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The quantum ferromagnetic transition at zero temperature in disordered itinerant electron systems is con-
sidered. Nonmagnetic quenched disorder leads to diffusive electron dynamics that induces an effective long-
range interaction between the spin or order parameter fluctuations of therfortfi, with d the spatial
dimension. This leads to unusual scaling behavior at the quantum critical point, which is determined exactly.
In three-dimensional systems the quantum critical exponents are substantially different from their finite-
temperature counterparts, a difference that should be easily observable. Experiments to check these predictions
are proposed.S0163-182806)00721-1

[. INTRODUCTION yields v=1/2, which is incompatible with this lower bound
in any dimensiond<<4. Technically, this implies that the
The general problem of describing quantum phase transiisorder is a relevant perturbation with respect to the mean
tions is a subject of great current interest. These transitionfield or Gaussian fixed point.
occur at zero temperature as a function of some nonthermal From a perspective that is entirely focused on the statisti-
control parameter, and the relevant fluctuations are of &al mechanics aspects of the phase transition proljéerd
quantum nature rather than of thermal origin. Early work inthat therefore does not take into account from the beginning
this field established that if the quantum phase transition hahe aspects that have to do with the underlying disordered
a classical analog at finite temperature, then in the physicalectron system it would be tempting to model this disor-
dimensiond=3 the former tends to have a simpler critical dered quantum phase transition by making the mass term in
behavior than the latter. In particular, one of the most obvi-the effective field theory for the clean caie., the coeffi-
ous examples of a quantum phase transition, namely, thelent of the term quadratic in the order parameter field in the

ferromagnet-to-paramagnet transition of itinerant electrons &tgrd_au-(zlnz?u;g-W|I_zor(ltI;]G\a/) ftun(;_tlona_ﬂ ?hr al?dor?_ Va”; th
zero temperatur@=0 as a function of the exchange inter- able In order to describe the fluctuations in the location ot the

action between the electron spins, was found to have meaﬁ:-r't'cal. point. For thg quantum paramagngt—to—ferrpmagnet
! o o 1 . transition under consideration one can readily convince one-
field critical behavior ind= 3. The reason for this tendency

is that th lina bet ati dd cs that .self that ford<<4 the resulting disorder term is relevant in
IS that IThé coupling between stalics and dynamics thal 1§,q renormalization group sense with respect to the clean

inherf_ent to .quar?tum statistics problems effectivgly increaseéaussian fixed point. Presumably, the presence of this rel-
the dimensionality of the system frocthto d+2z, with zthe g\ ant operator leads to a new critical fixed point with a cor-
dynamical critical exponent. In the case deanitinerant  (g|ation length exponent=2/d.
quantum ferromagnetg=3 in mean-field theory. This ap- |t turns out, however, that such a model is not a techni-
pears to reduce the upper critical dimensin, whichisthe  cally appropriate description of the quantum ferromagnetic
dimension above which mean-field theory yields the exactransition in a system of disordered itinerant electrons. In
critical behavior, fromd; =4 in the classical case to order to explain this important point, let us anticipate a num-
ds =1 in the quantum caseHowever, this conclusion has ber of results that will be discussed in detail in Sec. Il below.
recently been disputetf and the critical behavior of clean If one attempts to derive the LGW functional mentioned
itinerant ferromagnets in low-dimensional systems is curabove, then the coefficient of the random mass term is a
rently under renewed investigatién. correlation function whose expansion in the random potential
It has been known for some time that if one addsis very singular. The reason is that the dynamics of a quan-
guenched, nonmagnetic disorder to the system, then the critium particle in a disordered environment in the limit of small
cal behavior at the quantum phase transition must be sulwave numberk and low frequencies is qualitatively dif-
stantially modifiec®, contrary to earlier suggestiohslt is  ferent from that in a clean system. In the former case the
known that the correlation length exponentust satisfy the  motion is diffusive, while in the latter it is ballistic. Techni-
inequality »=2/d in systems with quenched disordfefhe cally, the limit k,wo—0 does not commute with the clean
physical origin of this constraint is the requirement that dis-limit. To overcome this problem it is advantageous to not
order induced fluctuations in the location of the critical pointexpand in powers of the random potential, but to expand
in parameter space must be small compared to the distangaestead in the fluctuations of the coefficients of the LGW
from the critical point in order for the phase transition to befunctional at fixed disorder.
sharp. Any mean-field or any standard Gaussian theory This procedure, by construction, automatically resums the
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most obvious singularities in the disordered itinerant electron B _ J . B
problem. Although it will turn out that the coefficients in the SIJ de Xm/f'(X,T)a—TW(X,T)—f drH(7). (2.1b
resulting LGW functional are still singular, these remaining 0 0

singularities can be handled mathematically as we will se¢jerex denotes positions and imaginary time,H(7) is the
below. These singularities arise due to what are often callefjamiltonian in imaginary time representatig®= 1/T is the
weak localization effects® Their physical origin lies in the jnyerse temperaturé=1.2 denotes spin labels, and summa-
fact that the dynamics of diffusive electrons are intrinsicallytjon over repeated indices is implied. Throughout this paper
long ranged. Via mode-coupling effects, this feature couplegye yse units such tha,=#%=e?= 1. Our starting model is a

back to the ferromagnetic transition problem. As we show iniq of interacting electrons moving in a static random po-
this paper, the net effect is that the interactions between thfentialv(x)

spin fluctuations in the LGW theory are of long range. The
critical behavior described by the resulting nonlocal field
theory can be determined exactly for dit2, and satisfies H(7)= f dx
v=2/d as required. The critical exponents obtained from this
theory ared dependent for ali<6. In d=3, they are sub-
stantially different from either the mean-field exponents, or +[U(X)—M]J(X, (X, 7)
from those for a classical Heisenberg model, which has strik-
ing observable consequences. 1

The outline of this paper is as follows. In Sec. Il we first + _f dxdyu(x—y) ¥/ (x, 7)
define an itinerant disordered electron model, and then dis- 2
cuss how to derive an order parameter description for a fer- — - i
romagnetic phase transition starting from a fermionic field XYy Py, DY (X 7). (2.29
theory. We also discuss in detail the coefficients in the LGWiHgrem is the electron masg is the chemical potential, and
functional and show that they have long-range properties. Iiy(x—y) is the electron-electron interaction potential. We as-
Sec. Il the critical behavior is .determmed exactly ford|men—Sume that the random potentia(x) is & correlated and
sions d=2. For d>6, mean-field exponents are obtained, gheys a Gaussian distributid?® v (x)] with second moment
while for 2<d< 6, d-dependent exponents are found. In Sec.
IV the results of this paper are reviewed. First we summarize 1
the theoretical aspects of our results, and then we point out _ -~
some of the experimental consequences we expect. In Ap- {U(X)U(y)}dis_ZWNFre| oX=Y), (2.2h
pendix A we calculate the wave-number-dependent spin sus-
ceptibibility for disordered interacting fermions, and in Ap- Where
pendix B we discuss the logarithmic corrections to scaling

