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The magnetocrystalline anisotropy energy of YCo5 has been calculated from first principles using the
local-spin-density approximation. The easy magnetization axis is predicted correctly and the anisotropy energy
is only 20% smaller than the experimental value if a recently proposed orbital polarization correction is
included; otherwise it is about a factor of 7 too small. Our analysis indicates that magnetic materials with
substantially larger anisotropy energies than the best available nowadays should be possible. A large orbital
moment is found to contribute to the magnetization bringing the calculated moment, 8.0mB per YCo5 unit cell,
into good agreement with the experimental value of 8.3mB . A large anisotropy in the magnetization is calcu-
lated which is nearly completely due to an anisotropic orbital moment associated with the Co atoms. The
magnetocrystalline anisotropy energy is shown to be strongly correlated with the anisotropy in the total orbital
moment. There is a large reduction in the hyperfine fields compared to the value in bulk hcp Co, not only due
to large orbital contributions, but also to different values of the valence contact term. The contribution of the
rare-earth~RE! ions to the anisotropy energy of the related RECo5 compounds may be understood in terms of
the crystal-field and exchange interactions felt by the localized RE(4f ) electrons. The RE(4f )-Co exchange
interactions and the Hartree contribution to the crystal field have been calculated under the assumption that
these interactions may be treated as small perturbations. The electric-field gradientVzz and theA2

0 crystal-field
parameter at the RE site are a factor of 2 and 3 larger than the experimental values, respectively. The order of
magnitude of the calculated exchange field agrees with the values derived from experiment.@S0163-
1829~96!01518-4#

I. INTRODUCTION

From a physical as well as from a technological point of
view RECo5 intermetallic compounds are of considerable in-
terest. This is mainly due to the large magnetocrystalline
anisotropy energy~MAE! of SmCo5 which is about 33108

ergs/cm3 at low temperatures.1–3 The anisotropy energy of
YCo5, which forms in the same hexagonal CaCu5 structure
with nearly identical lattice parameters,4 is only a factor of 4
smaller,5–7 and an order of magnitude larger than the anisot-
ropy energy of bulk~hcp! cobalt8 of 107 ergs/cm3. The origin
of the large magnetic anisotropy of YCo5 compounds is not
very well understood. Thedifferencebetween the MAE of
RECo5 compounds and YCo5 is found to be quite well de-
scribed in terms of the interaction of the localized 4f elec-
trons of a RE31 ion with phenomenological crystal and ex-
change fields at the RE site.1–3 The values of these fields as
determined by fitting to experiment are reasonably well
known but the origin of crystal fields in metallic systems and
the nature of the exchange fields are not well understood
quantitatively; the importance of taking into account the de-
pendence of the exchange field on the direction of the va-
lence electron magnetization has been pointed out by
Ermolenko.9

The large anisotropy energy of YCo5 has been associated
with large orbital moments on the Co sites, the orbital mo-
ment on the 2c sites being apparently particularly large. The
existence of these orbital moments was first suggested on the
basis of an analysis of the magnetic form factors measured in
a polarized neutron study on a YCo5 single crystal.

10 Almost
all subsequent investigations of the MAE of YCo5 have been
interpreted in the light of this neutron work. By replacing

some of the Co atoms with Ni, which occupies the 2c site
preferentially, and Fe, which preferentially occupies the 3g
site, a correlation was established between the 2c site and the
anisotropy energy.6 In a study of the magnetization in high
magnetic fields a~large! anisotropy in the magnetization of
4% was found.7 From the analysis of a polarized neutron
study of a NdCo5 single crystal, the greater part of this mag-
netization anisotropy was attributed to the Co (2c) site;7 in a
later analysis, this anisotropy was attributed to the orbital
moments on the Co sites, in particular to the Co (2c) site.11

Studies of the hyperfine field have been used to probe the
site dependence of the orbital moments by relating the aniso-
tropic component of the hyperfine field to the anisotropy in
the orbital moments. Heidemannet al.12 have concluded
from a neutron inelastic spin-flip scattering investigation of
the hyperfine fields in YCo5 that there is~i! no significant
difference in the orbital moments on the 2c and 3g sites and
~ii ! that there is no simple proportionality between the hyper-
fine fields and the Co moments. Nuclear magnetic resonance
~NMR! measurements of the hyperfine field have also been
carried out.13–15 Under the assumption that the orbital mo-
ment is proportional to the orbital hyperfine field, it was
concluded from these studies that the large magnetic anisot-
ropy of YCo5 is related to a large orbital moment on the
2c site.

Most of the information about the crystal fields and ex-
change fields in the RECo5 compounds has been obtained
indirectly by treating these interactions as free parameters in
crystal-field calculations of the MAE and varying them so as
to obtain reasonable agreement with the temperature depen-
dence of the single-ion contribution to the MAE as deter-
mined experimentally. Values for the crystal-field parameter
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A2
0^r 2&/kB of 2180,1 2420,2 and 2185 K,3 and for the

exchange-field parametermBBEX /kB of 200,
1 240,2 and 100

K ~Ref. 3! have been reported for SmCo5. Studies of the
hard-axis magnetization curves have been used to determine
the exchange field acting on the RE ions. For
Y 12xGdxCo5 alloys a value of the exchange field of 150 K
was found.9 155Gd Mössbauer spectroscopy studies have al-
lowed a determination of the electric-field gradients on the
Gd site in GdCo5;

16, 17 in a simple crystal-field picture based
on ionic charges, the electric-field gradient at the nucleus is
simply related to the crystal field seen by the 4f electrons.

Independent information and insight can be obtained from
ab initio calculations based on the Hohenberg-Kohn-Sham
density-functional formalism.18,19 Within the framework of
the local-spin-density approximation20,21 ~LSDA! to the
density-functional formalism, ground-state properties may be
calculated without use of any free parameters; the only in-
puts are the crystal structure and lattice parameters. In this
paper we will concentrate on the magnetic properties of
YCo5; in particular we will be interested to see whether the
relatively large magnetocrystalline anisotropy energy of this
compound can be calculated within the LSDA. In an earlier
study of the MAE of Fe, Co, and Ni,22 we found that al-
though the correct order of magnitude of the anisotropy en-
ergy could be calculated, the incorrect sign was obtained for
Co and Ni. For Co the calculation was in error by 0.08 meV.
Since the MAE per Co atom in YCo5 is ;0.76 meV or
almost an order of magnitude larger, an absolute error of
0.08 meV per Co atom would be a very acceptable result.
We shall see that this is not the case. The straightforward
LSDA calculation results in a MAE of 0.54 meV per unit
cell which is about a factor of 7 too small and represents an
error of 0.65 meV per Co atom. In addition, we find that the
magnetization is also significantly underestimated. The or-
bital moment contribution to the magnetization is apparently
too small, just as we found for Co. If a recently proposed
orbital polarization term,23–25 whose main effect is to en-
hance the orbital moment, is included, then a magnetization
of 8.0mB per unit cell is obtained compared to the experi-
mental value7 of 8.3mB . The corresponding anisotropy en-
ergy of 3.0 meV per unit cell is in acceptable agreement with
the experimental value of 3.8 meV per unit cell. We find a
strong correlation between the anisotropy energy and the av-
erage anisotropy in the orbital moment per Co atom.26 At the
actual Fermi energy the orbital anisotropy on the 3g site is
larger than that on the 2c site. No significant difference be-
tween the orbital moments on the 2c and 3g sites is found.
In order to try and understand the discrepancy between this
result and the picture derived from neutron scattering10 and
confirmed by NMR,13–15we calculated the hyperfine fields.
It appears, however, that the hyperfine fields cannot be cal-
culated with sufficient accuracy27 to allow the NMR experi-
ments to be reinterpreted with confidence.

If we assume that the crystal-field and exchange interac-
tion between the RE 4f electrons and the other valence elec-
trons is sufficiently weak that it may be treated as a small
perturbation, then these parameters can be evaluated from
first principles. The calculated second-order crystal-field
parameter28 and the electric-field gradient are about a factor
of 2–3 larger than the values extracted from experiment. The
calculated exchange field agrees with the experimental val-

ues. Brief summaries of the results of the YCo5 anisotropy-
energy and crystal-field calculations GdCo5 have been given
in Refs. 26 and 28, respectively.

The paper is organized as follows. The theoretical meth-
ods used are described in Sec. II. In Sec. III the results of our
calculations are described and compared with experimental
results and other calculations. A brief summary with some
conclusions is given in Sec. IV.

II. METHOD

Within the density-functional formalism,18 Kohn and
Sham showed19 that the many-electron problem for the
ground state of an inhomogeneous interacting electron gas in
an external potential may be reduced to an effective indepen-
dent particle problem, the Kohn-Sham equations19 which
must be solved self-consistently, usually by iteration. In
practical calculations explicit expressions for the exchange-
correlation energy and potential are required and the usual
approach is to make the local-spin-density-approxima-
tion.20,21 In this work we have used two different methods to
solve the Kohn-Sham equations. A full potential~FLAPW!
version29 of the linear-augmented plane-wave~LAPW!
method30 is used for calculations of the electric-field gradi-
ent, crystal-field parameters and contact contributions to the
hyperfine field. In a so-called full potential method, there is
no restriction imposed on the form of the potential or spin
density; these are not assumed to be spherically symmetrical
inside atom-centered spheres as in the muffin tin~MT! or
atomic sphere~AS! approximations. By performing conver-
gence tests on the number of plane waves in the basis, on the
upper angular momentum used in the expansion of the po-
tential around the atom sites and the spherical harmonic ex-
pansion of the plane waves inside a MT sphere, on the num-
ber ofk points31 used to sample the Brillouin zone~BZ! and
on the number of fixed energies around which the energy
linearization is performed, essentially exact solutions of the
Kohn-Sham equations within the LSDA can be obtained. To
obtain reliable results for the magnetization and the energy
bands of YCo5, we found that about 70 plane waves/atom
were required so that matrices of rank 400 had to be diago-
nalized.

