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Polaron properties in quantum wells

Tianquan Lu and Yisong Zheng
Group of Solid State Physics, Department of Physics and Centre of Theoretic Physics, Jilin University,
Changchun 130023, People’s Republic of China
(Received 2 December 1994; revised manuscript received 5 April)1995

The Lee-Low-Pines variational method is used to investigate the properties of a polaron in a quantum well
(QW). The electron wave function in a finite-height potential barrier has been used for the calculation. There-
fore, the influence of the barrier height on the polaron properties is taken into account. G&ss/AIAs QW
is chosen as an example to calculate the polaron energy and effective mass. Our results indicate that the barrier
height has an important influence on the polaron properties in a QW.

[. INTRODUCTION new phenomenon when the penetration effect is taken into
account? So far there have been few reports involving the
Recently, various theoretical methods have been used tofluence of barrier height on the polaron properties.

investigate the polaron properties in quantum WENW) In the present paper, we use the LLP variational method
structures:® For example, Das Sarma and Stbpalculated ~ t0 calculate the polaron energy and effective mass in a QW
the binding energy and effective mass of an electron in avith a finite-height barrier. In order to consider the |nﬂ.uence
GaAs/ALGa _,As heterostructure by using three- Of the substrate BO phonon on the polaron properties, we
dimensional(3D) bulk optical (BO) phonon modes. Comas, apply the exact electron wave function in a finite-height po-
Trallero-Giner, and Riefanvestigated the binding energy of tential well. First, we give the general derivation of the en-
a polaron in a QW only including the interaction of the elec-erdy and effective mass of the confined polaron. Then we
tron with the confined-slab BO phonons. Degani anddive the numerical results for GaAs/Ma _,As QW. Fi-
Hipolito® incorporated interface opticdlO) phonons and hally, we give a detailed discussion about the influences of
confined-slab BO phonons to study the polaron energy anéle slab BO phonons, the 10 phonons, and the substrate BO
effective mass in a heterostructure and a QW. Zheng, BarPhonons on the polaron properties.
and Liand used the Lee-Low-PinegLLP) variational
method to calculate the self-energy of a confined polaron in a Il. HAMILTONIAN
QW. In all the above work, it has been assumed that the ) ) )
electron is confined in a QW with an infinite-height barrier. W& assume that a slab with thickness & made of a
However, for most practical QW systems, a polar crystal slatpolar crystal and is surrounded by another kind of polar crys-
is embedded in two semi-infinite substrates made of othei@l @s substrate. The linear scale of the slab inxtendy
polar material. In these systems, the electron can penetrafiréctions is taken to be much larger thah ¥ the isotropic
through the interfaces to go into the substrates. The phonorfifective-mass approximation is adopted, the Hamiltonian of
in the substrates can interact with the electron. This interadD® System consisting of an electron, the BO phonons, and
tion is important for very narrow QW’s because of the re-the 10 phonons may be written &s:
markable penetration effect. In addition, the interaction of
the electron with the slab BO and 10 phonons may be dif- H=He+HphtHe-potHe-10, @
ferent from that in infinite height QW's. For example, for

GaAs/AlLGa _,As QW's when x, the Al concentration, where

equals 0.1, the barrier heighit=71.6 me\? If the well width 52 72
N=10 (in units of lattice constait the probability of the _(_*) —2+V2 , |z|<d
electron in the substrates is 0.32. In this case, the infinite- 2my |\ 9z

height QW model in which the electron is assumed to be e™ 52 92 @
wholly confined in the slab is obviously unrealistic. Hai, —| = || =+ V2| +V, |z>d

. ) o 2m 0z P

Peeters, and Devreéseeported a detailed investigation of 2

the polaron properties in QW's with various potentials using, herem* andm¥ are the band masses of the electron in the
the standard perturbation theory. For the finite barrier QW itg,a1 and in the substrates, respectivelys the height of the

is practically difficult to sum over all intermediate states inp.iar ando is the position vector of the electron in th
their calculatior?. So they had to use the so-called Ieading-p|ane_' ® P 4

term approximation for calculation. But they found that there

are not any contributions of the substrate material to the po- Ho=H. +H% +H ®)
laron energy and effective mass. Obviously this result is not ph™ 7780 T TTBO T TTIO:

satisfactory. In short, the infinite-height QW model is not

adequate for a low-barrier QW. How does the barrier height i o at (K a-(k 4
of QW's affect the properties of the polaron? Is there any BO k%m LK) oK), @
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HRo= k%q hopaq,(K) agp(k),