1 — .
%ngl(XvT)'V‘//I(X!T)

that exist at the critical dimensiond; =6 andd, =4, as
well as for all 2<d<4. {"'}dis:f Dlv]P[v](--+) (2.29
denotes the disorder averadé; is the bare density of states
Il. MODEL AND THEORETICAL FRAMEWORK per spin at the Fermi level, an, is the bare electron elastic

In the first part of this section we define a simple model™M&an free time. More realistic models to describe itinerant

for interacting electrons in a disordered environment. Start€lectron magnetism including, e.g., band structure, can be
ing with this general fermionic field theory we then derive anconsidered along the same lines. The salient points of our
LGW or order parameter description, with the spin density"eSults, however, are due to long-wavelength effects and
fluctuation as the order parameter. In the last part of thid'€nce do not depend on microscopic details like the band
section we derive and discuss the coefficients in this Lawstructure. For our purposes it therefore is sufficient to study
functional. As mentioned in the Introduction, the crucial the model defined in Eq$2.2). ,
point is that the interactions in the effective LGW theory are FOr describing magnetism, it is convenient and standard
long ranged due to the diffusive dynamics of the electrons iPractice to break the interaction part of the act®rwhich
a disordered metal. we denote by5,,, into spin-singlet and spin-triplet contribu-
tions Sinst’t). For simplicity, we assume that the interactions
are short ranged in both of these channels. In a metallic
system this is justified due to screening, and an effective
The partition function of any fermionic system can be model with a short-ranged interaction in bo#f) and St
written in the fornd can be derived starting from a bare Coulomb interactfdn.
order for this assumption to remain valid, our discussion ap-
plies only to cases in which the disorder is weak enough for
_ o - the system to remain far from any metal-insulator transition
z f DyDyexp Sy y]), 2.13 that might be present in the phase diagram and would lead to
a breakdown of screenirlg.The spin-triplet interactiorsl(,ﬁg
where the functional integration measure is defined with redescribes interactions between spin density fluctuations. This
spect to Grassmanniafi.e., anticommuting fields ¢ and is what causes ferromagnetism, and it therefore makes sense
¢, andS is the action, to consider this part of the action separately. We thus write

A. Model
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S=S,+ 5{;2 7 (2.3 losophy has been applied to quantum phase transitions, with
the only difference being that the critical modes are now
slowly varying in both space and time. We will use this
approach here, motivated in part by previous work on clean

(1) It itinerant electronic systertsWe mention, however, that in
St=—| dxdrng(x,7)-ng(x, ), (2.49 y » NOWever,

2 general one should worry about both the critical modes, and
wheren is the electron spin density vector with components@ll other slow or soft modes, even if these other soft modes
are not ‘critical’ in the sense that they change their character
_ _ at the phase transition. While this concern is not confined to
na(x,7)= 3 P(X, 7)ol P (X, 7). (2.4b  quantum phase transitions, we will argue below that for these
. . . o it poses a more serious problem than for thermal phase tran-

Here theo® are the Pauli matrices, ard is the spin-triplet  sitions since al =0 there are more soft modes than at finite
interaction amplitude that is related to the interaction potentemperature. We will see that in the present problem such

with

tial u'in Eq. (2.29 via additional modes are indeed present and lead to complica-
tions within the framework of an LGW theory. For the prob-
Ft:f dxu(x). (2.49 lem under consideration, however, these complications can
be overcome.

For simplicity we have assumed a pointlike interaction so 1he techniques for deriving an order parameter field
that T, is simply a number. A generalization to a more real-theory, starting with Eqs(2.3—(2.5), are standardWe de-
istic short-range interaction would be straightforwagg.in  couple the four-fermion term ig{) by introducing a classi-
Eg. (2.3 contains all other contributions to the action. It cal vector fieldM (x,7) whose average is proportional to the
reads, explicitly, magnetizationm, and performing a Hubbard-Stratonovich
transformation. All degrees of freedom other thdrare then
([~ — J . integrated out. This procedure in particular integrates out the
So= JO dTJ dx| (X, 7) (X, 7) soft diffusive modes or “diffusons” that are inherent to a
disordered fermion systefif These are the additional soft
1 _— i modes mentioned above. We obtain the partition function
“om VP (XT) V(X T) Z in the form

—[o(¥) = ] (X, 7) (X, 7)

z=e—Fo/Tf D[M]exp(—P[M]), (2.6a
_ %jﬁde dxng(X, 7)Ne(X, 7), (2.59 with Fy the noncritical part of the free energy. The LGW
0

functional ® reads
with n. the electron charge or number density,

r
Ne(X,7) = X, )Y (x,7), (2.5h oMI=7 f XM (x)-M )

andT’ the spin-singlet interaction amplitude.

R

0

Continuous thermal phase transitions are usually de- (2.6b
scribed by deriving a LGW theory, i.e., an effective field . .
theory for the long-wavelength order parameter fluctuationd/Nere we have adopted a four-vector notation with
or critical modes?2 The physical idea behind this approach is X= (X 7). andfdx=[dx[§dr. Here(-- )s, denotes an av-
that these fluctuations, which are slowly varying in spacegrage taken with the actio®,. A formal expansion ofP in
determine the behavior near the critical point. The same phipowers ofM takes the form

— In< exp{ - th dxM(X) - ng(x)

B. Order parameter field theory

o[M]= = [ dxydx,M a0 s x)— 2 M
[M] 5 | dXdx; a(X1) T, (X1 X2) = Xab (X1,X2) [Mp(X2)

1
*ar f dx,0%,0Xa XG5 X1, X2 X3) Ma(X1) Mb(X2) Mc(X)

1
- EJ dX1dXa0X30 X4 X abod X1, X2, X3, X4) Ma(X1) Mp(X2) M c(Xg) M g(Xg) + O(M®),
(2.78
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where we have scaled with I'; 1. The coefficients¢’ in  so, one would simply replace thé" above with correlation
Eqg. (2.79 are correlation functions for a system with a par-functions for band electrons.

ticular realization of the disordedi.e., they are not transla- Equations(2.6) and (2.7) define an order parameter field
tionally invarian). They are defined as theory for the paramagnet-to-ferromagnet phase transition in
a disordered itinerant electronic system. The disordenbas
Xfa'l)_“al(xl, O ,x|)=<n§1(x1)~ . ~n§'(xl>>%0, (2.79  been averaged over yet, and so thpoint correlation func-

tions in Egs(2.7) depend explicitly on the particular realiza-
where the superscript denotes a cumulant or connected tion of the randomness in the system. To proceed, we now
correlation function. For our simple model, the reference enformally carry out the disorder average of the free energy,
semble with actiorS,, whose correlation functions are the using replicas and a cumulant expansion, and keeping terms
¥, consists of free electrons with disorder and a shortup to O(M#) in the replicated LGW functiondf With
ranged spin-singlet model interaction. As mentioned in Sece,3, ... =1, ... n (n—0) the replica labels, we obtain the
Il A above, the model can be made more realistic, if desiredfollowing LGW functional for theath copy of the replicated
by, e.g., including a realistic band structure. In order to dosystem:

- 1 1
CDa[M]:ZZ CD?[M]: EJ XmdXZX(azb)(Xl,Xz)Mg(Xl)Mg(X2)+ EJ' dxldXZdX3X(asgc(Xl,X2,X3)M§(X1)Mg(X2)Mg(X3)

1
- EJ dxlddexst4Xé‘L)é‘f(X1,Xz,X3,X4)M§(X1)MS(Xz)Mf(Xg)Mg(X4) +0O(M?), (2.8a

where®* denotes the contribution of ordst!, and the co-  theoretic methods, that the disorder averageubint corre-
efficients are given in terms of disorder-averaged correlatioation function{y"} 4 in wave number space has a weak

functions localization correction of a form that can be written sche-
matically as
Sap
ngtf(xbxz): rit5(X1_X2)_{Xgi@)(xlyxz)}dis, 1 1
2.8b X))~ T : 2.9
(2.8b X (0,0 ngq wngnnmr (2.9
Xgel;)c(xl X2 1X3) = {Xf';l?i’:))c(xl 1 X2 1X3)}di31 (28© i
with V the system volumek= k|, w, and Q,, Matsubara
Xgﬁgf(xlyx21X3vx4)= 5aﬂ{X(at)cd(X11X27X31X4)} dis freque_nues,(le)mctﬂln) an infrared cutoff. Although, strictly
speaking,ox'" depends ori—1 external momenta and fre-
+3{x 3 (X1, %) X2 (X3, %2) }4is.- quencies, we have schematically represented these by a
(2.8 single “typical” momentum-frequency ¢,(),). Since we

will only be interested in the scale dimension {of(")} s,
Again, the superscript means that only the connected part, this is sufficient. In terms of diagrams for the field theory
this time with respect to the disorder average, of the correreviewed in Ref. 8, the dominant contribution to
lation functions{- - -} should be considered. Notice that {x"}4(d,02,=0) for g—0 is shown in Fig. 1. For what
we have separated the quantum mechanical and disorder av-
erages, and therefore must deal with two different kinds of
cumulants: In Egs(2.7), we have(ab)®=(ab)—(a)(b),

etc., while in Egs. (2.8) we have {ab}g.={ab}gs
—{a}ai{b} gis, etc.

C. Coefficients

As it stands, Eq.(2.89 is just a formal nonlocal field
theory that is not very useful. Normally, one would proceed

by localizing the individual terms in E¢2.83 about a single 4 (n-6)

point in space and time, and expanding the correlation func- times

tions in powers of gradients. Due to what are often called ‘

weak localization effect§] this is not an option for the cur-  FiG. 1. Diagrammatic structure of the leading IR singular con-

rent case of a Qisordered me_t_al, even if we stay far awaytibution to the correlation function/(’(g,Q,=0). The straight
from any metal-insulator transition. Structurally it is easy tolines denote the diffusive propagators of the field theory reviewed
show, using either many-body perturbation theory or fieldin Ref. 8, and the dotted lines denote external legs.
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follows it is very important to notice thaty("(q,Q,=0) is qd—2—(g2+T)d-272, (2.12b
a nonanalytic function ofj.

To illustrate this point in detail, let us consider the two- . : :
point correlation functiony{?) in Eq. (2.8b. Because of the standard local LGW functional is obtained.

. . . ; . Next we consider the cubic term in E®.83. Rotational
translational invariance on average in space and time, as well Ty i . I i @ 3
as rotational invariance in space, we can write symmetry in spin space allows us to wrile; as

and so forT>0 an analytic expansion abogit 0 exists, and

1
{X5 (X1, X2)}ais= BabXs(|X1—Xo| 71— 72), (2.108 d)f;[M]=§f dx,0%,0X3U3(X1 , X5, X3)

and we define the Fourier transform
XM%(X1)-[M¥(X2) XM*(x3)], (2.133

xs(@.0)= [ dog—x)d(r,—7) with
—iq- — 1 T1— T 1
X @~ 18- (x1= %) gi (7 Z)Xs(xl_XZ)' U3(X11X21X3):gEabc{Xg:i))c(leX21X3)}diS1 (2.13b
(2.10bh . SN .
wheree,y, is the Levi-Civitatensor. According to E¢2.9),
Xs IS the disorder-averaged spin susceptibility of the refer-
ence system whose action is given 8y. Particle number U3(g—0,0,=0)=ud ¥q?*+u, (2.139

conservation implies that at small frequency and wave num- . _ - . .
ber it has a diffupsive structure quency with u{™* and uf? finite numbers. Note that this term is

divergent forq—0 for d<4.

Dg? The quartic term in Eq(2.89 is written as a sum of two
Xs(qun):XO(q)mqua (2.113  terms,
where D is the spin diffusion coefficient of the reference DYM]=D5 VM + DD [M], (2.143

ensemble, and((q) is the static spin susceptibility. In a \yith

system with a conserved order parameter, the frequency must

be taken to zero before the wave number in order to reach (1) 1 @

criticality, and so in the critical region we have P53 [M]=- ﬂf dXy . . . dXa{ Xaped X1: "+ Xa) tais
|Q,|<<Dg? Note that it is our restriction to nonmagnetic

disorder that ensures a conserved order parameter. We will XMZ(X)ME(X2)ME(X3)MG(X4), (2.14D
come back to this point below. In the critical limit, we can

thus expand, and

_ _ 2, ... « 1
Xs(6:20) = xo([ 1 |Qpl/DG*+ - -] (211D ¢4(2)[M]:§f dxldxzdxsdxd)(gzb)(xlaxz)Xf:%j)(XsaXO}cdis

The static spin susceptibilityo(q) has been discussed in N N a .
some detail befor& For any system with a nonvanishing XMa(x)Mp(x2)Mc(X3)Mg(Xs)- (2.149

interaction amplitude in the spin-triplet chann| 0, there  For our purposes we only need to know the degrees of di-

ceptibility. Although our bare reference ensemble does noformally consider the local, static limit of E¢2.140 (even
contain such an interaction amplitude, perturbation theoryhoygn it does not necessarily exjstnd write

will generate one as long as there is a nonvanishing interac-

tion amplitudel'g in the spin-singlet channét. Effectively, " T

we therefore need to use the spin susceptibility for a system ¢y [M]= 2av Y4 E
with a nonvanishind’, in Eq. (2.11h. The explicit calcula- 1829 M1 2.3

tion is given in Appendix A, and the result is X[M“(ql,wnl) . M“(qz,wnz)]
Xo(q—0)=co—cq 2q" ?—cq*+---, (2.123 X[M*(ds, wp,)-M“ (=01 =02~ 03,
where thec; are positive constants. The nontrivial, and for —wp,—0n, — )], (2.153

our purposes most interesting, contribution in Ef123 is
the nonanalytic term~q® 2. Its existence implies that the where
standard gradient expansion mentioned above(E§) does