For calculations of the MAE a fine sampling of the Bril-
louin zone must be made and calculations with the FLAPW
method would be very time consuming. In order to calculate
the MAE, orbital moments, orbital contributions to the hy-
perfine field and local exchange interactions between RE 4f
magnetic moments and the valence electron magnetization
we use the efficient linear muffin-tin orbital~LMTO! method
in the atomic-sphere approximation~ASA!.30 In LMTO cal-
culations a basis of typically 16 (s, p, d, and f ) orbitals per
atom is used making the LMTO method about two orders of
magnitude faster than the FLAPW if the matrix diagonaliza-
tion is the most computationally demanding step. If the ASA,
in which the potential is assumed to have spherical symmetry
inside atomic spheres which replace the atomic Wigner-Seitz
cell, is used then this is the case.

In Sec. II A we describe the approximations used to cal-
culate the magnetocrystalline anisotropy energy of the itin-
erant valence electrons. In Sec. II B expressions for contact
and orbital contributions to the hyperfine field are given. The
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calculation of crystal-field parameters as well as the electric-
field gradient is described in Sec. II C. In Sec. II E the ap-
proximations used to calculate local exchange interactions
between the RE spin and the valence electron magnetization
are discussed. Some specific technical details of the LMTO
and FLAPW calculations are given in Sec. II F.

A. Itinerant electron anisotropy energy

Magnetocrystalline anisotropy refers to the dependence of
the ground-state energy on the orientation of the magnetiza-
tion and, microscopically, it occurs when both exchange-
splitting and spin-orbit coupling are included in the Hamil-
tonian. In 3d transition-metal systems the spin-orbit coupling
parameter of the valence electrons is much smaller than the
exchange-splitting and the bandwidth. One can therefore
make the approximation of first solving the Kohn-Sham
equations for the scalar-relativistic spin-polarized Hamil-
tonian self-consistently and of including the spin-orbit cou-
pling in a subsequent non-self-consistent step.32 The Kohn-
Sham eigenvalues then obtained by diagonalization of the
Hamiltonian depend on the directionn of the magnetization.
The change in total energy upon inclusion of the spin-orbit
coupling, as given by the change in the single-particle eigen-
value sum, is correct to first order in the changes in the
electron and spin densities occurring upon a rotation of the
magnetization direction.22 The MAE due to the valence elec-
trons is then approximately22

DE5DEn~n1 ,n2!5DE~n,n1!2DE~n,n2!

'(
i ,k

occ

« i~k,n1!2(
i ,k

occ

« i~k,n2!5E
BZ
dkDEn~k!. ~1!

wheren is the number of valence electrons. The band index
i must be summed over all occupied states up to the Fermi
energy«F

n(na) and thek summation is over the first Bril-
louin zone.DEn(k) is the anisotropy energy density ink
space. At this point it will be convenient to choose the direc-
tionsn1 andn2 to be thex ~the anisotropy in the basal plane
is known to be small and can be neglected! andz directions,
respectively, and the explicit dependence of the anisotropy
energy on the two magnetization directions will be sup-
pressed from now on. As in our earlier work,26, 33 the eigen-
value sums were evaluated directly with the improved tetra-
hedron method31 without having to use the density-of-states
or number-of-states functions.22

To investigate how the anisotropy energy depends on the
location of the Fermi energy, we calculate the difference of
two single-particle eigenvalue sums as a function of the non-
integer band fillingq using the band structure calculated self-
consistently forn electrons. We call this quantityDEn(q).
By plotting the corresponding generalized anisotropy energy
densityDEn(k,q) in the BZ as a function of the band filling
q we can identify the contribution of particular statesu ik& to
the anisotropy energy. The dependence of the Fermi energy
on the number of valence electronsn and the magnetization
directionn will not be shown explicitly in the following.

Atom projected orbital angular momenta oriented along
n are calculated using

L~t!5(
i ,k

occ

^c i ,k
n un• luc i ,k

n &AS, ~2!

where c i ,k
n is the eigenstate of energy bandi with wave

vectork calculated for the magnetization directionn and the
subscript AS indicates that the integral is performed over the
atomic sphere of the atomt in question.

The orbital moments obtained from LSDA calculations
for Fe and Co~but not for Ni! are about a factor of 2 smaller
than the experimental values.22, 25Recently it was shown that
inclusion of a term proportional to 2Ln• l in the Kohn-Sham
equations improved the calculated properties of certain 4f
and 5f systems considerably,24 and led to enhanced orbital
moments in Fe, Co, and Ni.25 This so-called orbital polariza-
tion term~OP! is based upon an approximateL2 dependence
of the energy of the lowest term of a given configuration
with respect to the average energy of all terms of the same
configuration with maximum spin for anatom. This depen-
dence is assumed to be transferred to the solid state.

For an atom obeying Russell-Saunders coupling, adn or
f n electronic configuration with maximum spinS will split
into terms with different values of the total orbital angular
momentumL. The term with the largestL(5Lmax) is lowest
in energy~Hund’s rules!. The energy difference between this
term with L5Lmax and the weighted average of the terms
with maximum spin is34

dE~n,Lmax,S!5E~n,Lmax,S!2Ē

5E~n,Lmax,S!2
(L~2L11!E~n,L,S!

(L~2L11!
.

~3!

This energy is given in Tables I and II fordn or f n configu-
rations, respectively. The contention of Brookset al. is that
theL dependence ofdE(n,L,S) can be interpolated approxi-
mately by2(B/2)L2, respectively2(E3/2)L2, if n is varied
in dn or f n configurations with maximum spin multiplicity.

TABLE I. dE(n,Lmax,S), the difference in energy between the
lowest term in a givendn configuration with maximum spinS and
the L averaged energy of that configuration in units of the Racah
B parameter. Results from atomic theory are compared with a
simple interpolation formula2L2/2.

d1 d2 d3 d4

Racah 0 2
9
2 2

9
2 0

2L2/2 -2 2
9
2 2

9
2 -2

TABLE II. dE(n,Lmax,S), the difference in energy between the
lowest term in a givenf n configuration with maximum spinS and
the L averaged energy of that configuration in units of the Racah
E3 parameter. Results from atomic theory are compared with a
simple interpolation formula2L2/2.

f 1 f 2 f 3 f 4 f 5 f 6

Racah 0 -9 -21 -21 -9 0
2L2/2 2

9
2 2

25
2 -18 -18 2

25
2 2

9
2
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The simple interpolation formula tends to overbind terms
with nearly empty or nearly filled shells.B andE3 are Racah
parameters.34 B is given by

B5
9F225F4

441
, ~4!

where the SlaterFk integrals are given by

Fk5E E fd
2~r 1!fd

2~r 2!
2r,

k

r.
k11 r 1

2r 2
2dr1dr2 . ~5!

in terms of integrals involving the radiald wave function
fd . For a crystal we replacefd with the d partial wave
evaluated at the center of gravity of the occupied part of the
d band,fd( «̄,r ).

We have investigated the influence of orbital polarization
on the calculated orbital moments and the MAE by including
a term 2BLn• l in the Hamiltonian and iterating to self-
consistency with the magnetization direction parallel to the
c axis. This yields new self-consistent orbital angular mo-
menta, orbital splittingsBL and a new self-consistent poten-
tial. It can be shown that upon a rotation of the magnetiza-
tion direction, the change in total energy is given by the
change in the one-particle sum correct to first order in the
changes in the electron and spin densities and in the orbital
angular momentum.35 Using the self-consistently determined
orbital splittings the anisotropy energy may be calculated as
previously@Eq. ~1!#, using the new self-consistent potential
calculated including OP.

Classical magnetic dipolar interactions between magnetic
moments are another source of anisotropy energy, not in-
cluded in the theory described above. The interatomic mag-
netostatic energy,Edip2 dip, is given by

Edip2dip5
1

c2 (
R,t,t8

8
1

uR1t2t8u3 Smt•mt8

23
@~R1t2t8!•mt#@~R1t2t8!•mt8#

uR1t2t8u2 D ,
~6!

wheremt is the total magnetic moment in an atomic sphere
centered on sitet. After the shape anisotropy has been
excluded,22 Edip2 dip can be determined for different orienta-
tions of the magnetic moments.

B. Hyperfine fields

The hyperfine fieldBhf at a nucleus comprises a Fermi
contact interaction term,36 an orbital hyperfine field and di-
polar contributions. The latter are of order 1 T and are gen-
erally neglected. The Fermi contact interaction is determined
by the magnetization density at the nucleus, while the orbital
hyperfine field is related to the orbital moment of the valence
electrons only; contributions from core electrons have been
shown to be negligible (;0.1 T!.37 If it is assumed that the
contact and orbital hyperfine interactions are proportional to
the spin and orbital moments, respectively, then measure-
ments of the hyperfine fields can be used to obtain informa-
tion about the site dependence of the magnetization.

In our calculation of the hyperfine fieldBhf , we follow
the treatment of Blu¨gelet al.who derived expressions for the
orbital, dipolar, and contact contributions to the hyperfine
fields, which should be used in conjunction with scalar rela-
tivistic wave functions.38 Because of the divergence of the
~scalar! relativistics wave functions at the nucleus, the rela-
tivistic generalization of the Fermi contact hyperfine field~in
SI units!,

Bc5
8p

3

m0

4p
m~0!, ~7!

wherem(0) is the magnetization density at the nucleus, is

Bc5
8p

3

m0

4p
mav, ~8!

wheremav is an averaged magnetization density given by
mav5*drdT(r )m(r ) andm(r ) is the magnetization density
due tos electrons.dT(r ) is essentially a smeared outd func-
tion, dT(r )5(1/4pr 2)(]S/]r ), whereS(r ) is the reciprocal
of the relativistic mass enhancementS21(r )511@«
2V(r )]/2mc2. The most important contribution toBc is ob-
tained forr values smaller than or of order of the Thompson
radiusr T5Ze2/mc2. Adapting Eq.~7! to the relativistic case
by simply averaging the relativistic wave functions over the
nuclear volume leads to overestimates of the contact hyper-
fine field.

Similarly, the orbital contribution to the hyperfine field is
given by38

Borb5
2m0mB

4p
Lav, ~9!

with

Lav5(
i ,k

occ

^c i ,k
n u

S~r !

r 3
n• luc i ,k

n &AS. ~10!

