First-order transition at T_C in the orthomanganites

W. Archibald, J.-S. Zhou, and J. B. Goodenough

Center for Materials Science and Engineering, ETC 9.102, University of Texas at Austin, Austin, Texas 78712-1063

(Received 22 November 1995)

The orthomanganites $L_{0.7}A_{0.3}$ MnO₃, L=rare-earth or Y and A=alkaline earth, exhibit a first-order transition at a ferromagnetic Curie temperature T_C , where T_C drops with decreasing tolerance factor t from a high near 350 K at t=0.98 to a $T_C^* \approx 60$ K at $t \leq 0.96$. The paramagnetic phase is a polaronic conductor; the ferromagnetic phase contains mobile electrons in extended states for larger tolerance factors $t > t_c = 0.96$, but remains polaronic for $t < t_c$. The temperature dependence of the thermopower is used to explore the polaron-extended state transition for five nominal compositions $(La_{1-x}Nd_x)_{0.7}Ca_{0.3}MnO_3$ designed to have tolerance factors near the critical value t_c . Comparison of the temperature dependence of the thermopower, $\alpha(T)$, as a result of chemical pressure, i.e., t < 1, with that for hydrostatic pressure reveals an anomalously large compressibility of the Mn-O bonds, which is characteristic of a double-well potential at a crossover from an electronic state of lower mean kinetic energy to one of greater kinetic energy. It also reveals a trapping of mobile holes above T_C that increases with decreasing T_C . In the orthomanganites, the crossover is from polaronic-e to extended- σ^* electronic conduction at T_C , a crossover that is responsible for the ''colossal'' negative magnetoresistance observed in the orthomanganites. [S0163-1829(96)00521-8]

INTRODUCTION

The mismatch between the equilibrium bond lengths A-O and M-O of an AMO_3 cubic perovskite is given by the deviation from unity of the tolerance factor

$$t = (A - O) / \sqrt{2(M - O)}.$$
 (1)

The room-temperature, ambient-pressure value of *t* is calculated from the sums of the empirical ionic radii given in tables, e.g., those of Shannon and Prewitt.¹ A t < 1 places the *M*-O bonds under compression and the *A*-O bonds under tension. These internal stresses are relieved by a cooperative rotation of the MO_6 octahedra that lowers the symmetry of the unit cell from cubic to, for example, rhombohedral (R3c) or orthorhombic (Pbnm). The resultant bending of the *M*-O-*M* bond angle from 180° to $(180^\circ - \phi)$ reduces the σ -bonding nearest-neighbor *M*-O-*M* resonance integral²

$$b_{\sigma} \approx \epsilon_s \lambda_s^2 + \epsilon_{\sigma} \lambda_{\sigma}^2 \cos\phi \qquad (2)$$

that enters the tight-binding expression $W_{\sigma} \cong 2zb_{\sigma}$ for the bandwidth; z=6 is the number of nearest-neighbor M atoms in the perovskite structure, ϵ_s and ϵ_{σ} are one-electron energies, and λ_s and λ_{σ} are covalent-mixing parameters. Substitution of a smaller isovalent cation reduces t, thereby increasing ϕ and reducing the bandwidth W_{σ} .

Since the covalent-mixing parameters $\lambda \equiv b^{ca}/\Delta E$ for O 2s, $2p_{\pi}$, and $2p_{\sigma}$ electron transfer over an energy ΔE to an empty transition-metal *d* orbital have a $\Delta E_s > \Delta E_p$ and a p_{π} -*t* resonance integral b^{ca} smaller than the p_{σ} -*e* resonance integral, they have the relation

$$\lambda_s < \lambda_{\pi} < \lambda_{\sigma}. \tag{3}$$

The corresponding π -bonding resonance integral is $b_{\pi} \approx \epsilon_{\pi} \lambda_{\pi}^2$, and it follows that the relation

$$W_{\pi} < W_{\sigma}$$
 (4)

holds where ϕ is not too large, as in the perovskites. Relation (4) allows retention of localized π -bonding electrons in the presence of a transition from polaronic-*e* to itinerant- σ^* electrons with increasing W_{σ} . Moreover, from the Virial theorem

$$2\langle T \rangle + \langle V \rangle = 0, \tag{5}$$

a discontinuous change in the mean electron kinetic energy $\langle T \rangle$ at a transition from polaronic-*e* to itinerant- σ^* electrons would be reflected in a compensating discontinuous change in the mean electron potential energy $\langle V \rangle$, so we can expect a first-order decrease in the mean Mn-O bond length on increasing W_{σ} through a transition from polaronic-*e* to extended- σ^* electrons.

