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The quantum ferromagnetic transition at zero temperature in disordered itinerant electron systems is con-
sidered. Nonmagnetic quenched disorder leads to diffusive electron dynamics that induces an effective long-
range interaction between the spin or order parameter fluctuations of the formr 222d, with d the spatial
dimension. This leads to unusual scaling behavior at the quantum critical point, which is determined exactly.
In three-dimensional systems the quantum critical exponents are substantially different from their finite-
temperature counterparts, a difference that should be easily observable. Experiments to check these predictions
are proposed.@S0163-1829~96!00721-7#

I. INTRODUCTION

The general problem of describing quantum phase transi-
tions is a subject of great current interest. These transitions
occur at zero temperature as a function of some nonthermal
control parameter, and the relevant fluctuations are of a
quantum nature rather than of thermal origin. Early work in
this field established that if the quantum phase transition has
a classical analog at finite temperature, then in the physical
dimensiond53 the former tends to have a simpler critical
behavior than the latter. In particular, one of the most obvi-
ous examples of a quantum phase transition, namely, the
ferromagnet-to-paramagnet transition of itinerant electrons at
zero temperatureT50 as a function of the exchange inter-
action between the electron spins, was found to have mean-
field critical behavior ind53.1 The reason for this tendency
is that the coupling between statics and dynamics that is
inherent to quantum statistics problems effectively increases
the dimensionality of the system fromd to d1z, with z the
dynamical critical exponent. In the case ofclean itinerant
quantum ferromagnets,z53 in mean-field theory. This ap-
pears to reduce the upper critical dimensiondc

1 , which is the
dimension above which mean-field theory yields the exact
critical behavior, from dc

154 in the classical case to
dc

151 in the quantum case.1 However, this conclusion has
recently been disputed,2,3 and the critical behavior of clean
itinerant ferromagnets in low-dimensional systems is cur-
rently under renewed investigation.4

It has been known for some time that if one adds
quenched, nonmagnetic disorder to the system, then the criti-
cal behavior at the quantum phase transition must be sub-
stantially modified,5 contrary to earlier suggestions.1 It is
known that the correlation length exponentn must satisfy the
inequality n>2/d in systems with quenched disorder.6 The
physical origin of this constraint is the requirement that dis-
order induced fluctuations in the location of the critical point
in parameter space must be small compared to the distance
from the critical point in order for the phase transition to be
sharp. Any mean-field or any standard Gaussian theory

yields n51/2, which is incompatible with this lower bound
in any dimensiond,4. Technically, this implies that the
disorder is a relevant perturbation with respect to the mean
field or Gaussian fixed point.

From a perspective that is entirely focused on the statisti-
cal mechanics aspects of the phase transition problem~and
that therefore does not take into account from the beginning
the aspects that have to do with the underlying disordered
electron system!, it would be tempting to model this disor-
dered quantum phase transition by making the mass term in
the effective field theory for the clean case@i.e., the coeffi-
cient of the term quadratic in the order parameter field in the
Landau-Ginzburg-Wilson~LGW! functional# a random vari-
able in order to describe the fluctuations in the location of the
critical point. For the quantum paramagnet-to-ferromagnet
transition under consideration one can readily convince one-
self that ford,4 the resulting disorder term is relevant in
the renormalization group sense with respect to the clean
Gaussian fixed point. Presumably, the presence of this rel-
evant operator leads to a new critical fixed point with a cor-
relation length exponentn>2/d.

It turns out, however, that such a model is not a techni-
cally appropriate description of the quantum ferromagnetic
transition in a system of disordered itinerant electrons. In
order to explain this important point, let us anticipate a num-
ber of results that will be discussed in detail in Sec. II below.
If one attempts to derive the LGW functional mentioned
above, then the coefficient of the random mass term is a
correlation function whose expansion in the random potential
is very singular. The reason is that the dynamics of a quan-
tum particle in a disordered environment in the limit of small
wave numbersk and low frequenciesv is qualitatively dif-
ferent from that in a clean system. In the former case the
motion is diffusive, while in the latter it is ballistic. Techni-
cally, the limit k,v→0 does not commute with the clean
limit. To overcome this problem it is advantageous to not
expand in powers of the random potential, but to expand
instead in the fluctuations of the coefficients of the LGW
functional at fixed disorder.

This procedure, by construction, automatically resums the
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most obvious singularities in the disordered itinerant electron
problem. Although it will turn out that the coefficients in the
resulting LGW functional are still singular, these remaining
singularities can be handled mathematically as we will see
below. These singularities arise due to what are often called
weak localization effects.7,8 Their physical origin lies in the
fact that the dynamics of diffusive electrons are intrinsically
long ranged. Via mode-coupling effects, this feature couples
back to the ferromagnetic transition problem. As we show in
this paper, the net effect is that the interactions between the
spin fluctuations in the LGW theory are of long range. The
critical behavior described by the resulting nonlocal field
theory can be determined exactly for alld.2, and satisfies
n>2/d as required. The critical exponents obtained from this
theory ared dependent for alld,6. In d53, they are sub-
stantially different from either the mean-field exponents, or
from those for a classical Heisenberg model, which has strik-
ing observable consequences.

The outline of this paper is as follows. In Sec. II we first
define an itinerant disordered electron model, and then dis-
cuss how to derive an order parameter description for a fer-
romagnetic phase transition starting from a fermionic field
theory. We also discuss in detail the coefficients in the LGW
functional and show that they have long-range properties. In
Sec. III the critical behavior is determined exactly for dimen-
sions d>2. For d.6, mean-field exponents are obtained,
while for 2,d,6, d-dependent exponents are found. In Sec.
IV the results of this paper are reviewed. First we summarize
the theoretical aspects of our results, and then we point out
some of the experimental consequences we expect. In Ap-
pendix A we calculate the wave-number-dependent spin sus-
ceptibibility for disordered interacting fermions, and in Ap-
pendix B we discuss the logarithmic corrections to scaling
that exist at the critical dimensionsd1

156 and d2
154, as

well as for all 2,d,4.

II. MODEL AND THEORETICAL FRAMEWORK

In the first part of this section we define a simple model
for interacting electrons in a disordered environment. Start-
ing with this general fermionic field theory we then derive an
LGW or order parameter description, with the spin density
fluctuation as the order parameter. In the last part of this
section we derive and discuss the coefficients in this LGW
functional. As mentioned in the Introduction, the crucial
point is that the interactions in the effective LGW theory are
long ranged due to the diffusive dynamics of the electrons in
a disordered metal.

A. Model

The partition function of any fermionic system can be
written in the form9

Z5E Dc̄Dcexp~S@c̄,c#!, ~2.1a!

where the functional integration measure is defined with re-
spect to Grassmannian~i.e., anticommuting! fields c̄ and
c, andS is the action,

S5E
0

b

dtE dxc̄ i~x,t!
]

]t
c i~x,t!2E

0

b

dtH~t!. ~2.1b!

Herex denotes positions andt imaginary time,H(t) is the
Hamiltonian in imaginary time representation,b51/T is the
inverse temperature,i51,2 denotes spin labels, and summa-
tion over repeated indices is implied. Throughout this paper
we use units such thatkB5\5e251. Our starting model is a
fluid of interacting electrons moving in a static random po-
tential v(x),

H~t!5E dxF 1

2m
¹c̄ i~x,t!•¹c i~x,t!

