ _
in which g is the wave number parallel to the surface.

Secondly, as regards compressional vibrations, we con-
sider the wave equation for the mass density variation
Sp(r,t):

We consider an incompressible, irrotational and nonvis- 1 72
cous liquid. If the droplet is large, two kinds of independent v2

. . ; 7 . . op(r,t)— — — op(r,t)=0, 6
vibrations occur: surface vibrations and compressional vibra- p(r.) u? ot? p(rY) ©)

II. LIQUID-DROP MODEL
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FIG. 1. Distribution of reduced eigenvalues as a function of . . .
. N . FIG. 2. Size effect on the eigenvalues for largeSolid curves
angular momentum for 4He droplet withN=40. Large circles .
. . T show the left-hand side of Eq11) and dashed curves show the
show reduced eigenfrequencies calculated by considering the col-

pling between surface and inner modes. Small circles show reducerc')ght'h"’mol side. A thin dashed-curve shows the function of the

cinenvalues calculated for the case without the couplin right-hand side of Eq(11) with C=12.8 and a thick dashed curve
9 ping. shows that withC=5.0. Open circles represent intersections corre-
whereu is the sound velocity. The solution is written as sponding to eigenvalues.
Sp(r,1)=po i1(Knit)Yim( 6, &) apim(t), (7)  resents the surface modes and higher branches represent the
) ) _ ) inner modes. Small circles show reduced eigenvalues in
wherej,(x) represents a spherical Bessel function. With theyhich the coupling is neglected. Eigenvalues of the lowest
f!xed boundary condltlon gRO, we fmc_i the eigenvalue equa- pranch are calculated agy=\I(I—1)(1+2)/C and those
tlpn for compr'essmnal vibrations gsg(k,Ry)=0 and the higher branches are calculated jy§7)=0.
eigenfrequencies agg = uky . istic cAgal Here we show how the coupling const&it* affects ei-
Finally, we discuss the more realistic case: If the sys-  genvalues of noncoupled surface modes and inner modes.
tem size is small, the surface vibrations and the compresyith the increase irc~? the coupling becomes strong be-
sional vibrations couple strongly to each other. In a vibrating.5;se a larg€ ! means a smaR, or a larges. For smally
state, therefore, the pressure caused by the surface vibratioRg, find the asymptotic eigenvalues of the surface modes by

must be in equilibrium with that caused by the CompreSSiO”aépproximating i () 7'1(21+ 1)1 where (2+1)11=(2
vibrations. By using the relation between the excess pressure 1)(21—1)---3-1:

ép(r,t) associated with surface deformations and the mass

densit_y var.iationﬁp(r,t): 5p(r,t)=u25p(r,t), we find. the . (1-1)(1+2) 0

following eigenvalue equation for the coupled vibrations: n=s7 m . (10
_L i ii(n)= L 7, (8) This indicates that the coupling reduces the eigenvalues as
Jji(n) dn (I=1)(1+2) C ! becomes large. Moreover, the larderthe lower the

whereC ! shows the coupling constarE & poRou%/ o) and eigenyalues. For large, we find the following eigenvalue

the eigenfrequencies are givenag=u7,/R,. equation for the inner modes:

In the present LDM, the paramet€rincludesp,, Ry, U,
and . The change irC induces only a small change in the cot( n— 1') _ c n— I_ (11)
frequencies of the surface modes since the shifts related 2] (I-1)(1+2) 7’

