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The Lee-Low-Pines variational method is used to investigate the properties of a polaron in a quantum well
~QW!. The electron wave function in a finite-height potential barrier has been used for the calculation. There-
fore, the influence of the barrier height on the polaron properties is taken into account. GaAs/AlxGa12xAs QW
is chosen as an example to calculate the polaron energy and effective mass. Our results indicate that the barrier
height has an important influence on the polaron properties in a QW.

I. INTRODUCTION

Recently, various theoretical methods have been used to
investigate the polaron properties in quantum well~QW!
structures.1–8 For example, Das Sarma and Stopa1 calculated
the binding energy and effective mass of an electron in a
GaAs/AlxGa12xAs heterostructure by using three-
dimensional~3D! bulk optical ~BO! phonon modes. Comas,
Trallero-Giner, and Riera2 investigated the binding energy of
a polaron in a QW only including the interaction of the elec-
tron with the confined-slab BO phonons. Degani and
Hipolito3 incorporated interface optical~IO! phonons and
confined-slab BO phonons to study the polaron energy and
effective mass in a heterostructure and a QW. Zheng, Ban,
and Liang4 used the Lee-Low-Pines~LLP! variational
method to calculate the self-energy of a confined polaron in a
QW. In all the above work, it has been assumed that the
electron is confined in a QW with an infinite-height barrier.
However, for most practical QW systems, a polar crystal slab
is embedded in two semi-infinite substrates made of other
polar material. In these systems, the electron can penetrate
through the interfaces to go into the substrates. The phonons
in the substrates can interact with the electron. This interac-
tion is important for very narrow QW’s because of the re-
markable penetration effect. In addition, the interaction of
the electron with the slab BO and IO phonons may be dif-
ferent from that in infinite height QW’s. For example, for
GaAs/AlxGa12xAs QW’s when x, the Al concentration,
equals 0.1, the barrier heightV571.6 meV.9 If the well width
N510 ~in units of lattice constant!, the probability of the
electron in the substrates is 0.32. In this case, the infinite-
height QW model in which the electron is assumed to be
wholly confined in the slab is obviously unrealistic. Hai,
Peeters, and Devreese5 reported a detailed investigation of
the polaron properties in QW’s with various potentials using
the standard perturbation theory. For the finite barrier QW it
is practically difficult to sum over all intermediate states in
their calculation.5 So they had to use the so-called leading-
term approximation for calculation. But they found that there
are not any contributions of the substrate material to the po-
laron energy and effective mass. Obviously this result is not
satisfactory. In short, the infinite-height QW model is not
adequate for a low-barrier QW. How does the barrier height
of QW’s affect the properties of the polaron? Is there any

new phenomenon when the penetration effect is taken into
account? So far there have been few reports involving the
influence of barrier height on the polaron properties.

In the present paper, we use the LLP variational method10

to calculate the polaron energy and effective mass in a QW
with a finite-height barrier. In order to consider the influence
of the substrate BO phonon on the polaron properties, we
apply the exact electron wave function in a finite-height po-
tential well. First, we give the general derivation of the en-
ergy and effective mass of the confined polaron. Then we
give the numerical results for GaAs/AlxGa12xAs QW. Fi-
nally, we give a detailed discussion about the influences of
the slab BO phonons, the IO phonons, and the substrate BO
phonons on the polaron properties.

II. HAMILTONIAN

We assume that a slab with thickness 2d is made of a
polar crystal and is surrounded by another kind of polar crys-
tal as substrate. The linear scale of the slab in thex and y
directions is taken to be much larger than 2d. If the isotropic
effective-mass approximation is adopted, the Hamiltonian of
the system consisting of an electron, the BO phonons, and
the IO phonons may be written as:6

H5He1Hph1He2BO1He2IO , ~1!

where

He55 2S \2

2m1*
D S ]2

]z2
1¹r

2D , uzu<d

2S \2

2m2*
D S ]2

]z2
1¹r

2D 1V, uzu.d

~2!

wherem1* andm2* are the band masses of the electron in the
slab and in the substrates, respectively,V is the height of the
barrier, andr is the position vector of the electron in thex-y
plane.