1@v~x!2m#c̄ i~x,t!c i~x,t!G
1
1

2E dxdyu~x2y!c̄ i~x,t!

3c̄ j~y,t!c j~y,t!c i~x,t!. ~2.2a!

Herem is the electron mass,m is the chemical potential, and
u(x2y) is the electron-electron interaction potential. We as-
sume that the random potentialv(x) is d correlated and
obeys a Gaussian distributionP@v(x…# with second moment

$v~x!v~y!%dis5
1

2pNFtel
d~x2y!, ~2.2b!

where

$•••%dis5E D@v#P@v#~••• ! ~2.2c!

denotes the disorder average,NF is the bare density of states
per spin at the Fermi level, andtel is the bare electron elastic
mean free time. More realistic models to describe itinerant
electron magnetism including, e.g., band structure, can be
considered along the same lines. The salient points of our
results, however, are due to long-wavelength effects and
hence do not depend on microscopic details like the band
structure. For our purposes it therefore is sufficient to study
the model defined in Eqs.~2.2!.

For describing magnetism, it is convenient and standard
practice to break the interaction part of the actionS, which
we denote bySint , into spin-singlet and spin-triplet contribu-
tions Sint

(s,t) . For simplicity, we assume that the interactions
are short ranged in both of these channels. In a metallic
system this is justified due to screening, and an effective
model with a short-ranged interaction in bothSint

(s) andSint
(t)

can be derived starting from a bare Coulomb interaction.10 In
order for this assumption to remain valid, our discussion ap-
plies only to cases in which the disorder is weak enough for
the system to remain far from any metal-insulator transition
that might be present in the phase diagram and would lead to
a breakdown of screening.11 The spin-triplet interactionSint

(t)

describes interactions between spin density fluctuations. This
is what causes ferromagnetism, and it therefore makes sense
to consider this part of the action separately. We thus write
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S5S01Sint
~ t ! , ~2.3!

with

Sint
~ t !5

G t

2 E dxdtns~x,t!•ns~x,t!, ~2.4a!

wherens is the electron spin density vector with components

ns
a~x,t!5

1

2
c̄ i~x,t!s i j

ac j~x,t!. ~2.4b!

Here thesa are the Pauli matrices, andG t is the spin-triplet
interaction amplitude that is related to the interaction poten-
tial u in Eq. ~2.2a! via

G t5E dxu~x!. ~2.4c!

For simplicity we have assumed a pointlike interaction so
thatG t is simply a number. A generalization to a more real-
istic short-range interaction would be straightforward.S0 in
Eq. ~2.3! contains all other contributions to the action. It
reads, explicitly,

S05E
0

b

dtE dxF c̄ i~x,t!
]

]t
c i~x,t!

2
1

2m
¹c̄ i~x,t!•¹c i~x,t!

2@v~x!2m#c̄ i~x,t!c i~x,t!G
2

Gs

2 E0
b

dtE dxnc~x,t!nc~x,t!, ~2.5a!

with nc the electron charge or number density,

nc~x,t!5c̄ i~x,t!c i~x,t!, ~2.5b!

andGs the spin-singlet interaction amplitude.

B. Order parameter field theory

Continuous thermal phase transitions are usually de-
scribed by deriving a LGW theory, i.e., an effective field
theory for the long-wavelength order parameter fluctuations
or critical modes.12 The physical idea behind this approach is
that these fluctuations, which are slowly varying in space,
determine the behavior near the critical point. The same phi-

losophy has been applied to quantum phase transitions, with
the only difference being that the critical modes are now
slowly varying in both space and time. We will use this
approach here, motivated in part by previous work on clean
itinerant electronic systems.1 We mention, however, that in
general one should worry about both the critical modes, and
all other slow or soft modes, even if these other soft modes
are not ‘critical’ in the sense that they change their character
at the phase transition. While this concern is not confined to
quantum phase transitions, we will argue below that for these
it poses a more serious problem than for thermal phase tran-
sitions since atT50 there are more soft modes than at finite
temperature. We will see that in the present problem such
additional modes are indeed present and lead to complica-
tions within the framework of an LGW theory. For the prob-
lem under consideration, however, these complications can
be overcome.

The techniques for deriving an order parameter field
theory, starting with Eqs.~2.3!–~2.5!, are standard.1 We de-
couple the four-fermion term inSint

(t) by introducing a classi-
cal vector fieldM (x,t) whose average is proportional to the
magnetizationm, and performing a Hubbard-Stratonovich
transformation. All degrees of freedom other thanM are then
integrated out. This procedure in particular integrates out the
soft diffusive modes or ‘‘diffusons’’ that are inherent to a
disordered fermion system.7,8 These are the additional soft
modes mentioned above. We obtain the partition function
Z in the form

Z5e2F0 /TE D@M #exp~2F@M # !, ~2.6a!

with F0 the noncritical part of the free energy. The LGW
functionalF reads

F@M #5
G t

2 E dxM ~x!•M ~x!

2 lnK expF2G tE dxM ~x!•ns~x!G L
S0

,

~2.6b!

where we have adopted a four-vector notation with
x5(x,t), and*dx5*dx*0

bdt. Here^•••&S0 denotes an av-
erage taken with the actionS0 . A formal expansion ofF in
powers ofM takes the form

F@M #5
1

2E dx1dx2Ma~x1!FdabG t
d~x12x2!2xab

~2!~x1 ,x2!GMb~x2!

1
1

3!E dx1dx2dx3xabc
~3! ~x1 ,x2 ,x3!Ma~x1!Mb~x2!Mc~x3!

2
1

4!E dx1dx2dx3dx4xabcd
~4! ~x1 ,x2 ,x3 ,x4!Ma~x1!Mb~x2!Mc~x3!Md~x4!1O~M5!,

~2.7a!
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where we have scaledM with G t
21 . The coefficientsx ( l ) in

Eq. ~2.7a! are correlation functions for a system with a par-
ticular realization of the disorder~i.e., they are not transla-
tionally invariant!. They are defined as

xa1•••al
~ l ! ~x1 , . . . ,xl !5^ns

a1~x1!•••ns
al~xl !&S0

c , ~2.7b!

where the superscriptc denotes a cumulant or connected
correlation function. For our simple model, the reference en-
semble with actionS0 , whose correlation functions are the
x ( l ), consists of free electrons with disorder and a short-
ranged spin-singlet model interaction. As mentioned in Sec.
II A above, the model can be made more realistic, if desired,
by, e.g., including a realistic band structure. In order to do

so, one would simply replace thex ( l ) above with correlation
functions for band electrons.

Equations~2.6! and ~2.7! define an order parameter field
theory for the paramagnet-to-ferromagnet phase transition in
a disordered itinerant electronic system. The disorder hasnot
been averaged over yet, and so then-point correlation func-
tions in Eqs.~2.7! depend explicitly on the particular realiza-
tion of the randomness in the system. To proceed, we now
formally carry out the disorder average of the free energy,
using replicas and a cumulant expansion, and keeping terms
up to O(M4) in the replicated LGW functional.13 With
a,b, . . .51, . . . ,n (n→0) the replica labels, we obtain the
following LGW functional for theath copy of the replicated
system:

Fa@M #5(
l52

`

F l
a@M #5

1

2E dx1dx2Xab
~2!~x1 ,x2!Ma

a~x1!Mb
a~x2!1

1

3!E dx1dx2dx3Xabc
~3! ~x1 ,x2 ,x3!Ma

a~x1!Mb
a~x2!Mc

a~x3!