H,O=g 1P (K) apy(K) apy(K), (6)
wherea,;p(k) and apmp(k) are the creation and annihilation
operators of the slab BO phonons with the frequengy
and the wave vectotk,mw/2d). k is the projection of the
wave vector on th&-y plane.agp(k), aqp(k) are the creation

and annihilation operators of the substrate with frequency'here

w , and the wave vectofk,q). q is the z component of
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aP=mn/2d,a;= (e .i— e o) (mie*2h3w ;)2
and A is the interface area of the slab. Similarly, for the

phonon wave vector, and it is continuous since the substraf@Hbstrate BO phonons,

is infinite. a;,,(k), @,,(k) are the creation and annihilation

operators, respectively, of the 10 phonons with the frequency

" and the wave vectdt, whereo=+ or —. According to
Wendler and Pechstedt’s restithere are four interface pho-
non mode corresponding frequencies? ,0” ,0S w>.
The subscripp is the parity with respect to the mirror sym-
metry of thex-y plane forz=0. For BO phonons in the slab,
it should be illustrated that for even parifyepresented b$)
m is odd, while for odd parityrepresented bj), m is even.

We takeN as the slab thickness in units of the lattice con-

stanta, namely,Na=2d. Being limited by the Brillouin-
zone boundarym may be any integer within the range
1sm=N/2.

The 10 phonon frequencies can be written as

_ 2 2 2 2
wh (k)= m{ ef(wi1+ 0Ty teb(wi+ 0T)
*[(eR(wf )+ 0%,y +eb(wf,+ wf))?
2
—4(ed+ ) (bl 0F,+ ebol0i)] YR
(7)
where s'[l)=sw1[l—ypexp(—2kd)], eb=e,[1+

Yp€XP(=2kd)], ¥s=1,ya= —l,071, w7, are the transverse-

47Tﬁ2(1)|_2a2
Vo

Zﬁ w2
*
m;

12 1/2
F,_Z(k,q,z)=—{ }

sinNqg(z—d)]
Jierg

x{ 0, |z|=d
sin (q(z+d)]
Ny

where Vg is the volume of the substrate and
a,=(e.7—eo7) (M3 e2h3w ,)Y% Whend=0 the electron-
substrate-phonon interaction Hamiltoni@Wendler Hamil-
tonian given by Egs.(8) and (10) is not identical with the
Frohlich Hamiltonian, since it is proportional to gin not

€'9% The reason for the difference is that the interface con-
finement requires the amplitude of lattice vibration corre-
sponding to the substrate BO phonon modes to be zero at the
interfaces. Thus the interface confinements brings out an ad-
ditional half-wave loss for the lattice wave. Therefore, the
Wendler Hamiltonian is not wholly satisfactory whei0.

But if we calculate the polaron energy shifts and effective
mass only to the first-order term of, the Wendler Hamil-
tonian can give the same results as the Frohlich one does.
Hence wherd=0 if the high-order terms o#, are ignored,

(10

<—d

optical phonon frequencies of the slab and the substrate, r

spectively, anckgy, £..., andegy, &., are the static and the fhe Wendler Hamiltonian can be regarded as equivalent to

optical dielectric constants of the slab and the substrate, rtbe Frohlich Hamiltonian. For 10 phonons the coupling func-

spectively.H._go andH._ o in Eqg. (1) are the interaction lon 1
Hamiltonians of the electron with the BO phonons and the Czd)
IO phonons. We can express them in general form, o me2h | V2CP € , z>d
™ T
Fg(k,z)=—<m) T_X fo(k,2), |z|]<d
ik- w3
Hei=2 2 e rTitk2lei(k) +af (=K, (®) - 7,8, z<—d
(11
wherei represents various phonon modes, &n#,z) is the
corresponding coupling functiofig=or the slab BO phonons, where
oo _ | K@+ e ) [0f— 0l (k)2 [wf,— ol (k)] 12 "
T2 el Bled R (0P el ol [wd - B (0P| (12
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and ko= (2M3Eg) Y41, andke, =[2m3 (V—Eq)]Y%%; the nor-
malization constanB, is given by
_ coshikz) _ sinh(k2) 12
fo(k,2)= coshkad)’ fa(k,2)= Sinh(kd) (13 Bo— _ 2Kk,
2kod+ Sin(2ked) + 2ke cOS(Kod)/ Koy
Certainly, we can also define a dimensionless coupling (180)