Hph5HBO
i 1HBO

0 1H IO , ~3!

HBO
i 5 (

k,pm
\vL1apm

1 ~k!apm~k!, ~4!
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wherea mp
1 ~k! andamp~k! are the creation and annihilation

operators of the slab BO phonons with the frequencyvL1
and the wave vector~k,mp/2d!. k is the projection of the
wave vector on thex-y plane.a qp

1 ~k!, aqp~k! are the creation
and annihilation operators of the substrate with frequency
vL2 and the wave vector~k,q!. q is the z component of
phonon wave vector, and it is continuous since the substrate
is infinite. a ps

1 ~k!, aps~k! are the creation and annihilation
operators, respectively, of the IO phonons with the frequency
v s
p and the wave vectork, wheres51 or 2. According to

Wendler and Pechstedt’s result,6 there are four interface pho-
non mode corresponding frequencies,v 1

A ,v 2
A ,v 1

S ,v 2
S .

The subscriptp is the parity with respect to the mirror sym-
metry of thex-y plane forz50. For BO phonons in the slab,
it should be illustrated that for even parity~represented byS!
m is odd, while for odd parity~represented byA!, m is even.
We takeN as the slab thickness in units of the lattice con-
stant a, namely,Na52d. Being limited by the Brillouin-
zone boundary,m may be any integer within the range
1<m<N/2.

The IO phonon frequencies can be written as

v6
p ~k!5 H 1

2~«1
p1«2

p!
{ «1

p~vL1
2 1vT2

2 !1«2
p~vL2

2 1vT1
2 !

6[ „«1
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2 1vT2
2 !1«2

p~vL2
2 1vT1

2 !…2

24~«1
p1«2

p!~«1
pvL1

2 vT2
2 1«2

pvL2
2 vT1

2 !] 1/2} J 1/2,
~7!

where «1
p5«`1@12gpexp(22kd)#, «2

p5«`2@11
gpexp(22kd)], gs51,gA521,vT1,vT2 are the transverse-
optical phonon frequencies of the slab and the substrate, re-
spectively, and«01, «`1, and«02, «`2 are the static and the
optical dielectric constants of the slab and the substrate, re-
spectively.He2BO andHe2IO in Eq. ~1! are the interaction
Hamiltonians of the electron with the BO phonons and the
IO phonons. We can express them in general form,

He2 i5(
i

(
k
eik•rG i~k,z!@a i~k!1a i

1~2k!#, ~8!

wherei represents various phonon modes, andGi~k,z! is the
corresponding coupling functions.6 For the slab BO phonons,

GL1
m ~k,z!5H 4p\2vL1a1

2Ad F2\vL1

m1*
G1/2J 1/2

35
0, z.d

sin@q1
m~z1d!#

Ak21~q1
m!2

, uzu<d

0, z,2d

~9!

where q 1
m5mp/2d,a15(« `1

212« 01
21)(m1* e

4/2\3vL1)
1/2,

and A is the interface area of the slab. Similarly, for the
substrate BO phonons,

GL2~k,q,z!52H 4p\2vL2a2

VG
F2\vL2

m2*
G1/2J 1/2

35
sin@q~z2d!#

Ak21q2
, z.d
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, z,2d

~10!