2
1

4!E dx1dx2dx3dx4Xabcd
~4!ab~x1 ,x2 ,x3 ,x4!Ma

a~x1!Mb
a~x2!Mc

b~x3!Md
b~x4!1O~M5!, ~2.8a!

whereF l
a denotes the contribution of orderMl , and the co-

efficients are given in terms of disorder-averaged correlation
functions

Xab
~2!~x1 ,x2!5

dab
G t

d~x12x2!2$xab
~2!~x1 ,x2!%dis,

~2.8b!

Xabc
~3! ~x1 ,x2 ,x3!5$xabc

~3! ~x1 ,x2 ,x3!%dis, ~2.8c!

Xabcd
~4!ab~x1 ,x2 ,x3 ,x4!5dab$xabcd

~4! ~x1 ,x2 ,x3 ,x4!% dis

13$xab
~2!~x1 ,x2!xcd

~2!~x3 ,x4!% dis
c .

~2.8d!

Again, the superscriptc means that only the connected part,
this time with respect to the disorder average, of the corre-
lation functions$•••%dis

c should be considered. Notice that
we have separated the quantum mechanical and disorder av-
erages, and therefore must deal with two different kinds of
cumulants: In Eqs.~2.7!, we have^ab&c5^ab&2^a&^b&,
etc., while in Eqs. ~2.8! we have $ab%dis

c 5$ab%dis
2$a%dis$b% dis, etc.

C. Coefficients

As it stands, Eq.~2.8a! is just a formal nonlocal field
theory that is not very useful. Normally, one would proceed
by localizing the individual terms in Eq.~2.8a! about a single
point in space and time, and expanding the correlation func-
tions in powers of gradients. Due to what are often called
weak localization effects,14 this is not an option for the cur-
rent case of a disordered metal, even if we stay far away
from any metal-insulator transition. Structurally it is easy to
show, using either many-body perturbation theory or field

theoretic methods, that the disorder averagedn-point corre-
lation function $x ( l )%dis in wave number space has a weak
localization correction of a form that can be written sche-
matically as

dx~ l !~q,Vn!;
1

V(
k.q

T (
vn.Vn

1

~k21vn!
l , ~2.9!

with V the system volume,k5uku, vn andVn Matsubara
frequencies, and (q,Vn) an infrared cutoff. Although, strictly
speaking,dx ( l ) depends onl21 external momenta and fre-
quencies, we have schematically represented these by a
single ‘‘typical’’ momentum-frequency (q,Vn). Since we
will only be interested in the scale dimension of$x ( l )%dis,
this is sufficient. In terms of diagrams for the field theory
reviewed in Ref. 8, the dominant contribution to
$x ( l )%dis(q,Vn50) for q→0 is shown in Fig. 1. For what

FIG. 1. Diagrammatic structure of the leading IR singular con-
tribution to the correlation functionx ( l )(q,Vn50). The straight
lines denote the diffusive propagators of the field theory reviewed
in Ref. 8, and the dotted lines denote external legs.
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follows it is very important to notice thatdx ( l )(q,Vn50) is
a nonanalytic function ofq.

To illustrate this point in detail, let us consider the two-
point correlation functionxab

(2) in Eq. ~2.8b!. Because of
translational invariance on average in space and time, as well
as rotational invariance in space, we can write

$xab
~2!~x1 ,x2!%dis5dabxs~ ux12x2u,t12t2!, ~2.10a!

and we define the Fourier transform

xs~q,Vn!5E d~x12x2!d~t12t2!

3e2 iq•~x12x2!eiVn~t12t2!xs~x12x2!.

~2.10b!

xs is the disorder-averaged spin susceptibility of the refer-
ence system whose action is given byS0 . Particle number
conservation implies that at small frequency and wave num-
ber it has a diffusive structure

xs~q,Vn!5x0~q!
Dq2

uVnu1Dq2
, ~2.11a!

whereD is the spin diffusion coefficient of the reference
ensemble, andx0(q) is the static spin susceptibility. In a
system with a conserved order parameter, the frequency must
be taken to zero before the wave number in order to reach
criticality, and so in the critical region we have
uVnu,,Dq2. Note that it is our restriction to nonmagnetic
disorder that ensures a conserved order parameter. We will
come back to this point below. In the critical limit, we can
thus expand,

xs~q,Vn!5x0~q!@12uVnu/Dq21•••#. ~2.11b!

The static spin susceptibilityx0(q) has been discussed in
some detail before.15 For any system with a nonvanishing
interaction amplitude in the spin-triplet channel,G tÞ0, there
is a diffusive or weak localization correction to the bare sus-
ceptibility. Although our bare reference ensemble does not
contain such an interaction amplitude, perturbation theory
will generate one as long as there is a nonvanishing interac-
tion amplitudeGs in the spin-singlet channel.15 Effectively,
we therefore need to use the spin susceptibility for a system
with a nonvanishingG t in Eq. ~2.11b!. The explicit calcula-
tion is given in Appendix A, and the result is

x0~q→0!5c02cd22q
d222c2q

21•••, ~2.12a!

where theci are positive constants. The nontrivial, and for
our purposes most interesting, contribution in Eq.~2.12a! is
the nonanalytic term;qd22. Its existence implies that the
standard gradient expansion mentioned above Eq.~2.9! does
not exist. The physical interpretation of this term is that,
effectively, there is a long-range interaction between the or-
der parameter fluctuations, which in real space takes the form
r22d12. This is a phenomenon that is special to zero tem-
perature. At finite temperature, when one has to perform a
frequency sum rather than a frequency integral to calculate
the correlation funcion, the nonanalytic term is replaced by a
term of the schematic structure

qd22→~q21T!~d22!/2, ~2.12b!

and so forT.0 an analytic expansion aboutq50 exists, and
the standard local LGW functional is obtained.

Next we consider the cubic term in Eq.~2.8a!. Rotational
symmetry in spin space allows us to writeF3

a as

F3
a@M #5

1

3!E dx1dx2dx3u3~x1 ,x2 ,x3!

3Ma~x1!•@M
a~x2!3Ma~x3!#, ~2.13a!

with

u3~x1 ,x2 ,x3!5
1

6
eabc$xabc

~3! ~x1 ,x2 ,x3!%dis, ~2.13b!

whereeabc is the Levi-Civitàtensor. According to Eq.~2.9!,

u3~q→0,Vn50!5u3
~d24!qd241u3

~0! , ~2.13c!

with u3
(d24) and u3

(0) finite numbers. Note that this term is
divergent forq→0 for d,4.

The quartic term in Eq.~2.8a! is written as a sum of two
terms,

F4
a@M #5F4

a~1!@M #1F4
a~2!@M #, ~2.14a!

with

F4
a~1![M ‡52

1

24E dx1 . . .dx4$xabcd
~4! ~x1 ,•••,x4!%dis

3Ma
a~x1!Mb

a~x2!Mc
a~x3!Md

a~x4!, ~2.14b!

and

F4
a~2!@M #5

1

8E dx1dx2dx3dx4$xab
~2!~x1 ,x2!xcd

~2!~x3 ,x4!% dis
c

3Ma
a~x1!Mb

a~x2!Mc
a~x3!Md

a~x4!. ~2.14c!