In the presence of localized t^3 configurations of spin S = 3/2, the electrons of *e*-orbital parentage experience a strong intra-atomic-exchange interaction that would narrow the σ^* band of a ferromagnetic phase by a transition to a paramagnetic phase. Therefore, stabilization of a metallic relative to a polaronic phase at lower temperatures may be found at or near a ferromagnetic Curie temperature. Just such a transition appears to be responsible for the remarkable negative magnetoresistance and other physical properties Mn^{4+}/Mn^{3+} mixed-valent orthomanganites of the $L_{1-x}A_x$ MnO₃, where *L* is a rare-earth or Y and *A* is an alkaline earth.³ In this perovskite family, the electron transfer from a high-spin Mn³⁺: t^3e^1 to a Mn⁴⁺: t^3e^0 ion is responsible for the electronic conduction, and the conduction electrons (holes) may be either polaronic-*e* or itinerant- σ^* depending on the bandwidth W_{σ} whereas the t^3 configurations remain localized with a spin S = 3/2. A recent study⁴ of the isoelectronic perovskites $L_{0.7}A_{0.3}$ MnO₃ has revealed a remarkable dependence on t of the ferromagnetic Curie temperature T_C in an interval 0.96 < t < 0.98, Fig. 1(a), where we use the tabulated ionic radii for 12-fold oxygen coordination of the A-site cations⁵ rather than the eightfold coordination

0163-1829/96/53(21)/14445(5)/\$10.00

<u>53</u> 14 445

FIG. 1. (a) Phase diagram of Curie temperature T_C vs tolerance factor t for a ratio Mn⁴⁺/Mn=0.3 adapted from Ref. 4, (b) Phase diagram of magnetic-ordering temperature vs x in La_{1-x}Sr_xMnO₃ adapted from Ref. 6. FMI=ferromagnetic insulator, FMM =ferromagnetic metal, PMI=paramagnetic insulator, PMM =paramagnetic metal, CNI=spin-canted insulator.

given by Shannon and Prewitt.¹ For t > 0.98, a relatively high value of T_C reflects an important ferromagnetic contribution from the dominant *e*-electron indirect-exchange (or doubleexchange) component of the Mn-O-Mn interatomicexchange coupling between localized t^3 configurations; the superexchange t^3 -O- t^3 component is antiferromagnetic. In the interval $t_c \approx 0.96 \le t \le 0.98$, a transition at T_t from extended states to polaronic conduction coincides with T_{C} and is first order;⁴ stabilization of double-exchange coupling via extended- σ^* electrons below T_t introduces ferromagnetic order. For $t < t_c \approx 0.96$ the double-exchange component of the ferromagnetic coupling becomes suppressed because the time for a polaron to hop to a neighbor is long compared to the spin-lattice relaxation time. The Curie temperature T_C^* is determined by superexchange interactions, and the weak ferromagnetic component appears to reflect a spin canting of an antiferromagnet by antisymmetric Dzialoshinskii exchange. Figure 1(b) shows a similar variation of T_C with t for different dopings.⁶ The four transition temperatures T_t , T_C , T_C^* , and T_C' are defined at the beginning of our Discussion section.

In order to demonstrate that the origin of the first-order transition resides in a double-well potential for the equilibrium Mn-O bond length at a crossover from polaronic-*e* to extended- σ^* electronic conduction, we have undertaken measurements of the temperature dependence of the thermopower $\alpha(T)$ made under different pressures. These measurements also reveal the influence on $\alpha(T)$ of the removal of the spin degeneracy of the σ^* band on cooling to $T_t = T_c$ as well as a trapping out of mobile holes in what appear to be superparamagnetic clusters below room temperature.

EXPERIMENTAL

In keeping with Hwang *et al.*,⁴ we have chosen to study the pressure dependence of $\alpha(T)$ as a function of bandwidth for a fixed Mn⁴⁺/Mn ratio of 0.3 both because the largest negative magnetoresistance has been observed for this ratio and because of the study of Fig. 1(a). We have selected bandwidths W_{σ} that are characterized by tolerance factors that were intended to span the critical value $t_c \approx 0.96$, which was found⁴ for Pr_{0.7}Ca_{0.3}MnO₃ in Fig. 1(a). For this purpose we have taken five values of x from the system (La_{1-x}Nd_x)_{0.7}Ca_{0.3}MnO₃ in the range $0.2 \le x \le 1$ such that three (x=0.2, 0.4, 0.55) have t>0.96 and two (x=0.75, 1.0) have t \le 0.96.