constant in analogy to the bulk polaron. That is,E, is the ground-state energy of the bare electron in the
a=[m%(eCR)*8(w")%2Y2 by which we can transform finite-height potential well and can be obtained by solving
the coupling functionl" ®.(k,z) into a new form similar to the following equation:
that of the bulk phonon coupling function. Buy is depen-
dent on the wave vectd. _
From Egs.(1)—(6) and(9)—(11) it can be seen easily that tantked) { m3 E, (19
only the polaron momentum component parallel to the inter-
face commutes with the Hamiltonian in Ed.). Therefore,

we can define a unitary transformati®h, which removes
the coordinategp. E=(W|H,|¥). (20)

my (V- EOT’Z

The total ground-state energy of the electron-phonon sys-
tem can be expressed as

i If we diagonalize approximately the Hamiltonia, to
U1=exp{ _'P[%p kar;p(k)amp(k)ﬂ% Kape(K)ap(K) determine the phonon distribution functions, we can get two
differential equations abouf g(z),qu(z). But the equa-
+ tions are very difficult to solvg. Therefore, we use the fol-
+g‘p kaqp(k)aqp(k)“- (14) lowing approximation method to determine the phonon dis-
tribution functions*'! We assume the BO phonon

Obviously the transformed Hamiltoniam,=U; *HU, is  distribution functions have the following forms:

still d_ependen'g on the electrqnic coordinateshrough th_e Frmp(2) = fxmp Sinkky(z+d), (21
coupling functions. Now we introduce the second unitary
transformation, Gyq(2) = Okq SiN(z+d), (22)
wherek,=mm/2d andf,,,,9¢q are independent of; they
U,=exp— 2 Frmf( D[ amp(k) — ar;p(k)]— 2 Gq(2) can be determined by minimizing the energy. From the varia-
kmp kap tional conditions 8E/8gyq= SE/ Shy,p= OE/ 8fymp=0 we
can obtain
X[aqp(k)—aq%(k)]—;p hicopl @po(K) = ap,(K) 1}, Viw
7 fooo— mp”1 . (23
(15 Kmp f2k? ﬁzkrzn py-K @3
ibut amy en |t g e e
where F,(2z) and G,4(2z), the BO phonon distribution 1 1 1
functions, are assumed to be dependent on the electronic N
q

coordinatesz and hy,,, the distribution function of the 10 Okg= — . (24)

21,2 2~2 ’
phonons, is independent afsince the 10 phonons have an 7k FIET h7q b Pk ,
important effect only when the electron is very close to the 2m3 L2|"t omy 2 my !
interfaces. The Hamiltoniakl; can be transformed into
Wios
Hy=Uj5 *H,U,. 16 ST RET 752 & &)
2m §1+_2m§ §2_+hwap_hpl\'k m_’{+m_§
Ill. THE ENERGY AND EFFECTIVE MASS (25)
The phonon part of the trial wave function of the Hamil- hoa=0, (26)

tonianH, can be chosen as the vacuum st@esince we
: o where

only pay attention to the low-temperature limiting state, and
the electron part can be chosen as the wave function of the ) 5
electron in a finite-height potential well if the coupling be- 91=f| bS|n2km(Z+ d)®“dz,
tween the electron and the phonons is very weak. The total sa
trial wave function is taken as
62=J coSky(z+d)d?dz,

slab

v =3|0), (17)
where Vl:f sirfq(z+d)®2dz,
sub
B, cogkez), |z|=d
~ | By costked)exi] —kes(lz| - )], |7>d, vy f co2q(z-+d)b2dz,
(183) sub



éﬁf d2dz, fzzf P2dz,
slab sub

Wkgs=f I'S(k,z)P%dz,

v . 4’7Th2leal [Zﬁle 12) 172
KMPT | 2Ad(K?+KZ)| m¥ !
X, — 47Tﬁzw|_2a2 Zﬁ(,()L2 12 12

| Vel | ms | |

andp, is the component of the polaron momentum in xhg
plane. We can assume thgtis very small since we are only
interested in the slow electron. Therefore, we exp