For our purposes we only need to know the degrees of di-
vergence of the coefficients in Eqs.~2.14!. We can therefore
formally consider the local, static limit of Eq.~2.14b! ~even
though it does not necessarily exist!, and write

F4
a~1!@M #5

T

24V
u4 (

q1 ,q2 ,q3
(

n1 ,n2 ,n3

3@Ma~q1 ,vn1
!•Ma~q2 ,vn2

!#

3@Ma~q3 ,vn3
!•Ma~2q12q22q3 ,

2vn1
2vn2

2vn3
!#, ~2.15a!

where

Ma
a~q,vn!5

1

AbV
E dxdte2 iq•x1 ivntMa

a~x,t!

~2.15b!

and

u452 lim$q%→0$xaaaa
~4! % dis~q1 ,q2 ,q3 ;vn1

5vn2
5vn3

50!.
~2.15c!
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According to Eq.~2.9!,

u4~q→0,Vn50!5u4
~d26!qd261u4

~0! , ~2.15d!

and sou4 diverges in this limit ford,6, and is finite for
d.6. With a more accurate representation foru4 than Eq.
~2.9! one also finds a term;qd24, but this will be of no
relevance for what follows.

We now considerF4
a(2) given by Eq.~2.14c!. Its most

interesting feature is its frequency structure that follows from
$xab

(2)(x1 ,x2)xcd
(2)(x3 ,x4)% dis

c being a function oft12t2 and
t32t4 .

16 This implies that there are effectively two freet
integrals inF4

a(2) , unlike the case ofF4
a(1) , where there is

only one. In frequency space,F4
a(2) can be written

F4
a~2!@M #52

1

8E dx1dx2dx3dx4

3 (
n1n2

$xab
~2!~x1 ,x2 ;vn1

!xcd
~2!~x3 ,x4 ;vn2

!%dis
c

3Ma
a~x1 ,vn1

!Mb
a~x2 ,2vn1

!Mc
a~x3 ,vn2

!

3Md
a~x4 ,2vn2

!. ~2.16!

We see thatF4
a(1) carries an extra factor ofT compared to

F4
a(2) . The correlation function in Eq.~2.16! has been cal-

culated for noninteracting disordered electrons.17 The impor-
tant result of these authors was that the Fourier transform of
the correlation function atvn1

5vn2
50 is finite. We have

convinced ourselves that including interactions does not
change this result.F4

a(2)@M # can then be replaced by

F4
a~2!@M #52

v4
8 E dx(

n1n2
uMa~x,vn1

!u2uMb~x,vn2
!u2,

~2.17!

with v4 a finite coefficient. The physical meaning ofF4
a(2) is

easily determined. Consider the local in space and time con-
tribution to the disorder average of the coefficientX(2) in Eq.
~2.8a!, i.e., the termt051/G t2x0(q50), which determines
the distance from the critical point in the Gaussian theory. If
we maket0 a random function of space with a Gaussian
distribution and integrate out that randomness, then we ob-
tain a term with the structure ofF4

a(2) . This term in our
action thus represents a ‘‘random mass’’ term, reflecting the
fluctuations in the location of the critical point mentioned in
the Introduction.

We conclude this section with a discussion of why the
diagram shown in Fig. 1 gives the most important contribu-
tion to the correlation function$x ( l )%dis. The field theory of
Ref. 8 allows for a systematic loop expansion for these cor-
relation functions, with the diagram shown in Fig. 1 the one-
loop contribution. If we consider higher-loop corrections to
this, we need to distinguish between skeleton diagrams and
insertions. Insertions will produce finite~in d>2) renormal-
izations of the one-loop result. In the skeletons, each addi-
tional loop adds one frequency-momentum integral, and one
independent propagator. Since the propagators are at most a
diffusion pole squared,8 this means that each loop adds ef-
fectively a factor ofqd22 to $x ( l )%dis, and hence we need to
consider the lowest-loop contribution for a given type of
term. For the static terms, i.e., those of zeroth order in the
frequencyVn , the lowest nonvanishing contribution is at

one-loop order since the zero-loop terms are ofO(Vn). For
instance, the zero-loop contribution to$x (2)%dis is
;uVnu/(uVnu1Dq2), while the one-loop contribution adds
the static piece to yield Eq.~2.11a!. We thus conclude that
the most infrared-divergent contribution to the staticl -point
correlation function is given by the diagram shown in Fig. 1
with dressed internal propagators, and for just getting the
power of the leading divergence it suffices to use bare inter-
nal propagators.

In the critical limit the zero-loop contribution to$x (2)%dis
is proportional toVn /q

2; see Eq.~2.11b!. In the next section
we will discuss a fixed point where the dynamical exponent
is z5d; i.e., Vn scales likeqd at criticality. In the critical
limit, the term ofO(Vn) therefore shows the same scaling
behavior as the term ofO(Vn

0), Eq.~2.12a!. The same is true
for all higher correlation functions. It is easy to show that the
zero-loop contribution to$x ( l )%dis goes likeVn /q

2l22, while
the one-loop contribution goes likeqd2(2l22). Anticipating
again thatVn scales likeqd at criticality, these two contri-
butions have the same scaling behavior for all values ofl .
All higher-loop contributions will be less important, as we
have seen above. Also, higher orders in an expansion in
powers ofV can be neglected, sinceVn;q2 in the diffusive
propagators. Hence, each additional power ofVn will lead to
a factor that scales likeqd22 at criticality and is less relevant
than the terms ofO(Vn

0) andO(Vn). We thus conclude that
the most relevant term ofO(Ml) in the LGW functional has
a coefficientul that behaves effectively like

ul;qd22~ l21!. ~2.18!

This covers both the terms ofO(Vn
0) andO(Vn), and all

higher powers ofVn are less important. The leading term for
q→0, shown in Eq.~2.18!, comes from the contribution of
the l th moment to the cumulantX( l ), i.e., from $x ( l )%dis,
while the other contributions, i.e., the subtraction terms in a
given cumulant, are less divergent. However, due to the fre-
quency structure of these terms that was explained above
using the example ofX(4), it is not obvious that they are
unimportant for the critical behavior. We will analyze this
point in the next section, and will find that only the subtrac-
tion term in the quartic cumulant, which is given explicitly in
Eq. ~2.17!, is important in that respect and thus needs to be
kept.

III. CRITICAL BEHAVIOR

In the first part of this section we discuss the critical be-
havior of the Gaussian part of the theory defined by Eqs.
~2.8! – ~2.17!. The renormalization group properties of the
Gaussian fixed point are also discussed. We then analyze the
non-Gaussian terms in the field theory, and show that they
are irrelevant, in the renormalization group sense, with re-
spect to the Gaussian fixed point for all dimensionsd.2,
except for a marginal operator ind54. This implies that the
Gaussian theory yields the exact critical behavior for all of
these dimensions, except for logarithmic corrections to scal-
ing in d54 andd56 that are discussed in Appendix B. We
then construct the equation of state near the critical point,
which requires a more detailed knowledge of the non-
Gaussian terms in the field theory since it is determined in
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part by dangerous irrelevant variables. We conclude this sec-
tion with a discussion of the specific heat near the quantum
critical point, and with a discussion of the quantum-to-
classical crossover behavior.