where VG is the volume of the substrate and
a25~«`2

212«02
21!~m2* e

4/2\3vL2!
1/2. Whend50 the electron-

substrate-phonon interaction Hamiltonian~Wendler Hamil-
tonian! given by Eqs.~8! and ~10! is not identical with the
Frohlich Hamiltonian, since it is proportional to sinqz not
eiqz. The reason for the difference is that the interface con-
finement requires the amplitude of lattice vibration corre-
sponding to the substrate BO phonon modes to be zero at the
interfaces. Thus the interface confinements brings out an ad-
ditional half-wave loss for the lattice wave. Therefore, the
Wendler Hamiltonian is not wholly satisfactory whend50.
But if we calculate the polaron energy shifts and effective
mass only to the first-order term ofa2, the Wendler Hamil-
tonian can give the same results as the Frohlich one does.
Hence whend50 if the high-order terms ofa2 are ignored,
the Wendler Hamiltonian can be regarded as equivalent to
the Frohlich Hamiltonian. For IO phonons the coupling func-
tion is

G6
p ~k,z!52S 2pe2\

Av6
p ~k! D

1/2C6
p

k
3H e2k~z2d!, z.d

f p~k,z!, uzu<d

gpe
k~z1d!, z,2d

~11!

where
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p 5H k~11gpe

22kd!
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and

f S~k,z!5
cosh~kz!

cosh~kd!
, f A~k,z!5

sinh~kz!

sinh~kd!
. ~13!

Certainly, we can also define a dimensionless coupling
constant in analogy to the bulk polaron. That is,
aI5[m1* (eC6

p )4/8(v 6
p )5\2] 1/2, by which we can transform

the coupling functionG 6
p ~k,z! into a new form similar to

that of the bulk phonon coupling function. Buta I is depen-
dent on the wave vectork.

From Eqs.~1!–~6! and~9!–~11! it can be seen easily that
only the polaron momentum component parallel to the inter-
face commutes with the Hamiltonian in Eq.~1!. Therefore,
we can define a unitary transformationU1 which removes
the coordinatesr.

U15expH 2 irF (
kmp

kamp
1 ~k!amp~k!1(

kps
kaps

1
„k…aps~k!

1(
kqp

kaqp
1 ~k!aqp~k!G J . ~14!

Obviously the transformed HamiltonianH15U1
21HU1 is

still dependent on the electronic coordinatesz through the
coupling functions. Now we introduce the second unitary
transformation,

U25exp2(
kmp

Fkmp~z!@amp~k!2amp
1 ~k!#2(

kqp
Gkq~z!

3@aqp~k!2aqp
1 ~k!#2(

ksp
hksp@aps~k!2aps

1 ~k!#%,

~15!

where Fkmp(z) and Gkq(z), the BO phonon distribution
functions, are assumed to be dependent on the electronic
coordinates,z andhksp , the distribution function of the IO
phonons, is independent ofz since the IO phonons have an
important effect only when the electron is very close to the
interfaces. The HamiltonianH1 can be transformed into

H25U2
21H1U2 . ~16!

III. THE ENERGY AND EFFECTIVE MASS

The phonon part of the trial wave function of the Hamil-
tonianH2 can be chosen as the vacuum stateu0& since we
only pay attention to the low-temperature limiting state, and
the electron part can be chosen as the wave function of the
electron in a finite-height potential well if the coupling be-
tween the electron and the phonons is very weak. The total
trial wave function is taken as

C5Fu0&, ~17!

where

F5HB0 cos~kez!, uzu<d

B0 cos~ked!exp@2ke1~ uzu2d!#, uzu.d,
~18a!

ke5(2m1*E0)
1/2/\, andke15[2m2* (V2E0)]

1/2/\; the nor-
malization constantB0 is given by

B05F 2ke
2ked1sin~2ked!12ke cos

2~ked!/ke1
G1/2.

~18b!

E0 is the ground-state energy of the bare electron in the
finite-height potential well and can be obtained by solving
the following equation:

tan~ked!5Fm1* ~V2E0!

m2*E0
G1/2. ~19!

The total ground-state energy of the electron-phonon sys-
tem can be expressed as

E5^CuH2uC&. ~20!