Okq» @andhy,s into power series oy, and substitute them
into Eg. (20). Now we can obtain the total polaron energy:

PH
2M’

whereAEg,,, AEg,,, andAE,q are the polaron energy shifts

E=Ep+AEgt+ AEgut AE o+ (27

in QW's due to the interaction of the electron with the slab™.
BO phonons, the substrate BO phonons, and the IO phonons,

respectively, andl is the effective mass of the polaron:

Vb2
AEga=— > —55 e, (29
kmp Ak h km
th +ﬁ(l)|_1 01+ _2m1< 02
Xiq¥1
AEsub:_E (7,2Kk2 : %202 (29
kg q
2 * +h(1)|_2 V1 va
Wko’S
AElo:_%; /2Kk2 ﬁzkz ) (30
1
1 & &
M —N1— M2~ M3, (31
2Vim Pt 2k?cos B
771—2 [ #2K2 21,2 3 . (32
kmp hk h k 2
om *+thl 0.+ om *02 my
2 vit2k? co$B
772:2- 21,2 2.2 3 , (33
ka <k feq 2
2m2 +ﬁw|_2 V1+ 2 * Vo m2
2W2 i%k? cogB é+ rf\_z}
1 2
773:%‘: 72K2 72K2 3 (34
[(mfl 2ms % &2 "‘ﬁw

whereg is the angle betweep, andk. When the well width
tends to infinity, the electron enerdy, tends to zero, and
ked tends ton/2 [Eq. (19)], henceé,=6,=1. From Eq.(28)

POLARON PROPERTIES IN QUANTUM WELLS

1441

we can easily find thalE,,andM tend to their 3D limiting
value of the slab material. When the well width=0, AE,,
andAE g are both equal to zero singg= 6,=W,,s=0, but
AE ,is equal to the 3D value of the substrate material since
n=1w=1 [see EQ.(29)]. Similarly, 7,=7,=0 for N=0;
hence the polaron effective mass reaches the 3D value of the
substrate material. This result is reasonable since the QW has
become an infinite polar crystal of the substrate material
when the well width is zero. The infinite-height barrier
model concludes that whe tends to zeroAE,, tends to
zero andAE,p tends to the 2D limiting value of the slab
material, which does not conform obviously to the actual
situation of the QW system. To sum up, whdhi=0 and
N=c the correct limiting values of the polaron energy and
effective mass have been obtained analytically, which indi-
cates that our choice of the variational parameters is reason-
able.

If we replace the electron wave function in E¢&8)—(34)
by that of its first excited state, we can obtain the polaron
properties for the electron in the first excited state. The dif-
ference of polaron energies for the electron in the ground
state and the first excited state is interesting since it can be
directly measured by experiment. The bare electron first ex-
glted state wave function is

q)l:( —d)],

where =1 for z>0 andr=—1 for z<0. The electron en-
ergy E; in the bound first excited state can be determined by
my (V—-E;

)1/2
_{ m; E; } =cox{

IV. THE RESULT AND DISCUSSION

B, sin(kez), |z|<d

7B sin(ked)exy —Kei(|Z] @9

|z|>d

(2myE;) YA

7 (36)

In order to understand the details of the polaron properties
in a QW, we choose the GaAsi@a, _,As QW as a typical
example to perform our numerical calculation. All param-
eters used in the calculation are taken from Refx50.068
for GaAs, for GgAs; _,Al « is dependent on the Al concen-
tration x, a=0.068+0.058.1? Obviously, the barrier height
of the GaAs/AlGa,_,As QW is dependent or. Leeet al’
give the variation of the band gap with According to the
assumption of Sanders and B&jajhe well potential profiles
for the electron are obtained by assuming that 60% of the
band-gap variation is accommodated by the conduction
band. We have

V=0.6X(1.155+0.3%?)eV. (37

From Eqgs.(28)—(30) we can calculatdEg,,, AE,,, and
AE,o, respectively. The total polaron energy shift
AE=AE;+AEg,;+AE,5. From Eqs(31)—(34) we can ob-
tain the numerical result of the polaron effective mbks