C. Crystal-field parameters

Most RE atoms in a solid may be regarded as being in an
f n23(sd)3 or trivalent electronic configuration, which is well
separated from other configurations@such asf n22(sd)2 or
f n24(sd)4# by;5 eV. Within this trivalent configuration the
term with the lowest energy is obtained by first maximizing
the spinS and then maximizing the orbital angular momen-
tum L; the 4f electrons approximately obey Russell-
Saunders (LS) coupling.39 Spin-orbit coupling splits each
term into multiplets 2S11LJ , where the total angular mo-
mentum J of the ground-state multiplet is given by
J5uL2Su or J5uL1Su for less-than or more-than half filled
4 f shells, respectively. When the RE atom is embedded in a
crystal, the (2J11)-fold degenerate ground state will split
according to the irreducible representations of the point-
group. Because of the localization, and the~related! large
intra-atomic electron-electron interactions of the 4f electrons
of the RE atoms, the lowering of the point-group symmetry
from spherical symmetry due to the crystalline environment
usually represents a weak perturbation to the ground state of
a RE atom in a solid.
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The potential describing these crystal-field effects~felt by
each f electron! can be expanded around the RE site~we
omit the explicit site index! into radial and angular parts

v~r !5(
la

v la~r !Kla~ r̂ !, ~11!

where la labels the real lattice-harmonicsKla which have
been symmetrized according to the local point-group sym-
metry. In order to make contact with previously published
work we write the lattice harmonics in terms of the functions
f lm(r ) used by Hutchings40

Kla~ r̂ !5(
l ,m

clm
a f lm~r !

r l
. ~12!

For example,f 20(r )53z22r 2. If all 4 f one-electron states
have the same radial dependencef4 f(r ), the matrix ele-
ments of the Hamiltonian between states of the ground-state
multiplet uLSJ,M5MJ& can be written

HMM8
CF

5^LSJMu~2e!(
i
v~r i !uLSJM8&

5(
l ,m

Al
m^r l&u l

LSJ^JMuOl
muJM8&, ~13!

as a consequence of the Wigner-Eckart theorem,41 with

Al
m^r l&5~2e!(

a
E f4 f

2 ~r !clm
a v la~r !r 2dr. ~14!

The crystal-field parameters are thus determined by the radial
dependence of the potentialv la(r ) and the 4f radial wave-
functionf4 f(r ). u l

LSJ is the ratio between two reduced ma-
trix elements in the Wigner-Eckart theorem. If theOl

m are
chosen as Stevens operator equivalents42,40 to f lm for the
ground stateuLSJ& thenu l

LSJ5aJ ,bJ ,gJ for l 5 2, 4, and 6,
respectively. These have been tabulated in Refs. 42 and 40.
As the crystal-field splitting is in general much smaller than
the splitting between multiplets, one usually neglects the
mixing-in of excited multiplets with different values ofJ in
the Hamiltonian, as in Eq.~13!. For f states, the number of
crystal-field parametersAl

m is limited to l<6 andl even. The
local point-group symmetry determines the coefficients
clm

a , and this further restricts the number of independent pa-
rametersAl

m for each value ofl . For the RE atom in
RECo5, the local point-group symmetry isD6h , leading to
independent parametersAl

m with ( l ,m)5~2,0!; ~4,0!; ~6,0!
and ~6,6!.

The simplest approximation to the one-electron potential
v(r ) is the electrostatic~Coulomb! part of the potential gen-
erated by the self-consistent charge density in the crystal.
Within a muffin-tin sphere around the RE site it can be ex-
pressed as43

v~r !5(
la

v la~r !Kla~ r̂ !5(
la

4p

2l11
@Ula~r !1r l q̃la#Kla~ r̂ !,

~15!

wherev la(r ) is divided into on-site and lattice contributions.
The on-site contribution is

4p

2l11
Ula~r !5

4p

2l11Eo
R r,

l

r.
l11 r la~r 8!r 82dr8, ~16!

wherer la(r ) follows from an expansion of the charge den-
sity around the RE atom andR is the radius of the muffin-tin
sphere centered on the RE site

r~r !5(
la

r la~r !Kla~ r̂ !. ~17!

The lattice contribution which depends on the charge density
outside the muffin-tin sphere, and on the requirement of con-
tinuity of the potential43 is more complicated and will not be
given explicitly here. We note that while splitting the poten-
tial into an on-site and a lattice contribution does not involve
any approximation, for a continuous charge distribution it
does require a somewhat arbitrary partitioning of the charge
density as determined by the choice of the muffin-tin radius
R.

The on-site nonspherical potential generated by the 4f
charge density,v la

4 f , should be excluded fromv la in Eq.
~14!. It corresponds to a self-energy of the 4f charge density
that by itself does not give rise to a crystal-field splitting. We
have spherically averaged the 4f charge density, treating the
4 f states as core states but allowing the radial distribution to
adjust to changes in the valence charge density. The non-
spherical 4f charge density would influence the valence
electron charge density but we have not investigated this
further. v(r ) is calculated self-consistently using the
FLAPW method.

The anisotropy energy is the difference between the
ground-state energies corresponding to the two directions of
magnetizationx̂ and ẑ. On rotating the magnetization direc-
tion, the valence electron charge density and potential are
assumed not to change and thus the crystal-field parameters,
defined with respect to the crystal axes are unchanged. In the
large exchange limit,3 the ground state has a maximal azi-
muthal quantum numberM5J directed along the magneti-
zation direction. The single ion anisotropy is then given by

A2
0^r 2&aJ^J,M5Ju3Jz

223Jx
2uJ,M5J&

5A2
0^r 2&aJ

3

2
~2J22J!. ~18!

D. Electric-field gradient

The electric-field gradient~EFG! at the RE nucleus is
given by44

Vzz5S ]2

]z2
2
1

3
¹2D v~r !U

r50

5
]2

]z2
~r 2K20~ r̂ !! lim

r→0

v20~r !

r 2

54c20 lim
r→0

v20~r !

r 2
5A5

p
lim
r→0

v20~r !

r 2
, ~19!

where again the site index has been omitted for simplicity. If
the 4f charge-density were located at the nucleusr→0, or if
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v20(r )/r
2 were independent ofr , thenA2

0 would be equal to
2(e/4)Vzz. This follows from Eqs.~14! and ~19!. A differ-
ent proportionality than2e/4 is therefore entirely due to the
on-site contribution of the potential; any deviation being
caused by the overlap between the 4f corelike charge density
and the nonspherical on-site valence charge density.

E. Exchange interaction

So far the valence electron MAE and single ion anisot-
ropy have been treated separately. However, the directions of
the localized RE moment and the valence electron magneti-
zation are correlated. This exchange coupling, together with
the crystal-field parameters and the MAE of the valence band
electrons, determines to what extent the RE 4f and Co 3d
magnetic moments are aligned. Phenomenologically, it is
taken into account in the RE Hamiltonian by an exchange
field BEX coupling to the 4f spin1–3,9

HEX52mBS•BEX . ~20!

If the 4f electrons do not hybridize with the valence elec-
trons, this Hamiltonian must express the dependence of the
energy of 4f spins in a spin-polarized potential, supplied by
the spin polarized valence electrons. This is similar to the
contribution to the exchange energy of a free atom from
coupling between open shells.45 Within the LSDA the ex-
change energy can be expressed in terms of local exchange
integrals. The exchange energy which the 4f electrons gain
if placed in a spin-polarized potential generated by the va-
lence electrons is

DEEX5n↑«↑1n↓«↓2~n↑1n↓!
«↑1«↓

2
, ~21!

wherens is the number of 4f electrons with spins and one
particle energy«s. The difference in the single-particle en-
ergies is given by

«↑2«↓5E f4 f
2 ~r !@v↑~r !2v↓~r !#r 2dr ~22!

in terms of the spin-dependent potential on the RE site. The
parametrization of the exchange correlation potential used in
the rest of this work,20 may be further approximated:

v↑~r !2v↓~r !>
2

3
A~r s!

r↑~r !2r↓~r !

r~r !

>(
l

2

3
A~r s!

Dnl
4p

f l
2~«F ,r !

r~r !
, ~23!

whereA(r s) is a known function of the density
20 andDnl is

the difference in the number of spin-up and spin-down va-
lence electrons with angular momentum characterl .
f l(«F ,r ) is the partial wave with angular momentum char-
acter l and energy«F . Thus the simple result is obtained
that46

DEEX52
1

2(l DnlI l ,4fDn4 f , ~24!

whereI l ,l 8.0 is the local exchange-integral matrix:

I l ,l 852
2

3E f l
2~r !f l 8

2
~«F ,r !

A~r s!

4pr~r !
r 2dr. ~25!

A comparison with the phenomenological exchange Hamil-
tonian, Eq.~20!, shows that

mBBEX52
1

2(l DnlI l ,4f . ~26!

The 4f spins interact with the on-site valence electron mag-
netization through local exchange interactionsI l ,4f . The on-
site valence electron magnetization is caused by the hybrid-
ization of the RE 5d electrons with the Co 3d electrons.46

The high-lying 5d bands hybridize more strongly with mi-
nority Co 3d bands than with majority 3d bands, due to the
large exchange splitting of the Co 3d bands. Thus the mag-
netic moment derived from RE 5d valence electrons is di-
rected antiparallel to the overall valence electron magnetiza-
tion. Together with the local ferromagnetic exchange
interactionI l ,4f the direction of the total localized RE mag-
netic moment now depends on whether the 4f shell is more
than or less than half filled, and on the magnitude ofL com-
pared toS.

It has been pointed out by Liebs, Hummler, and Fa¨hnle47

that the perturbative approach sketched above can be im-
proved upon by performing two separate self-consistent field
calculations with the 4f moments rotated by 180° and evalu-
ating the change in the total energy. In this way the conduc-
tion electron spins are allowed to adjust to the reversed ex-
change field; this turns out to be an important quantitative
effect.

F. Details of the calculation

The CaCu5 structure~space group No. 191! has hexagonal
symmetry ~point-groupP6/mmm). Inequivalent Cu atoms
occupy the 2c and 3g Wyckoff sites. For YCo5 the lattice
parameters used area59.313 a.u. andc57.544 a.u.4 For
GdCo5 the lattice parameters area59.398 a.u. and
c57.500 a.u.4 The von Barth-Hedin parametrization of the
exchange-correlation potential is used.20 The Brillouin-zone
integration is performed using the improved tetrahedron
method.31

The LMTO basis states are the nearly orthogonalQ func-
tions devised by Andersen and Jepsen.48 s, p, d, and f par-
tial waves are included in the basis. Self-consistent charge
densities are obtained using 2366k points in the full Bril-
louin zone, corresponding to 133 inequivalentk points. The
calculated atom-projected magnetic moments change by
about 0.002mB if 3600 k points ~196 inequivalentk points!
are used. Atomic sphere radii of Y and Co are 3.497 and
2.645 a.u., respectively, leading to a maximum overlap of
about 14.2%, which is comparable to the overlap in a bcc
lattice.