not exist. The physical interpretation of this term is that, N igxtienTag @
effectively, there is a long-range interaction between the or- M3 (d, w,) = —\/B_Vf dxdre "Mz (X, 7)
der parameter fluctuations, which in real space takes the form (2.150

r~29%2 This is a phenomenon that is special to zero tem-

perature. At finite temperature, when one has to perform and

frequency sum rather than a frequency integral to calculate ] @

the correlation funcion, the nonanalytic term is replaced by a Y= —liMg o{Xaaaa dis(d1,92,03; @n, = @4, = 04, =0).
term of the schematic structure (2.159
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According to Eq.(2.9), one-loop order since the zero-loop terms aré¢f),,). For
6 instance, the zero-loop contribution tdx®}4s is
U4 (q—0,0,=0)=ug"g" *+uf’, (2150 ~|Q.l71(|Q4 +Dg?), while the one-loop corclitribu%ic(j)sn adds
and sou, diverges in this limit ford<6, and is finite for the static piece to yield Eq2.118. We thus conclude that
d>6. With a more accurate representation tprthan Eq. the most infrared-divergent contribution to the statigoint
(2.9) one also finds a term-q®~4, but this will be of no  correlation function is given by the diagram shown in Fig. 1
relevance for what follows. with dressed internal propagators, and for just getting the
We now consided$® given by Eq.(2.149. Its most power of the leading divergence it suffices to use bare inter-
interesting feature is its frequency structure that follows fromnal propagators.
X3 (x1,%) x 3 (x3,%4) s being a function ofr;— 7, and In the critical limit the zero-loop contribution thy )} 4is
T3— 74.28 This implies that there are effectively two free s proportional to),,/q?; see Eq(2.11D. In the next section
integrals in®$®, unlike the case o §?), where there is we will discuss a fixed point where the dynamical exponent

only one. In frequency spacé),“(z) can be written is z=d; i.e., Q, scales likeq® at criticality. In the critical
4 S c n q y
1 limit, the term of O((},) therefore shows the same scaling
PeA[M]= - _j dx,dX,0X30X, behavior as the term.(ﬁ)(Qﬂ), _Eq.(2.1_23. The same is true
8 for all higher correlation functions. It is easy to show that the
zero-loop contribution tgx("} 4 goes likeQ,/g% ~2, while
X 2 (XS (X1, %05 00 ) X H (X Xa3 00 )} Gis the one-loop contribution goes likg"~(?'~2). Anticipating
NNz again thatQ),, scales likeq® at criticality, these two contri-
X ME(Xq, 00 )ME(Xz, — 00 )M E(X,@p ) butions have the same scaling behavior for all values. of
All higher-loop contributions will be less important, as we
ng‘(x4,—wn2). (2.16 have seen above. Also, higher orders in an expansion in

(1) . powers of() can be neglected, sin€,~q? in the diffusive
We see thatb;"’ carries an extra factor of compared to  propagators. Hence, each additional powefgfwill lead to
@3 . The correlation function in Eq2.16 has been cal- a factor that scales likg~2 at criticality and is less relevant
culated for noninteracting disordered electréhihe impor-  than the terms 00(0°) andO(Q2,). We thus conclude that

tant result of these authors was that the Fourier transform %e most relevant term @(MI) in the LGW functional has
the correlation function ab, = w,,=0 is finite. We have coefficientu that behaves effectively like

convinced ourselves that including interactions does not

change this resultb§®*[M] can then be replaced by uj~qd-20-D, (2.18
DII[M]=— EJ dx >, IM(x, 00 )|2IMB(x, 05, |2, T_his covers both the terms_@(Qg) and O(Qn)3 and all
8 niny 1 2 higher powers of),, are less important. The leading term for

(2.17 g—0, shown in Eq(2.18, comes from the contribution of

with v, a finite coefficient. The physical meaning®f@ is  the Ith moment to the cumulark®, i.e., from {x"}ys,
easily determined. Consider the local in space and time Coryy_hlle the other contrlbutlons, i.e., the subtraction terms in a
tribution to the disorder average of the coefficié® in Eq.  9iven cumulant, are less divergent. However, due to the fre-
(2.8a, i.e., the termto=1/T,— xo(q=0), which determines 9uency structure of these terms that was explained above
the distance from the critical point in the Gaussian theory. Ifusing the example oK), it is not obvious that they are
we maket, a random function of space with a Gaussianunimportant for the critical behavior. We will analyze this
distribution and integrate out that randomness, then we olpoint in the next section, and will find that only the subtrac-
tain a term with the structure ob%®. This term in our tion term in the quartic cumulant, which is given explicitly in
action thus represents a “random mass” term, reflecting thé=q. (2.17), is important in that respect and thus needs to be
fluctuations in the location of the critical point mentioned in kept.

the Introduction.

~We conclude.this. sectipn with a disc.ussion of why _the lIl. CRITICAL BEHAVIOR
diagram shown in Fig. 1 gives the most important contribu-
tion to the correlation functiofiy("} 4. The field theory of In the first part of this section we discuss the critical be-

Ref. 8 allows for a systematic loop expansion for these corhavior of the Gaussian part of the theory defined by Egs.
relation functions, with the diagram shown in Fig. 1 the one-(2.8) — (2.17. The renormalization group properties of the
loop contribution. If we consider higher-loop corrections to Gaussian fixed point are also discussed. We then analyze the
this, we need to distinguish between skeleton diagrams angion-Gaussian terms in the field theory, and show that they
insertions. Insertions will produce finiteh d=2) renormal-  are irrelevant, in the renormalization group sense, with re-
izations of the one-loop result. In the skeletons, each addispect to the Gaussian fixed point for all dimensiahs?2,
tional loop adds one frequency-momentum integral, and onexcept for a marginal operator @h=4. This implies that the
independent propagator. Since the propagators are at mosiGaussian theory yields the exact critical behavior for all of
diffusion pole squarefthis means that each loop adds ef- these dimensions, except for logarithmic corrections to scal-
fectively a factor ofq®~2 to {x"}4s, and hence we need to ing in d=4 andd=6 that are discussed in Appendix B. We
consider the lowest-loop contribution for a given type ofthen construct the equation of state near the critical point,
term. For the static terms, i.e., those of zeroth order in thavhich requires a more detailed knowledge of the non-
frequency(},,, the lowest nonvanishing contribution is at Gaussian terms in the field theory since it is determined in
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part by dangerous irrelevant variables. We conclude this sec-
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B. Non-Gaussian terms

tion with a discussion of the specific heat near the quantum \ye now show that all of the non-Gaussian terms in the
critical point, and with a discussion of the quantum-to-fie|q theory are renormalization group irrelevant with respect

classical crossover behavior.