If we diagonalize approximately the HamiltonianH2 to
determine the phonon distribution functions, we can get two
differential equations aboutFkmp(z),Gkq(z). But the equa-
tions are very difficult to solve.7,8 Therefore, we use the fol-
lowing approximation method to determine the phonon dis-
tribution functions.4,11 We assume the BO phonon
distribution functions have the following forms:

Fkmp~z!5 f kmp sinkm~z1d!, ~21!

Gkq~z!5gkq sinq~z1d!, ~22!

wherekm5mp/2d and f kmp,gkq are independent ofz; they
can be determined by minimizing the energy. From the varia-
tional conditions dE/dgkq5dE/dhksp5dE/d f kmp50 we
can obtain

f kmp52
Vkmpu1

F\2k2

2m1*
1\vL1Gu11 \2km

2

2m1*
u22

pi•k

m1*
u1

, ~23!

gkq52
Xkqn1

F\2k2

2m2*
1\vL2Gn11 \2q2

2m2*
n22

pi•k

m2*
n1

, ~24!

hksS52
WksS

F\2k2

2m1*
j11

\2k2

2m2*
j2G1\vsp2\pi•kS j1

m1*
1

j2
m2*

D ,
~25!

hksA50, ~26!

where

u15E
slab
sin2km~z1d!F2dz,

u25E
slab
cos2km~z1d!F2dz,

n15E
sub

sin2q~z1d!F2dz,

n25E
sub

cos2q~z1d!F2dz,
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j15E
slab

F2dz, j25E
sub

F2dz,

WksS5E
2`

`

Gs
S~k,z!F2dz,

Vkmp5 H 4p\2vL1a1

2Ad~k21km
2 !F2\vL1

m1*
G1/2J 1/2,

Xkq5H 4p\2vL2a2

VG~k21q2! F2\vL2

m2*
G1/2J 1/2,

andpi is the component of the polaron momentum in thex-y
plane. We can assume thatpi is very small since we are only
interested in the slow electron. Therefore, we expandf kmp,
gkq , andhksS into power series ofpi , and substitute them
into Eq. ~20!. Now we can obtain the total polaron energy:

E5E01DEslab1DEsub1DEIO1
pi
2

2M
, ~27!

whereDEslab, DEsub, andDEIO are the polaron energy shifts
in QW’s due to the interaction of the electron with the slab
BO phonons, the substrate BO phonons, and the IO phonons,
respectively, andM is the effective mass of the polaron:

DEslab52(
kmp

Vkmp
2 u1

2

F\2k2

2m1*
1\vL1Gu11 \2km

2

2m1*
u2

, ~28!
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kq

Xkq
2 n1

2

F\2k2

2m2*
1\vL2Gn11 \2q2

2m2*
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, ~29!

DEIO52(
ks
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2

F\2k2

2m1*
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\2k2

2m2*
j2G1\vs
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, ~30!

1

M
5
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m1*

1
j2
m2*

2h12h22h3 , ~31!

h15(
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2Vkmp
2 u1

4\2k2cos2 b

F S \2k2

2m1*
1\vL1D u11

\2km
2

2m1*
u2G3m1*
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, ~32!

h25(
kq

2Xkq
2 n1

4\2k2 cos2b

F S \2k2

2m2*
1\vL2D n11

\2q2

2m2*
n2G3m2*
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, ~33!

h35(
ks

2WksS
2 \2k2 cos2bF j1

m1*
1

j2
m2*

G2
F S \2k2

2m1*
j11

\2k2

2m2*
j2D 1\vs

SG3 , ~34!

whereb is the angle betweenpi andk. When the well width
tends to infinity, the electron energyE0 tends to zero, and
ked tends top/2 @Eq. ~19!#, henceu15u251. From Eq.~28!

we can easily find thatDEslabandM tend to their 3D limiting
value of the slab material. When the well widthN50,DEslab
andDEIO are both equal to zero sinceu15u25WksS50, but
DEsub is equal to the 3D value of the substrate material since
n15n251 @see Eq.~29!#. Similarly, h15h350 for N50;
hence the polaron effective mass reaches the 3D value of the
substrate material. This result is reasonable since the QW has
become an infinite polar crystal of the substrate material
when the well width is zero. The infinite-height barrier
model concludes that whenN tends to zero,DEslab tends to
zero andDEIO tends to the 2D limiting value of the slab
material, which does not conform obviously to the actual
situation of the QW system. To sum up, whenN50 and
N5` the correct limiting values of the polaron energy and
effective mass have been obtained analytically, which indi-
cates that our choice of the variational parameters is reason-
able.