Polycrystalline samples were prepared by conventional solid-state reaction from stoichiometric mixtures of La₂O₃ (dried), Nd₂O₃ (dried), CaCO₃, and Mn₂O₃. The mixtures were calcined at 1250 °C, then reground, pressed into pellets, and sintered at 1350 °C. All products were found to be single-phase to x-ray powder diffraction. Measurements of the temperature dependence of the thermoelectric power $\alpha(T)$ and resistance $\rho(T)$ at atmospheric pressure were made with a homemade apparatus as described elsewhere.⁷ Measurements of $\alpha(T)$ under pressure were made with a self-clamping pressure cell as also described elsewhere.⁸ The lead contributions to $\alpha(T)$ and $\rho(T)$ were subtracted from all measurements.

RESULTS

Figure 2 shows $\alpha(T)$ at atmospheric pressure for the five chosen compositions; Figure 3 shows the corresponding resistivity data for x = 0.55. Each sample showed a positive enhancement of $\alpha(T)$ as the temperature was lowered to T_C or T_C^* . Above 600 K, the resistivity shows a polaronic temperature dependence and $\alpha(T)$ saturates at a temperatureindependent, negative value of $-15\pm5 \mu V/K$. On cooling through T_t , $\alpha(T)$ drops abruptly, but it reaches a small value only in the three samples with t > 0.96 (the detailed temperature dependence of the low-temperature phase deserves further investigation). Although $\alpha(T)$ drops sharply on cooling through T_{C}^{*} in the other two samples, it becomes unmeasurable at temperatures below approximately 50 K where most of the mobile holes have become trapped. The resistance of these two samples was greater than $10^6 \Omega$ below 50 K, which makes the open-circuit-like noise greater than the signal.

FIG. 2. Ambient-pressure thermopower α vs temperature *T* for nominal $(\text{La}_{1-x}\text{Nd}_x)_{0,7}\text{Ca}_{0,3}\text{MnO}_3$ for five values of *x*. *Inset*: Curie temperature T_C , taken as maximum in $\alpha(T)$, vs $\alpha(T_C)$.

Moreover, the maximum thermopower $\alpha(T_C)$ increases with decreasing t, i.e., with decreasing W_{σ} . In addition, T_C varies linearly with $\alpha(T_C)$ as $dT_C/d\alpha(T_C) = -1.4$ K/(μ V/K). The thermal hysteresis at $T_t = T_C$ found in the $\rho(T)$ curve of Fig. 3 is similar to that reported by Ref. 4; the relatively high value of ρ at $T < T_C$ suggests that only the untrapped holes occupy extended- σ^* states.

FIG. 3. Log(Resistance) vs T for $(La_{0.45}Nd_{0.55})_{0.7}Ca_{0.3}MnO_3$ showing the thermal hysteresis near $T_C \approx 150$ K and activated behavior above T_C .

FIG. 4. Thermopower α vs temperature T for nominal $(La_{0.6}Nd_{0.4})_{0.7}Ca_{0.3}MnO_3$ taken at several pressures. *Inset*: Curie temperature T_C , taken as maximum in $\alpha(T)$, vs pressure.

Figure 4 shows $\alpha(T)$ for x = 0.4 under several hydrostatic pressures. Both $\alpha(T_C)$ and T_C vary linearly with pressure $[d\alpha(T_C)/dP = -0.85 \quad (\mu V/K)/kbar$ and $dT_C/dP = 1.1$ K/kbar] to give a calculated $dT_C/d\alpha(T_C) = -1.2$ K/ $(\mu V/K)$ that is in close agreement with the -1.4 K/ $(\mu V/K)$ obtained by varying x. Whether W_σ is varied chemically or by hydrostatic pressure at constant hole concentration, the relationship between T_C and $\alpha(T_C)$ remains the same. We note that Neumeier *et al.*⁹ obtained a $dT_C/dP = 1.57$ K/kbar for La_{0.67}Ca_{0.33}MnO₃ from resistivity measurements, which is somewhat higher than the 1.1 K/kbar in our x = 0.4 sample.

The similarity of the curves in Figs. 1(a) and 1(b) shows that the tolerance factor t is a more important determinant of the long-range magnetic-ordering temperature than is the hole concentration.

Finally we show in Fig. 5 inverse magnetic-susceptibility data for three samples near t_c . A magnetic anomaly below room temperature, but above T_c , is clearly evident; it is suggestive of the formation of superparamagnetic clusters associated with holes trapped out in Ca²⁺-rich regions.

