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By applying the liquid-drop model to a4He droplet, we derive the universal dispersion relation for the
droplet vibrations. Considering the eigenvalue equation for the coupled modes of surface vibrations and inner
vibrations, the universality is clarified by using an effective wave number. It is shown that our universal
dispersion curve for the surface modes traces well the eigenfrequencies obtained by several workers and
provides benchmarks for the various methods of computer simulations.@S0163-1829~96!08621-3#

I. INTRODUCTION

The criterion for the size in which superfluidity occurs has
been studied1–4 for the finite systems of4He. As regards4He
thin films many researchers have discussed the appearance
condition of roton spectrum with the increase in the film
thickness. For the surface modes which are called ‘‘rip-
plons,’’ Lauteret al.3 have observed the dispersion relation
against momentum transfer parallel to the surface. Gasparini,
Chen, and Bhattacharyya4 have measured the surface specific
heat of confined helium. As another finite system a4He drop-
let has been the object for studying the dynamical
structure.5–8 Sindzingre, Klein, and Ceperley5 have found
that a4He cluster with only 64 atoms shows superfluidity.

Aiming to derive the appearance condition of superfluid-
ity, many researchers have studied the vibrational properties
of a 4He droplet. Casas and Stringari6 have calculated the
vibrational frequencies by using random-phase approxima-
tion ~RPA! with the density-functional formulation. Re-
cently, Chin and Krotscheck7 have carried out computer
simulations on vibrational modes on Feynman’s ansatz. For
4He droplets whose number of atoms ranges from 20 to
1000, they have derived the frequencies of surface vibra-
tions. Their calculation has been based on the variational
Monte Carlo algorithm. They have plotted the dispersion re-
lation as a function of the effective wave numberk
5Al ( l11)/R0 in which R0 is the radius of an equilibrium
sphere andl is the angular momentum. Moreover, they have
proposed a universal dispersion curve by choosing thek
shown above. Barranco and Herna´ndez8 have obtained vibra-
tional frequencies on the basis of the density-functional
scheme. However, their calculated results are different from
that by Chin and Krotscheck.7

The purpose of a present paper is to clarify the proper
universality rule. We discuss the coupled modes of surface
vibrations and compressional vibrations. With this end in
view, we use the liquid-drop model~LDM ! which has been
developed to discuss dynamical structures of nuclei.9,10

II. LIQUID-DROP MODEL

We consider an incompressible, irrotational and nonvis-
cous liquid. If the droplet is large, two kinds of independent
vibrations occur: surface vibrations and compressional vibra-

tions. If the droplet is small, these vibrations couple to each
other.

First, to discuss the surface vibrations of an incompress-
ible droplet, we setR~u,f! to be the distance between the
origin and a point on the deformed surface in the~u,f! di-
rection. Because the angular momentuml becomes a good
state variable to describe vibrations of a spherical droplet, we
expand the deviation ofR~u,f! from an equilibrium radius
R0 by spherical harmonicsYlm~u,f!:

R~u,f!5R01R0(
l

(
m

a lm* Ylm~u,f!, ~1!

where coefficientsa lm* represent normal coordinates. From
the flow velocity of the liquid drop we find the kinetic energy
as

T5
1

2 (
l

(
m

Bl uȧ lmu2, ~2!

whereBl5r0R0
5/ l and r0 is the mass density. Considering

the excess surface area associated with the surface deforma-
tions, we obtain the potential energy to second order ina lm*
as follows:

V5
s
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m

Dl ua lmu2, ~3!

where s represents the surface tension and
Dl5R0

2( l21)(l12). Thus we obtain the eigenfrequencies
of surface vibrations as follows:

sv l5As/~r0R0
3! @ l ~ l21!~ l12!#1/2. ~4!