A. Gaussian fixed point

According to Egs(2.8)—(2.12), the Gaussian part ab“
is

1
P3MI=52 2 M (Quontotag-o0" *+a0?

to the Gaussian fixed point discussed in the last subsection.
Let us first consider the term of ordbt>. From Eq.(2.130

we see that the most relevant coefficient at that order is
uld=* for d<4 anduf?” for d>4. For simplicity, we will

use the symbali; for the most relevant coefficient in a given
dimension; i.e.,u; denotesu{ ¥ for d<4 andu{® for
d>4. Ford<4 we then have to assign a scale dimension to
the cutoff wave numbeq. The most obvious choice is to

identify g with the inverse correlation length™, which

+a,| 01971 M4 (=0, — wp), (318 makeg g]=1. While we will see later that this identification
where is not correct for all values ofl, it will turn out that it
provides an upper limit fofq]. Assuming, then[q]<1,

to=1-T'xs(g—0,0,=0) (3.1  which will be justified in Sec. IIl.C. below, and using Eq.

(3.3, we see that the scale dimension of the effective coef-

is the bare distance from the critical point, aagl ,, a,, ficient of the term of ordeM? is bounded by

anda, are positive constants.

We first analyze the critical behavior implied by Egs.
(3.1). Later we will show that fod>2 fluctuations are irrel-
evant, and the critical behavior found this way is exact forSimilarly, using Egs.(2.15d and (3.3), one sees that the
these dimensions. By inspection of the Gaussian LGW funceoefficientu, in Eg. (2.153 has a scale dimension bounded

[us]<—(d—2)/2. (3.9

tional in Eg.(3.13 one obtains by
1(d—2) for 2<d<4, s —(d—2) for 2<d<4
"2 for d>4, (323 [ug]s{ —2(d=3) for 4<d<6, (3.59
4-d for 2<d<4, —d for d>6,
=10 for d>4, (32D and that the scale dimension f in Eq. (2.17) is
[vs]=—]4—d|. (3.5b

(3.29

d for 2<d<4,
|4 for d>4.

Here again we denote the most relevant coefficient in Eq.
(2.159 by u, for simplicity. Equationg3.4) and(3.5) imply
that the cubic and quartic terms in the field theory are renor-

gw.rv’ V.V'th t the dimensionless d|st_ance from the critical malization group irrelevant with respect to the Gaussian
point.  is the exponent that determines the wave n“mbefixed point for alld>2 except ford=4, where the coeffi-

dependence of the order parameter susceptibility at critical(—:-ent is a marainal operator. As we explained after E
ity, (M,(q,0)M4(—q,0))~q~2*". z is the dynamical scaling ot va g P F S We expia g

. o : ' (2.17), v, reflects the “random mass” contribution to the
exponent that characterizes (_:m'cfil slowing down by relating, .5, of the disordered magnet. We stress that this operator,
the divergence of the relaxation time to that of the corre- | 1o being strongly relevant with respect to thean

I ~ Z - . . . .
lation Iength,rr & » . Gaussian fixed point, is not relevant with respect to the
Let us discuss, for later reference, the critical behaviors g ssian fixed point of the present LGW functional.
given by Egs,(3.1) and(3.2) from a renormalization group ¢ i an easy matter to analyze the behavior of the higher-
point of view. Letb be the renormalization group 1ength e terms in the Landau expansion. The coefficient of the

rescaling factor. Under renormalization, all quantities Chang%eneral term of ordeM' in the LGW functional has a scale
according toA— A(b) =blAIA, with [A] the scale dimension  gimension bounded by

of A. The scale dimension of the order parameter is

Here v is the correlation length exponent, defined by

[M(q ® )]:_1+77/2 (333 —(d—Z)(|—2)/2 for 2<d<4,
; o [u]<{ —(I=2)—1(d—4)/2 for 4<d<6, (3.50
or, equivalently,
—(I-4)—d(l-2)/2 for d>6.
[M(x,7)]=(d+2)/2. (3.3b

This holds for the pure moment contribution to thh cu-

At the critical fixed point, a, and eitheraq_, (for  mulant, and we see that all of thg are irrelevant for
2<d<4) ora, (for d>4) are not renormalized; i.e., there d>2. For the coefficients of the subtraction terms in the
scale dimensions are zero. Using this did=1, [w,]=2z  cumulants one easily convinces oneself that, while their scale
immediately yields Eqs(3.2b), (3.29. Equation(3.23 fol- dimension initially increases witth increasing fromd=2 [as
lows from the relevance df,, or its renormalized counter- does the scale dimension of,; see Eq.(3.5b], it stays
partt, at the critical fixed point. That is, the scale dimensionnegative for alld>2. All of these terms are therefore irrel-
of t is positive and given by ¥=[t]=2—n»=d—-2. evant operators as well. We conclude thatdor2 there is a
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critical Gaussian fixed point corresponding to a phase trarwhere we have used?’~m as explained after Eg(3.6).
sition with Gaussian exponentsxcept for logarithmic cor-  Similarly, the termum® in Eq. (3.6) with u~q%~¢ gets re-
rections to the Gaussian critical behaviordr 4 due to the  placed bym3(m+T)(@=8/2 At T=0 we recover Eq(3.7).
marginal operatorv and, as we will see later, also in For T<m in suitable units, there are corrections of
d=6), while for d<2 the non-Gaussian terms are poten-O(T/m) to the term ~m%? in that equation, while for
tially relevant. We will see in Sec. Ill C below that the in- T>m, t gets replaced by+T¥?". All of these observations
equality in Eq.(3.50 is actually an equality for d<4, so  can be summarized in the homogeneity law
that d=2 is the upper critical dimension, and d=2 an
infinite number of operators become marginal. m(t,T,H)=b~#"m(tb™, Tb?'*,Hb*#'"),  (3.99
with
C. Magnetization and the magnetic susceptibility

Although u, is an irrelevant operator fat>2, it is dan- $=2v. (3.9
gerously irrelevarif for the magnetization, since it deter- Similarly, the magnetic susceptibility,, satisfies a homoge-
mines the critical behavior of the average magnetizaticaas  neity law
a function oft and an external magnetic field. The tech-
nical reason for this is thah is a singular function ofi for xm(tL,T,H) =b""x(tbY" Tb%” Hb%/"), (3.104
u—0. Schematically, the equation of state in mean-field .
theory is of the form with

tm+u,m3=H, (3.6) y=B(6-1)=1 (3.100

where we have suppressed all numerical prefactors. Accord- Equations3.10 and(3.11) warrant some discussion. The
ing to Eq.(2.150, u, diverges ford<6 asq® ®. Further- scaling of T in these equations follows directly from Eq.
more, if we were to keep higher terms of ordel in the  (2.12h. The effective scale dimension @fin m and y, is

equation of state, their coefficients would divergegds?. therefore 2 anchot z The salient point is that is deter-

This implies that the cutoff scales likem'?, and effectively mined by the scaling of), or T with q in the Gaussian
Eq. (3.6) reads action, and hence in the critical propagator. However, the

. magnetization is calculated & ,=q=0, and its leading
tm+um®?+ufPmi=H, (3.7 temperature dependence is determined by the diffusive

modes, which featur®,~T~q?, rather than by the critical
ones. This leads tdT]=¢/v, with ¢ as given in Eq.
(3.10h. The proper interpretation af is that of a crossover
exponent associated with the crossover from the quantum to