A. Gaussian fixed point

According to Eqs.~2.8!–~2.12!, the Gaussian part ofFa

is

F2
a@M #5

1

2(q (
vn

Ma~q,vn!@ t01ad22q
d221a2q

2

1avuvnu/q2#•Ma~2q,2vn!, ~3.1a!

where

t0512G txs~q→0,vn50! ~3.1b!

is the bare distance from the critical point, andad22 , a2 ,
andav are positive constants.

We first analyze the critical behavior implied by Eqs.
~3.1!. Later we will show that ford.2 fluctuations are irrel-
evant, and the critical behavior found this way is exact for
these dimensions. By inspection of the Gaussian LGW func-
tional in Eq.~3.1a! one obtains

n5H 1/~d22! for 2,d,4,

1/2 for d.4,
~3.2a!

h5H 42d for 2,d,4,

0 for d.4,
~3.2b!

z5H d for 2,d,4,

4 for d.4.
~3.2c!

Here n is the correlation length exponent, defined by
j;t2n, with t the dimensionless distance from the critical
point. h is the exponent that determines the wave number
dependence of the order parameter susceptibility at critical-
ity, ^Ma(q,0)Ma(2q,0…‹;q221h. z is the dynamical scaling
exponent that characterizes critical slowing down by relating
the divergence of the relaxation timet r to that of the corre-
lation length,t r;jz.

Let us discuss, for later reference, the critical behavior
given by Eqs.~3.1! and ~3.2! from a renormalization group
point of view. Let b be the renormalization group length
rescaling factor. Under renormalization, all quantities change
according toA→A(b)5b@A#A, with @A# the scale dimension
of A. The scale dimension of the order parameter is

@M ~q,vn!#5211h/2 ~3.3a!

or, equivalently,

@M ~x,t!#5~d12!/2. ~3.3b!

At the critical fixed point, av and either ad22 ~for
2,d,4) or a2 ~for d.4) are not renormalized; i.e., there
scale dimensions are zero. Using this and@q#51, @vn#5z
immediately yields Eqs.~3.2b!, ~3.2c!. Equation~3.2a! fol-
lows from the relevance oft0 , or its renormalized counter-
part t, at the critical fixed point. That is, the scale dimension
of t is positive and given by 1/n[@ t#522h5d22.

B. Non-Gaussian terms

We now show that all of the non-Gaussian terms in the
field theory are renormalization group irrelevant with respect
to the Gaussian fixed point discussed in the last subsection.
Let us first consider the term of orderM3. From Eq.~2.13c!
we see that the most relevant coefficient at that order is
u3
(d24) for d,4 andu3

(0) for d.4. For simplicity, we will
use the symbolu3 for the most relevant coefficient in a given
dimension; i.e.,u3 denotesu3

(d24) for d,4 and u3
(0) for

d.4. Ford,4 we then have to assign a scale dimension to
the cutoff wave numberq. The most obvious choice is to
identify q with the inverse correlation lengthj21, which
makes@q#51. While we will see later that this identification
is not correct for all values ofd, it will turn out that it
provides an upper limit for@q#. Assuming, then,@q#<1,
which will be justified in Sec. III.C. below, and using Eq.
~3.3!, we see that the scale dimension of the effective coef-
ficient of the term of orderM3 is bounded by

@u3#<2~d22!/2. ~3.4!

Similarly, using Eqs.~2.15d! and ~3.3!, one sees that the
coefficientu4 in Eq. ~2.15a! has a scale dimension bounded
by

@u4#<H 2~d22! for 2,d,4,

22~d23! for 4,d,6

2d for d.6,

, ~3.5a!

and that the scale dimension ofv4 in Eq. ~2.17! is

@v4#52u42du. ~3.5b!

Here again we denote the most relevant coefficient in Eq.
~2.15d! by u4 for simplicity. Equations~3.4! and~3.5! imply
that the cubic and quartic terms in the field theory are renor-
malization group irrelevant with respect to the Gaussian
fixed point for all d.2 except ford54, where the coeffi-
cient v4 is a marginal operator. As we explained after Eq.
~2.17!, v4 reflects the ‘‘random mass’’ contribution to the
action of the disordered magnet. We stress that this operator,
while being strongly relevant with respect to theclean
Gaussian fixed point, is not relevant with respect to the
Gaussian fixed point of the present LGW functional.

It is an easy matter to analyze the behavior of the higher-
order terms in the Landau expansion. The coefficient of the
general term of orderMl in the LGW functional has a scale
dimension bounded by

@ul #<H 2~d22!~ l22!/2 for 2,d,4,

2~ l22!2 l ~d24!/2 for 4,d,6,

2~ l24!2d~ l22!/2 for d.6.

~3.5c!

This holds for the pure moment contribution to thel th cu-
mulant, and we see that all of theul are irrelevant for
d.2. For the coefficients of the subtraction terms in the
cumulants one easily convinces oneself that, while their scale
dimension initially increases withd increasing fromd52 @as
does the scale dimension ofv4 ; see Eq.~3.5b!#, it stays
negative for alld.2. All of these terms are therefore irrel-
evant operators as well. We conclude that ford.2 there is a
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critical Gaussian fixed point corresponding to a phase tran-
sition with Gaussian exponents~except for logarithmic cor-
rections to the Gaussian critical behavior ind54 due to the
marginal operatorv and, as we will see later, also in
d56), while for d<2 the non-Gaussian terms are poten-
tially relevant. We will see in Sec. III C below that the in-
equality in Eq.~3.5c! is actually an equality for 2,d,4, so
that d52 is the upper critical dimension, and ind52 an
infinite number of operators become marginal.

C. Magnetization and the magnetic susceptibility

Although u4 is an irrelevant operator ford.2, it is dan-
gerously irrelevant18 for the magnetization, since it deter-
mines the critical behavior of the average magnetizationm as
a function oft and an external magnetic fieldH. The tech-
nical reason for this is thatm is a singular function ofu for
u→0. Schematically, the equation of state in mean-field
theory is of the form

tm1u4m
35H, ~3.6!

where we have suppressed all numerical prefactors. Accord-
ing to Eq. ~2.15d!, u4 diverges ford,6 asqd26. Further-
more, if we were to keep higher terms of orderml in the
equation of state, their coefficients would diverge asqd22l .
This implies that the cutoffq scales likem1/2, and effectively
Eq. ~3.6! reads

tm1ūmd/21u4
~0!m35H, ~3.7!

with u4
(0) from Eq. ~2.15d!, and ū another finite coefficient.

From Eq.~3.7! we immediately obtain the exponentsb and
d, defined asm(t,H50);tb, m(t50,H);H1/d,

b5H 2/~d22! for 2,d,6,

1/2 for d.6,
~3.8a!

d5H d/2 for 2,d,6,

3 for d.6.
~3.8b!

In d56 logarithmic corrections to scaling occur; see Appen-
dix B.

Above we have used a general scaling argument to obtain
Eq. ~3.7!. For small disorder, the same result can also be
derived explicitly by means of an infinite resummation. As
mentioned after Eq.~3.6!, the term ofO(m3) with its diver-
gent coefficientu4;qd26 in Eq. ~3.6! is only the first in an
infinite series of terms that behave likeqd22lml . Calculating
the prefactors of the divergent coefficients, one realizes that
the divergences are the consequence of an illegal expansion
of an equation of state of the form

tm1
1

V(
k
T(

vn

const3m3

@~vn1k2!21m2#2
5H. ~3.68!