In the limit of an infinite radius, we recover the dispersion
relation for a planar liquid surface by the correspondence of
a wave numberq5 l /R0:

v5As/r0q
3/2, ~5!

in which q is the wave number parallel to the surface.
Secondly, as regards compressional vibrations, we con-

sider the wave equation for the mass density variation
dr(r ,t):

¹2dr~r ,t !2
1

u2
]2

]t2
dr~r ,t !50, ~6!
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whereu is the sound velocity. The solution is written as

dr~r ,t !5r0 j l~knlr !Ylm~u,f!anlm~ t !, ~7!

where j l(x) represents a spherical Bessel function. With the
fixed boundary condition atR0, we find the eigenvalue equa-
tion for compressional vibrations asj l(knlR0)50 and the
eigenfrequencies ascvnl5uknl .

Finally, we discuss the more realistic case.10,11 If the sys-
tem size is small, the surface vibrations and the compres-
sional vibrations couple strongly to each other. In a vibrating
state, therefore, the pressure caused by the surface vibrations
must be in equilibrium with that caused by the compressional
vibrations. By using the relation between the excess pressure
dp(r ,t) associated with surface deformations and the mass
density variationdr(r ,t): dp(r ,t)5u2dr(r ,t), we find the
following eigenvalue equation for the coupled vibrations:

1

j l~h!

d

dh
j l~h!5

C

~ l21!~ l12!
h, ~8!

whereC21 shows the coupling constant (C5r0R0u
2/s) and

the eigenfrequencies are given asvnl5uhnl/R0 .
In the present LDM, the parameterC includesr0, R0, u,

ands. The change inC induces only a small change in the
frequencies of the surface modes since the shiftdv is related
to dC as follows:

dv52
u2l ~ l21!~ l12!

2C2R0
2v

dC. ~9!

BecauseC2 in the denominator is large~'70 forN520 and
C2 becomes larger asN increases!, the change inu does not
affect much the eigenfrequencies. Thus we setu as the sound
velocity of the bulk4He liquid:12 u52.373104 ~cm/s!. In the
same manner, thedv cannot be affected by the small change
in the surface tension: we uses for a planar surface of liquid
4He: s50.354~dyn/cm!.13

Figure 1 shows the distribution of reduced eigenvalues
againstl for the helium droplet withN540 andC512.8.
Large circles show reduced eigenvalues calculated by Eq.~8!
in which the coupling is considered. The lowest branch rep-

resents the surface modes and higher branches represent the
inner modes. Small circles show reduced eigenvalues in
which the coupling is neglected. Eigenvalues of the lowest
branch are calculated assh l5Al ( l21)(l12)/C and those
of higher branches are calculated byj l~h!50.

Here we show how the coupling constantC21 affects ei-
genvalues of noncoupled surface modes and inner modes.
With the increase inC21 the coupling becomes strong be-
cause a largeC21 means a smallR0 or a larges. For smallh
we find the asymptotic eigenvalues of the surface modes by
approximating j l(h)}h l /(2l11)!! where (2l11)!!5(2l
11)(2l21)•••3•1:

h 'sh lF12
~ l21!~ l12!

2~2l13!C G . ~10!

This indicates that the coupling reduces the eigenvalues as
C21 becomes large. Moreover, the largerl , the lower the
eigenvalues. For largeh, we find the following eigenvalue
equation for the inner modes:

cotS h2
p l

2 D5
C

~ l21!~ l12!
h2

l

h
, ~11!

where the asymptotic formj l~h!}h21cos$h2p~l11!/2% is
used. Figure 2 shows the size effect on the reduced eigenval-
ues for the mode withl58. The ordinatef ~h! denotes the
expression of each side of Eq.~11! and crossing points show
eigenvalues. Lines normal to theh axis show the asymptotic
lines given byh5n8p with 7<n8<12. In the limitC21→0
~noncoupling!, we findh5$n1( l /2)%p which corresponds to
the reduced eigenvalues of inner modes or bulk modes de-
rived from j l~h!50. It is clear that the eigenvalues increase
as the coupling constantC21 increases. Thus we can con-
clude that the coupling between surface modes and inner
modes results in the repulsion of the respective eigenvalues.
The coupling becomes stronger asl increases. This is due to
the situation that, for largel , the large amplitudes of the
density variation dr(r ,t), which is expressed in

FIG. 1. Distribution of reduced eigenvalues as a function of
angular momentum for a4He droplet withN540. Large circles
show reduced eigenfrequencies calculated by considering the cou-
pling between surface and inner modes. Small circles show reduced
eigenvalues calculated for the case without the coupling.