The energy shifAE,,as a function of the well widtiN
(in units of the lattice constaiat of GaAs anda=0.5654 nm
is plotted in Fig. 1. We have also given the resultAd,,,
obtained by the infinite-height QW model in Fig. 1 for com-
parison. First, we can find that the absolute value\Bf,,
for the finite-height QW model is obviously smaller than that
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_FIG. 1. Polaron energy shiftaE,, as functions of the well - 5 3 10 energy shiftdE o as functions of the well widtiN.
Width N for GaAs/ALGa, _,As QW W|thx=0._1._ Dotted "%”9' c_iashepl The solid, dashed, and dotted curves correspond to the results for
curves correspond to the results of the finite- and |nf|n|te-he|ghtx:0 3,045, and 0.1, respectively.

potential well models, respectively. The solid curve represents the

energy shiftAEg,,.
» sub limit our discussion within the range<0.45 since the sub-

) o ) strate is not a direct gap semiconductor wixer0.45. The
obtained by the infinite-height QW model whéh<60. The  hree curves are different whéhis small. Wherx=0.45 the

more narrow the QW, the more apparent the difference iSytq| energy shift is approximately constant in spite of the
This is due to the probability that the electron in the slab isgi4)1 fluctuation wherN is very small. The main reason is

smaller than that of the infinite-height QWor infinite- o Gramatic influence of the Al concentration in the sub-
height QW the elegtron is wholly confined in the slaWhen  girate material on\E,. We have givemEq as a function
the QW is very wide, the ground-state energy of the bargy the well widthN in Fig. 3. We can find from Fig. 3 that
electron is very close to the well bottom. So the electron iSAE|o is very small for smalix (e.g.,x=0.1). Whenx be-

almost wholly confined in the slab. The two resultsM.,  comes small the difference between the slab and the sub-
(infinite- and finite-height barrier modglare almost identi-  gate material is not very remarkable. It is reasonable that
cal. Second, from Fig. 1 we can also find thd,,tends 10 e jnfluence of 10 phonon modes on the confined polaron
the 3D limiting value(a,fiw ; =2.46 meVf when the well is  roperties becomes weak. Whes 0.1, AEg, is the domi-
very wide. In Fig. 1 we also give the change of the energy,ant contribution to the total energy shift. Therefore, with the
shift AE,, with N. It can be found thahEg, is important  gecrease oN the total energy shift tends to zero. When
only for very smalIN. , , x=0.45, AE | and AE,, are comparable if the QW is not

The total polaron energy shiftAE corresponding t0 ey wide. WhenN becomes very small the decrease of the
x=0.1, 0.3, and 0.45, respectively, are showed in Figv@  apsolute value oAE,,, is complemented by the contribution

of the 10 phonons. Therefore, the total energy shift is ap-

-15
substrate
S
g —
= E 05 -
% 8 \
2 8 \
g8 1\
slab TTtveeeee
3 ! L |
0 50 100 150 15 ‘ - - -
N(a) 0 0.1 02 03 04

FIG. 2. The total polaron energy shifts as functions of the well
width N. Solid, dotted, and dashed curves correspond to the results FIG. 4. The energy shifts as functions xffor the well width
for x=0.1, 0.3, and 0.45, respectively. N=20.
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FIG. 5. The polaron effective mass as a function of the well
width for x=0.3. The dotted line represents the 3D value. The F|G. 7. The polaron energy shiftg=0.1) for the electron in the
dashed line represents the electron bare mass as a function of thest excited state versus the well width.
well width.

QW as a function of the well widtiN. In Eq. (32), 7, 7,
proximately constant fok=0.45. From Fig. 3, we can also and 7, represent the contribution of the electron-phonon in-
find that the curve ofAE,; has a minimum at a certaiN,  teraction to the polaron effective mass. The reciprocal of the
which has also been obtained by Hai, Peeters, and Devreeserm &,/m7 + &,/m? is the bare mass of the electron in the
although a different theoretical model was used in theirQW, and the bare mass is a combination of the two band
work. On one hand, the interface effect becomes obviousnasses of the electron in the slab and the substrate. There-
with the decrease dfl; on the other hand, the electron can fore, the electron bare mass changes with the well width due
easily penetrate the interface for smisll which may lower to the electron penetration effect. We also plot the electron
the effect of 10 phonons on the polaron properties. The twdare mass as a function &F ion order to show more obvi-
competitive factors may cause the occurrence of the minieusly the polaron effect. From Fig. 5 it can easily be found
mum on theAE,q curves. that (1) due to the electron-phonon interaction the effective