In the FLAPW calculations the nonoverlapping Y and Co
muffin-tin radii were 3.10 and 2.31 a.u., respectively. A
plane-wave cutoff ofKmax53.5 a.u. was used, so that the
basis contained about 415 plane waves or 70 plane waves per
atom. In the second-variation step where the nonspherical
terms in the potential are treated, an energy cutoff of
«max53.5 Ry was used, corresponding to about 85 basis
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states. Checks withKmax53.0 a.u.~275 basis functions! and
«max53.0 Ry were performed, yielding<0.05mB changes in
the total magnetic moment, and 10% changes in crystal-field
parameters. Reciprocal space integrations were carried out
with 1100k points in the full Brillouin zone~72 inequivalent
k points!. The total magnetic moment is then converged to
within 0.02mB .

III. RESULTS AND DISCUSSION

Before describing the magnetocrystalline anisotropy en-
ergy of YCo5 in Sec. III C, the calculations of the magneti-
zation and hyperfine fields are presented in Sec. III A and
Sec. III B, respectively. The results of the calculations of the
crystal-field parameters, the electric-field gradient and the
exchange field are discussed in Sec. III D.

A. Magnetization

The magnetic moment per unit cell as measured by sev-
eral groups of workers10,5,7 on single crystals of YCo5 is
given in Table III together with the spin contribution to the
magnetic moment calculated using the LMTO and FLAPW
methods. The single-crystal measurements are in fair agree-
ment with each other, values ranging between 8.0 and
8.4mB per unit cell. Measurements on powder samples tend
to result in values for the magnetization which are about 1
mB lower than the single-crystal data. A considerably lower
spin magnetic moment of 6.8 and 6.9mB per unit cell is cal-
culated using the LMTO and FLAPW methods, respectively.
The discrepancy per Co atom with the experimental value is
much larger than the difference found for the transition metal
elements Fe, Co, and Ni. A possible reason for this discrep-
ancy is the neglect of orbital contributions to the magnetiza-
tion. Including spin-orbit coupling~non-self-consistently! in
the Hamiltonian, a large orbital moment of 0.6mB per unit
cell is found, whereby each Co atom contributes on average
0.12mB . This is about 50% more than the orbital moment of
0.08mB calculated in the same way for hcp Co. The spin

magnetic moment is not changed significantly by including
spin-orbit coupling so that a fairly large discrepancy with the
experimental magnetic moment remains.

Inclusion of orbital polarization in local-spin-density cal-
culations leads to increased orbital moments and consider-
ably better agreement with experiment for several
systems.24,25 For example, for hcp Co the calculated orbital
moment is then 0.13mB ,

26,49 compared to the experimental
value of 0.16mB , and the total magnetic moment is
1.70mB , compared with the experimental value of 1.75mB .
Including both OP and SO interactions in the YCo5 calcula-
tion, and iterating to self-consistency, a total orbital moment
of 1.2mB is calculated, yielding a total magnetic moment of
8.0mB per unit cell. This value is in good agreement with the
experimental values for single crystals. The discrepancy be-
tween the calculated and experimental magnetic moment per
Co atom is approximately equal to the discrepancy found for
hcp Co.

We thus find a very large orbital moment of 0.23mB on
each Co atom. Magnetic form factor measurements by means
of neutron-scattering experiments10 had already indicated the
existence of large orbital moments. However, it was con-
cluded from an analysis of these measurements that the or-
bital moment at the 2c site (0.46mB) is nearly twice that at
the 3g site (0.28mB). In addition, it was found that the spin
magnetization density around the 2c site extends in the basal
plane, and deviates strongly from spherical symmetry. Our
calculations do not support these two conclusions. We find
equal orbital moments for each Co site and we find for
GdCo5 and YCo5 using the FLAPW method that the devia-
tion from a relative occupation of 0.2 for eachd orbital
within the muffin-tin sphere is< 0.01 at the 2c sites. How-
ever at the 3g sites the deviation may amount to as much as
0.04 ~i.e., 20%! for some of thed orbitals. The spin density
within the muffin-tin spheres is not found to contain such
large deviations from spherical symmetry as was deduced
from the form factor measurements.

Comparison with previous work

In an early self-consistent spin-polarized augmented
plane-wave calculation50 based on Slater’sXa approxima-
tion with a51 ~which is known to overestimate the ten-
dency to ferromagnetic ordering!, a total spin magnetic mo-
ment of 7.31mB per unit cell was found for YCo5. In this
calculation, the two inequivalent Co sites were considered to
be equivalent.

A self-consistent LMTO calculation by Szpunar and
Smith51 yielded a spin magnetic moment of
mtot5mY1mCo(2c)321mCo(3g)33520.3711.293211.44
3356.54mB per unit cell. The negative moment on the Y
site is larger than the value which we found. This is probably
attributable to Szpunar and Smith’s use of an atomic sphere
which was 9% larger in volume than the atomic sphere
which we used and to the interstitial spin density being nega-
tive in sign ~as found, for example, in our FLAPW calcula-
tion; see Table III!.

In another self-consistent LMTO calculation, Nordstro¨m
et al.52 found a total spin magnetic moment per unit cell of
20.2711.443211.373356.72mB which is in good agree-
ment with the value which we found. Curiously, these au-
thors find that the moment on the 2c site is larger than the

TABLE III. Calculated magnetic moments of YCo5 within the
muffin-tin and atomic spheres using the FLAPW~column 2! and
LMTO methods~columns 3–7!, respectively. The spin and orbital
moments in columns 4 and 5 result from including spin-orbit cou-
pling non-self-consistently. The spin and orbital moments in col-
umns 6 and 7 were calculated self-consistently including spin-orbit
coupling and orbital polarization. Experimental values for the total
magnetic moment are 8.33~Ref. 7! and 8.13~Ref. 5! mB at 4.2 K,
and 8.0~Ref. 7! and 7.99~Ref. 10! mB at room temperature.

FLAPW LMTO

SO SO1OP

s s s l s l

Y -0.27 -0.31 -0.31 0.02 -0.32 0.04
Co(2c) 1.46 1.32 1.32 0.12 1.33 0.23
Co(3g) 1.51 1.49 1.49 0.12 1.51 0.23
Interst. -0.28

Total 6.90 6.78 6.78 0.61 6.84 1.20
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moment on the 3g site. Both in our FLAPW and LMTO
calculation we found the opposite ordering. When they in-
cluded spin-orbit coupling, Nordstro¨m et al. found orbital
moments on the 2c and 3g sites of 0.14 and 0.10mB ,
respectively52 and of 0.26 and 0.17mB when orbital polariza-
tion was included.53 In both cases, the orbital moment on the
2c site is found to be larger than the moment on the 3g site
whereas we find them to be equal.

B. Hyperfine fields

Hyperfine field measurements have played an important
role in investigations of the magnetic properties of YCo5.
The hyperfine fields at the Co sites are strongly reduced with
respect to those in hcp Co, and this has been interpreted as
being partly due to large orbital moments.12,15 The anisot-
ropy in the hyperfine fields has been related to an anisotropy
in the orbital moments13 and local anisotropy energies were
then derived from these anisotropies.13 Since our calculations
are at variance with the assignment of orbital moments to the
2c and 3g sites, it is important to see whether the simple
interpretation of the NMR measurements by Streever13 is
well founded.

In Table IV we list calculated hyperfine fields in YCo5,
GdCo5 and Fe, Co, and Ni. The calculations for the
transition-metal elements agree with previously published re-
sults that do not take OP into account.27 The difference be-
tween the theoretical and experimental results is about 8 T

for Fe, 0 T for Co, and 3 T for Ni. Including orbital polar-
ization only increases the discrepancy due to the enlarged
orbital hyperfine field. The calculated hyperfine field of hcp
Co then differs from the experimental value by about 4 T.

The calculated orbital hyperfine fields in YCo5 are twice
as large as those in hcp Co. Just as the orbital moments on
the 2c and 3g sites scarcely differ, there is no essential dif-
ference between the orbital hyperfine fields on these two
sites. The large difference in the total hyperfine fields of
24.2 T at the 3g site and14.6 at the 2c site is caused by a
positive contact valence contribution to the hyperfine field at
the 2c site rather than by different orbital moments, as has
been assumed.15 This result does not depend on whether or
not the orbital polarization term is used. The total hyperfine
field results from a cancellation of contact and orbital con-
tributions and its interpretation is complicated by the polar-
ization of the core electrons by the valence electron magne-
tization. There is a large spread in the values measured
experimentally but irrespective of which values are chosen
for comparison, it can be seen that the orbital polarization
term does not lead to an improvement in the calculated val-
ues.

The hyperfine field at the 3g sites is quite sensitive to the
RE atom. When Y is replaced with Gd~see Table IV!, the
valence contact term at the 3g site changes significantly,
much more than that at the 2c site, resulting in nearly iden-
tical hyperfine fields at both sites in GdCo5. A large discrep-
ancy between experimental and theoretical results exists
whose origin is not clear. It has been shown that orbital
effects from the core electrons are negligible.37

C. Anisotropy energy of YCo5

Many experiments have been carried out to attempt to
explain the origin of the large magnetocrystalline anisotropy
of YCo5. We have outlined above how large orbital moments
were found on the Co atoms in YCo5, with the largest orbital
moment being found on the 2c site, how a correlation was
established between the 2c site and the anisotropy energy,6

how a large anisotropy in the magnetization was attributed to
the 2c site,7 and how hyperfine field measurements were
used to associate a local anisotropy energy with the anisot-
ropy in the orbital moments on the 2c site in particular.13

However, these conclusions about the origin of the anisot-
ropy energy are based on some unproven assumptions such
as the existence of a local anisotropy energy. In this section
we describe calculations of the anisotropy energy and orbital
moments within the itinerant electron model which allow us
to establish a correlation between the anisotropy energy and
the anisotropy in the orbital moment and study in some detail
the origin of the anisotropy.