to 6C as follows: . . _1 .
where the asymptotic fornj, ()5 ‘con—m(l+1)/2} is

ull(1-1)(1+2) used. Figure 2 shows the size effect on the reduced eigenval-
0= T T o0R, 9) ues for the mode with=8. The ordinatef(7) denotes the
ow . . . .
expression of each side of Ed.1) and crossing points show
BecauseC? in the denominator is large=70 forN=20 and  eigenvalues. Lines normal to theaxis show the asymptotic
C? becomes larger aX increasek the change i does not  lines given byy=n’s with 7<n’<12. In the limitC -0
affect much the eigenfrequencies. Thus weusas the sound (noncoupling, we find ={n+ (1/2)} 7 which corresponds to
velocity of the bulk*He liquid*? u=2.37x10* (cm/9. Inthe  the reduced eigenvalues of inner modes or bulk modes de-
same manner, théw cannot be affected by the small changerived from j,(7)=0. It is clear that the eigenvalues increase
in the surface tension: we usefor a planar surface of liquid as the coupling constar@ ! increases. Thus we can con-
“He: ¢=0.354(dyn/cm.3 clude that the coupling between surface modes and inner
Figure 1 shows the distribution of reduced eigenvaluesnodes results in the repulsion of the respective eigenvalues.
againstl for the helium droplet withN=40 andC=12.8.  The coupling becomes strongerlaisicreases. This is due to
Large circles show reduced eigenvalues calculated by8tq. the situation that, for largé, the large amplitudes of the
in which the coupling is considered. The lowest branch repdensity variation &p(r,t), which is expressed in
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terms ofj,(kr), occupy the region away from the origin and

approach the surface. The boundary condition at the surface, ! ' ! o
therefore, has much effect on both surface modes and inner 6| o N=2 T
modes. A Ne 0
The present LDM has been applied by Tamura and 51 - T
Ichinokawa? to explain the frequency spectrum of gallium i 0O N=T70
droplets embedded in pores of a porous glass. They have ¥ X N=112
assigned the observed péin the low-frequency range to 3 3t +  N=150 -
the surface modes contribution and the large hump in the *  N=200
high-frequency range to the inner modes contribution. i v N=240 |
To obtain the universal dispersion relation, it is necess- 1L ® N=728 1
ary to estimate the size dependence R§f. Casas and
Stringarf have calculatedR, as Ry=2.2N3 A (here- 0 e S
after we defineR, in units of A) which gives the bulk den- 00 01 02 03 04 05 06 07 08 09 10
sity. For the calculated data by Barranco and Heded k, (A-)
we have R,, by the least-squares method, &8,
=2.2IN"*+0.000656- 45N~ 2. The first term of Ry FIG. 3. Dispersion relation of surface modes as a functidi, of

shows the bulk contribution. The second term shows the Sufziprational frequencies are shown in units of Kelvin. All symbols
face Contribution and the thll‘d term ShOWS the curvature Conshow the eigenfrequencies of the surface modes ﬂﬂ:[’and RB
tribution. As an another example, we should note that Pandetermined from the data by Barranco and Hedez (Ref. 8.
dharipande etal’® have obtained the radius as Calculated data are on a universal curve irrespective of droplet
Ro=2.2ANY3+0.38+ 250N~ 3 by the variational Monte sizes.

Carlo method. For the calculated data by Chin and

Krotscheck, we have determinedR, as R,=2.3N'* dji(n) |

—0.656+5.00N" Y2 by considering their definition of the a1l (14)
wave numbek= VI (I +1)/Ry and the sequence of their data 7 7

points. Contrary to the results by Pandharipartial!® and It is essential that the coefficient/pg/o is independent of
Barranco and Hermalez® the second term is negative. This the droplet size. This is a reason why we introdggeand
is due to compensation for the large value of the first ternRg to obtain the universal dispersion relation. From Bd)
2.33NY2 which underestimates the mass density of the bulkwve define the effective wave numbley as

“He system in the limitN—o.

o R RS il |7
u— _ + 2 .
ll. UNIVERSAL DISPERSION RELATION (I=1)(+2) ~ pgu” Lonii(7n1)
OF VIBRATIONAL MODES URg ( poRg) Rg ~1/3
= - , (15
Here we derive the universal dispersion relation of the pBuznﬁ, pBRg I(1=1)(1+2) (15
vibrational modes. To bring out the universality we introducein which we use
the mass densityg and the radiu®kg which satisfy
5 5 Jealm) 1 poRoU? 1 16
PoRo=paRe=3mN/(4), (12 W) om0 (=D(+2) ™

Because,R3=pgR3, the second term in round brackets of
Eq. (15) is zero. This is an another reason why we introduce
ps andRg . Thus we obtain the simpler expression kyras

wherem is the mass of 4He atom. We seRg=rzN*3 with
a constant g which is independent oN. Consequentlypg
becomes independent of the droplet siags=3m/ (47 3).