In Fig. 4 we give the changes of the energy shifts with mass of the polaron is larger than the electron bare mass and
for well width N=20. With the decrease of (the barrier ~whenN is small the difference is very obviou&) the ef-
heightV becomes small AE,, becomes small; in contrast fective mass of the confined polaron tends to the 3D limiting
with that, AE,, becomes large since the probability of the value whenN is very large; on the other hand, whéhis
electron in the substrate material is enlarging and comparabkmall the effective mass becomes larger than the 3D limiting
with that in the slab. The change AE,5 with x is compli-  value. This is due to the fact that the 10 phonon effect is
cated since influences not only the barrier height but also dominant for smallN (Fig. 6). Considering the 3D polaron
the coupling function of the electron with the 10 phonons. effective mass of the substrate materiadij,=m3 (1

In Fig. 5 we give the effective mass of the polaron in a+a,/6)=0.093n, (for x=0.3.1* We can find in Fig. 5 the
polaron effective mass tends kb, indeed, which coincides

wit the above analytical conclusion. In Fig. 6 we give the
045 contributions of the slab BO phonons, the substrate BO

03 1 | 07 L

M3

'

N2

e s |

0.15 g 0.6 i
G
- <] |
e '73“J = 05 |
0 ) g , |
50 100 150 200
N(a) s
04 : ' '
0 50 100 150 200

FIG. 6. The contributions of the three phonon modes to the N

effective mass of the polaron for=0.3. The solid, dashed, and
dotted curves represent the contributions of the bulk phonon in the FIG. 8. The polaron correction to the electron energy-level dif-

substrate, slab, and interface phonon, respectively. ference(x=0.1).
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phonons, and the 10 phonons to the effective mass. Frorals can be measured directly. And the polaron effect can give
Fig. 6 we also can find tha;, the interface contribution to a correction to the electron energy difference by

the polaron effective mass, diminishes for very sn\llbut

7, increases rapidly with the decrease Nf It is just the hAQ=(E;—Ep)—(E;—Ey), (38
effect of », guarantees the growth of the polaron effective, hich is plotted in Fig. 8. It can be seen thah changes
mass aN approaches zero. obviously withN, and has an oscillatory character for small-

Using Egs.(35 and (36), we can calculate the polaron size QW.

energy shifts for the electron in the first excited state. In Fig. |, conclusion. we have used the LLP variational method
7 we plot these energy shifts versus the well witlthVe can 4 stdy the polaron properties in a QW with finite-height
find from Fig. 7 that the absolute values qf the energy Sh'ﬁsbarrier. We find that(1) the contributions of the slab BO
AEgpandAEq are larger, but that 0E,is smaller, than — nhon0ns and the 10 phonons to the polaron properties is
those for the electror_1 in the ground state. This |m_pI|es tha bviously dependent on the barrier height and very different
the electron penetration effect becomes more obvious whefiy, the results obtained by the infinite-height QW model.
the electron is in the first excited state;, the unperturbed_ (2) The effect of the substrate phonons is important only
electron energy in the first excited state, can be determlne\g,hen the QW is very narrow) There is a thresholdy,,,, of
numerically by solving Eq.(36). When [2miV)™ o \yell width. when the well widtiN<N,,, there is no
ild<m/2,E, is higher than the height of the barrier. There j),,ng excited state. Therefore, there is no discrete optical
fore, under this condition the bound first-excited state doe%pectral line corresponding to the electron transition. The

not exist, and the electron energy spectrum will be continUgectron penetration effect is more obvious for the first ex-
ous. We define the special well width as the thresield  iioq state.

Only whenN>N,,, the first-excited state is the bound state.