FIG. 2. Size effect on the eigenvalues for largeh. Solid curves
show the left-hand side of Eq.~11! and dashed curves show the
right-hand side. A thin dashed-curve shows the function of the
right-hand side of Eq.~11! with C512.8 and a thick dashed curve
shows that withC55.0. Open circles represent intersections corre-
sponding to eigenvalues.
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terms of j l(kr), occupy the region away from the origin and
approach the surface. The boundary condition at the surface,
therefore, has much effect on both surface modes and inner
modes.

The present LDM has been applied by Tamura and
Ichinokawa11 to explain the frequency spectrum of gallium
droplets embedded in pores of a porous glass. They have
assigned the observed peak14 in the low-frequency range to
the surface modes contribution and the large hump in the
high-frequency range to the inner modes contribution.

To obtain the universal dispersion relation, it is necess-
ary to estimate the size dependence ofR0. Casas and
Stringari6 have calculatedR0 as R052.22N1/3 Å ~here-
after we defineR0 in units of Å! which gives the bulk den-
sity. For the calculated data by Barranco and Herna´ndez8

we have R0, by the least-squares method, asR0
52.21N1/310.00065614.52N21/3. The first term of R0
shows the bulk contribution. The second term shows the sur-
face contribution and the third term shows the curvature con-
tribution. As an another example, we should note that Pan-
dharipande et al.15 have obtained the radius as
R052.24N1/310.3812.59N21/3 by the variational Monte
Carlo method. For the calculated data by Chin and
Krotscheck,7 we have determinedR0 as R052.35N1/3

20.65615.00N21/3, by considering their definition of the
wave numberk5Al ( l11)/R0 and the sequence of their data
points. Contrary to the results by Pandharipandeet al.15 and
Barranco and Herna´ndez,8 the second term is negative. This
is due to compensation for the large value of the first term
2.35N1/3 which underestimates the mass density of the bulk
4He system in the limitN→`.

III. UNIVERSAL DISPERSION RELATION
OF VIBRATIONAL MODES

Here we derive the universal dispersion relation of the
vibrational modes. To bring out the universality we introduce
the mass densityrB and the radiusRB which satisfy

r0R0
35rBRB

353mN/~4p!, ~12!

wherem is the mass of a4He atom. We setRB5r BN
1/3 with

a constantr B which is independent ofN. Consequently,rB
becomes independent of the droplet size;rB53m/(4pr B

3).
We use the followingRB for the calculated data cited in Sec.
II: RB52.22N1/3 Å ~hereafter we defineRB in units of Å! for
the data by Casas and Stringari,6 RB52.21N1/3 for the data
by Barranco and Herna´ndez,8 andRB52.35N1/3 for the data
by Chin and Krotscheck.7 TheRB is the limiting radius asN
tends to infinity. In contrast torB , r0 depends on the droplet
size becauseR0 has a constant term and the term propor-
tional toN21/3.

By using these parameters we transform Eq.~8! into

u
hnl

Re
5A s

rB
F Re

3

l ~ l21!~ l12!
1

sRe
2

rBu
2

j l11~hnl!

lhnl j l~hnl!
G21/2

,

~13!

where we introduce the effective radiusRe5RB
3/R0

2 and use
the relation

d j l~h!

dh
5

l

h
j l~h!2 j l11~h!. ~14!

It is essential that the coefficientuArB /s is independent of
the droplet size. This is a reason why we introducerB and
RB to obtain the universal dispersion relation. From Eq.~13!
we define the effective wave numberku as

ku5F Re
3

l ~ l21!~ l12!
1

sRe
2

rBu
2

j l11~hnl!

lhnl j l~hnl!
G21/3

5F sRe
2

rBu
2hnl

2 1S 12
r0R0

3

rBRB
3 D Re

3

l ~ l21!~ l12!G21/3

, ~15!

in which we use

j l11~hnl!

j l~hnl!
5

1

hnl
2

r0R0u
2

s

1

~ l21!~ l12!
hnl . ~16!