Performing the integral one recovers Eq.~3.7!.
Next we determine the functional form of the equation of

state at nonzero temperature in order to obtain a scaling
equation form as a function oft, H, andT. This can most
easily be done by utilizing Eq.~2.12b!. From Eq.~2.12a! it
follows that thetm term in the equation of state has a cor-
rection of the form m(q21T)(d22)/2;m(m1T)(d22)/2,

where we have usedq2;m as explained after Eq.~3.6!.
Similarly, the termum3 in Eq. ~3.6! with u;qd26 gets re-
placed bym3(m1T)(d26)/2. At T50 we recover Eq.~3.7!.
For T,m in suitable units, there are corrections of
O(T/m) to the term;md/2 in that equation, while for
T.m, t gets replaced byt1T1/2n. All of these observations
can be summarized in the homogeneity law

m~ t,T,H !5b2b/nm~ tb1/n,Tbf/n,Hbdb/n!, ~3.9a!

with

f52n. ~3.9b!

Similarly, the magnetic susceptibilityxm satisfies a homoge-
neity law

xm~ t,T,H !5bg/nxm~ tb1/n,Tbf/n,Hbdb/n!, ~3.10a!

with

g5b~d21!51. ~3.10b!

Equations~3.10! and~3.11! warrant some discussion. The
scaling of T in these equations follows directly from Eq.
~2.12b!. The effective scale dimension ofT in m andxm is
therefore 2 andnot z. The salient point is thatz is deter-
mined by the scaling ofVn or T with q in the Gaussian
action, and hence in the critical propagator. However, the
magnetization is calculated atVn5q50, and its leading
temperature dependence is determined by the diffusive
modes, which featureVn;T;q2, rather than by the critical
ones. This leads to@T#5f/n, with f as given in Eq.
~3.10b!. The proper interpretation off is that of a crossover
exponent associated with the crossover from the quantum to
the thermal fixed point that occurs at anyT.0. Since
z.f/n, the critical scalingT;bz would be the dominant
temperature dependence ifm andxm depended on the criti-
cal modes. That they do not can also been seen from a de-
termination of the magnetic susceptibility directly from the
Gaussian action: Recognizing that the coefficient ofM2 in
F2 , Eq. ~3.1a!, is the inverse spin susceptibility, and using
Eq. ~2.12b! again, we obtain

xm~ t,T!5
1

t1T1/2n
, ~3.10c!

in agreement with Eqs.~3.10a!, ~3.10b!.
We are now in a position to determine the exact scale

dimension ofu4 , and of the other coefficients in the field
theory, and to thus verify the assumption made in the last
subsection. As we have seen after Eq.~3.6!, the cutoff q
scales likem1/2, so that@q#5@m#eff/2, where@m#eff5b/n is
the effectivescale dimension ofm, i.e., the scale dimension
after the effects of the dangerous irrelevant variableu4 have
been taken into account. From Eqs.~3.8a!, ~3.2a! we see that
@m# eff<2, which justifies the assumption made in Sec. III B
that led to the upper bounds on the scale dimensions of the
ul . Repeating the power counting arguments that led to the
inequalities, Eqs.~3.4! and ~3.5a!, we obtain

@u3#52~d22!/2 ~3.48!

and
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@u4#5H 2~d22! for 2,d,4,

2~d2212!/~d22! for 4,d,6,

2d for d.6.

8 ~3.58!

The exact scale dimension of the general coefficientul , if
desired, can be obtained by the same argument. Again, the
upper bound given in Eq.~3.5c! is equal to the exact value
for 2,d,4. These results complete the proof thatd52 is
the upper critical dimension for our problem, and that an
infinite number of operators become marginal ind52, and
relevant ind,2.

Finally, we mention how to reconcile the value for the
exponentb, Eq. ~3.8a!, with scaling. PuttingT5H50 for
simplicity, but keeping the dependence ofm onu4 explicitly,
and using Eq.~3.3b!, we write

m~ t,u4!5b2~d12!/2m~ tb1/n,u4b
@u4#!. ~3.98!

From Eq.~3.6! we know thatm;u4
21/2. Using this in Eq.

~3.9a! changes the scale dimension ofm from
@m#5(d12)/2 to an effective value,@m#eff5@m#2@u4#/2.
With Eq. ~3.58! we then obtain@m#eff5b/n with the correct
values ofb andn.

D. Specific heat

The scaling equation for the specific heat is determined by
the sum of the mean-field and the Gaussian fluctuation con-
tributions to the free energy density,f . The mean-field con-
tribution follows immediately from Eq.~3.7!. The Gaussian
fluctuation contributionf G , which gives the leading nonana-
lyticity at the critical point, can be calculated by standard
methods.19 Neglecting an uninteresting constant contribution
to f G , we obtain

f G5
T

2V(
q,vn

$2ln~H/m1ad22q
d221a2q

21avuvnu/q2!

1 ln@xdH/m2~xd21!t1ad22q
d221a2q

2

1avuvnu/q2#%. ~3.11!

Herexd5d/2 for 2,d,6 andxd53 for d.6. The specific
heat coefficientgV is conventionally defined by

gV5cV /T52]2f /]T2. ~3.12!

Again we are interested only in scaling properties and not in
exact coefficients. Schematically, Eqs.~3.11! and~3.12! give

gV5E
0

L

dq
qd21

T1qd1q41Hq2/m
, ~3.13!

with L an ultraviolet cutoff.
Several points should be noted. First, for alld that obey

2,d,4, gV given by Eq.~3.13!, or exactly by Eqs.~3.11!
and ~3.12!, is logarithmically singular forT,H→0. This
d-independent logarithmic singularity is somewhat unusual.
Wegner has discussed how logarithmic corrections to scaling
arise if a set of scale dimensions fulfills some resonance
condition.20 In the present case the appearance of a logarithm
can be traced to the fact that the scale dimension of the free
energy,d1z52z for 2,d,4, is a multiple of the scale

dimension ofT, which is z5d in this region. The unusual
feature of the logarithm appearing in arangeof dimensions,
rather than only for a special value ofd, is due to the dy-
namical exponent being exactlyd in that range. Second, in
Eq. ~3.13! two different temperature scales appear. The first
two terms in the denominator indicate thatT;j2d, as one
would expect from dynamical scaling. However, the last
term in Eq.~3.13! contains the magnetization, which in turn
depends on the crossover temperature scaleT;j22; see Sec.
III C above. These two features imply that the scaling equa-
tion for gV should be written

gV~ t,T,H !5Q~42d!lnb1Fg~ tb1/n,Tbz,Hbdb/n,Tb2!.
~3.14!

Sincez.2, one can formally ignore the fourth entry in the
scaling function since it is subleading compared to the sec-
ond entry. The corrections to the resulting theory can be
considered as ‘‘corrections to scaling.’’ Notice that in con-
trast to the magnetization and the magnetic susceptibility, the
specific heat does depend on the critical modes, and hence
contains the critical temperature scale. As mentioned in the
last subsection, the latter is dominant when it is present, and
gV provides an example for that.