We use the followindRy for the calculated data cited in Sec. pe\ Y3 | 23
II: Rg=2.22NY3 A (hereafter we definBjg in units of A) for k,= (—) u R—“) : (17
the data by Casas and StringaRg=2.2IN for the data e

by Barranco and Hefmalez® and Rg=2.35N*? for the data
by Chin and KrotscheckThe Ry is the limiting radius ad
tends to infinity. In contrast tpg, py depends on the droplet
size becaus®, has a constant term and the term propor-

: —1/3
tional to N . w = ol pg k3. (18)
By using these parameters we transform @).into

S e
Re PB

where we introduce the effective radiRs=R3/R3 and use For the data by Barranco and Hémaz® we show the
the relation universal dispersion relation agairst in Fig. 3. All calcu-

We should note thak, is a discrete variable. With the
definition w,=un,/R., we obtain the universal dispersion
relation as follows:

Except the definition of thé, associated with the effective
. — radiusR,, this is of the same type as that of a planar liquid
Rg U'Rg J1+1(701) v surfacee yp P d
+ 2 A , *
[(1-1)(1+2) pgU |77nIJI(77nI)
(13

IV. CALCULATED RESULTS AND DISCUSSION
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FIG. 4. Dispersion relation of surface modes as a functidi,of FIG. 5. Dispersion relation of surface modes as a functidn,of

Vibrational frequencies are shown in units of Kelvin. All symbols vibrational frequencies are shown in units of Kelvin. All symbols
show the eigenfrequencies of the surface modes RiftandRg  show the eigenfrequencies of the surface modes Rijjtand Rg
determined from the data by Casas and String&ef. 6:  determined from the data by Barranco and Herdez (Ref. 8:
Ro=2.2N'"® and Rg=2.2N"® Eigenfrequencies for different R =2 2INY3+0.000656- 4.52N" Y3 and Rg=2.2IN3, Eigenfre-

sizes are on a universal curve. quencies for different sizes are on a universal curve.

lated data are on the universal dispersion curve irrespectivR0 by Barranco and Hermalez® we cannot explain the se-
of droplet sizes. In our treatment, we assume thd&Ha  quence of their data. This is in contrast to the result that our
droplet is the continuum system. Actually, the droplet con-dispersion curve traces well the calculated results by Casas
sists of atoms. To incorporate the discreteness into th@nd Stringafi and Barranco and Herndez® Thus there re-
present continuum system, we set the maximum angular M@nains a serious problem because in the low wave-number
mentum. This means that the vibrational modes whose WaVQange the dispersion curve must be described by LDM. Con-
lengths are less than twice the mean interatomic diStanC@rning the eigenfrequencies of surface vibrations, we sup-
cannot exist. In Refs. 11 and 16, this maximum is defined aport the results calculated by Casas and Strifigamid by
Barranco and Hermalez®

In the rangek,>0.3 A%, we cannot explain the lowering
of vibrational frequencies. This is due to the assumption that
the droplet has an abrupt surface defined by @y. Casas
where K] =j for j<x<j+1 andd represents the mean in- and Stringafi have studied the effect of surface diffuseness
teratomic distance. For the data by Barranco and Hete#  on the vibrational frequencies. They have found that the low-
we havel =5, 7, 8, 11, and 16 foN=40, 70, 112, 240,
and 728, respectively. With this maximum angular momen-

T 1

g Re 3| (19

| max=

tum, we have the proper frequency spectrum of the drdplet. 7 — T 77—

If we use a simple Debye model in which only the maximum —— present © N=2

of frequencies is introduced, we have an improper frequency 6 A N=4

spectrum. Thée,,,, corresponds to the Brillouin-zone bound- 5L O Ne70

ary of the bulk system having the translational symmetry. a

For the detail we refer to Refs. 11 and 16. o 4r X N=112
Figure 4 shows calculated frequencies by Casas and “— +  N=150