Becauser0R0
35rBRB

3, the second term in round brackets of
Eq. ~15! is zero. This is an another reason why we introduce
rB andRB . Thus we obtain the simpler expression forku as

ku5S rB
s D 1/3S u hnl

Re
D 2/3. ~17!

We should note thatku is a discrete variable. With the
definition vu5uhnl/Re , we obtain the universal dispersion
relation as follows:

vu5As/rB ku
3/2. ~18!

Except the definition of theku associated with the effective
radiusRe , this is of the same type as that of a planar liquid
surface.

IV. CALCULATED RESULTS AND DISCUSSION

For the data by Barranco and Herna´ndez,8 we show the
universal dispersion relation againstku in Fig. 3. All calcu-

FIG. 3. Dispersion relation of surface modes as a function ofku .
Vibrational frequencies are shown in units of Kelvin. All symbols
show the eigenfrequencies of the surface modes withR0 andRB

determined from the data by Barranco and Herna´ndez ~Ref. 8!.
Calculated data are on a universal curve irrespective of droplet
sizes.

53 14 477SURFACE VIBRATIONS OF A4He DROPLET AND THE . . .



lated data are on the universal dispersion curve irrespective
of droplet sizes. In our treatment, we assume that a4He
droplet is the continuum system. Actually, the droplet con-
sists of atoms. To incorporate the discreteness into the
present continuum system, we set the maximum angular mo-
mentum. This means that the vibrational modes whose wave-
lengths are less than twice the mean interatomic distance
cannot exist. In Refs. 11 and 16, this maximum is defined as

lmax5Fpd Re2
1

2G , ~19!

where [x]5 j for j<x, j11 andd represents the mean in-
teratomic distance. For the data by Barranco and Herna´ndez8

we havelmax55, 7, 8, 11, and 16 forN540, 70, 112, 240,
and 728, respectively. With this maximum angular momen-
tum, we have the proper frequency spectrum of the droplet.11

If we use a simple Debye model in which only the maximum
of frequencies is introduced, we have an improper frequency
spectrum. Thelmax corresponds to the Brillouin-zone bound-
ary of the bulk system having the translational symmetry.
For the detail we refer to Refs. 11 and 16.

Figure 4 shows calculated frequencies by Casas and
Stringari6 and ours as a function ofku specified by theirR0
andRB . Our universal curve agrees well with their calcu-
lated data for droplets withN>100 and in the rangeku<0.3
Å21. Figure 5 shows calculated frequencies by Barranco and
Hernández8 and our universal curve. Similarly to Fig. 4, our
universal curve agrees with their calculated data for droplets
with N>70 and in the rangeku<0.3 Å21. Evidently, our
universal curves in both Figs. 4 and 5 trace their data points
though methods of calculations by Casas and Stringari6 and
Barranco and Herna´ndez8 are different to each other. More-
over, even ifN is small, the eigenvalues with smalll can be
described well by the present LDM.

Figure 6 shows calculated frequencies by Chin and
Krotscheck7 and our universal curve. Our universal curve is
only in qualitative agreement with their data. Even if we use

R0 by Barranco and Herna´ndez,8 we cannot explain the se-
quence of their data. This is in contrast to the result that our
dispersion curve traces well the calculated results by Casas
and Stringari6 and Barranco and Herna´ndez.8 Thus there re-
mains a serious problem because in the low wave-number
range the dispersion curve must be described by LDM. Con-
cerning the eigenfrequencies of surface vibrations, we sup-
port the results calculated by Casas and Stringari6 and by
Barranco and Herna´ndez.8

In the rangeku.0.3 Å21, we cannot explain the lowering
of vibrational frequencies. This is due to the assumption that
the droplet has an abrupt surface defined by Eq.~1!. Casas
and Stringari6 have studied the effect of surface diffuseness
on the vibrational frequencies. They have found that the low-

FIG. 4. Dispersion relation of surface modes as a function ofku .
Vibrational frequencies are shown in units of Kelvin. All symbols
show the eigenfrequencies of the surface modes withR0 andRB

determined from the data by Casas and Stringari~Ref. 6!:
R052.22N1/3 and RB52.22N1/3. Eigenfrequencies for different
sizes are on a universal curve.