DISCUSSION

We define four transition temperatures for our discussion: T_t is the transition temperature from an extended state to a small-polaron conductor obtained from transport data,

 T_C is the Curie temperature for a metallic ferromagnetic phase,

 T_C^* is the Curie temperature for a polaronic ferromagnetic phase,

 T'_C is the Curie temperature for a superparamagnetic cluster.

The temperature-independent $\alpha(T)$ and activated conductivity above 600 K are typical of polaronic conduction, and the thermopower in the high-temperature limit should be described by the small-polaron formula

FIG. 5. Inverse magnetic susceptibility χ_m^{-1} vs temperature T for x = 0.4, 0.55, 0.75 in nominal $(\text{La}_{1-x}\text{Nd}_x)_{0.7}\text{Ca}_{0.3}\text{MnO}_3$.

$$\alpha = -\frac{k}{|e|} \ln[\beta(1-c)/c], \qquad (6)$$

where *c* is the electron occupancy of the Mn⁴⁺/Mn³⁺ redox couple and the factor β represents the spin degeneracy. The mobile electrons hop from singly occupied *e* orbitals on a Mn³⁺ ion to the empty *e* orbitals of the Mn⁴⁺ ion, so they may hop for any orientation of the spin on the Mn⁴⁺ ion; the transferred electron has a twofold spin degeneracy (β =2) in the paramagnetic phase at high temperatures, but it has no spin degeneracy (β =1) in the ferromagnetic phase. The condition β =1 may be reached at T_C^* where there is no firstorder transition, i.e., where T_C^* is the Curie temperature of the polaronic phase. Short-range ferromagnetic order may give a condition $1 < \beta < 2$ for the average value of β in the high-temperature phase at a first-order transition temperature $T_t = T_C > T_C^*$ where T_C is the measured Curie temperature.

The change from $\beta=2$ to $\beta=1$ would enhance $\alpha(T)$ in the polaronic phase by no more than 58 μ V/K on cooling from $T \ge T_C$ to T_C . Therefore an observed increase of over 100 μ V/K in the x=1 sample requires, in addition to suppression of the spin degeneracy, some trapping out of mobile holes at lower temperatures if Eq. (6) is to be applicable. Moreover, a high-temperature $-20 < \alpha < -10 \ \mu$ V/K is a little low for a Mn⁴⁺/Mn ratio of 0.3 and $\beta=2$; the Mn⁴⁺/Mn ratio needs to be adjusted to 0.37 to give $c \approx 0.63$, corresponding to $-(k/|e|)\ln\beta-(k/|e|)\ln[(1-c)/c]\approx[-59+45] \ \mu$ V/K for $\beta=2$.

This latter discrepancy is readily rationalized since the orthomanganites are known to be oxygen rich if prepared in air; they become cation-deficient perovskites $A_{1-\delta}Mn_{1-\delta}O_3$, and a $\delta \approx 0.015$ would lower the high-temperature $\alpha(T)$ from +13 to -20 μ V/K. The variation between samples in the high-temperature saturation value of $\alpha(T)$ thus appears to reflect variations in the oxygen excess; i.e., in δ .

The former discrepancy reflects a trapping of the mobile holes at Mn atoms neighboring Ca^{2+} ions. The magnetic data of Fig. 5 show a break in the inverse magnetic susceptibility

versus temperature that is indicative of the formation of superparamagnetic clusters; we believe they are stabilized by a local transition to itinerant (or molecular-orbital) σ^* electrons below a $T'_C > T_t$ within hole-rich Mn clusters.

The first-order transition at $T_C = T_t$ increases with t as if the extended-state σ^* electrons below T_t introduce a stronger double-exchange ferromagnetic coupling with decreasing concentration of trapped holes. Double exchange is responsible for $T_C \approx 350$ K at a tolerance factor $t \approx 0.98$ in Fig. 1(a) where there appear to be no trapped charge carriers. Saturation of $T_t = T_C$ at t = 0.98 reflects a smooth transition to the paramagnetic phase for t > 0.98. An apparent linear decrease in T_C with increasing $\alpha(T_C)$ in Fig. 2 for $0.2 \le x \le 0.75$ would also reflect the dependence of T_C on the mobile charge carriers and hence on the degree of hole trapping at T_C . The x=1 sample has a $t < t_c$ and an $\alpha(T_C^*)$ like the $\alpha(T_C)$ in the x=0.75 sample if allowance is made for the different oxygen stoichiometry made apparent by the hightemperature values of $\alpha(T)$.