IV. DISCUSSION

A. Theoretical aspects

In this paper we have shown that in disordered itinerant
quantum ferromagnets the diffusive nature of the electrons
leads to long-range interactions between spin fluctuations in
an order parameter field theory. As for classical models with
long-range interactions,21 the critical behavior of this field
theory can be determined exactly. Ford.6, standard mean-
field results are obtained, but for 2,d,6 one finds non-
trivial critical behavior with dimensionality-dependent expo-
nents. Ford<2 our approach breaks down because the
electrons are localized, and because in our field theory an
infinite number of operators becomes marginal ind52. The
exact critical exponents ford.2 are given by Eqs.~3.2!,
~3.8!, and~3.10b!, and the scaling properties of some of the
more interesting physical properties are given by Eqs.~3.9!,
~3.10a!, and ~3.14!. In this subsection we discuss various
aspects of these results that have not been covered yet.

First of all, there is an important conceptual question that
should be considered. In our approach we have assumed that
it is sensible to construct an order parameter field theory to
describe the critical behavior of the order parameter. In gen-
eral this procedure will break down if there are other soft or
slow modes that couple to the order parameter fluctuations.
That is, a more complete low-energy theory might be
needed. In the present case, the diffusons that lead to the
nonanalyticities in the bare field theory and to, e.g., Eqs.
~2.12! and ~2.15! are such soft modes. One should ask why
we were able to proceed with an order parameter description
anyway, without running into unsurmountable difficulties
due to the additional soft modes. A technical answer is that
the diffusons did create problems, namely, divergent coeffi-
cients in the LGW functional, but that for the present prob-
lem these difficulties could be dealt with. Nevertheless, one
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might wonder what the theory would look like if the critical
modes and soft diffusion modes were treated on a more
equal footing.

Without realizing it, we have previously addressed the
above question. Early work on the metal-insulator transition
in disordered interacting electron systems showed that in
two-dimensional systems without impurity spin-flip scatter-
ing, the triplet interaction scaled to large values under renor-
malization group iterations.22 This was interpreted, incor-
rectly as it turned out later, as a signature of local moment
formation in all dimensions.23 Subsequently, the present au-
thors studied this problem in some detail.24 We were able to
explicitly resum the perturbation theory and show that at a
critical value of the interaction strength, or of the disorder,
there is a bulk, thermodynamic phase transition. The physi-
cal meaning of this phase transition was obscure at the time
since no order parameter had been identified, and its descrip-
tion was entirely in terms of soft diffusion modes. However,
the critical exponents obtained are identical to those obtained
here for the quantum ferromagnetic phase transition, and in
both cases logarithmic corrections to scaling are found. Be-
cause the exponents in the two cases are identical, we con-
clude that the transition found earlier by us, whose physical
nature was unclear, is actually the ferromagnetic transition.
One also concludes that our speculations about the nature of
the ordered phase as an ‘‘incompletely frozen spin phase’’
with no long-range magnetic order were not correct. On the
other hand, the techniques used in Ref. 24 allowed for a
determination of the qualitative phase diagram as a function
of dimensionality, which our present analysis is not capable
of. The theory given here not only explains the nature of the
transition, but also explains why the critical behavior at that
phase transition could be obtained exactly in three dimen-
sions: The long-range nature of the interactions between the
order parameter fluctuations makes the critical phenomena
problem exactly soluble. It is also interesting to note that the
list of scaling scenarios for soft-mode field theories for dis-
ordered interacting fermions given in Sec. IV of Ref. 8 in-
cluded the present case, namely, a transition to a ferromag-
netic state with an order parameter exponentb52n for
d,4.

It should also be pointed out that our earlier theory de-
pended crucially on there being electronic spin conservation.
This feature would be lost of there were some type of impu-
rity spin-flip scattering process. In that case, the soft modes
that lead to the long-range order parameter interactions ac-
quire a mass or energy gap, and at sufficiently large scales
the interactions are effectively of short range. The asymp-
totic critical phenomena in this case are described by a short-
range, local order parameter field theory with a random
mass, or temperature, term. In this case the random mass
term is relevant with respect to the Gaussian fixed point
analogous to the one discussed here, which underscores the
important role that is played by the order parameter being
conserved in our model. The quantum phase transition in a
model where it is not, and where the random mass term is
therefore relevant with respect to the analog of our Gaussian
fixed point ~FP!, is discussed elsewhere.25 We also mention
that the effect of fermionic soft modes on the ferromagnetic
phase transition incleansystems has been discussed recently
in Ref. 3.

Even though we quote exponent values formally for all
d.2, it should be mentioned that the region of validity of
our analysis shrinks to zero asd approaches 2. As mentioned
in Sec. II C, the reference system has all of the characteris-
tics of the system described by the full actionS, except that
it must not undergo a phase transition lest our separation of
modes that is implicit in our singling outSint

t for the decou-
pling procedure break down. This requirement puts restric-
tions on the parameter values for which our procedure works.
For instance, we cannot go to arbitrarily large disorder~at
fixedd) without triggering a metal-insulator transition within
the reference system. Ford→2 the metal-insulator transi-
tions occurs at smaller and smaller values of the disorder,
and ind52 one obtains a very complicated, and unsolved,
situation where various fluctuations compete with each other.

We finally discuss why some of our results are in dis-
agreement with Sachdev’s2 recent general scaling analysis of
quantum phase transitions with conserved order parameters.
For instance, it follows from our Eqs.~3.10!, ~3.14! that the
Wilson ratio, defined asW5(m/H)/(CV /T), diverges at
criticality rather than being a universal number as predicted
in Ref. 2. Also, for 2,d,4 the functionFg in Eq. ~3.18!,
for t50 and neglecting corrections to scaling, is a function
of T/H, in agreement with Ref. 2, but ford.4 this is not the
case. The general reason for this breakdown of general scal-
ing is that we work above an upper critical dimensionality,
and hence dangerous irrelevant variables have to be consid-
ered very carefully, and on a case-by-case basis. This caveat
is particularly relevant for quantum phase transitions since
they tend to have a low upper critical dimension. It is well
known that a given irrelevant variable can be dangerous with
respect to some observables but not with respect to others.
Specifically, in our case the dangerously irrelevant variable
u4 affects the leading scaling behavior of the magnetization,
but not that of the specific heat coefficient, which leads to the
divergence of the Wilson ratio. A simple example of this
phenomenon is provided by classicalf4 theory in d.4,
where the dangerous irrelevant variableu ~the coefficient of
the f4 term! affects the scale dimension of the magnetiza-
tion, but not that of the specific heat.19 In classicalf4 theory
this point is obscured by the fact that the saddle-point con-
tribution to the specific heat contains a discontinuity. This is
often expressed asa50, with a the specific heat exponent.
However, the approach to the discontinuity is described by
the a suggested by hyperscaling, namely,a522d/2; see
Chap. VII.4 of Ref. 19. At the quantum FP the situation is
clearer, since the saddle-point contribution toCV is sublead-
ing. It is also important to remember that different arguments
of a scaling function can be affected in different ways by one
and the same dangerous irrelevant variable. Here, the effec-
tive scale dimension ofH in the specific heat is changed by
u4 @from (3d22)/2 to d in 2,d,4#, but that ofT is not,
sinceu4 imports only the subleading crossover temperature
scale intogV via the appearance ofm in Eq. ~3.13!.