If we replace the electron wave function in Eqs.~28!–~34!
by that of its first excited state, we can obtain the polaron
properties for the electron in the first excited state. The dif-
ference of polaron energies for the electron in the ground
state and the first excited state is interesting since it can be
directly measured by experiment. The bare electron first ex-
cited state wave function is

F15HB1 sin~kez!, uzu<d

tB1 sin~ked!exp@2ke1~ uzu2d!#, uzu.d
~35!

wheret51 for z.0 andt521 for z,0. The electron en-
ergyE1 in the bound first excited state can be determined by

2Fm1* ~V2E1!

m2*E1
G1/25cotF ~2m1*E1!

1/2d

\ G . ~36!

IV. THE RESULT AND DISCUSSION

In order to understand the details of the polaron properties
in a QW, we choose the GaAs/AlxGa12xAs QW as a typical
example to perform our numerical calculation. All param-
eters used in the calculation are taken from Ref. 5.a50.068
for GaAs, for GaxAs12xAl a is dependent on the Al concen-
tration x, a50.06810.058x.12 Obviously, the barrier height
of the GaAs/AlxGa12xAs QW is dependent onx. Leeet al.9

give the variation of the band gap withx. According to the
assumption of Sanders and Bajaj,13 the well potential profiles
for the electron are obtained by assuming that 60% of the
band-gap variation is accommodated by the conduction
band. We have

V50.63~1.155x10.37x2!eV. ~37!

From Eqs.~28!–~30! we can calculateDEslab, DEsub, and
DEIO , respectively. The total polaron energy shift
DE5DEslab1DEsub1DEIO . From Eqs.~31!–~34! we can ob-
tain the numerical result of the polaron effective massM .

The energy shiftDEslab as a function of the well widthN
~in units of the lattice constanta of GaAs anda50.5654 nm!
is plotted in Fig. 1. We have also given the result ofDEslab
obtained by the infinite-height QW model in Fig. 1 for com-
parison. First, we can find that the absolute value ofDEslab
for the finite-height QW model is obviously smaller than that
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obtained by the infinite-height QW model whenN,60. The
more narrow the QW, the more apparent the difference is.
This is due to the probability that the electron in the slab is
smaller than that of the infinite-height QW~for infinite-
height QW the electron is wholly confined in the slab!. When
the QW is very wide, the ground-state energy of the bare
electron is very close to the well bottom. So the electron is
almost wholly confined in the slab. The two results ofDEslab
~infinite- and finite-height barrier models! are almost identi-
cal. Second, from Fig. 1 we can also find thatDEslab tends to
the 3D limiting value~a1\vL152.46 meV! when the well is
very wide. In Fig. 1 we also give the change of the energy
shift DEsub with N. It can be found thatDEsub is important
only for very smallN.