YCo5 hasn548 valence electrons per unit cell. In Fig. 1
the anisotropy energyDEn(n) is plotted as a function of the
volume element used to perform the Brillouin-zone integral;
it is seen to be well converged irrespective of whether orbital
polarization is or is not included~open and filled circles,
respectively!. In both cases it is positive, thus favoring an
orientation of the magnetization along thec axis.

In Fig. 2,DEn(q) is shown for the range of band fillings
44,q,52 ~corresponding to the energy range
22.5,«F(q),21.7 eV!. The solid and dashed curves were

TABLE IV. Measured and calculated hyperfine fields in Tesla
for Fe, Co, and Ni and at the Co (2c) and (3g) sites in YCo5 and
GdCo5. Core, valence, and orbital contributions to the hyperfine
fields are listed separately. The orbital hyperfine fields, as well as
the total hyperfine fields are calculated using spin-orbit coupling
only ~listed in the columns denoted by SO!, as well as using spin-
orbit coupling and orbital polarization~listed in the columns de-
noted by OP!. Various experimental results are shown in the last
column.

Core Val Orb Total Expt.

SO OP SO OP

Fe -25.3 -4.3 13.5 15.5 -26.1 -24.1 -33.9
Co -18.9 -7.2 14.5 18.0 -21.6 -18.1 -21.5
Ni -7.5 -2.8 15.5 18.0 -4.8 -2.3 -7.5

YCo5(2c) -16.8 15.0 18.3 116.4 -3.5 14.6 -8.7a

-9.9b

-9.5c

11.5d

YCo5(3g) -17.3 -5.2 18.9 118.3 -13.6 -4.2 -14.1a

-13.9b

-9.5c

-9.2d

GdCo5(2c) -17.3 14.1 17.3 -5.9 16.2d

GdCo5(3g) -17.8 11.2 19.3 -7.3 -7.2d

aReference 14.
bReference 13.
cReference 12.
dReference 15.
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both calculated using a mesh of 30330332 k points in the
full Brillouin zone, the densest mesh shown in Fig. 1. This
corresponds to using 4097 and 1547 irreduciblek points
when the magnetization is oriented in thex andz directions,
respectively. The dashed curve was obtained by including
spin-orbit coupling only in the Hamiltonian, whereas to ob-
tain the solid curve spin-orbit coupling and orbital polariza-
tion were included. Both curves exhibit two distinct peaks
which are labeledA andB in the figure. We will explain the
origin of these two peaks beginning with the case where only
spin-orbit coupling is included.

1. Spin-orbit coupling only

For band fillings 45,q,51 an easy axis parallel to the
c axis is favored. The amplitudes of the peaksA andB are
about a factor of 2 smaller than the experimentally deter-
mined anisotropy energy shown as a dashed horizontal line
in the figure.54 The magnetocrystalline anisotropy energy at a
band filling corresponding to stoichiometric YCo5,
DEn(n), is about a factor of 7 smaller than the experimental
value. The anisotropy energy is zero when all thed bands are
filled ~for q.54). When the Fermi energy is lowered into the
d band complex, we find an anisotropy energy density
DEn(k,q) which varies in magnitude and sign throughout
the BZ. The sign ofDEn(q) in general results from summing
compensating contributions. In the sense that it depends on
the outcome of a complicated cancellation, the sign of
DEn(n) is accidental. When there are degenerate bands
present at a Fermi energy«F(q), the local contributions ap-
pear and vanish when the Fermi energy is displaced by an
amount comparable to the spin-orbit coupling constant. If
this band degeneracy occurs over a substantial volume of the
Brillouin zone then an important contribution to the anisot-
ropy energy can result. For example, if the spin-orbit inter-

action jdl•s were to split degenerate energy bands by
6jd , as happens for eigenstates withm562 character, and
if 0.03 electrons participated in the splitting, this would yield
a peaked structure inDEn(q) with a maximum value of the
anisotropy energy of 2 meV for a typical value ofjd572
meV.

We begin with feature A inDEn(q) at a band filling of
q546.6@corresponding to an energy about 0.1 eV below the
actual Fermi energy«F(q5n)#, and then examine the
changes that occur when the bands are filled with more elec-
trons until 48 valence states are occupied. The peaked struc-
ture of this feature on the scale ofjd indicates that degener-
ate energy bands may play a role in the anisotropy energy. In
order to study the anisotropy energy densityDEn(k,q), the
BZ was first divided into 10 slabs of thickness 0.2(p/c),
parallel to theGKM basal plane. By integrating the anisot-
ropy energy density in each of these slabs it was found that
only a part of the Brillouin zone was responsible for most of
the total anisotropy energy of 2 meV. About half of this
anisotropy energy originates in the two slabs adjacent to the
basal (GKM ) plane of the BZ. The two neighboring slabs
@between60.2(p/c) and60.4(p/c)# together account for a
quarter of the anisotropy energy. Thus 75% of the anisotropy
energy is generated in 40% of the BZ. In Fig. 3 the anisot-
ropy energy density in the two slabs adjacent to the basal
plane is shown in a fishnet-contour plot representation in the
(G1,G2) plane. For each value of (kx ,ky) the anisotropy
energy density has been averaged by integratingDEn(k,q)
from kz520.2(p/c) to kz510.2(p/c) and smoothing with
a Gaussian to allow the result to be plotted. The positive sign
of the anisotropy energy is seen to be determined by the band
structure at and in the vicinity of the high-symmetry point
K and along and around the high-symmetry linesGK and
GM .

FIG. 1. Convergence of the anisotropy energy of YCo5 as a
function of the volume elementy used to perform the BZ integral.
The number of divisions of the reciprocal-lattice vectors corre-
sponding to each volume are indicated at the top of the figure. The
filled circles refer to calculations where only spin-orbit coupling
was used~SO!. The data points shown as open circles were calcu-
lated including spin-orbit coupling and orbital polarization~OP!.
The horizontal lines were obtained by a least-squares fit through the
data points using a weight 1/y for each data point. Positive values
of the anisotropy energy correspond to a preference for the magne-
tization to be oriented parallel to thec axis.

FIG. 2. Anisotropy energyDEn(q) versus band fillingq.
Dashed curve: spin-orbit coupling only. Solid curve: spin-orbit cou-
pling and orbital polarization~mesh 30330332 k points!. Dotted
curve: spin-orbit coupling and orbital polarization~mesh
63636 k points!. The experimental anisotropy energy is denoted
by a horizontal dashed line. In the top of the figure an energy scale
is denoted~in eV!. The Fermi energy corresponding toq5n548 is
at 22.06.
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In Fig. 4 the band structure of the majority-spin~left
panel! and the minority-spin~right panel! electrons is shown
along the high-symmetry lines in the basal plane. The Fermi
energy is denoted by the horizontal dashed line at22.06 eV.
Within 0.5 eV of the Fermi energy a set of Co minority-spin
d bands is separated from the remaining Cod bands.

The d orbital character of the minority-spin bands in the
energy interval22.5,«,21.7 is shown in Fig. 5 in a rep-
resentation where the thickness of an energy band is propor-
tional to the orbital character. Because the free-electron-like
sp f character in this energy range is small and fairly uni-
form, it is not shown. There are six columns, one for each
atom in the unit cell and five rows, which are labeled accord-

ing to thed orbital character:d3z22r2, dx22y2, dyz , dxz , and
dxy . For an arbitraryk point there is no relationship between
the orbital character on crystallographically equivalent at-
oms. The symmetry of theGKM direction shown is such that
the two Co(2c) atoms are equivalent and the first and second
Co(3g) atoms are also equivalent. We anticipate our main
conclusions by noting that the states which make the most
important contribution to the MAE of YCo5 are the states
with mainly dx22y2 anddxy character which are doubly de-
generate at theK point at22.2 eV and at theG point where
they are almost degenerate with the Fermi energy. The states
at K have mainly Co(3g) but also some Co(2c) character,
those atG have mixed Co(3g) and Co(2c) character.

When the spin-orbit coupling is included, the energy
bands in this energy range display pronounced differences if
the magnetization is directed along or perpendicular to the
c axis. In Fig. 6 the minority-spin band structure~in the
absence of spin-orbit coupling! and the band structures from
which the anisotropy energy density was generated are
shown along lines of high symmetry for two directions of the
magnetization. Correlating plots of the anisotropy energy
density as shown in Fig. 3 with these band structures shows
that if the magnetization is directed along thec axis, there is
a net energy gain from the splitting of the encircled energy
bands because the bands which are shifted to higher energies
by the spin-orbit interaction are unoccupied. Thus the en-
circled energy bands at theK point are the states mainly
responsible for the preference for ac-axis-oriented magneti-
zation for this band filling.

In the absence of spin-orbit coupling, these bands are dou-
bly degenerate at an energy«522.20 eV and have mainly
Co-d m562 character~i.e., dx22y2 and dxy symmetry!.
These states are split by the spin-orbit coupling to
«522.27 eV and«522.13 eV if nic, and are left nearly
degenerate ifn'c. We expect the contribution to the anisot-
ropy energy from these two states in the vicinity ofK to be
maximal at«522.20 eV, and to vanish at«522.33 eV
and -2.11 eV. This positive contribution to the anisotropy
energy density can be seen in Fig. 3. There is a similar con-
tribution to the anisotropy energy from two bands which
were nearly degenerate in the absence of spin-orbit coupling
from G to nearly halfway alongGK andGM .

FIG. 3. Anisotropy energy density~from a calculation with spin-
orbit coupling! in the basal plane of the Brillouin zone obtained by
averaging over a slab of thickness 0.4(p/c), for a Fermi energy of
22.17 eV which corresponds to a band filling ofq546.6 and the
peakA in Fig. 2. Solid~dashed! contours represent positive~nega-
tive! contributions to the anisotropy energy, respectively. Mainly
K, GK, andGM contribute to the preference for a magnetization
direction along thec axis.

FIG. 4. Energy bands without spin-orbit cou-
pling along the high-symmetry lines in the basal
plane of the BZ, for the majority-spin electrons
~left panel! and the minority-spin electrons~right
panel!. The Fermi energy is indicated by the
dashed horizontal line.
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At G, these two states are degenerate in the absence of
spin-orbit coupling; they are also indicated by filled circles in
Fig. 6. They lie very close to the Fermi energy«F(q548)
and their splitting provides the only large contribution to the
anisotropy energy from in or around theGKM plane which
favors ac-axis orientation of the magnetization~see Fig. 7!.