For example, whex=0.1 andV=71.3 meV,N,,=15. The APPENDIX

polaron ground-state energ‘;ﬁz Eo+AE, and the first ex-

cited state energEézElJrAEl. They are functions of the Now we give the closed form of the Hamiltonian,
well width. The polaron energy difference between two lev-when|z|<d,

R OF o~ . dF JF 2
__ = 2_ + _ kmp kmp 2 + _ kmp
HZ_ZmI{Pz Ih%p[amp(k) amp(k)] 0z P,+P, 9z +h %p[amp(k) amp(k)]< 9z ) ]
1 ~ 2
+ 1 Py=i#i > Kl am oK)+ Fympll @mp(K) + Fmpl =i7 2 K[ e (K) + hiegp]l @po(K) + hygp]
2mj kmp kop
+ 2 hoalangk)+Fingllam) + Pl + 25 hgplarg, (k) + pllapo(K)+ i)
+ 2 [T amp(K) + T am (k) + 2F2 0 0+ > [TPap,(K) +Thap,(K) +2hE, 1, (A1)
kmp kop
when|z|>d

9Gyq

1 ~ aGk ~ ~
- 2_ + _ ——Kq 2
H, ng{Pz Ih%p[aqp(k) agp(K)]| — P+ P— | +1i

IGyq\ |2
gz

2
Py—i ﬁgfp K[ atgp(K) + Gqll agp(K) + Gl —i ﬁgp KL g, (K) + higpll apy(K) + hkop]}

gp [ago(K) — aqp(k)]

L2
2m}

+ %p fiw ol agp(K) + Grgll agp(K) + Ggl + gp frw gl @o(K) + higpll ap(K) + hygp]

+ %p [TLoaqu(k) +1“L2a;p(k)+2eﬁq]+§p [TParp,(K)+Thag (k) +2hf,,]. (A2)
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Obviously the HamiltonianH, includes the one-order

terms, the two-order terms, and the high-order terms of the H' = *E K- agp(K)Grg(2)- 2 K’ argy(k") Gy, q(2)
phonon operators. Therefore if we made the coefficient of the 2 kap k'ap
one-order terms equal to zero, we can only quasidiagonalize IGyq(2)
the HamiltoniarH , since there are still the high-order terms. t o Z q- agp(k) 07 2 Q" agy(K)
Fortunately for the weak coupling case, the high-order term 2 ka k'ap
can be ignored>*®To make the coefficient of the one-order Gy (2)
. . . . . k’q
terms equal to zero we can obtain two differential equations: XT +Hc. (A5)
2 2 *
_ d"Fmp 12 di®[* dFymp 2 M kmp The contribution of the double-phonon term to the po-
dzz |®[* dz dz h laron energy is given by the second-order perturbation
theory,
—2—2m1 " A3
7 (A3) e ( ) (kK +G2)2(guqlira)
2m; ) i@ h? b
d°Gyq, 1 d|®|*dGyq , 2Mjw; s 2hw o+ Mz(k+k )
dzZ |®]? dz dz h kg (A6)
ome As noted in Sec. Il, whed=0 the QW system becomes an
:ﬁ_zerz- (A4) infinite semiconductor which can be described by the well-

known Frohlich Hamiltonian. We give the expression of the

But the two equations are very difficult to solve. There_second -order contribution to the polaron energy by using the
Erohlich Hamiltonian’

fore, we have to use the approximate method to determine

the variational parameters. 52 \2
The Hamiltonians(A1l) and (A2) include the one-order, AE’= _( )

two-order, and high-order terms of the phonon creation or

annihilation operator. The one-order terms can be eliminated

by the suitable choice of the variational parameters. In the x> >

present paper only the double linear terms are considered for ka /g’

the calculation of the polaron energy and effective mass, and

we have obtained the correct limiting values for well width (A7)

N=0 and~. In fact, the high-order terms also have their

contribution to the polaron properties though it is smallerwheref(k,q) is the 3D variational parameter. By comparing

than that of the linear terms. The high-order terms can bé&qgs.(A6) and (A7), we can find that the second-order-term

regarded as perturbation for the further calculation. Here weontributions to the polaron energy obtained by the Wendler

only take an extreme case, i.d5 0, as an example for the Hamiltonian and the Frohlich Hamiltonian are obviously dif-

perturbation calculation. ferent. Therefore, when the well width is zero the Wendler
Whend=0, the bare electron wave function can be takenHamiltonian used by us is not identical with the Frohlich

as the plane wave form. The double-phonon term in HamilHamiltonian though they can give the same result if the high-

*
2mj;

(k-k'+9-9")%f(k,@)*f(k".q")|?
2

%2
2th2+ (k+k )2+ (q+q )2

tonian (A2) is order terms are ignored.
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