The total polaron energy shiftsDE corresponding to
x50.1, 0.3, and 0.45, respectively, are showed in Fig. 2~we

limit our discussion within the rangex<0.45 since the sub-
strate is not a direct gap semiconductor whenx.0.45!. The
three curves are different whenN is small. Whenx50.45 the
total energy shift is approximately constant in spite of the
small fluctuation whenN is very small. The main reason is
the dramatic influence of the Al concentration in the sub-
strate material onDEIO . We have givenDEIO as a function
of the well widthN in Fig. 3. We can find from Fig. 3 that
DEIO is very small for smallx ~e.g., x50.1!. When x be-
comes small the difference between the slab and the sub-
strate material is not very remarkable. It is reasonable that
the influence of IO phonon modes on the confined polaron
properties becomes weak. Whenx50.1,DEslab is the domi-
nant contribution to the total energy shift. Therefore, with the
decrease ofN the total energy shift tends to zero. When
x50.45,DEIO andDEslab are comparable if the QW is not
very wide. WhenN becomes very small the decrease of the
absolute value ofDEslab is complemented by the contribution
of the IO phonons. Therefore, the total energy shift is ap-

FIG. 4. The energy shifts as functions ofx for the well width
N520.

FIG. 1. Polaron energy shiftsDEslab as functions of the well
widthN for GaAs/AlxGa12xAs QW withx50.1. Dotted and dashed
curves correspond to the results of the finite- and infinite-height
potential well models, respectively. The solid curve represents the
energy shiftDEsub.

FIG. 2. The total polaron energy shifts as functions of the well
width N. Solid, dotted, and dashed curves correspond to the results
for x50.1, 0.3, and 0.45, respectively.

FIG. 3. The energy shiftsDEIO as functions of the well widthN.
The solid, dashed, and dotted curves correspond to the results for
x50.3, 0.45, and 0.1, respectively.

1442 53TIANQUAN LU AND YISONG ZHENG



proximately constant forx50.45. From Fig. 3, we can also
find that the curve ofDEIO has a minimum at a certainN,
which has also been obtained by Hai, Peeters, and Devreese5

although a different theoretical model was used in their
work. On one hand, the interface effect becomes obvious
with the decrease ofN; on the other hand, the electron can
easily penetrate the interface for smallN, which may lower
the effect of IO phonons on the polaron properties. The two
competitive factors may cause the occurrence of the mini-
mum on theDEIO curves.

In Fig. 4 we give the changes of the energy shifts withx
for well width N520. With the decrease ofx ~the barrier
heightV becomes small!, DEslab becomes small; in contrast
with that,DEsub becomes large since the probability of the
electron in the substrate material is enlarging and comparable
with that in the slab. The change ofDEIO with x is compli-
cated sincex influences not only the barrier height but also
the coupling function of the electron with the IO phonons.

In Fig. 5 we give the effective mass of the polaron in a

QW as a function of the well widthN. In Eq. ~31!, h1, h2,
andh3 represent the contribution of the electron-phonon in-
teraction to the polaron effective mass. The reciprocal of the
term j1/m1*1j2/mm* is the bare mass of the electron in the
QW, and the bare mass is a combination of the two band
masses of the electron in the slab and the substrate. There-
fore, the electron bare mass changes with the well width due
to the electron penetration effect. We also plot the electron
bare mass as a function ofN ion order to show more obvi-
ously the polaron effect. From Fig. 5 it can easily be found
that ~1! due to the electron-phonon interaction the effective
mass of the polaron is larger than the electron bare mass and
whenN is small the difference is very obvious;~2! the ef-
fective mass of the confined polaron tends to the 3D limiting
value whenN is very large; on the other hand, whenN is
small the effective mass becomes larger than the 3D limiting
value. This is due to the fact that the IO phonon effect is
dominant for smallN ~Fig. 6!. Considering the 3D polaron
effective mass of the substrate material,M25m2* ~1
1a2/6!50.093me ~for x50.3!.14 We can find in Fig. 5 the
polaron effective mass tends toM2 indeed, which coincides
wit the above analytical conclusion. In Fig. 6 we give the
contributions of the slab BO phonons, the substrate BO

FIG. 5. The polaron effective mass as a function of the well
width for x50.3. The dotted line represents the 3D value. The
dashed line represents the electron bare mass as a function of the
well width.

FIG. 6. The contributions of the three phonon modes to the
effective mass of the polaron forx50.3. The solid, dashed, and
dotted curves represent the contributions of the bulk phonon in the
substrate, slab, and interface phonon, respectively.