FIG. 5. Dispersion relation of surface modes as a function ofku .
Vibrational frequencies are shown in units of Kelvin. All symbols
show the eigenfrequencies of the surface modes withR0 andRB

determined from the data by Barranco and Herna´ndez ~Ref. 8!:
R052.21N1/310.00065614.52N21/3 andRB52.21N1/3. Eigenfre-
quencies for different sizes are on a universal curve.

FIG. 6. Dispersion relation of surface modes as a function ofku .
Vibrational frequencies are shown in units of Kelvin. All symbols
show the eigenfrequencies of the surface modes withR0 andRB

determined from the data by Chin and Krotscheck~Ref. 7!:
R052.35N1/320.65615.00N21/3 and RB52.35N1/3. Our disper-
sion curve is in poor correspondence with their calculated data.
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ering of eigenfrequencies of the surface vibrations occurs
with the increase in the surface diffuseness and the critical
number of atoms is about 100. In accordance with this crite-
rion, Fig. 4 shows that our dispersion curve deviates from
their data for a4He droplet with 40 atoms. By taking the
distribution of the mass density to be of a type of Fermi-
Dirac distribution function, we can consider, within the
framework of the present LDM, the effect of the surface
diffuseness on the dispersion relation. Expanding the mass
density around a certain radius, we obtain the kinetic energy
and the potential energy with corrections coming from the
surface diffuseness. This procedure is carried out in the same
way as deriving the heat capacity of a free-electron system at
finite temperatures. We find that the eigenfrequencies reduce
with the decrease inN and the increase inl . These results
will be reported elsewhere. If a4He droplet shows superflu-
idity, it is thought that the structure factorS(k) introduced
by Feynman17 lowers the dispersion curve more.

In Fig. 7 we show the dispersion relation by using an
effective wave numberk5Al ( l11)/R0 proposed by Chin
and Krotscheck.7 Obviously, there is no universality in the
dispersion curve because eigenfrequencies derived by LDM
are scattered. Thek has been introduced by considering the
conservation of momentum associated with the passing
probe. We, however, cannot specify the feature of the droplet
because such ak must be common to a liquid drop and a
particle in a solid state. Even if we use
ks5[ l ( l21)(112)]1/3/R0 , which has been suggested by

Chin and Krotscheck,7 there still remains the scattering of
eigenfrequencies especially in the range of high wave num-
bers as is shown in Fig. 8. In our formulation we obtain, for
small hnl , the wave number associated with the surface
modes as

ku'@ l ~ l21!~112!#1/3/Re , ~20!

in which the asymptotic relationh25s l ( l21)(l12)/
(r0R0u

2) is used in Eq.~17!. This indicates that the denomi-
nator Re improves a simple definition of a wave number
ks5[ l ( l21)(112)]1/3/R0 derived from Eq.~4!. We should
note that the difference betweenR0 andRe increases with the
decrease inN and theks gives many deviations from the
universal dispersion relation. This is the reason for devia-
tions from the universal dispersion curve.

V. CONCLUSIONS

We have clarified the vibrational properties of a4He drop-
let by the liquid-drop model which includes the coupling
between surface vibrations and inner vibrations. For different
sizes of4He droplets, we have shown that the universal dis-
persion relation can be specified by introducing the effective
wave numberku . Because our method gives a proper univer-
sal curve, our dispersion relation serves as a test of the cal-
culated results on various kinds of schemes such as varia-
tional Monte Carlo, diffusion Monte Carlo, RPA and so
forth.
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