Finally, both physical pressure and an increase in the tolerance factor t increase the transition temperature $T_t = T_c$ and change the other physical properties in a similar way, which shows that t increases with pressure. From the definition of t, Eq. (1), a dt/dP > 0 can only occur if the compressibility of the Mn-O bond is greater than that of the A-O bond. This anomalous situation is only found where there is a double-well potential associated with two equilibrium M-O bond lengths¹⁰ such as is found, for example, at the metalinsulator transition in NdNiO3,¹¹ and in the copper-oxide superconductors.¹² A dt/dP > 0 thus implies the existence of a double-well potential for the equilibrium Mn-O bond length at a crossover from polaronic-e to extended σ^* electronic conduction, a crossover that, from the Virial theorem of Eq. (5), we have argued should be first order. The conclusion of a first-order phase transition at T_t has also been made by Hwang et al.⁴ on the basis of an observed thermal hysteresis of their resistivity vs temperature curves at a T_{ρ} corresponding to our T_t .

In conclusion, the orthomanganites represent one more example of a double-well potential for the M-O bond length in a perovskite at a transition where the mean kinetic energy of the d electrons of a transition-metal atom M changes discontinuously. The data thus support our interpretation of the remarkable drop in T_C in the range 0.96< t < 0.98, Fig. 1, viz. that it reflects a first-order change from polaronic-e hopping and superexchange ferromagnetic coupling to extended- σ^* metallic conductivity and double-exchange ferromagnetic coupling at a transition temperature $T_t = T_C$. The ferromagnetic phase is stabilized by stronger Mn-O-Mn interactions and hence by both a larger t factor and by reduction the spin-dependent resonance of integral $t_{ij} = b_{\sigma} \cos(\theta_{ij}/2)$ in a ferromagnetically ordered state; θ_{ij} is the angle between spins on neighboring atoms. Therefore $T_t = T_C$ is raised by an applied magnetic field, by pressure, and by chemical substitutions that increase t; it is relatively independent of the Mn⁴⁺/Mn ratio. The relatively high resistivity of the x = 0.55 sample below T_C , Fig. 3, indicates that as the strength of the Mn-O-Mn interactions decrease with decreasing t, more and more mobile holes become trapped out at low temperatures; the density of free holes is small and/or they have a low mobility even below T_C . The nature of the extended σ^* states below $T_i = T_c$ needs to be explored further. We suggest the unusual trapping out of mobile holes above T_c is due to local, static Jahn-Teller deformations that increase the activation energy E_a of the small-polaron mobility.

ACKNOWLEDGMENTS

We acknowledge with appreciation financial support from the NSF, the Texas Advanced Research Program, and the Robert A. Welch Foundation, Houston, Texas.

- ¹R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B **25**, 725 (1969); **26**, 1046 (1970).
- ²J. B. Goodenough, Prog. Solid State Chem. 5, 145 (1972).
- ³J. B. Goodenough, in *Epitaxial Thin Films II*, edited by D. K. Fork, J. S. Speck, R. M. Wolf, and T. Shiosaki, MRS Symposia Proceedings G (Materials Research Society, Pittsburgh, in press).
- ⁴H. Y. Hwang, S.-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. **75**, 914 (1995).
- ⁵Y. Q. Jia, J. Solid State Chem. **94(2)** (1991).
- ⁶A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B **51**, 14 103 (1995).
- ⁷J. B. Goodenough, J.-S. Zhou, and J. Chan, Phys. Rev. B 47,

5275 (1993).

- ⁸J.-S. Zhou and J. B. Goodenough (unpublished).
- ⁹J. J. Neumeier, M. F. Hundley, J. D. Thompson, and R. H. Heffner, Phys. Rev. B **52**, R7006 (1995).
- ¹⁰J. B. Goodenough, J.-S. Zhou, and G. I. Bersaker, in *Proceedings* of the International Workshop on Anharmonic Properties of *High-T_c* Cuprates, Bled, Slovenia, 1994, edited by D. Mihailović, G. Ruaui, E. Kaldis, and K. A. Müller (World Scientific, Singapore, 1995), pp. 30–41.
- ¹¹P. C. Canfield, J. D. Thompson, S.-W. Cheong, and L. W. Ruff, Phys. Rev. B **47**, 12 357 (1993).
- ¹²J.-S. Zhou, H. Chen, and J. B. Goodenough, Phys. Rev. B 49, 9084 (1994).