The contributions fromK, GK, andGM are seen to favor an
in-plane magnetization for this band filling. The positive an-
isotropy energy from aroundG is compensated by a negative
anisotropy energy from the remainder of this slab with the
anisotropy energy of the total slab being negative. The rea-
son why the anisotropy energy is still positive atq548 ~Fig.

FIG. 5. The orbital character
of the minority-spin energy bands
along the linesGK andKM in the
energy interval22.5,«,21.7
is indicated for the six atoms in
the unit cell~columns!. The thick-
ness of the band is proportional to
the orbital character~there is a
minimum thickness, however!.
The Fermi energy is indicated by
the dashed horizontal line.

FIG. 6. Influence of the magnetization direction on the energy band splittings when spin-orbit coupling is included. The minority-spin
energy bands are shown in the left-hand panel for reference. Right-hand panel: magnetization direction along thec axis. Middle panel:
magnetization in theGM direction. The splittings of the states which are encircled are discussed in the text. The Fermi energy is indicated
by the dashed horizontal line.
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2! is that there is a positive contribution from the neighbor-
hood of the (AHL) planes of the BZ. Finally, raising the
Fermi energy even further to 0.18 eV, corresponding to a
band filling of q549.8 ~peakB in Fig. 2!, the positive an-
isotropy energy is generated in the 40% of the zone adjacent
to the AHL plane. It is related to the lifting of a double
degeneracy at theH point.

2. Spin-orbit coupling and orbital polarization

The influence of spin-orbit coupling and orbital polariza-
tion is maximal in the special situations when degenerate
energy bands withm562 character occur, as atG andK,
and whenn is parallel toc. Because the dependence of the
minority-spin minority-spin block of the Hamiltonian on the
direction of the magnetization is (BL1 1

2jd) l•n, the orbital
polarization term in the Hamiltonian essentially represents an
enhancement of the spin-orbit coupling parameter. With a
RacahB parameter of about 0.14 eV, andL50.23, the or-
bital splitting factorBL is about equal to the spin-orbit split-
ting 1

2jd50.036 eV. When orbital polarization is included in
the calculations, the overall shape ofDEn(q) is unchanged
~Fig. 2!. However, the amplitude of the anisotropy energy
curve increases by about a factor of 4, consistent with aj2

estimate for the dependence of the anisotropy energy onj,
using perturbation theory for uniaxial systems.55 The calcu-
lated anisotropy energy of YCo5 of about 3 meV/unit cell is
in quite good agreement with the experimental value of 3.8
meV/unit cell.

The spin-orbit coupling gives rise to an anisotropy in the
magnetic moment which is also enhanced by the orbital po-
larization. In Fig. 8 the anisotropy in the magnetic moment
and its decomposition into an orbital moment anisotropy and
a spin moment anisotropy is shown as a function of the band
filling. Typically, the anisotropy in the orbital moment is

about a factor of 5 larger than the anisotropy in the spin
moment. Projecting out the anisotropy in the orbital moment
onto the Co atoms at the 2c and 3g sites as a function of the
band filling, peaksA andB are seen to be mainly attributable
to the Co atoms at the 2c sites. For example, at peakA the
anisotropy in the orbital moment of a Co atom at the 2c and
3g site is 0.09 and 0.03mB , respectively. The difference in
the anisotropy for the two types of Co atoms is even more
pronounced at peakB, where the anisotropy is almost en-
tirely due to that of the Co atoms at the 2c sites. However, at
the Fermi energy of YCo5 (q548), the situation is reversed
and the anisotropy in the 2c site orbital moment is negli-
gible. Forq548 the anisotropy in the total magnetic moment
is calculated to be 0.13mB per unit cell. This anisotropy has
been measured7 and found to have a value of 0.31mB per unit
cell.

The similarity between theDEn(q) and the DLn(q)
curves is striking, and allows us to decompose the anisotropy
energy into site-dependent contributions. Using perturbation
theory for uniaxial systems, a roughly linear relation between
the anisotropy energy and the anisotropy in the orbital mo-
ment is expected,56,26 with a proportionality factor of14jd ,
or, in the case of orbital polarization,12(BL1 1

2jd);
1
30 eV. In

the case of degenerate energy bands, one expects a propor-
tionality factor which is about a factor of 2 larger. Although
the ratioDEn(q)/DLn(q) certainly is not constant, it is gen-
erally of this order of magnitude.

The large measured orbital moments have been thought to
be associated with a strong asphericity in the spin density of
the Co atoms at the 2c sites.10 Experimentally, about 60% of
the spin density was found to havem562 character. In Sec.
III A we already discussed that this is not found in the cal-
culations. However, there is a large density ofumu52 states
just below the Fermi energy. In Fig. 9 the minority Cod
density of states is shown as a function of the band filling.
The Fermi energy corresponding toq548 states is located
on the edge of a steep peak in the density of states~DOS!,
which extends from about 45.8 to 48.5 filled valence states.
The peak consists of 54% Co (2c) character and 46% Co

FIG. 7. See the figure caption of Fig. 3. The anisotropy energy
density is plotted for the actual Fermi energy of22.06 eV, corre-
sponding to a band filling ofq548. Only G and a small region
around it make a positive contribution to the MAE~favoring a
c-axis orientation!.

FIG. 8. Anisotropy in the magnetic moment as a function of the
band fillingq. The anisotropy in the orbital moment per Co atom is
shown as a solid line, the anisotropy in the spin moment per Co
atom as a dotted line. The dashed and chain-dashed curves are the
anisotropy in the orbital moment of a Co (2c) atom and a Co
(3g) atom, respectively.
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(3g) character, rather than the expected values of 40 and
60 %, respectively which one would expect from a simple
concentration dependence. The partial DOS shows that about
65% of the Co (2c) d DOS hasm562 character, much
more than the 40% which would occur if all fived orbitals
were equally populated. The Co (3g) d DOS has about 45%
m562 character. That there is a strong peak in thed DOS
betweenq545.8 and 48.5 valence states with predominant
Co (2c) m562 character does not by itself explain the
preference for thec-axis orientation. In Fig. 10~a! the density
of states as a function of the band filling is shown for calcu-
lations including spin-orbit coupling and orbital polarization,
where the magnetization direction is directed along thec axis
~solid curve! and perpendicular to thec axis ~dashed!. The
most obvious difference is the vanishing of the peak in the
DOS at q546.8, when the magnetization is rotated from
in-plane to being parallel to thec axis. The ‘‘missing’’ states
are distributed to lower and higher energies. Most of this
partial density of states hasm562 character. If each density
of states is integrated to a common energy,«F(q) of the
c-axis calculation, the redistribution of the density of states
by the spin-orbit interaction and the orbital polarization leads
to a different number of occupied valence states at that en-
ergy for the two field directions. The difference in the num-
ber of occupied states at the energy«F(q) between the in-
plane calculation and thec-axis calculation is plotted as a
function of thec-axis band fillingq in Fig. 10~b!. The larger
and smaller number of states, below and aboveq546.6, re-
spectively, for thec-axis calculation versus the in-plane cal-

culation is the cause of the increase and decrease of the an-
isotropy energy versus band filling, shown in Fig. 10~c!. The
difference in the number of states varies on an energy scale
of the order of 2(BL1 1

2jd).
Finally, we note that the dipole-dipole anisotropy energy

yields a small preference for thec-axis magnetization of 0.05
meV/unit cell, about 1% of the magnetocrystalline anisot-
ropy energy. It may therefore be neglected.

3. Symmetry point analysis of the anisotropy energy

It appears from the discussion in the previous two sec-
tions that points of high symmetry play a particularly impor-
tant role in determining the anisotropy energy. In earlier
work33 we found that it was possible to explain the most
important features inDEn(q) in terms of the effect of the
spin-orbit coupling on the states at the points of high-
symmetry only. If we compareDEn(q) calculated with a
mesh of 63636 k points ~corresponding to a total of 80
irreducible k points! with the results for the 30330332
mesh calculation, then we see in Fig. 2 that all of the impor-
tant features are reproduced very well using the smallest
regularly spaced mesh which includes all of the points of
high symmetry. We will now show that the most important

FIG. 9. Cobalt minority-spind partial density of states~DOS!
for a calculation without spin-orbit coupling or orbital polarization,
as a function of the band fillingq. The solid curves are the total Co
d DOS, the total Co (2c) d DOS and the total Co (3g) d DOS.
Dashed curves are the Co (2c) and (3g) m562 projected DOS.
The two peaks in the total DOS below the Fermi level~denoted by
the vertical lines! have mainly Co (2c) m562 character.

FIG. 10. ~a! Total density of states for calculations including
spin-orbit coupling and orbital polarization with the magnetization
direction along thec axis ~solid curve! and in plane~dashed curve!
in units of states per eV per unit cell, versus the band fillingq of
each calculation.~b! Integral of the density of states calculated with
the magnetization in-plane up to the Fermi energy«F(q) of the
c-axis calculation, minusq, the number of occupied valence states
of the c-axis calculation, as a function ofq. ~c! The anisotropy
energy as a function ofq.
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qualitative features of the anisotropy energy curve can be
understood in terms of an even smaller number ofk points,
namely, the high-symmetry pointsG, K, M , A, H, andL
only. The contributions to the anisotropy energy from these
k points are shown in the top six panels of Fig. 11. The
arrows in Fig. 11 indicate the positions of the energy levels
at eachk point, and a thick arrow denotes degenerate energy
levels ~in the absence of spin-orbit interaction!. Upward
~downward! pointing arrows denote minority~majority! spin
eigenstates. The anisotropy energy at eachk point is broad-
ened using a Gaussian with a width of 0.06 eV, and multi-
plied with a weight factorwk . The total anisotropy energy
curve, shown in the bottom left panel, is obtained by sum-
ming the weighted contributions from eachk point. The
weight factor of a particulark point is determined by its
number density in the BZ. If the magnetization direction is
chosen parallel to thex axis ~parallel to the reciprocal-lattice
vectorG2), then the twoK points in the BZ,13(G11G2) and
2
3(G11G2), are equivalent. One of theM points, M2
51

2G2 , is not equivalent to the other twoM points, 12G1 and
1
2(G11G2), denoted byM1 . The same is true of theH and
L points, respectively. The contributions from the inequiva-
lentM1 andL1 (M2 andL2) points are indicated by the solid
~dashed! curves. The weight factors for the special points

G, K, M1 , andM2 , ~and similarily forA, H, L1 , andL2)
are then chosen as 1/12, 1/6, 1/6, and 1/12.