Stringarf and ours as a function d&f, specified by theiiR, s 3r ¥  N=200 |

and Rg. Our universal curve agrees well with their calcu- s | vV N=240 A

lated data for droplets withi=100 and in the rangk,<0.3 B N=1000

AL, Figure 5 shows calculated frequencies by Barranco and 1r 1

HernandeZ and our universal curve. Similarly to Fig. 4, our 0 A

universal curve agrees with their calculated data for droplets 00 01 02 03 04 05 06 07 08 09 10

with N=70 and in the rangé,<0.3 A~1. Evidently, our

universal curves in both Figs. 4 and 5 trace their data points ky (A1)

though methods of calculations by Casas and StriPgami

Barranco and Herrmjef are different to each other. More-  giG_6. Dispersion relation of surface modes as a functida,of

over, even ifN is small, the eigenvalues with smaltan be  viprational frequencies are shown in units of Kelvin. All symbols

described well by the present LDM. show the eigenfrequencies of the surface modes Rifand Ry
Figure 6 shows calculated frequencies by Chin andjetermined from the data by Chin and Krotsche@Ref. 7):

Krotscheck and our universal curve. Our universal curve is Ry=2.33N3-0.656+ 5.00N~ >3 and Rg=2.33N"3 Our disper-

only in qualitative agreement with their data. Even if we usesion curve is in poor correspondence with their calculated data.
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FIG. 7. Dispersion relation of surface modes as a functiok of FIG. 8. Dispersion relation of surface modes as a functidky of
introduced by Chin and KrotschedRef. 7). Vibrational frequen-  Vibrational frequencies are shown in units of Kelvin. Eigenfrequen-
cies are shown in units of Kelvin. Eigenfrequencies shown by largecies shown by large symbols are those calculated Wijideter-
symbols are those calculated By determined from the data by mined from the data by Barranco and Hewdez (Ref. 8. Small
Barranco and Hermalez(Ref. 8. Small symbols show our disper- Symbols show our dispersion relations calculated by LDM. There is
sion relations calculated by LDM. There is no universality in the no universality in the dispersion relation.
dispersion relation.

Chin and Krotscheck,there still remains the scattering of
ering of eigenfrequencies of the surface vibrations occurgigenfrequencies especially in the range of high wave num-
with the increase in the surface diffuseness and the criticdbers as is shown in Fig. 8. In our formulation we obtain, for
number of atoms is about 100. In accordance with this critesmall 7, , the wave number associated with the surface
rion, Fig. 4 shows that our dispersion curve deviates fronmodes as
their data for a*He droplet with 40 atoms. By taking the s
distribution of the mass density to be of a type of Fermi- ky=[1(1=1)(1+2)]"/Re, (20)
Dirac distribution function, we can consider, within the j \hich the asymptotic relationz?=al(l—1)(I+2)/

framework of the present LDM, the effect of the surface(, R u?) is used in Eq(17). This indicates that the denomi-
diffuseness on the dispersion relation. Expanding the masgator R, improves a simple definition of a wave number
density around a certain radius, we obtain the kinetic energy_=[1(1—1)(1+2)]¥¥R, derived from Eq.(4). We should
and the potential energy with corrections coming from theénote that the difference betwe® andR, increases with the
surface diffuseness. This procedure is carried out in the samgacrease i\ and thek, gives many deviations from the
way as deriving the heat capacity of a free-electron system gnjversal dispersion relation. This is the reason for devia-
finite temperatures. We find that the eigenfrequencies reduggyns from the universal dispersion curve.

with the decrease iftN and the increase ih These results
will be reported elsewhere. If #He droplet shows superflu-
idity, it is thought that the structure fact@(k) introduced
by Feynman’ lowers the dispersion curve more.

In Fig. 7 we show the dispersion relation by using an We have clarified the vibrational properties dft4e drop-
effective wave numbek=/I(I+1)/R, proposed by Chin let by the liquid-drop model which includes the coupling
and KrotschecK. Obviously, there is no universality in the between surface vibrations and inner vibrations. For different
dispersion curve because eigenfrequencies derived by LDMizes of*He droplets, we have shown that the universal dis-
are scattered. Thie has been introduced by considering the persion relation can be specified by introducing the effective
conservation of momentum associated with the passingvave numbek,. Because our method gives a proper univer-
probe. We, however, cannot specify the feature of the dropletal curve, our dispersion relation serves as a test of the cal-
because such k must be common to a liquid drop and a culated results on various kinds of schemes such as varia-
particle in a solid state. Even if we use tional Monte Carlo, diffusion Monte Carlo, RPA and so
ke=[1(1-1)(1+2)]1*¥ Ry, which has been suggested by forth.

V. CONCLUSIONS
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