2/(d—2) for 2<d<8®, the thermal fixed point that occurs at arffy>0. Since
=‘1/2 tor d>6 (3.89 z> ¢l v, the critical scalingT~b? would be the dominant

' temperature dependencenif and y,,, depended on the criti-

d/2 for 2<d<6 cal modgs. That they do not can aI;o_peen seen from a de-
:[ ' (3.8y  termination of the magnetic susceptibility directly from the

3 for d>6. Gaussian action: Recognizing that the coefficientvot in

:jrilxdgfs logarithmic corrections to scaling occur; see Appen—cé)é.' (ZE.(i'Z(S';géiir?, t\rlg :)nt\)/t:ﬁe spin susceptibility, and using

with uf® from Eq. (2.15d, andu another finite coefficient.
From Eq.(3.7) we immediately obtain the exponerngsand
5, defined asn(t,H=0)~t?#, m(t=0H)~H¥,

Above we have used a general scaling argument to obtain 1
Eq. (3.7). For small disorder, the same result can also be Xm(t,T) = —=17, (3.100
derived explicitly by means of an infinite resummation. As t+T
mentioned after Eq3.6), the term ofO(m®) with its diver- agreement with Eq€3.103, (3.10D.

gent coefficienti,~q~°® in Eq. (3.6) is only the first in an We are now in a position to determine the exact scale
infinite series of terms that behave lig8~?'m'. Calculating  dimension ofu,, and of the other coefficients in the field
the prefactors of the divergent coefficients, one realizes that'heory, and to thus verify the assumption made in the last
the divergences are the consequence of an illegal expansi@ypsection. As we have seen after £8.6), the cutoff g
of an equation of state of the form scales likem'2, so tha q]=[m]/2, where[ m].= B/v is
1 cons m? the effectivescale dimension ofn, i..e., the scale ldimension

tm+=>, T, > =H. (3.6)  after the effects of the dangerous irrelevant variahldave
V& [(wp+k)“+m?] been taken into account. From E¢3.83, (3.2a we see that
[mM] ¢r= 2, which justifies the assumption made in Sec. 1lI B
that led to the upper bounds on the scale dimensions of the
H{ . Repeating the power counting arguments that led to the

equalities, Eqs(3.4) and(3.53, we obtain

@n

Performing the integral one recovers Eg.7).

Next we determine the functional form of the equation of
state at nonzero temperature in order to obtain a scalin
equation form as a function ot, H, andT. This can most
easily be done by utilizing Eq2.12h. From Eq.(2.123 it
follows that thetm term in the equation of state has a cor-
rection of the form m(q?+T)@"22~m(m+T)@"22  and

[Us]=—(d—2)/2 (3.4)
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—(d—2) for 2<d<4,
[ug=4{ —(d*~12/(d—-2) for 4<d<6,/ (3.5)
—d for d>6.

The exact scale dimension of the general coefficigntif

desired, can be obtained by the same argument. Again, t
upper bound given in Eq3.59 is equal to the exact value

for 2<d<4. These results complete the proof thiat 2 is

the upper critical dimension for our problem, and that an

infinite number of operators become marginaldis 2, and
relevant ind<2.

Finally, we mention how to reconcile the value for the

exponentg, Eg. (3.89, with scaling. PuttingT=H=0 for
simplicity, but keeping the dependencenofon u, explicitly,
and using Eq(3.3b), we write

m(t,uy)=b"@"22m(tb" u,blu4l). (3.9)

From Eq.(3.6) we know thatm~u, *2. Using this in Eq.
(3.99 changes the scale dimension ofMm from

[m]=(d+2)/2 to an effective valud,m]g=[m]—[u,]/2.

With Eg. (3.5") we then obtaif m].s= B8/v with the correct
values of 8 andv.

D. Specific heat

The scaling equation for the specific heat is determined by
the sum of the mean-field and the Gaussian fluctuation con-
tributions to the free energy densitf,, The mean-field con-
tribution follows immediately from Eq(3.7). The Gaussian
fluctuation contributiorf g, which gives the leading nonana-
lyticity at the critical point, can be calculated by standar
methods® Neglecting an uninteresting constant contribution

to fg, we obtain

T

fG:ZVE {2In(H/m+ay_,q° %+ a,q°+a,|w,|/q?)

q,wp
+In[xgH/m— (xq— 1)t+aq_,q% 2+ a,q?
+a,|onl/a?]}. (3.1

Herexy=d/2 for 2<d<6 andxy=3 for d>6. The specific
heat coefficienty, is conventionally defined by

w=Cy/T=—d*F19T>. (3.12
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dimension ofT, which isz=d in this region. The unusual
feature of the logarithm appearing irange of dimensions,
rather than only for a special value df is due to the dy-
namical exponent being exacttyin that range. Second, in
Eq. (3.13 two different temperature scales appear. The first
htg/o terms in the denominator indicate thet- £~ 9, as one
would expect from dynamical scaling. However, the last
term in EQ.(3.13 contains the magnetization, which in turn
depends on the crossover temperature sEalé™?; see Sec.

Il C above. These two features imply that the scaling equa-
tion for vy, should be written

w(t, T,H)=0(4—d)Inb+F_(tb"”, Th? Hb%?'", Tb?).
(3.14

Sincez>2, one can formally ignore the fourth entry in the
scaling function since it is subleading compared to the sec-
ond entry. The corrections to the resulting theory can be
considered as “corrections to scaling.” Notice that in con-
trast to the magnetization and the magnetic susceptibility, the
specific heat does depend on the critical modes, and hence
contains the critical temperature scale. As mentioned in the
last subsection, the latter is dominant when it is present, and
vy provides an example for that.

IV. DISCUSSION
A. Theoretical aspects

In this paper we have shown that in disordered itinerant

dquantum ferromagnets the diffusive nature of the electrons

leads to long-range interactions between spin fluctuations in
an order parameter field theory. As for classical models with
long-range interactiors, the critical behavior of this field
theory can be determined exactly. Fbr 6, standard mean-
field results are obtained, but for<Xl<6 one finds non-
trivial critical behavior with dimensionality-dependent expo-
nents. Ford=2 our approach breaks down because the
electrons are localized, and because in our field theory an
infinite number of operators becomes marginatlin2. The
exact critical exponents fod>2 are given by Eqs(3.2),
(3.8), and(3.10h, and the scaling properties of some of the
more interesting physical properties are given by E§$),
(3.103, and (3.14. In this subsection we discuss various
aspects of these results that have not been covered yet.

Again we are interested only in scaling properties and not in  First of all, there is an important conceptual question that

exact coefficients. Schematically, E¢3.11) and(3.12 give

d-1

A q
W= jo qu+qd+q4+ Hg?/m’

(3.13

with A an ultraviolet cutoff.