Broadening the curve in Fig. 11~a! with a Gaussian of
width 0.1 eV yields the dashed curve in Fig. 11~b!, which
has a similar functional dependence on the band filling as the
full calculation, represented by the solid curve, but differs by
a roughly constant amount. The origin of the two peaks,A
and B, in the lifting of degeneracies atK andH, respec-
tively, is made particularly clear in this analysis. The origin
of the discrepancy between the two curves in Fig. 11~b! can
be found by examining Fig. 3. We see that there is a large
positive contribution to the MAE from an annular region
aboutG but that the contribution from theG point itself is
negative. The dotted curve in Fig. 2 shows that an only
slightly better sampling is required to correct for this error.

In this work and in earlier work33 we have found that the
lifting of degeneracies at points of high-symmetry and along
symmetry lines makes an important contribution to the mag-
netocrystalline anisotropy energy. In uniaxial systems two
situations may arise which are illustrated in Fig. 12. There
we sketch the energy band dispersion«k// as a function of the

in-planek vectork// of two states in the vicinity of a point of
high symmetry where the two states are degenerate in the
absence of spin-orbit coupling. The states withm562

FIG. 11. Anisotropy energy of YCo5 contrib-
uted by the high-symmetry pointsG, K, M , A,
H, andL as a function of energy corresponding
to variable band filling of the fixed band struc-
ture. The weight factor,wk , is included. The up-
ward ~downward! pointing arrows indicate the
position of the minority-~majority-! spin energy
levels in the absence of spin-orbit coupling. Thin
and thick arrows are used to denote singly and
doubly degenerate eigenstates, respectively. For
theM andL points, the subscripts 1 and 2 refer
to the solid and dashed curves, respectively. The
dashed curve in the bottom panel~a! is the result
of adding the contributions of thesek points. The
dashed curve in panel~b! is obtained by an addi-
tional broadening using a Gaussian with a width
of 0.1 eV. The solid curve results from a calcu-
lation where a total of 5644 (5409711547) ir-
reduciblek points was used. The actual Fermi
energy is denoted by the vertical line at22.06
eV.
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character (dx22y2 and dxy) have more dispersion than the
states withm561 character (dyz anddxz) as a consequence
of their spatial form and the resulting greater or lesser over-
lap between orbitals on neighboring atoms. When spin-orbit
coupling is included the degeneracy is lifted when the mag-
netization is oriented along thez axis. The splitting, which is
6m(jd/2), is largest for the states with the greatest disper-
sion. It is not obvious which situation will have the largest
anisotropy energy: a smaller splitting over a larger volume of
reciprocal space~as a result of the smaller dispersion! or a
larger splitting over a smaller volume of reciprocal space. In
this work and our earlier work we have found that states with
m562 character play a more important role.

PeakA in DEn(q) ~Fig. 2! tells us something very impor-
tant, namely, that magnetic anisotropy energies substantially
larger ~in this particular case, two times larger! than those
found for YCo5 can, in principle, be found in itinerant mag-
nets, i.e., without having to make recourse to compounds
which contain rare-earth ions. Before embarking on the
search for materials with larger coercivities, it is very impor-
tant to know that there is no principle which states that even
harder magnetic materials, harder than the best obtainable
nowadays, are not possible.

4. Comparison with previous work

Nordstrom et al.53 have calculated the MAE of YCo5
making essentially the same approximations as we have
made and reaching essentially the same qualitative conclu-
sions. However, some of the technical details of their
LMTO-ASA calculations were different, as we saw earlier
when discussing the magnetization, and this results in some
significant quantitative differences. For example, these au-
thors did not obtain well converged values of the MAE inte-
gral. Including spin-orbit coupling only, they found values of
the MAE which were positive~thus favoring ac-axis orien-

tation! for three different finite integration meshes. The value
obtained by extrapolating to infinitesimal volume was, how-
ever, negative. The best value of the MAE obtained with
spin-orbit coupling and orbital polarization was a factor of 2
smaller than the experimental value and there was a very
large uncertainty in this value. By using the improved tetra-
hedron method,31 we have a very small~numerical! uncer-
tainty in our values of the MAE as can be seen in Fig. 1.

D. Electric-field gradient, crystal-field parameters,
and exchange field

The electric-field gradient~EFG! and the crystal-field pa-
rameterA2

0 at the RE site are determined by the electrostatic
potential at or close to the nucleus; the EFG is determined by
the anisotropy in the electrostatic potential at the nucleus
while the 4f crystal field splitting is determined by the sam-
pling of the electrostatic potential around the maximum in
the 4f radial wave functions which is about 0.5 a.u. from the
nucleus. If the charges which give rise to the potential do not
overlap the 4f charge density as, for example, in a point
charge model, then the second-order crystal-field parameter
is proportional to the electric-field gradient with a propor-
tionality factor2 1

4 e. For example,Vzz51020 V/m2 would
correspond toA2

052812K/aB
2 . In this section the EFG and

crystal-field parameters calculated for Gd Co5 are compared
with experimental results and the contributions to both quan-
tities analyzed. We also report the value of the exchange-
field coupling rare-earth and valence electron spins as calcu-
lated within the LSDA.

1. Vzz

Blahaet al.44 have calculated the EFG’s for a number of
hcp elements using the method outlined in Sec. II D. Without
using any free parameters, they obtained agreement with ex-
perimental values to within typically 20% which is of the
order of the experimental uncertainty. The lattice contribu-
tion was found to be only about 10–20 % of the on-site
~valence! value and had the opposite sign. Making a number
of additional approximations, Coehoornet al.57 calculated
the on-site contribution to the EFG and obtained similar re-
sults for the hcp metals as Blahaet al. thus confirming indi-
rectly the smallness of the lattice contribution. We have
tested our computer code by calculating the EFG’s for a
number of the hcp metals treated in Ref. 44 and find agree-
ment with the results reported there.

Fewer calculations have been performed for compounds.
Blahaet al.58 calculated the EFG’s for the three inequivalent
sites in the ionic compound Li3 N and found agreement with
experiment to within better than 20%. The lattice contribu-
tion was found to make an important contribution toVzz but
the EFG’s themselves were quite small,;1021 V/m2. Using
the same approximations which he used for the hcp metals,
where the lattice contribution is expected to be small because
all atoms are equivalent, Coehoorn calculated the EFG’s on
the Gd site for a number of metallic compounds GdT2X2
with the ThCr2Si2 structure.

57 Again there was agreement
between theory and experiment to within about 20% unless
T was a 3d element where the agreement was generally
poorer. Similar results were found for a number of interme-
tallic compounds59 where for GdCo5 in particular, a value of

FIG. 12. An illustration of two situations which may arise in
systems with uniaxial symmetry. The energy band dispersion in the
vicinity of a point of high symmetry where a degeneracy occurs is
sketched for the case where the two states havem561 character
and a small dispersion~left-hand side! and the case where the two
states havem562 character and a large dispersion~right-hand
side!. When spin-orbit coupling is included andB//x, the degen-
eracy is not lifted. WhenB//z the degenerate states are split by
6mjd /2.
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1431021 V/m2 was calculated forVzz compared to experi-
mental values of 9.731021 V/m2 reported by Steenwijk
et al.16 and 8.231021 V/m2 reported by Tomalaet al.17 The
larger discrepancies found for these compounds raise the
question as to whether the neglected lattice contribution is
more important in these materials. However, we should note
that the discrepancies are substantially larger than the lattice
contributions found in the ionic compound Li3 N.

The results of our calculations of the EFG of Gd in
GdCo5 are given in Table V. The calculated EFG is about a
factor of 2 larger than the measured value and the discrep-
ancy is even bigger than that found by Coehoorn. In the
table, the EFG is split up into a number of different contri-
butions. The contribution of the semicore states was calcu-
lated by taking the self-consistent charge density~obtained
using 6p valence states and 5p core states! and treating the
5p states as bands in one iteration. As these semicore bands
are split off from the valence bands, the 5p charge density
states can be obtained easily, yielding a contribution of
218% to the EFG. The contribution of the 5p states to the
EFG hardly changes if, treated as bands, they are iterated to
self-consistency. Thus the semicore contribution is not sen-
sitive to the detailed shape of the potential.

The EFG may be further analyzed in terms of lattice and
on-site contributions as defined in Eq.~15!. The lattice con-
tribution is only 1020 V/m2, or less than 1% of the EFG,
which reflects the small deviation from charge neutrality of
the atoms. The physical origin of the EFG lies in the devia-
tion from spherical symmetry of the valence charge density
on the Gd site. This nonspherical charge density can be re-
solved into l2 l 8 contributions for each spin direction~an
l2 l 8 contribution to the charge density is constructed from
partial waves within the muffin-tin sphere with angular mo-
mentuml andl 8, respectively!. 98% of the EFG comes from
p-p andd-d contributions to the charge density, where the
latter is about a factor of 8 smaller than the former. This
result is similar to that found by Coehoornet al. for the Gd
compounds with the ThCr2Si2 structure.

These ‘‘diagonal’’ contributions can be broken down fur-
ther into terms which describe the asymmetry of thepx ,
py , and pz and of thedx22y2, dxy , dxz , dyz , andd3z22r2

occupation numbers and terms which only involve radial
integrals.44,57However, the occupation numbers and the nor-
malization of the radial wave functions depend on the some-
what arbitrary choice of muffin tin~or atomic-sphere57,59!

radius. The dominance of thep-p contribution to the EFG
suggests that the origin of the discrepancy with experiment
should be sought here.