FIG. 7. The polaron energy shifts~x50.1! for the electron in the
first excited state versus the well width.

FIG. 8. The polaron correction to the electron energy-level dif-
ference~x50.1!.
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phonons, and the IO phonons to the effective mass. From
Fig. 6 we also can find thath3, the interface contribution to
the polaron effective mass, diminishes for very smallN, but
h2 increases rapidly with the decrease ofN. It is just the
effect of h2 guarantees the growth of the polaron effective
mass asN approaches zero.

Using Eqs.~35! and ~36!, we can calculate the polaron
energy shifts for the electron in the first excited state. In Fig.
7 we plot these energy shifts versus the well widthN. We can
find from Fig. 7 that the absolute values of the energy shifts
DEsub andDEIO are larger, but that ofDEslab is smaller, than
those for the electron in the ground state. This implies that
the electron penetration effect becomes more obvious when
the electron is in the first excited state.E1 , the unperturbed
electron energy in the first excited state, can be determined
numerically by solving Eq. ~36!. When @~2m1*V)

1/2/
\]d<p/2,E1 is higher than the height of the barrier. There
fore, under this condition the bound first-excited state does
not exist, and the electron energy spectrum will be continu-
ous. We define the special well width as the thresholdNm.
Only whenN.Nm, the first-excited state is the bound state.
For example, whenx50.1 andV571.3 meV,Nm515. The
polaron ground-state energyE p

05E01DE0 and the first ex-
cited state energyE p

15E11DE1 . They are functions of the
well width. The polaron energy difference between two lev-

els can be measured directly. And the polaron effect can give
a correction to the electron energy difference by

\DV5~Ep
12Ep

0!2~E12E0!, ~38!

which is plotted in Fig. 8. It can be seen that\D changes
obviously withN, and has an oscillatory character for small-
size QW.

In conclusion, we have used the LLP variational method
to study the polaron properties in a QW with finite-height
barrier. We find that~1! the contributions of the slab BO
phonons and the IO phonons to the polaron properties is
obviously dependent on the barrier height and very different
from the results obtained by the infinite-height QW model.
~2! The effect of the substrate phonons is important only
when the QW is very narrow.~3! There is a threshold,Nm , of
the well width. When the well widthN,Nm , there is no
bound excited state. Therefore, there is no discrete optical
spectral line corresponding to the electron transition. The
electron penetration effect is more obvious for the first ex-
cited state.

APPENDIX

Now we give the closed form of the HamiltonianH2
when uzu<d,

H25
1

2m1*
H P̂z

22 i\(
kmp

@amp
1 ~k!2amp~k!#S ]Fkmp

]z
P̂z1 P̂z

]Fkmp

]z D 1\2F (
kmp

@amp
1 ~k!2amp~k!#S ]Fkmp

]z D G2J
1

1

2m1*
H P̂i2 i\(

kmp
k@amp

1 ~k!1Fkmp#@amp~k!1Fkmp#2 i\(
ksp

k@aps
1 ~k!1hksp#@aps~k!1hksp#J 2

1(
kmp

\vL1@amp
1 ~k!1Fkmp#@amp~k!1Fkmp#1(

ksp
\vsp@aps

1 ~k!1hksp#@aps~k!1hksp#

1(
kmp

@GL1
m amp~k!1GL1

m amp
1 ~k!12Fkmp

2 #1(
ksp

@Gs
paps~k!1Gs

paps
1 ~k!12hksp

2 #, ~A1!