Several points should be noted. First, for @lthat obey
2<d<4, yy given by Eq.(3.13), or exactly by Eqs(3.11)
and (3.12, is logarithmically singular forT,H—0. This

should be considered. In our approach we have assumed that
it is sensible to construct an order parameter field theory to
describe the critical behavior of the order parameter. In gen-
eral this procedure will break down if there are other soft or
slow modes that couple to the order parameter fluctuations.
That is, a more complete low-energy theory might be
needed. In the present case, the diffusons that lead to the
nonanalyticities in the bare field theory and to, e.g., Egs.
(2.12 and(2.195 are such soft modes. One should ask why

d-independent logarithmic singularity is somewhat unusualwe were able to proceed with an order parameter description
Wegner has discussed how logarithmic corrections to scalingnyway, without running into unsurmountable difficulties
arise if a set of scale dimensions fulfills some resonancéue to the additional soft modes. A technical answer is that
condition?® In the present case the appearance of a logarithrthe diffusons did create problems, namely, divergent coeffi-
can be traced to the fact that the scale dimension of the fregients in the LGW functional, but that for the present prob-
energy,d+z=2z for 2<d<4, is a multiple of the scale lem these difficulties could be dealt with. Nevertheless, one
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might wonder what the theory would look like if the critical Even though we quote exponent values formally for all
modes and soft diffusion modes were treated on a mord>2, it should be mentioned that the region of validity of
equal footing. our analysis shrinks to zero dsapproaches 2. As mentioned
Without realizing it, we have previously addressed thein Sec. Il C, the reference system has all of the characteris-
above question. Early work on the metal-insulator transitiorfics of the system described by the full acti8nexcept that
in disordered interacting electron systems showed that iff must not undergo a phase transition lest our separation of
two-dimensional systems without impurity spin-flip scatter-modes that is implicit in our singling o for the decou-
ing, the triplet interaction scaled to large values under renorPling procedure break down. This requirement puts restric-
malization group iteration® This was interpreted, incor- tions on the parameter values for which our procedure works.
rectly as it turned out later, as a signature of local momenfOr instance, we cannot go to arbitrarily large disorcsr
formation in all dimension& Subsequently, the present au- fixed d) without triggering a metal-lnsulator_ transition Wlthlln
thors studied this problem in some def4iWe were able to the reference system. For—2 the metal-insulator transi-
explicitly resum the perturbation theory and show that at &ions occurs at smaller and smaller values of the disorder,
critical value of the interaction strength, or of the disorder,@nd ind=2 one obtains a very complicated, and unsolved,
there is a bulk, thermodynamic phase transition. The physisituation where various fluctuations compete with each other.
cal meaning of this phase transition was obscure at the time We finally discuss why some of our results are in dis-
since no order parameter had been identified, and its descriggreement with Sachdef'secent general scaling analysis of
tion was entirely in terms of soft diffusion modes. However, quantum phase transitions with conserved order parameters.
the critical exponents obtained are identical to those obtainefior instance, it follows from our Eq$3.10, (3.14) that the
here for the quantum ferromagnetic phase transition, and iMVilson ratio, defined asv=(m/H)/(Cy/T), diverges at
both cases logarithmic corrections to scaling are found. Becriticality rather than being a universal number as predicted
cause the exponents in the two cases are identical, we cofit Ref. 2. Also, for 2<d<4 the functionF, in Eq. (3.18),
clude that the transition found earlier by us, whose physicafor t=0 and neglecting corrections to scaling, is a function
nature was unclear, is actually the ferromagnetic transitiondf T/H, in agreement with Ref. 2, but fa>4 this is not the
One also concludes that our speculations about the nature 68se. The general reason for this breakdown of general scal-
the ordered phase as an “incompletely frozen spin phase™d is that we work above an upper critical dimensionality,
with no long-range magnetic order were not correct. On thénd hence dangerous irrelevant variables have to be consid-
other hand, the techniques used in Ref. 24 allowed for &red very carefully, and on a case-by-case basis. This caveat
determination of the qualitative phase diagram as a functioi§ particularly relevant for quantum phase transitions since
of dimensionality, which our present analysis is not capabléhey tend to have a low upper critical dimension. It is well
of. The theory given here not only explains the nature of th&known that a given irrelevant variable can be dangerous with
transition, but also explains why the critical behavior at thatrespect to some observables but not with respect to others.
phase transition could be obtained exactly in three dimenSpecifically, in our case the dangerously irrelevant variable
sions: The long-range nature of the interactions between thié; affects the leading scaling behavior of the magnetization,
order parameter fluctuations makes the critical phenomenut not that of the specific heat coefficient, which leads to the
problem exactly soluble. It is also interesting to note that thedivergence of the Wilson ratio. A simple example of this
list of scaling scenarios for soft-mode field theories for dis-Phenomenon is provided by classical theory in d>4,
ordered interacting fermions given in Sec. IV of Ref. 8 in- Where the dangerous irrelevant variabléthe coefficient of
cluded the present case, namely, a transition to a ferromaghe ¢* term) affects the scale dimension of the magnetiza-
netic state with an order parameter expongnt2v for  tion, but not that of the specific he&tin classicalg* theory
d<a4. this point is obscured by the fact that the saddle-point con-
It should also be pointed out that our earlier theory dedribution to the specific heat contains a discontinuity. This is
pended crucially on there being electronic spin conservatioreften expressed ag=0, with « the specific heat exponent.
This feature would be lost of there were some type of impuHowever, the approach to the discontinuity is described by
rity spin-flip scattering process. In that case, the soft modethe « suggested by hyperscaling, namely=2—d/2; see
that lead to the long-range order parameter interactions aé-hap. V1.4 of Ref. 19. At the quantum FP the situation is
guire a mass or energy gap, and at sufficiently large scaleglearer, since the saddle-point contributionCg is sublead-
the interactions are effectively of short range. The asymping. It is also important to remember that different arguments
totic critical phenomena in this case are described by a shordf a scaling function can be affected in different ways by one
range, local order parameter field theory with a randomand the same dangerous irrelevant variable. Here, the effec-
mass, or temperature, term. In this case the random magye scale dimension dfl in the specific heat is changed by
term is relevant with respect to the Gaussian fixed pointu, [from (3d—2)/2 tod in 2<d<4], but that ofT is not,
analogous to the one discussed here, which underscores thimceu, imports only the subleading crossover temperature
important role that is played by the order parameter beingcale intoyy, via the appearance aof in Eqg. (3.13.
conserved in our model. The quantum phase transition in a
model where it is not, and where the random mass term is
therefore relevant with respect to the analog of our Gaussian
fixed point(FP), is discussed elsewheféWe also mention In order to apply our theoretical results to experiments,
that the effect of fermionic soft modes on the ferromagnetioone needs materials that show a transition from a paramag-
phase transition igleansystems has been discussed recentlynetic state to a ferromagnetic one at zero temperature as a
in Ref. 3. function of some parameter. Obvious candidates are mag-

B. Experimental aspects
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X FIG. 3. Schematic prediction for a scaling plot of the magnetic
c X susceptibility.