B. Experimental aspects

In order to apply our theoretical results to experiments,
one needs materials that show a transition from a paramag-
netic state to a ferromagnetic one at zero temperature as a
function of some parameterx. Obvious candidates are mag-
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netic alloys of the formPxF12x with P a paramagnetic metal
andF a ferromagnetic one. Such materials show the desired
transition as a function of the composition parameterx; ex-
amples includeF5Ni and P5Al, Ga.11 The schematic
phase diagram is shown in Fig. 2.

One striking difference between our results for the quan-
tum ferromagnetic phase transition at (x5xc ,T50) and the
classical or thermal transition for Heisenberg ferromagnets is
the numerical values of the exponents. For three-dimensional
~3D! systems, our Eqs.~3.8!, for instance, predictb52,
while the corresponding value for the thermal transition is26

bclass'0.37. The large difference between the classical and
the quantum value should be easily observable if it was pos-
sible to measure the magnetization at a sufficiently low tem-
perature as a function ofx in order to observe the crossover
between quantum and classical critical behavior in the vicin-
ity of xc . One possible way to do such an experiment would
involve the preparation of many samples with different val-
ues ofx over a small region ofx. It might also be possible to
probe the magnetic phase transition by using the stress tun-
ing technique that was used to study the metal-insulator tran-
sition in Si:P.28 Alternatively, one could prepare a sample
with a value ofx that is as close as possible toxc , and
measure the magnetic field dependence of the magnetization,
extrapolated toT50, to obtain the exponentd. Again, there
is a large difference between our prediction ofd51.5 in
d53, and the classical valuedclass'4.86.

Another possibility, that does not involve an extrapolation
to T50, is to measure the zero-field magnetic susceptibility
as a function of botht5ux2xcu and T. Equation ~3.10a!
predicts

xm~ t,T!5T21/2f x~T/t2!. ~4.1!

Here f x is a scaling function that has two branches,f x
1 for

x.xc and f x
2 for x,xc . Both branches approach a constant

for large values of their argument,f x
6(y→`)5const. For

small arguments, we havef x
1(y→0);Ay, while f x

2 di-
verges at a nonzero valuey* of its argument, which signal-
izes the classical transitionf x

2(y→y* );(y2y* )2g class,
with gclass'1.39 the susceptibility exponent for the classical
transition. Our prediction is then that a plot ofxmT

1/2 versus

T/t2 will yield a universal function the shape of which is
schematically shown in Fig. 3. Notice that the exponents are
knownexactly, and so the only adjustable parameter for plot-
ting experimental data will be the position of the critical
point. This is in sharp contrast to some other quantum phase
transitions, especially metal-insulator transitions, where the
exponent values are not even approximately known, which
makes scaling plots almost meaningless.29

Finally, one can consider the low-temperature behavior of
the specific heat. According to Eq.~3.18!, as the temperature
is lowered forx*xc the leading temperature dependence of
the specific heat will be

cV~T!;TlnT. ~4.2a!

At criticality this behavior will continue toT50, while for
x.xc it will cross over to

cV~T!;~ lnt !T. ~4.2b!

For x&xc one will encounter the classical Heisenberg tran-
sition where the specific heat shows a finite cusp~i.e., the
exponenta,0).
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APPENDIX A: WAVE-NUMBER-DEPENDENT SPIN
SUSCEPTIBILITY

Here we calculate the wave-number-dependent spin sus-
ceptibility in a disordered interacting Fermi system. In terms
of the Q-matrix field theory reviewed in Ref. 8, the spin
susceptibility reads

xs~q,Vn!; (
r50,3

~2 !rT (
m1 ,m2

^ r
3Qm11n,m1

aa ~q!

3 r
3Qm22n,m2

aa ~2q!&. ~A1!

The classical matrix fieldQ comprises two fermionic de-
grees of freedom, and a general matrix elementr

i
Q
nm
ab has six

FIG. 2. Schematic phase diagram for an alloy of the form
PxF12x . Tc is the Curie temperature for the pure ferromagnetF,
andxc is the critical concentration.

FIG. 3. Schematic prediction for a scaling plot of the magnetic
susceptibility.
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indices: i is the spin index~with i51,2,3 the spin-triplet
channel!, r50,3 denotes the particle-hole channel (r51,2
would be the particle-particle channel!, n,m are Matsubata
frequency indices, anda,b are replica indices. The matrix
elements withnm,0 describe the soft modes, i.e., the
particle-hole excitations, while those withnm.0 are mas-
sive. For explicit calculations it is convenient to consider the
nonlinears-model version of theQ-field theory,27,8 where
the massive modes are integrated out. In the resulting effec-
tive model,Q251, and a loop expansion can be set up by
expanding allQ in terms ofqnm5Q(2nm)Qnm . The con-
tribution ofO(q2) to Eq.~1.1! vanishes forVn50 and hence
does not contribute tox0(q)5xs(q,Vn50). The one-loop
contribution, which is the term ofO(q4), gives

x0~q!;
1

V(
k
T(

n
vnDn

t ~k!Dn~k!

3@Dn~k2q!2Dn
t ~k2q!#. ~A2a!

HereDn andDn
t are the diffusive propagators of the theory.8

Their structure is

Dn~k!51/~k21D21vn!, ~A2b!

with D a diffusion coefficient.Dn
t has the same structure,

with D replaced byDtÞD. Since we are not interested in
prefactors, we do not have to specify eitherD andDt, or the
prefactor in Eq.~A2a!. For the reasons discussed at the end
of Sec. II C, the one-loop term suffices to calculate the lead-
ing infrared wave number dependence ofx0 . Schematically,
Eqs.~A2! yield

x0~q!;E
q

L

dkkd21E
0

`

dv
v

~k21v!3
, ~A3!

with L an ultraviolet cutoff, from which one readily obtains
Eq. ~2.12a!.

APPENDIX B: LOGARITHMIC CORRECTIONS
TO SCALING IN D54 AND D56

There are three distinct mechanisms that produce logarith-
mic corrections to scaling:~1! Marginal operators,~2! Weg-
ner resonance conditions between a set of scale dimensions,
and ~3! logarithmic corrections to the scale dimension of a
dangerous irrelevant operator. The first two mechanism are
well known.20 The third is operative only above an upper
critical dimension, and is therefore of particular interest for
quantum phase transitions.

In the present case, logarithmic corrections to scaling
arise due to all three of these mechanisms. The second one
produces corrections to the scaling of the specific heat in all
dimensions 2,d,4, as was discussed in Sec. III D. The first
one is operative ind54, wherev4 is a marginal operator; see
Eq. ~3.5b!. If desired, the resulting corrections to scaling can
be worked out using standard techniques.20 Finally, the third
mechanism produces corrections to scaling ind56. Accord-
ing to Eq. ~2.9!, the coefficientu4; lnq in d56. Via Eq.
~3.6! or ~3.7! this leads, for instance, to a leading behavior of
the spontaneous magnetization,

m~ t,H50!;
t1/2

Aln~1/t !
, ~B1!

and at the critical point we have

m~ t50,H !;
H1/3

@ ln~1/H !#1/3
. ~B2!

Other consequences, e.g., for the specific heat in a magnetic
field, can be easily worked out.
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