when uzu.d

H25
1

2m2*
H P̂z

22 i\(
kqp

@aqp
1 ~k!2aqp~k!#S ]Gkq

]z
P̂z1 P̂z

]Gkq

]z D 1\2F(
kqp

@aqp
1 ~k!2aqp~k!#S ]Gkq

]z D G2J
1

1

2m2*
F P̂i2 i\(

kqp
k@aqp

1 ~k!1Gkq#@aqp~k!1Gkq#2 i\(
ksp

k@aps
1 ~k!1hksp#@aps~k!1hksp#G2

1(
kqp

\vL2@aqp
1 ~k!1Gkq#@aqp~k!1Gkq#1(

ksp
\vsp@aps

1 ~k!1hksp#@aps~k!1hksp#

1(
kqp

@GL2aqp~k!1GL2aqp
1 ~k!12Gkq

2 #1(
ksp

@Gs
paps~k!1Gs

paps
1 ~k!12hksp

2 #. ~A2!
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Obviously the HamiltonianH2 includes the one-order
terms, the two-order terms, and the high-order terms of the
phonon operators. Therefore if we made the coefficient of the
one-order terms equal to zero, we can only quasidiagonalize
the HamiltonianH2 since there are still the high-order terms.
Fortunately for the weak coupling case, the high-order term
can be ignored.15,16To make the coefficient of the one-order
terms equal to zero we can obtain two differential equations:

2
d2Fkmp

dz2
2

1

uFu2
duFu2

dz

dFkmp

dz
1Fk21 2m1*vL1

\ GFkmp

5
2m1*

\2 GL1
m ~A3!

2
d2Gkq

dz2
2

1

uFu2
duFu2

dz

dGkq

dz
1Fk21 2m2*vL2

\ GGkq

5
2m2*

\2 GL2 . ~A4!

But the two equations are very difficult to solve. There-
fore, we have to use the approximate method to determine
the variational parameters.

The Hamiltonians~A1! and ~A2! include the one-order,
two-order, and high-order terms of the phonon creation or
annihilation operator. The one-order terms can be eliminated
by the suitable choice of the variational parameters. In the
present paper only the double linear terms are considered for
the calculation of the polaron energy and effective mass, and
we have obtained the correct limiting values for well width
N50 and`. In fact, the high-order terms also have their
contribution to the polaron properties though it is smaller
than that of the linear terms. The high-order terms can be
regarded as perturbation for the further calculation. Here we
only take an extreme case, i.e.,d50, as an example for the
perturbation calculation.

Whend50, the bare electron wave function can be taken
as the plane wave form. The double-phonon term in Hamil-
tonian ~A2! is

H85
\2

2m2*
(
kqp

k•aqp
1 ~k!Gkq~z!•(

k8qp
k8•aqp

1 ~k8!Gk8q
~z!

1
\2

2m2*
(
kqp

q•aqp
1 ~k!

]Gkq~z!

]z
•(
k8qp

q8•aqp
1 ~k8!

3
]Gk8q8~z!

]z
1Hc. ~A5!

The contribution of the double-phonon term to the po-
laron energy is given by the second-order perturbation
theory,

DE852S \2

2m2*
D 2(

kq
(
k8

~k•k81q2!2~gkqgk8q
!2

2\vL21
\2

2M2
~k1k8!2

.

~A6!

As noted in Sec. II, whend50 the QW system becomes an
infinite semiconductor which can be described by the well-
known Frohlich Hamiltonian. We give the expression of the
second-order contribution to the polaron energy by using the
Frohlich Hamiltonian17

DE852S \2

2m2*
D 2

3(
kq

(
k8q8

~k•k81q•q8!2u f ~k,q!u2u f ~k8,q8!u2

2\vL21
\2

2M2
~k1k8!21

\2

2M2
~q1q8!2

,

~A7!

where f ~k,q! is the 3D variational parameter. By comparing
Eqs. ~A6! and ~A7!, we can find that the second-order-term
contributions to the polaron energy obtained by the Wendler
Hamiltonian and the Frohlich Hamiltonian are obviously dif-
ferent. Therefore, when the well width is zero the Wendler
Hamiltonian used by us is not identical with the Frohlich
Hamiltonian though they can give the same result if the high-
order terms are ignored.
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