FIG. 2. Schematic phase diagram for an alloy of the form
PyF1_yx. T, is the Curie temperature for the pure ferromaghet
andx, is the critical concentration.

T/t? will yield a universal function the shape of which is
schematically shown in Fig. 3. Notice that the exponents are
knownexactly and so the only adjustable parameter for plot-
ting experimental data will be the position of the critical
Boint. This is in sharp contrast to some other quantum phase
transitions, especially metal-insulator transitions, where the
exponent values are not even approximately known, which

netic alloys of the fornP,F,_, with P a paramagnetic metal
andF a ferromagnetic one. Such materials show the desire
transition as a function of the composition parameteex-
amples includeF=Ni and P=Al, Ga.l! The schematic . ol
phase diagram is shown in Fig. 2. makes scaling plots almost meaningl€ss.

One striking difference between our results for the quan;[h Flnall)i/%i 0?16 ctar'lAconrs&?lfr ';heEIéwl-tE;)emp(?[Latutrembek;a;mr)r of
tum ferromagnetic phase transition at<(x;,T=0) and the . € specific heat. According 1o -9, as he temperature

classical or thermal transition for Heisenberg ferromagnets iﬁ Iowergq forxzxc_the leading temperature dependence of
the numerical values of the exponents. For three-dimension e specific heat will be
(3[_)) systems, our E_qs(3.8), for instance, predict3=2, cy(T)~TInT. (4.28
while the corresponding value for the thermal transitidfi is
Bease=0.37. The large difference between the classical and\t criticality this behavior will continue tor =0, while for
the quantum value should be easily observable if it was posx>X. it will cross over to
sible to measure the magnetization at a sufficiently low tem-
perature as a function of in order to observe the crossover cy(T)~(Int)T. (4.2b
between quantum and classical critical behavior in the vicingor x<x . one will encounter the classical Heisenberg tran-
ity of x.. One possible way to do such an experiment wouldsjtion where the specific heat shows a finite ciisg., the
involve the preparation of many samples with different val-gxnonenta<0).
ues ofx over a small region of. It might also be possible to
probe the magnetic phase transition by using the stress tun-
ing technique that was used to study the metal-insulator tran-
sition in Si:P?® Alternatively, one could prepare a sample We thank the TSRC in Telluride, CO for hospitality dur-
with a value ofx that is as close as possible x9, and ing the 1995 Workshop on Quantum Phase Transitions,
measure the magnetic field dependence of the magnetizatiowhere part of this work was performed, and the participants
extrapolated td' =0, to obtain the exponerd. Again, there of the workshop for stimulating discussions. This work was
is a large difference between our prediction & 1.5 in  supported by the NSF under Grant Nos. DMR-92-17496 and
d=3, and the classical valug. ;s 4.86. DMR-95-10185.

Another possibility, that does not involve an extrapolation
to T=0, is to measure the zero-field magnetic susceptibility APPENDIX A: WAVE-NUMBER-DEPENDENT SPIN
as a function of botht=|x—x.| and T. Equation(3.103 SUSCEPTIBILITY
predicts

ACKNOWLEDGMENTS

Here we calculate the wave-number-dependent spin sus-
tT)=T Y2 (T/t?). 4 ceptibility in a'd|sprdered mterac'tlng Fe'rml system. In terms
Xm(tT) o ) “.D of the Q-matrix field theory reviewed in Ref. 8, the spin

Heref, is a scaling function that has two branchés, for susceptibility reads

x>Xc andf, for x<x.. Both branches approach a constant

for large values of their argument;(y—>oo)=const. For xs(9,Qp)~ 2 (=)'T 2 <?anf+n,ml((1)
small arguments, we havé, (y—0)~\y, while f, di- =03 Ma.,M2
verges at a nonzero valyg of its argument, which signal- ><r3Qtw (—q)). (A1)

m,—n,m
izes the classical transitiorf, (y—y*)~(y—y*) 7das 2

with yase 1.39 the susceptibility exponent for the classical The classical matrix field) comprises two fermionic de-
transition. Our prediction is then that a plot gf,T¥? versus  grees of freedom, and a general matrix elenjept has six
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indices: i is the spin index(with i=1,2,3 the spin-triplet
channel, r=0,3 denotes the particle-hole channek(l,2
would be the particle-particle chanipeh,m are Matsubata

frequency indices, and,B are replica indices. The matrix
elements withnm<0 describe the soft modes, i.e., the

particle-hole excitations, while those withm>0 are mas-
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with A an ultraviolet cutoff, from which one readily obtains
Eqg. (2.123.

APPENDIX B: LOGARITHMIC CORRECTIONS
TO SCALING IN D=4 AND D=6

There are three distinct mechanisms that produce logarith-

sive. For explicit calculations it is convenient to consider themic corrections to scaling) Marginal operators(2) Weg-

nonlinear o-model version of theQ-field theory?”® where

ner resonance conditions between a set of scale dimensions,

the massive modes are integrated out. In the resulting effe@nd (3) logarithmic corrections to the scale dimension of a
tive model,Q?=1, and a loop expansion can be set up bydangerous irrelevant operator. The first two mechanism are

expanding allQ in terms ofq,,=®(—nm)Q,,. The con-
tribution of O(g?) to Eq.(1.1) vanishes fo),,=0 and hence
does not contribute tao(q) = xs(9,Q2,=0). The one-loop
contribution, which is the term o®(q?*), gives

1
Xo(@~ 52 T2 oK) Zn(K)

X[Zn(k=0a) = Z(k—a)]. (A2a)

Here 7, and 7}, are the diffusive propagators of the the8ry.

Their structure is

Zn(k)=1(k*+D o), (A2b)

with D a diffusion coefficient.Z, has the same structure,
with D replaced byD'#D. Since we are not interested in

prefactors, we do not have to specify eitiieandD!, or the

prefactor in Eq.(A2a). For the reasons discussed at the end

well known? The third is operative only above an upper
critical dimension, and is therefore of particular interest for
quantum phase transitions.

In the present case, logarithmic corrections to scaling
arise due to all three of these mechanisms. The second one
produces corrections to the scaling of the specific heat in all
dimensions 2d<4, as was discussed in Sec. lll D. The first
one is operative id=4, wherev, is a marginal operator; see
Eq. (3.5b. If desired, the resulting corrections to scaling can
be worked out using standard technig&®Binally, the third
mechanism produces corrections to scaling#6. Accord-
ing to Eq. (2.9, the coefficientu,~Ing in d=6. Via Eq.
(3.6) or (3.7) this leads, for instance, to a leading behavior of
the spontaneous magnetization,

of Sec. Il C, the one-loop term suffices to calculate the leadand at the critical point we have

ing infrared wave number dependenceygf Schematically,
Egs.(A2) yield

A I w
)(O(Q)qu dkkd lfo dw(l<2_+_—w)3, (A3)

t1/2

m(t,H=0)~ ——In(llt) , (B1)
Hl/3

(B2)

m(tZO,H)NW.

Other consequences, e.g., for the specific heat in a magnetic
field, can be easily worked out.
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