2. Al
m

The calculated crystal-field parameters are given in Table
VI, separated into on-site and lattice contributions. The on-
site contribution to the dominantA2

0^r 2& term is further bro-
ken down into contributions from the different partial waves.
Because the lattice contribution tov la is strictly proportional
to r l , the lattice contributions toA2

0 @Eq. ~14!# and toVzz are
related by the proportionality factor2(e/4). Whereas this
contribution toVzz was very small, it is very important to
include it in a calculation of the crystal-field parameters. The
lattice contribution toA2

0 is half as large as the on-site con-
tribution but has the opposite sign. There is a modest 5p
semicore contribution toA2

0 which accounts for about 10%
of the total value. The contribution of the 6p electrons to
A2
0 , though sizeable~25% of the on-site value!, is much less

dominant than in the case ofVzz. The 5d-5d charge density
accounts for about 45% of the on-site value forA2

0 . 5f-5f,
6p-5f and 5d-5g terms mainly make up the contribution la-
beled ‘‘others.’’ The calculated value ofA2

0 is a factor 2–3
larger than the values derived from crystal-field calculations
of the single-ion anisotropy energy which give the best
agreement with experiment.1–3 A2

0 changes by only about
10% if the 4f states are treated as itinerant electrons~which is
possible for the special case of Gd!. Moreover, we expect our
results forA2

0 obtained for GdCo5 to be valid for most of the
RE atoms. The discrepancy with experiment may be due to
non-Hartree contributions to the single-particle potential, or
to the apparent difficulty in obtaining a reliable experimental

TABLE V. Electric-field gradient in GdCo5 separated into the
on-site and lattice contribution, in units of 1021 V/m2. The on-site
contribution is analyzed in a5p-5psemicore contribution and6p-6p
and5d-5dvalence electron contributions.

On-site Lattice Total Expt.

Semicore5p-5p 23.3
6p-6p 18.7
5d-5d 2.4
Others 0.6

18.4 20.1 18.3 8.2a;9.7b

aReference 17.
bReference 16.

TABLE VI. Crystal-field parameters in GdCo5 separated into
on-site and lattice contributions in units of K, together with the
expectation values of the radial 4f wave function~in Bohr atomic
units!. The on-site contribution has been separated into a5p-5p
semicore contribution and valence electron contributions.

( lm) ^r l& Al
m^r l&

On-site Lattice Total Expt.

~20! 0.93 Semicore5p-5p 87
6p-6p 2407
5d-5d 2775
Others 2648

Sum 21743 980 2763 2180a

2420b

2210c

~40! 2.11 23 224 227

~60! 8.58 0.5 3.1 3.6

~66! 8.58 0.3 99 99

aReference 1.
bReference 2.
cReference 3.
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value. The influence of the nonspherical 4f charge density
on the valence electron charge density should be studied
carefully.

Where the lattice contribution to the potential is already
very important forA2

0 , it becomes even more so for the
higher order crystal-field coefficients; over 80% of the value
for A4

0 andA6
0 comes from the lattice contribution. This may

be seen in Figs. 13 and 14, where the on-site contribution to

the Coulomb potential energy,Von5(2e)@4p/(2l
11)]Ul0(r ), and the total Coulomb potential energy,
Vl
0(r )5(2e)v l0(r ), are shown as a function of the distance

from the nucleus,r. The difference between these two terms
is the lattice contribution which scales asr l for an Al

m

crystal-field parameter. The 4f radial charge density, normal-
ized so that*0

Rr4 f(r )dr51, is shown together with the ratio
F(r )5I (r )/I (R), where I (r )5*0

r r4 f(x)Vl
0(x)dx. The

curveF(r ) shows that 80% of theA2
0 parameter is accounted

for by the integral within 1.5 atomic units of the nucleus. On
the other hand, only 30% of the fourth-order crystal-field
parameter is generated within the same volume. The magni-
tude of the fourth-order crystal-field parameter is determined
by the overlap of the tail of the 4f radial wave function with
the r l lattice potential, while the on-site contribution to the
potential is negligible.

The large influence of the lattice potential on the crystal-
field parameters indicates that a self-consistent calculation of
the nonspherical potential is important. By performing first a
self-consistent warped muffin-tin calculation~yielding a po-
tential which is spherically symmetric within the muffin-tin
sphere and which is represented by a plane-wave expansion
in the interstitial region!, and then taking the full nonspheri-
cal output charge density from a single iteration, we find that
the EFG is given quite accurately~within 5% of the self-
consistent value!. However, the crystal-field parameters cal-
culated in the same way differ from the values calculated
with a fully self-consistently calculated charge density by a
factor of 2. Whereas the on-site potential is described rea-
sonably well, the lattice potential which should ensure con-
tinuity of the potential, has not yet reached its converged
value.

In a recent paper, Richteret al.60 have carried out a cal-
culation ofAl

m^r l& for SmCo5 and, in order to compare with
our results,28 also for GdCo5. The basic approximations
which they make are the same. They work within the local-
spin-density approximation and adopt a perturbative ap-
proach to describe the interaction between the atomiclike
4 f configuration with the self-consistently calculated valence
electron density. Their calculation was based upon a linear
combination of atomic orbitals band structure formalism
which makes it difficult to carry out a detailed comparison of
the results. For GdCo5 they find a value ofA2

0^r 2& of 2950
K compared to our value of2763 K. The agreement for the
higherl values ofAl

m^r l&, which are dominated by the lattice
contribution, is even better. Richteret al. suggest that their
non-self-consistent treatment of the non-spherical on-site
charge density may be responsible for the 20% difference
between their and our values ofA2

0^r 2&.
Yamaguchi and Asano have performed FLAPW calcula-

tions very similar to ours for a number of compounds includ-
ing GdCo5.

61 Treating the 5p states as core~band! states,
they obtain values forA2

0^r 2& in GdCo5 of 2769 ~2707! K
compared to our values of2850 ~2763! K. Whereas we
treat the 4f states as core states, Yamaguchi and Asano treat
them as band states. This may certainly account for the
slightly differing results.

3. BEX

Finally, we come to the exchange field. The energy cost to
flip the 4f spins is phenomenologically described by the ex-

FIG. 13. Radial dependence of thel52,m50 component of the
total Coulomb energyV2

05(2e)v20 and the on-site contribution
Von to the Coulomb energy in Rydbergs referred to the right-hand
axis. r, the distance to the nucleus is in Bohr atomic units. The
normalized 4f charge density,r4 f(r )54pr 2f4 f

2 (r ), and the inte-
gral F(r )5I (r )/I (R), where I (r )5*0

r r4 f(x)V2
0(x)dx, are shown

referred to the left-hand axis~in atomic units and dimensionless
units, respectively!. R is the muffin-tin radius. The difference be-
tween the on-site and Coulomb potential, which is;r l , is the lat-
tice potential. The integralF(r ) reaches 80% of its final value
within a distance of 1.5 a.u. from the nucleus.

FIG. 14. Radial dependence of thel54,m50 component of the
total Coulomb energyV4

05(2e)v4,0 and the on-site contribution
Von to the Coulomb energy in Rydbergs referred to the right-hand
axis. r, the distance to the nucleus is in Bohr atomic units. The
normalized 4f charge density,r4 f(r )54pr 2f4 f

2 (r ), and the inte-
gral F(r )5I (r )/I (R), where I (r )5*0

r r4 f(x)V4
0(x)dx, are shown

referred to the left-hand axis~in atomic units and dimensionless
units, respectively!. R is the muffin-tin radius. The difference be-
tween the on-site and Coulomb potential, which is;r l , is the lat-
tice potential. The integralF(r ) reaches only 30% of its final value
at a distance of 1.5 a.u. from the nucleus.
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change Hamiltonian, Eq.~20!. The local exchange integrals
calculated for GdCo5 by means of Eq.~25! are I s,4f ,I p,4f ,
and I d,4f are 77, 113, and 85 meV, respectively. Together
with the partial magnetic momentsDns50.049,
Dnp50.078, andDnd50.349 the exchange energy per spin
@Eq. ~24!# is 21 meV, corresponding to an exchange field of
360 T. The exchange field is seen to be mainly due to the
interaction of the 4f spins with the 5d electrons. The experi-
mental value for GdCo5 as measured with the high-field free-
powder method by Liuet al. is 240 T.62 The agreement is
only moderate.

Liebs, Hummler, and Fa¨hnle47 have improved upon the
perturbative approach which we have followed by straight-
forwardly evaluating the change in the total energy when the
4f moments are rotated. To do this they performed two self-
consistent field calculations; one for the ground-state con-
figuration and another for an excited configuration with the
rare-earth 4f spins reversed. In this way the conduction-
electron spins are allowed to adjust to the reversed exchange
field. For GdCo5 they calculate a value for the exchange field
of 239 T ~Ref. 63! using the LMTO-ASA method with the
4 f states treated as open core states. A similar result has
been obtained by Liuet al. using the augmented spherical
wave method and treating the 4f states as band states. They
calculate the exchange field to be 237 T and confirm that
there are substantial changes in the conduction-electron mo-
ments when the 4f spins are reversed.62

IV. SUMMARY AND CONCLUSIONS

Using first-principlescalculations it is shown that an im-
portant contribution to the magnetization of YCo5 is due to
orbital moments on the Co atoms. Introducing a dependence
of the potential on the orbital moment which increases the
calculated orbital magnetic moments and the magnetocrys-
talline anisotropy energy led to better agreement with experi-
ment without changing the functional dependence of the
MAE on the band fillingq.

Contrary to the conventional interpretation, the orbital

moments on the two types of Co sites are found to be nearly
equal. The anisotropy in the total orbital moment as a func-
tion of the band filling is found to follow the same trend as
the magnetocrystalline anisotropy energy, and is mainly de-
termined by the anisotropy energy in the orbital moment of
the Co atoms at the 2c sites, as had been proposed as an
interpretation of a number of experiments. However, the
band-filling dependence is such that for YCo5 the anisotropy
in the orbital moment on the 3g site is much larger than that
on the 2c site. The calculated second-order crystal-field pa-
rameter and electric-field gradient are too large in compari-
son with experiment. Lattice contributions to the potential
are shown to be important for a determination of the crystal-
field parameter, but not for the EFG. In an analysis of the
origin of the magnetocrystalline anisotropy energy, we have
found that degenerate energy bands in the neighborhood of
the Fermi energy play an important role. A large peak in the
density of states is found just below the Fermi level, which
has mainly Co (2c) dx22y2 and dxy character. Angle-
resolved photoemission should be capable of detecting the
large magnetization-direction-dependent energy band split-
tings which we consider to play an important role in deter-
mining the observed magnetocrystalline anisotropy. Our cal-
culations of the anisotropy energy as a function of the band
filling indicate that anisotropy energies at least twice as large
as those found for YCo5 are, in principle, possible without
having to resort to including rare-earth ions.g-factor mea-
surements are necessary to obtain more reliable evidence that
a large orbital moment contributes to the magnetic moment.
A large scatter in the experimental data for the hyperfine
fields prevents a conclusive comparison with our calculated
results.
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